intel_dp.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. struct drm_property *force_audio_property;
  58. };
  59. /**
  60. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  61. * @intel_dp: DP struct
  62. *
  63. * If a CPU or PCH DP output is attached to an eDP panel, this function
  64. * will return true, and false otherwise.
  65. */
  66. static bool is_edp(struct intel_dp *intel_dp)
  67. {
  68. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  69. }
  70. /**
  71. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  72. * @intel_dp: DP struct
  73. *
  74. * Returns true if the given DP struct corresponds to a PCH DP port attached
  75. * to an eDP panel, false otherwise. Helpful for determining whether we
  76. * may need FDI resources for a given DP output or not.
  77. */
  78. static bool is_pch_edp(struct intel_dp *intel_dp)
  79. {
  80. return intel_dp->is_pch_edp;
  81. }
  82. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  83. {
  84. return container_of(encoder, struct intel_dp, base.base);
  85. }
  86. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  87. {
  88. return container_of(intel_attached_encoder(connector),
  89. struct intel_dp, base);
  90. }
  91. /**
  92. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  93. * @encoder: DRM encoder
  94. *
  95. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  96. * by intel_display.c.
  97. */
  98. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  99. {
  100. struct intel_dp *intel_dp;
  101. if (!encoder)
  102. return false;
  103. intel_dp = enc_to_intel_dp(encoder);
  104. return is_pch_edp(intel_dp);
  105. }
  106. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  108. static void intel_dp_link_down(struct intel_dp *intel_dp);
  109. void
  110. intel_edp_link_config (struct intel_encoder *intel_encoder,
  111. int *lane_num, int *link_bw)
  112. {
  113. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  114. *lane_num = intel_dp->lane_count;
  115. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  116. *link_bw = 162000;
  117. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  118. *link_bw = 270000;
  119. }
  120. static int
  121. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  122. {
  123. int max_lane_count = 4;
  124. if (intel_dp->dpcd[0] >= 0x11) {
  125. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  126. switch (max_lane_count) {
  127. case 1: case 2: case 4:
  128. break;
  129. default:
  130. max_lane_count = 4;
  131. }
  132. }
  133. return max_lane_count;
  134. }
  135. static int
  136. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  137. {
  138. int max_link_bw = intel_dp->dpcd[1];
  139. switch (max_link_bw) {
  140. case DP_LINK_BW_1_62:
  141. case DP_LINK_BW_2_7:
  142. break;
  143. default:
  144. max_link_bw = DP_LINK_BW_1_62;
  145. break;
  146. }
  147. return max_link_bw;
  148. }
  149. static int
  150. intel_dp_link_clock(uint8_t link_bw)
  151. {
  152. if (link_bw == DP_LINK_BW_2_7)
  153. return 270000;
  154. else
  155. return 162000;
  156. }
  157. /* I think this is a fiction */
  158. static int
  159. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  160. {
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. if (is_edp(intel_dp))
  163. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  164. else
  165. return pixel_clock * 3;
  166. }
  167. static int
  168. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  169. {
  170. return (max_link_clock * max_lanes * 8) / 10;
  171. }
  172. static int
  173. intel_dp_mode_valid(struct drm_connector *connector,
  174. struct drm_display_mode *mode)
  175. {
  176. struct intel_dp *intel_dp = intel_attached_dp(connector);
  177. struct drm_device *dev = connector->dev;
  178. struct drm_i915_private *dev_priv = dev->dev_private;
  179. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  180. int max_lanes = intel_dp_max_lane_count(intel_dp);
  181. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  182. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  183. return MODE_PANEL;
  184. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  185. return MODE_PANEL;
  186. }
  187. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  188. which are outside spec tolerances but somehow work by magic */
  189. if (!is_edp(intel_dp) &&
  190. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  191. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. return MODE_OK;
  196. }
  197. static uint32_t
  198. pack_aux(uint8_t *src, int src_bytes)
  199. {
  200. int i;
  201. uint32_t v = 0;
  202. if (src_bytes > 4)
  203. src_bytes = 4;
  204. for (i = 0; i < src_bytes; i++)
  205. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  206. return v;
  207. }
  208. static void
  209. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  210. {
  211. int i;
  212. if (dst_bytes > 4)
  213. dst_bytes = 4;
  214. for (i = 0; i < dst_bytes; i++)
  215. dst[i] = src >> ((3-i) * 8);
  216. }
  217. /* hrawclock is 1/4 the FSB frequency */
  218. static int
  219. intel_hrawclk(struct drm_device *dev)
  220. {
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. uint32_t clkcfg;
  223. clkcfg = I915_READ(CLKCFG);
  224. switch (clkcfg & CLKCFG_FSB_MASK) {
  225. case CLKCFG_FSB_400:
  226. return 100;
  227. case CLKCFG_FSB_533:
  228. return 133;
  229. case CLKCFG_FSB_667:
  230. return 166;
  231. case CLKCFG_FSB_800:
  232. return 200;
  233. case CLKCFG_FSB_1067:
  234. return 266;
  235. case CLKCFG_FSB_1333:
  236. return 333;
  237. /* these two are just a guess; one of them might be right */
  238. case CLKCFG_FSB_1600:
  239. case CLKCFG_FSB_1600_ALT:
  240. return 400;
  241. default:
  242. return 133;
  243. }
  244. }
  245. static int
  246. intel_dp_aux_ch(struct intel_dp *intel_dp,
  247. uint8_t *send, int send_bytes,
  248. uint8_t *recv, int recv_size)
  249. {
  250. uint32_t output_reg = intel_dp->output_reg;
  251. struct drm_device *dev = intel_dp->base.base.dev;
  252. struct drm_i915_private *dev_priv = dev->dev_private;
  253. uint32_t ch_ctl = output_reg + 0x10;
  254. uint32_t ch_data = ch_ctl + 4;
  255. int i;
  256. int recv_bytes;
  257. uint32_t status;
  258. uint32_t aux_clock_divider;
  259. int try, precharge;
  260. /* The clock divider is based off the hrawclk,
  261. * and would like to run at 2MHz. So, take the
  262. * hrawclk value and divide by 2 and use that
  263. *
  264. * Note that PCH attached eDP panels should use a 125MHz input
  265. * clock divider.
