i915_gem