  266. */
  267. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  268. if (IS_GEN6(dev))
  269. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  270. else
  271. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  272. } else if (HAS_PCH_SPLIT(dev))
  273. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  274. else
  275. aux_clock_divider = intel_hrawclk(dev) / 2;
  276. if (IS_GEN6(dev))
  277. precharge = 3;
  278. else
  279. precharge = 5;
  280. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  281. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  282. I915_READ(ch_ctl));
  283. return -EBUSY;
  284. }
  285. /* Must try at least 3 times according to DP spec */
  286. for (try = 0; try < 5; try++) {
  287. /* Load the send data into the aux channel data registers */
  288. for (i = 0; i < send_bytes; i += 4)
  289. I915_WRITE(ch_data + i,
  290. pack_aux(send + i, send_bytes - i));
  291. /* Send the command and wait for it to complete */
  292. I915_WRITE(ch_ctl,
  293. DP_AUX_CH_CTL_SEND_BUSY |
  294. DP_AUX_CH_CTL_TIME_OUT_400us |
  295. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  296. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  297. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  298. DP_AUX_CH_CTL_DONE |
  299. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  300. DP_AUX_CH_CTL_RECEIVE_ERROR);
  301. for (;;) {
  302. status = I915_READ(ch_ctl);
  303. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  304. break;
  305. udelay(100);
  306. }
  307. /* Clear done status and any errors */
  308. I915_WRITE(ch_ctl,
  309. status |
  310. DP_AUX_CH_CTL_DONE |
  311. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  312. DP_AUX_CH_CTL_RECEIVE_ERROR);
  313. if (status & DP_AUX_CH_CTL_DONE)
  314. break;
  315. }
  316. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  317. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  318. return -EBUSY;
  319. }
  320. /* Check for timeout or receive error.
  321. * Timeouts occur when the sink is not connected
  322. */
  323. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  324. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  325. return -EIO;
  326. }
  327. /* Timeouts occur when the device isn't connected, so they're
  328. * "normal" -- don't fill the kernel log with these */
  329. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  330. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  331. return -ETIMEDOUT;
  332. }
  333. /* Unload any bytes sent back from the other side */
  334. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  335. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  336. if (recv_bytes > recv_size)
  337. recv_bytes = recv_size;
  338. for (i = 0; i < recv_bytes; i += 4)
  339. unpack_aux(I915_READ(ch_data + i),
  340. recv + i, recv_bytes - i);
  341. return recv_bytes;
  342. }
  343. /* Write data to the aux channel in native mode */
  344. static int
  345. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  346. uint16_t address, uint8_t *send, int send_bytes)
  347. {
  348. int ret;
  349. uint8_t msg[20];
  350. int msg_bytes;
  351. uint8_t ack;
  352. if (send_bytes > 16)
  353. return -1;
  354. msg[0] = AUX_NATIVE_WRITE << 4;
  355. msg[1] = address >> 8;
  356. msg[2] = address & 0xff;
  357. msg[3] = send_bytes - 1;
  358. memcpy(&msg[4], send, send_bytes);
  359. msg_bytes = send_bytes + 4;
  360. for (;;) {
  361. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  362. if (ret < 0)
  363. return ret;
  364. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  365. break;
  366. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  367. udelay(100);
  368. else
  369. return -EIO;
  370. }
  371. return send_bytes;
  372. }
  373. /* Write a single byte to the aux channel in native mode */
  374. static int
  375. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  376. uint16_t address, uint8_t byte)
  377. {
  378. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  379. }
  380. /* read bytes from a native aux channel */
  381. static int
  382. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  383. uint16_t address, uint8_t *recv, int recv_bytes)
  384. {
  385. uint8_t msg[4];
  386. int msg_bytes;
  387. uint8_t reply[20];
  388. int reply_bytes;
  389. uint8_t ack;
  390. int ret;
  391. msg[0] = AUX_NATIVE_READ << 4;
  392. msg[1] = address >> 8;
  393. msg[2] = address & 0xff;
  394. msg[3] = recv_bytes - 1;
  395. msg_bytes = 4;
  396. reply_bytes = recv_bytes + 1;
  397. for (;;) {
  398. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  399. reply, reply_bytes);
  400. if (ret == 0)
  401. return -EPROTO;
  402. if (ret < 0)
  403. return ret;
  404. ack = reply[0];
  405. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  406. memcpy(recv, reply + 1, ret - 1);
  407. return ret - 1;
  408. }
  409. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  410. udelay(100);
  411. else
  412. return -EIO;
  413. }
  414. }
  415. static int
  416. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  417. uint8_t write_byte, uint8_t *read_byte)
  418. {
  419. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  420. struct intel_dp *intel_dp = container_of(adapter,
  421. struct intel_dp,
  422. adapter);
  423. uint16_t address = algo_data->address;
  424. uint8_t msg[5];
  425. uint8_t reply[2];
  426. unsigned retry;
  427. int msg_bytes;
  428. int reply_bytes;
  429. int ret;
  430. /* Set up the command byte */
  431. if (mode & MODE_I2C_READ)
  432. msg[0] = AUX_I2C_READ << 4;
  433. else
  434. msg[0] = AUX_I2C_WRITE << 4;
  435. if (!(mode & MODE_I2C_STOP))
  436. msg[0] |= AUX_I2C_MOT << 4;
  437. msg[1] = address >> 8;
  438. msg[2] = address;
  439. switch (mode) {
  440. case MODE_I2C_WRITE:
  441. msg[3] = 0;
  442. msg[4] = write_byte;
  443. msg_bytes = 5;
  444. reply_bytes = 1;
  445. break;
  446. case MODE_I2C_READ:
  447. msg[3] = 0;
  448. msg_bytes = 4;
  449. reply_bytes = 2;
  450. break;
  451. default:
  452. msg_bytes = 3;
  453. reply_bytes = 1;
  454. break;
  455. }
  456. for (retry = 0; retry < 5; retry++) {
  457. ret = intel_dp_aux_ch(intel_dp,
  458. msg, msg_bytes,
  459. reply, reply_bytes);
  460. if (ret < 0) {
  461. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  462. return ret;
  463. }
  464. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  465. case AUX_NATIVE_REPLY_ACK:
  466. /* I2C-over-AUX Reply field is only valid
  467. * when paired with AUX ACK.
  468. */
  469. break;
  470. case AUX_NATIVE_REPLY_NACK:
  471. DRM_DEBUG_KMS("aux_ch native nack\n");
  472. return -EREMOTEIO;
  473. case AUX_NATIVE_REPLY_DEFER:
  474. udelay(100);
  475. continue;
  476. default:
  477. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  478. reply[0]);
  479. return -EREMOTEIO;
  480. }
  481. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  482. case AUX_I2C_REPLY_ACK:
  483. if (mode == MODE_I2C_READ) {
  484. *read_byte = reply[1];
  485. }
  486. return reply_bytes - 1;
  487. case AUX_I2C_REPLY_NACK:
  488. DRM_DEBUG_KMS("aux_i2c nack\n");
  489. return -EREMOTEIO;
  490. case AUX_I2C_REPLY_DEFER:
  491. DRM_DEBUG_KMS("aux_i2c defer\n");
  492. udelay(100);
  493. break;
  494. default:
  495. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  496. return -EREMOTEIO;
  497. }
  498. }
  499. DRM_ERROR("too many retries, giving up\n");
  500. return -EREMOTEIO;
  501. }
  502. static int
  503. intel_dp_i2c_init(struct intel_dp *intel_dp,
  504. struct intel_connector *intel_connector, const char *name)
  505. {
  506. DRM_DEBUG_KMS("i2c_init %s\n", name);
  507. intel_dp->algo.running = false;
  508. intel_dp->algo.address = 0;
  509. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  510. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  511. intel_dp->adapter.owner = THIS_MODULE;
  512. intel_dp->adapter.class = I2C_CLASS_DDC;
  513. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  514. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  515. intel_dp->adapter.algo_data = &intel_dp->algo;
  516. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  517. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  518. }
  519. static bool
  520. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  521. struct drm_display_mode *adjusted_mode)
  522. {
  523. struct drm_device *dev = encoder->dev;
  524. struct drm_i915_private *dev_priv = dev->dev_private;
  525. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  526. int lane_count, clock;
  527. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  528. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  529. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  530. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  531. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  532. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  533. mode, adjusted_mode);
  534. /*
  535. * the mode->clock is used to calculate the Data&Link M/N
  536. * of the pipe. For the eDP the fixed clock should be used.
  537. */
  538. mode->clock = dev_priv->panel_fixed_mode->clock;
  539. }
  540. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  541. for (clock = 0; clock <= max_clock; clock++) {
  542. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  543. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  544. <= link_avail) {
  545. intel_dp->link_bw = bws[clock];
  546. intel_dp->lane_count = lane_count;
  547. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  548. DRM_DEBUG_KMS("Display port link bw %02x lane "
  549. "count %d clock %d\n",
  550. intel_dp->link_bw, intel_dp->lane_count,
  551. adjusted_mode->clock);
  552. return true;
  553. }
  554. }
  555. }
  556. if (is_edp(intel_dp)) {
  557. /* okay we failed just pick the highest */
  558. intel_dp->lane_count = max_lane_count;
  559. intel_dp->link_bw = bws[max_clock];
  560. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  561. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  562. "count %d clock %d\n",
  563. intel_dp->link_bw, intel_dp->lane_count,
  564. adjusted_mode->clock);
  565. return true;
  566. }
  567. return false;
  568. }
  569. struct intel_dp_m_n {
  570. uint32_t tu;
  571. uint32_t gmch_m;
  572. uint32_t gmch_n;
  573. uint32_t link_m;
  574. uint32_t link_n;
  575. };
  576. static void
  577. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  578. {
  579. while (*num > 0xffffff || *den > 0xffffff) {
  580. *num >>= 1;
  581. *den >>= 1;
  582. }
  583. }
  584. static void
  585. intel_dp_compute_m_n(int bpp,
  586. int nlanes,
  587. int pixel_clock,
  588. int link_clock,
  589. struct intel_dp_m_n *m_n)
  590. {
  591. m_n->tu = 64;
  592. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  593. m_n->gmch_n = link_clock * nlanes;
  594. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  595. m_n->link_m = pixel_clock;
  596. m_n->link_n = link_clock;
  597. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  598. }
  599. void
  600. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  601. struct drm_display_mode *adjusted_mode)
  602. {
  603. struct drm_device *dev = crtc->dev;
  604. struct drm_mode_config *mode_config = &dev->mode_config;
  605. struct drm_encoder *encoder;
  606. struct drm_i915_private *dev_priv = dev->dev_private;
  607. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  608. int lane_count = 4, bpp = 24;
  609. struct intel_dp_m_n m_n;
  610. int pipe = intel_crtc->pipe;
  611. /*
  612. * Find the lane count in the intel_encoder private
  613. */
  614. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  615. struct intel_dp *intel_dp;
  616. if (encoder->crtc != crtc)
  617. continue;
  618. intel_dp = enc_to_intel_dp(encoder);
  619. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  620. lane_count = intel_dp->lane_count;
  621. break;
  622. } else if (is_edp(intel_dp)) {
  623. lane_count = dev_priv->edp.lanes;
  624. bpp = dev_priv->edp.bpp;
  625. break;
  626. }
  627. }
  628. /*
  629. * Compute the GMCH and Link ratios. The '3' here is
  630. * the number of bytes_per_pixel post-LUT, which we always
  631. * set up for 8-bits of R/G/B, or 3 bytes total.
  632. */
  633. intel_dp_compute_m_n(bpp, lane_count,
  634. mode->clock, adjusted_mode->clock, &m_n);
  635. if (HAS_PCH_SPLIT(dev)) {
  636. I915_WRITE(TRANSDATA_M1(pipe),
  637. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  638. m_n.gmch_m);
  639. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  640. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  641. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  642. } else {
  643. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  644. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  645. m_n.gmch_m);
  646. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  647. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  648. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  649. }
  650. }
  651. static void
  652. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  653. struct drm_display_mode *adjusted_mode)
  654. {
  655. struct drm_device *dev = encoder->dev;
  656. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  657. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  659. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  660. intel_dp->DP |= intel_dp->color_range;
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  662. intel_dp->DP |= DP_SYNC_HS_HIGH;
  663. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  664. intel_dp->DP |= DP_SYNC_VS_HIGH;
  665. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  666. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  667. else
  668. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  669. switch (intel_dp->lane_count) {
  670. case 1:
  671. intel_dp->DP |= DP_PORT_WIDTH_1;
  672. break;
  673. case 2:
  674. intel_dp->DP |= DP_PORT_WIDTH_2;
  675. break;
  676. case 4:
  677. intel_dp->DP |= DP_PORT_WIDTH_4;
  678. break;
  679. }
  680. if (intel_dp->has_audio)
  681. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  682. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  683. intel_dp->link_configuration[0] = intel_dp->link_bw;
  684. intel_dp->link_configuration[1] = intel_dp->lane_count;
  685. /*
  686. * Check for DPCD version > 1.1 and enhanced framing support
  687. */
  688. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  689. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  690. intel_dp->DP |= DP_ENHANCED_FRAMING;
  691. }
  692. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  693. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  694. intel_dp->DP |= DP_PIPEB_SELECT;
  695. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  696. /* don't miss out required setting for eDP */
  697. intel_dp->DP |= DP_PLL_ENABLE;
  698. if (adjusted_mode->clock < 200000)
  699. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  700. else
  701. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  702. }
  703. }
  704. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  705. {
  706. struct drm_device *dev = intel_dp->base.base.dev;
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. u32 pp;
  709. /*
  710. * If the panel wasn't on, make sure there's not a currently
  711. * active PP sequence before enabling AUX VDD.
  712. */
  713. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  714. msleep(dev_priv->panel_t3);
  715. pp = I915_READ(PCH_PP_CONTROL);
  716. pp |= EDP_FORCE_VDD;
  717. I915_WRITE(PCH_PP_CONTROL, pp);
  718. POSTING_READ(PCH_PP_CONTROL);
  719. }
  720. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  721. {
  722. struct drm_device *dev = intel_dp->base.base.dev;
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. u32 pp;
  725. pp = I915_READ(PCH_PP_CONTROL);
  726. pp &= ~EDP_FORCE_VDD;
  727. I915_WRITE(PCH_PP_CONTROL, pp);
  728. POSTING_READ(PCH_PP_CONTROL);
  729. /* Make sure sequencer is idle before allowing subsequent activity */
  730. msleep(dev_priv->panel_t12);
  731. }
  732. /* Returns true if the panel was already on when called */
  733. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  734. {
  735. struct drm_device *dev = intel_dp->base.base.dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  738. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  739. return true;
  740. pp = I915_READ(PCH_PP_CONTROL);
  741. /* ILK workaround: disable reset around power sequence */
  742. pp &= ~PANEL_POWER_RESET;
  743. I915_WRITE(PCH_PP_CONTROL, pp);
  744. POSTING_READ(PCH_PP_CONTROL);
  745. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  746. I915_WRITE(PCH_PP_CONTROL, pp);
  747. POSTING_READ(PCH_PP_CONTROL);
  748. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  749. 5000))
  750. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  751. I915_READ(PCH_PP_STATUS));
  752. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  753. I915_WRITE(PCH_PP_CONTROL, pp);
  754. POSTING_READ(PCH_PP_CONTROL);
  755. return false;
  756. }
  757. static void ironlake_edp_panel_off (struct drm_device *dev)
  758. {
  759. struct drm_i915_private *dev_priv = dev->dev_private;
  760. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  761. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  762. pp = I915_READ(PCH_PP_CONTROL);
  763. /* ILK workaround: disable reset around power sequence */
  764. pp &= ~PANEL_POWER_RESET;
  765. I915_WRITE(PCH_PP_CONTROL, pp);
  766. POSTING_READ(PCH_PP_CONTROL);
  767. pp &= ~POWER_TARGET_ON;
  768. I915_WRITE(PCH_PP_CONTROL, pp);
  769. POSTING_READ(PCH_PP_CONTROL);
  770. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  771. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  772. I915_READ(PCH_PP_STATUS));
  773. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  774. I915_WRITE(PCH_PP_CONTROL, pp);
  775. POSTING_READ(PCH_PP_CONTROL);
  776. }
  777. static void ironlake_edp_backlight_on (struct drm_device *dev)
  778. {
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. u32 pp;
  781. DRM_DEBUG_KMS("\n");
  782. /*
  783. * If we enable the backlight right away following a panel power
  784. * on, we may see slight flicker as the panel syncs with the eDP
  785. * link. So delay a bit to make sure the image is solid before
  786. * allowing it to appear.
  787. */
  788. msleep(300);
  789. pp = I915_READ(PCH_PP_CONTROL);
  790. pp |= EDP_BLC_ENABLE;
  791. I915_WRITE(PCH_PP_CONTROL, pp);
  792. }
  793. static void ironlake_edp_backlight_off (struct drm_device *dev)
  794. {
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. u32 pp;
  797. DRM_DEBUG_KMS("\n");
  798. pp = I915_READ(PCH_PP_CONTROL);
  799. pp &= ~EDP_BLC_ENABLE;
  800. I915_WRITE(PCH_PP_CONTROL, pp);
  801. }
  802. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  803. {
  804. struct drm_device *dev = encoder->dev;
  805. struct drm_i915_private *dev_priv = dev->dev_private;
  806. u32 dpa_ctl;
  807. DRM_DEBUG_KMS("\n");
  808. dpa_ctl = I915_READ(DP_A);
  809. dpa_ctl |= DP_PLL_ENABLE;
  810. I915_WRITE(DP_A, dpa_ctl);
  811. POSTING_READ(DP_A);
  812. udelay(200);
  813. }
  814. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  815. {
  816. struct drm_device *dev = encoder->dev;
  817. struct drm_i915_private *dev_priv = dev->dev_private;
  818. u32 dpa_ctl;
  819. dpa_ctl = I915_READ(DP_A);
  820. dpa_ctl &= ~DP_PLL_ENABLE;
  821. I915_WRITE(DP_A, dpa_ctl);
  822. POSTING_READ(DP_A);
  823. udelay(200);
  824. }
  825. static void intel_dp_prepare(struct drm_encoder *encoder)
  826. {
  827. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  828. struct drm_device *dev = encoder->dev;
  829. if (is_edp(intel_dp)) {
  830. ironlake_edp_backlight_off(dev);
  831. ironlake_edp_panel_off(dev);
  832. if (!is_pch_edp(intel_dp))
  833. ironlake_edp_pll_on(encoder);
  834. else
  835. ironlake_edp_pll_off(encoder);
  836. }
  837. intel_dp_link_down(intel_dp);
  838. }
  839. static void intel_dp_commit(struct drm_encoder *encoder)
  840. {
  841. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  842. struct drm_device *dev = encoder->dev;
  843. if (is_edp(intel_dp))
  844. ironlake_edp_panel_vdd_on(intel_dp);
  845. intel_dp_start_link_train(intel_dp);
  846. if (is_edp(intel_dp)) {
  847. ironlake_edp_panel_on(intel_dp);
  848. ironlake_edp_panel_vdd_off(intel_dp);
  849. }
  850. intel_dp_complete_link_train(intel_dp);
  851. if (is_edp(intel_dp))
  852. ironlake_edp_backlight_on(dev);
  853. }
  854. static void
  855. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  856. {
  857. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  858. struct drm_device *dev = encoder->dev;
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  861. if (mode != DRM_MODE_DPMS_ON) {
  862. if (is_edp(intel_dp))
  863. ironlake_edp_backlight_off(dev);
  864. intel_dp_link_down(intel_dp);
  865. if (is_edp(intel_dp))
  866. ironlake_edp_panel_off(dev);
  867. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  868. ironlake_edp_pll_off(encoder);
  869. } else {
  870. if (is_edp(intel_dp))
  871. ironlake_edp_panel_vdd_on(intel_dp);
  872. if (!(dp_reg & DP_PORT_EN)) {
  873. intel_dp_start_link_train(intel_dp);
  874. if (is_edp(intel_dp)) {
  875. ironlake_edp_panel_on(intel_dp);
  876. ironlake_edp_panel_vdd_off(intel_dp);
  877. }
  878. intel_dp_complete_link_train(intel_dp);
  879. }
  880. if (is_edp(intel_dp))
  881. ironlake_edp_backlight_on(dev);
  882. }
  883. intel_dp->dpms_mode = mode;
  884. }
  885. /*
  886. * Fetch AUX CH registers 0x202 - 0x207 which contain
  887. * link status information
  888. */
  889. static bool
  890. intel_dp_get_link_status(struct intel_dp *intel_dp)
  891. {
  892. int ret;
  893. ret = intel_dp_aux_native_read(intel_dp,
  894. DP_LANE0_1_STATUS,
  895. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  896. if (ret != DP_LINK_STATUS_SIZE)
  897. return false;
  898. return true;
  899. }
  900. static uint8_t
  901. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  902. int r)
  903. {
  904. return link_status[r - DP_LANE0_1_STATUS];
  905. }
  906. static uint8_t
  907. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  908. int lane)
  909. {
  910. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  911. int s = ((lane & 1) ?
  912. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  913. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  914. uint8_t l = intel_dp_link_status(link_status, i);
  915. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  916. }
  917. static uint8_t
  918. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  919. int lane)
  920. {
  921. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  922. int s = ((lane & 1) ?
  923. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  924. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  925. uint8_t l = intel_dp_link_status(link_status, i);
  926. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  927. }
  928. #if 0
  929. static char *voltage_names[] = {
  930. "0.4V", "0.6V", "0.8V", "1.2V"
  931. };
  932. static char *pre_emph_names[] = {
  933. "0dB", "3.5dB", "6dB", "9.5dB"
  934. };
  935. static char *link_train_names[] = {
  936. "pattern 1", "pattern 2", "idle", "off"
  937. };
  938. #endif
  939. /*
  940. * These are source-specific values; current Intel hardware supports
  941. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  942. */
  943. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  944. static uint8_t
  945. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  946. {
  947. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  948. case DP_TRAIN_VOLTAGE_SWING_400:
  949. return DP_TRAIN_PRE_EMPHASIS_6;
  950. case DP_TRAIN_VOLTAGE_SWING_600:
  951. return DP_TRAIN_PRE_EMPHASIS_6;
  952. case DP_TRAIN_VOLTAGE_SWING_800:
  953. return DP_TRAIN_PRE_EMPHASIS_3_5;
  954. case DP_TRAIN_VOLTAGE_SWING_1200:
  955. default:
  956. return DP_TRAIN_PRE_EMPHASIS_0;
  957. }
  958. }
  959. static void
  960. intel_get_adjust_train(struct intel_dp *intel_dp)
  961. {
  962. uint8_t v = 0;
  963. uint8_t p = 0;
  964. int lane;
  965. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  966. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  967. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  968. if (this_v > v)
  969. v = this_v;
  970. if (this_p > p)
  971. p = this_p;
  972. }
  973. if (v >= I830_DP_VOLTAGE_MAX)
  974. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  975. if (p >= intel_dp_pre_emphasis_max(v))
  976. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  977. for (lane = 0; lane < 4; lane++)
  978. intel_dp->train_set[lane] = v | p;
  979. }
  980. static uint32_t
  981. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  982. {
  983. uint32_t signal_levels = 0;
  984. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  985. case DP_TRAIN_VOLTAGE_SWING_400:
  986. default:
  987. signal_levels |= DP_VOLTAGE_0_4;
  988. break;
  989. case DP_TRAIN_VOLTAGE_SWING_600:
  990. signal_levels |= DP_VOLTAGE_0_6;
  991. break;
  992. case DP_TRAIN_VOLTAGE_SWING_800:
  993. signal_levels |= DP_VOLTAGE_0_8;
  994. break;
  995. case DP_TRAIN_VOLTAGE_SWING_1200:
  996. signal_levels |= DP_VOLTAGE_1_2;
  997. break;
  998. }
  999. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1000. case DP_TRAIN_PRE_EMPHASIS_0:
  1001. default:
  1002. signal_levels |= DP_PRE_EMPHASIS_0;
  1003. break;
  1004. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1005. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1006. break;
  1007. case DP_TRAIN_PRE_EMPHASIS_6:
  1008. signal_levels |= DP_PRE_EMPHASIS_6;
  1009. break;
  1010. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1011. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1012. break;
  1013. }
  1014. return signal_levels;
  1015. }
  1016. /* Gen6's DP voltage swing and pre-emphasis control */
  1017. static uint32_t
  1018. intel_gen6_edp_signal_levels(uint8_t train_set)
  1019. {
  1020. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1021. DP_TRAIN_PRE_EMPHASIS_MASK);
  1022. switch (signal_levels) {
  1023. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1024. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1025. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1026. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1027. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1028. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1029. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1030. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1031. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1032. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1033. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1034. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1035. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1036. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1037. default:
  1038. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1039. "0x%x\n", signal_levels);
  1040. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1041. }
  1042. }
  1043. static uint8_t
  1044. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1045. int lane)
  1046. {
  1047. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1048. int s = (lane & 1) * 4;
  1049. uint8_t l = intel_dp_link_status(link_status, i);
  1050. return (l >> s) & 0xf;
  1051. }
  1052. /* Check for clock recovery is done on all channels */
  1053. static bool
  1054. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1055. {
  1056. int lane;
  1057. uint8_t lane_status;
  1058. for (lane = 0; lane < lane_count; lane++) {
  1059. lane_status = intel_get_lane_status(link_status, lane);
  1060. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1061. return false;
  1062. }
  1063. return true;
  1064. }
  1065. /* Check to see if channel eq is done on all channels */
  1066. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1067. DP_LANE_CHANNEL_EQ_DONE|\
  1068. DP_LANE_SYMBOL_LOCKED)
  1069. static bool
  1070. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1071. {
  1072. uint8_t lane_align;
  1073. uint8_t lane_status;
  1074. int lane;
  1075. lane_align = intel_dp_link_status(intel_dp->link_status,
  1076. DP_LANE_ALIGN_STATUS_UPDATED);
  1077. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1078. return false;
  1079. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1080. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1081. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool
  1087. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1088. uint32_t dp_reg_value,
  1089. uint8_t dp_train_pat)
  1090. {
  1091. struct drm_device *dev = intel_dp->base.base.dev;
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. int ret;
  1094. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1095. POSTING_READ(intel_dp->output_reg);
  1096. intel_dp_aux_native_write_1(intel_dp,
  1097. DP_TRAINING_PATTERN_SET,
  1098. dp_train_pat);
  1099. ret = intel_dp_aux_native_write(intel_dp,
  1100. DP_TRAINING_LANE0_SET,
  1101. intel_dp->train_set, 4);
  1102. if (ret != 4)
  1103. return false;
  1104. return true;
  1105. }
  1106. /* Enable corresponding port and start training pattern 1 */
  1107. static void
  1108. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1109. {
  1110. struct drm_device *dev = intel_dp->base.base.dev;
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1113. int i;
  1114. uint8_t voltage;
  1115. bool clock_recovery = false;
  1116. int tries;
  1117. u32 reg;
  1118. uint32_t DP = intel_dp->DP;
  1119. /* Enable output, wait for it to become active */
  1120. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1121. POSTING_READ(intel_dp->output_reg);
  1122. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1123. /* Write the link configuration data */
  1124. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1125. intel_dp->link_configuration,
  1126. DP_LINK_CONFIGURATION_SIZE);
  1127. DP |= DP_PORT_EN;
  1128. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1129. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1130. else
  1131. DP &= ~DP_LINK_TRAIN_MASK;
  1132. memset(intel_dp->train_set, 0, 4);
  1133. voltage = 0xff;
  1134. tries = 0;
  1135. clock_recovery = false;
  1136. for (;;) {
  1137. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1138. uint32_t signal_levels;
  1139. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1140. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1141. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1142. } else {
  1143. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1144. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1145. }
  1146. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1147. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1148. else
  1149. reg = DP | DP_LINK_TRAIN_PAT_1;
  1150. if (!intel_dp_set_link_train(intel_dp, reg,
  1151. DP_TRAINING_PATTERN_1))
  1152. break;
  1153. /* Set training pattern 1 */
  1154. udelay(100);
  1155. if (!intel_dp_get_link_status(intel_dp))
  1156. break;
  1157. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1158. clock_recovery = true;
  1159. break;
  1160. }
  1161. /* Check to see if we've tried the max voltage */
  1162. for (i = 0; i < intel_dp->lane_count; i++)
  1163. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1164. break;
  1165. if (i == intel_dp->lane_count)
  1166. break;
  1167. /* Check to see if we've tried the same voltage 5 times */
  1168. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1169. ++tries;
  1170. if (tries == 5)
  1171. break;
  1172. } else
  1173. tries = 0;
  1174. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1175. /* Compute new intel_dp->train_set as requested by target */
  1176. intel_get_adjust_train(intel_dp);
  1177. }
  1178. intel_dp->DP = DP;
  1179. }
  1180. static void
  1181. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1182. {
  1183. struct drm_device *dev = intel_dp->base.base.dev;
  1184. struct drm_i915_private *dev_priv = dev->dev_private;
  1185. bool channel_eq = false;
  1186. int tries, cr_tries;
  1187. u32 reg;
  1188. uint32_t DP = intel_dp->DP;
  1189. /* channel equalization */
  1190. tries = 0;
  1191. cr_tries = 0;
  1192. channel_eq = false;
  1193. for (;;) {
  1194. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1195. uint32_t signal_levels;
  1196. if (cr_tries > 5) {
  1197. DRM_ERROR("failed to train DP, aborting\n");
  1198. intel_dp_link_down(intel_dp);
  1199. break;
  1200. }
  1201. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1202. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1203. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1204. } else {
  1205. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1206. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1207. }
  1208. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1209. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1210. else
  1211. reg = DP | DP_LINK_TRAIN_PAT_2;
  1212. /* channel eq pattern */
  1213. if (!intel_dp_set_link_train(intel_dp, reg,
  1214. DP_TRAINING_PATTERN_2))
  1215. break;
  1216. udelay(400);
  1217. if (!intel_dp_get_link_status(intel_dp))
  1218. break;
  1219. /* Make sure clock is still ok */
  1220. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1221. intel_dp_start_link_train(intel_dp);
  1222. cr_tries++;
  1223. continue;
  1224. }
  1225. if (intel_channel_eq_ok(intel_dp)) {
  1226. channel_eq = true;
  1227. break;
  1228. }
  1229. /* Try 5 times, then try clock recovery if that fails */
  1230. if (tries > 5) {
  1231. intel_dp_link_down(intel_dp);
  1232. intel_dp_start_link_train(intel_dp);
  1233. tries = 0;
  1234. cr_tries++;
  1235. continue;
  1236. }
  1237. /* Compute new intel_dp->train_set as requested by target */
  1238. intel_get_adjust_train(intel_dp);
  1239. ++tries;
  1240. }
  1241. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1242. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1243. else
  1244. reg = DP | DP_LINK_TRAIN_OFF;
  1245. I915_WRITE(intel_dp->output_reg, reg);
  1246. POSTING_READ(intel_dp->output_reg);
  1247. intel_dp_aux_native_write_1(intel_dp,
  1248. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1249. }
  1250. static void
  1251. intel_dp_link_down(struct intel_dp *intel_dp)
  1252. {
  1253. struct drm_device *dev = intel_dp->base.base.dev;
  1254. struct drm_i915_private *dev_priv = dev->dev_private;
  1255. uint32_t DP = intel_dp->DP;
  1256. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1257. return;
  1258. DRM_DEBUG_KMS("\n");
  1259. if (is_edp(intel_dp)) {
  1260. DP &= ~DP_PLL_ENABLE;
  1261. I915_WRITE(intel_dp->output_reg, DP);
  1262. POSTING_READ(intel_dp->output_reg);
  1263. udelay(100);
  1264. }
  1265. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1266. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1267. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1268. } else {
  1269. DP &= ~DP_LINK_TRAIN_MASK;
  1270. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1271. }
  1272. POSTING_READ(intel_dp->output_reg);
  1273. msleep(17);
  1274. if (is_edp(intel_dp))
  1275. DP |= DP_LINK_TRAIN_OFF;
  1276. if (!HAS_PCH_CPT(dev) &&
  1277. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1278. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1279. /* Hardware workaround: leaving our transcoder select
  1280. * set to transcoder B while it's off will prevent the
  1281. * corresponding HDMI output on transcoder A.
  1282. *
  1283. * Combine this with another hardware workaround:
  1284. * transcoder select bit can only be cleared while the
  1285. * port is enabled.
  1286. */
  1287. DP &= ~DP_PIPEB_SELECT;
  1288. I915_WRITE(intel_dp->output_reg, DP);
  1289. /* Changes to enable or select take place the vblank
  1290. * after being written.
  1291. */
  1292. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1293. }
  1294. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1295. POSTING_READ(intel_dp->output_reg);
  1296. }
  1297. /*
  1298. * According to DP spec
  1299. * 5.1.2:
  1300. * 1. Read DPCD
  1301. * 2. Configure link according to Receiver Capabilities
  1302. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1303. * 4. Check link status on receipt of hot-plug interrupt
  1304. */
  1305. static void
  1306. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1307. {
  1308. if (!intel_dp->base.base.crtc)
  1309. return;
  1310. if (!intel_dp_get_link_status(intel_dp)) {
  1311. intel_dp_link_down(intel_dp);
  1312. return;
  1313. }
  1314. if (!intel_channel_eq_ok(intel_dp)) {
  1315. intel_dp_start_link_train(intel_dp);
  1316. intel_dp_complete_link_train(intel_dp);
  1317. }
  1318. }
  1319. static enum drm_connector_status
  1320. ironlake_dp_detect(struct intel_dp *intel_dp)
  1321. {
  1322. enum drm_connector_status status;
  1323. /* Can't disconnect eDP, but you can close the lid... */
  1324. if (is_edp(intel_dp)) {
  1325. status = intel_panel_detect(intel_dp->base.base.dev);
  1326. if (status == connector_status_unknown)
  1327. status = connector_status_connected;
  1328. return status;
  1329. }
  1330. status = connector_status_disconnected;
  1331. if (intel_dp_aux_native_read(intel_dp,
  1332. 0x000, intel_dp->dpcd,
  1333. sizeof (intel_dp->dpcd))
  1334. == sizeof(intel_dp->dpcd)) {
  1335. if (intel_dp->dpcd[0] != 0)
  1336. status = connector_status_connected;
  1337. }
  1338. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1339. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1340. return status;
  1341. }
  1342. static enum drm_connector_status
  1343. g4x_dp_detect(struct intel_dp *intel_dp)
  1344. {
  1345. struct drm_device *dev = intel_dp->base.base.dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. enum drm_connector_status status;
  1348. uint32_t temp, bit;
  1349. switch (intel_dp->output_reg) {
  1350. case DP_B:
  1351. bit = DPB_HOTPLUG_INT_STATUS;
  1352. break;
  1353. case DP_C:
  1354. bit = DPC_HOTPLUG_INT_STATUS;
  1355. break;
  1356. case DP_D:
  1357. bit = DPD_HOTPLUG_INT_STATUS;
  1358. break;
  1359. default:
  1360. return connector_status_unknown;
  1361. }
  1362. temp = I915_READ(PORT_HOTPLUG_STAT);
  1363. if ((temp & bit) == 0)
  1364. return connector_status_disconnected;
  1365. status = connector_status_disconnected;
  1366. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1367. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1368. {
  1369. if (intel_dp->dpcd[0] != 0)
  1370. status = connector_status_connected;
  1371. }
  1372. return status;
  1373. }
  1374. /**
  1375. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1376. *
  1377. * \return true if DP port is connected.
  1378. * \return false if DP port is disconnected.
  1379. */
  1380. static enum drm_connector_status
  1381. intel_dp_detect(struct drm_connector *connector, bool force)
  1382. {
  1383. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1384. struct drm_device *dev = intel_dp->base.base.dev;
  1385. enum drm_connector_status status;
  1386. struct edid *edid = NULL;
  1387. intel_dp->has_audio = false;
  1388. if (HAS_PCH_SPLIT(dev))
  1389. status = ironlake_dp_detect(intel_dp);
  1390. else
  1391. status = g4x_dp_detect(intel_dp);
  1392. if (status != connector_status_connected)
  1393. return status;
  1394. if (intel_dp->force_audio) {
  1395. intel_dp->has_audio = intel_dp->force_audio > 0;
  1396. } else {
  1397. edid = drm_get_edid(connector, &intel_dp->adapter);
  1398. if (edid) {
  1399. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1400. connector->display_info.raw_edid = NULL;
  1401. kfree(edid);
  1402. }
  1403. }
  1404. return connector_status_connected;
  1405. }
  1406. static int intel_dp_get_modes(struct drm_connector *connector)
  1407. {
  1408. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1409. struct drm_device *dev = intel_dp->base.base.dev;
  1410. struct drm_i915_private *dev_priv = dev->dev_private;
  1411. int ret;
  1412. /* We should parse the EDID data and find out if it has an audio sink
  1413. */
  1414. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1415. if (ret) {
  1416. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1417. struct drm_display_mode *newmode;
  1418. list_for_each_entry(newmode, &connector->probed_modes,
  1419. head) {
  1420. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1421. dev_priv->panel_fixed_mode =
  1422. drm_mode_duplicate(dev, newmode);
  1423. break;
  1424. }
  1425. }
  1426. }
  1427. return ret;
  1428. }
  1429. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1430. if (is_edp(intel_dp)) {
  1431. if (dev_priv->panel_fixed_mode != NULL) {
  1432. struct drm_display_mode *mode;
  1433. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1434. drm_mode_probed_add(connector, mode);
  1435. return 1;
  1436. }
  1437. }
  1438. return 0;
  1439. }
  1440. static bool
  1441. intel_dp_detect_audio(struct drm_connector *connector)
  1442. {
  1443. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1444. struct edid *edid;
  1445. bool has_audio = false;
  1446. edid = drm_get_edid(connector, &intel_dp->adapter);
  1447. if (edid) {
  1448. has_audio = drm_detect_monitor_audio(edid);
  1449. connector->display_info.raw_edid = NULL;
  1450. kfree(edid);
  1451. }
  1452. return has_audio;
  1453. }
  1454. static int
  1455. intel_dp_set_property(struct drm_connector *connector,
  1456. struct drm_property *property,
  1457. uint64_t val)
  1458. {
  1459. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1460. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1461. int ret;
  1462. ret = drm_connector_property_set_value(connector, property, val);
  1463. if (ret)
  1464. return ret;
  1465. if (property == intel_dp->force_audio_property) {
  1466. int i = val;
  1467. bool has_audio;
  1468. if (i == intel_dp->force_audio)
  1469. return 0;
  1470. intel_dp->force_audio = i;
  1471. if (i == 0)
  1472. has_audio = intel_dp_detect_audio(connector);
  1473. else
  1474. has_audio = i > 0;
  1475. if (has_audio == intel_dp->has_audio)
  1476. return 0;
  1477. intel_dp->has_audio = has_audio;
  1478. goto done;
  1479. }
  1480. if (property == dev_priv->broadcast_rgb_property) {
  1481. if (val == !!intel_dp->color_range)
  1482. return 0;
  1483. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1484. goto done;
  1485. }
  1486. return -EINVAL;
  1487. done:
  1488. if (intel_dp->base.base.crtc) {
  1489. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1490. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1491. crtc->x, crtc->y,
  1492. crtc->fb);
  1493. }
  1494. return 0;
  1495. }
  1496. static void
  1497. intel_dp_destroy (struct drm_connector *connector)
  1498. {
  1499. drm_sysfs_connector_remove(connector);
  1500. drm_connector_cleanup(connector);
  1501. kfree(connector);
  1502. }
  1503. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1504. {
  1505. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1506. i2c_del_adapter(&intel_dp->adapter);
  1507. drm_encoder_cleanup(encoder);
  1508. kfree(intel_dp);
  1509. }
  1510. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1511. .dpms = intel_dp_dpms,
  1512. .mode_fixup = intel_dp_mode_fixup,
  1513. .prepare = intel_dp_prepare,
  1514. .mode_set = intel_dp_mode_set,
  1515. .commit = intel_dp_commit,
  1516. };
  1517. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1518. .dpms = drm_helper_connector_dpms,
  1519. .detect = intel_dp_detect,
  1520. .fill_modes = drm_helper_probe_single_connector_modes,
  1521. .set_property = intel_dp_set_property,
  1522. .destroy = intel_dp_destroy,
  1523. };
  1524. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1525. .get_modes = intel_dp_get_modes,
  1526. .mode_valid = intel_dp_mode_valid,
  1527. .best_encoder = intel_best_encoder,
  1528. };
  1529. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1530. .destroy = intel_dp_encoder_destroy,
  1531. };
  1532. static void
  1533. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1534. {
  1535. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1536. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1537. intel_dp_check_link_status(intel_dp);
  1538. }
  1539. /* Return which DP Port should be selected for Transcoder DP control */
  1540. int
  1541. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1542. {
  1543. struct drm_device *dev = crtc->dev;
  1544. struct drm_mode_config *mode_config = &dev->mode_config;
  1545. struct drm_encoder *encoder;
  1546. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1547. struct intel_dp *intel_dp;
  1548. if (encoder->crtc != crtc)
  1549. continue;
  1550. intel_dp = enc_to_intel_dp(encoder);
  1551. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1552. return intel_dp->output_reg;
  1553. }
  1554. return -1;
  1555. }
  1556. /* check the VBT to see whether the eDP is on DP-D port */
  1557. bool intel_dpd_is_edp(struct drm_device *dev)
  1558. {
  1559. struct drm_i915_private *dev_priv = dev->dev_private;
  1560. struct child_device_config *p_child;
  1561. int i;
  1562. if (!dev_priv->child_dev_num)
  1563. return false;
  1564. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1565. p_child = dev_priv->child_dev + i;
  1566. if (p_child->dvo_port == PORT_IDPD &&
  1567. p_child->device_type == DEVICE_TYPE_eDP)
  1568. return true;
  1569. }
  1570. return false;
  1571. }
  1572. static void
  1573. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1574. {
  1575. struct drm_device *dev = connector->dev;
  1576. intel_dp->force_audio_property =
  1577. drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
  1578. if (intel_dp->force_audio_property) {
  1579. intel_dp->force_audio_property->values[0] = -1;
  1580. intel_dp->force_audio_property->values[1] = 1;
  1581. drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
  1582. }
  1583. intel_attach_broadcast_rgb_property(connector);
  1584. }
  1585. void
  1586. intel_dp_init(struct drm_device *dev, int output_reg)
  1587. {
  1588. struct drm_i915_private *dev_priv = dev->dev_private;
  1589. struct drm_connector *connector;
  1590. struct intel_dp *intel_dp;
  1591. struct intel_encoder *intel_encoder;
  1592. struct intel_connector *intel_connector;
  1593. const char *name = NULL;
  1594. int type;
  1595. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1596. if (!intel_dp)
  1597. return;
  1598. intel_dp->output_reg = output_reg;
  1599. intel_dp->dpms_mode = -1;
  1600. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1601. if (!intel_connector) {
  1602. kfree(intel_dp);
  1603. return;
  1604. }
  1605. intel_encoder = &intel_dp->base;
  1606. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1607. if (intel_dpd_is_edp(dev))
  1608. intel_dp->is_pch_edp = true;
  1609. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1610. type = DRM_MODE_CONNECTOR_eDP;
  1611. intel_encoder->type = INTEL_OUTPUT_EDP;
  1612. } else {
  1613. type = DRM_MODE_CONNECTOR_DisplayPort;
  1614. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1615. }
  1616. connector = &intel_connector->base;
  1617. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1618. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1619. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1620. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1621. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1622. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1623. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1624. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1625. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1626. if (is_edp(intel_dp))
  1627. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1628. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1629. connector->interlace_allowed = true;
  1630. connector->doublescan_allowed = 0;
  1631. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1632. DRM_MODE_ENCODER_TMDS);
  1633. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1634. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1635. drm_sysfs_connector_add(connector);
  1636. /* Set up the DDC bus. */
  1637. switch (output_reg) {
  1638. case DP_A:
  1639. name = "DPDDC-A";
  1640. break;
  1641. case DP_B:
  1642. case PCH_DP_B:
  1643. dev_priv->hotplug_supported_mask |=
  1644. HDMIB_HOTPLUG_INT_STATUS;
  1645. name = "DPDDC-B";
  1646. break;
  1647. case DP_C:
  1648. case PCH_DP_C:
  1649. dev_priv->hotplug_supported_mask |=
  1650. HDMIC_HOTPLUG_INT_STATUS;
  1651. name = "DPDDC-C";
  1652. break;
  1653. case DP_D:
  1654. case PCH_DP_D:
  1655. dev_priv->hotplug_supported_mask |=
  1656. HDMID_HOTPLUG_INT_STATUS;
  1657. name = "DPDDC-D";
  1658. break;
  1659. }
  1660. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1661. /* Cache some DPCD data in the eDP case */
  1662. if (is_edp(intel_dp)) {
  1663. int ret;
  1664. u32 pp_on, pp_div;
  1665. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1666. pp_div = I915_READ(PCH_PP_DIVISOR);
  1667. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1668. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1669. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1670. dev_priv->panel_t12 = pp_div & 0xf;
  1671. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1672. ironlake_edp_panel_vdd_on(intel_dp);
  1673. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1674. intel_dp->dpcd,
  1675. sizeof(intel_dp->dpcd));
  1676. ironlake_edp_panel_vdd_off(intel_dp);
  1677. if (ret == sizeof(intel_dp->dpcd)) {
  1678. if (intel_dp->dpcd[0] >= 0x11)
  1679. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1680. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1681. } else {
  1682. /* if this fails, presume the device is a ghost */
  1683. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1684. intel_dp_encoder_destroy(&intel_dp->base.base);
  1685. intel_dp_destroy(&intel_connector->base);
  1686. return;
  1687. }
  1688. }
  1689. intel_encoder->hot_plug = intel_dp_hot_plug;
  1690. if (is_edp(intel_dp)) {
  1691. /* initialize panel mode from VBT if available for eDP */
  1692. if (dev_priv->lfp_lvds_vbt_mode) {
  1693. dev_priv->panel_fixed_mode =
  1694. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1695. if (dev_priv->panel_fixed_mode) {
  1696. dev_priv->panel_fixed_mode->type |=
  1697. DRM_MODE_TYPE_PREFERRED;
  1698. }
  1699. }
  1700. }
  1701. intel_dp_add_properties(intel_dp, connector);
  1702. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1703. * 0xd. Failure to do so will result in spurious interrupts being
  1704. * generated on the port when a cable is not attached.
  1705. */
  1706. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1707. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1708. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1709. }
  1710. }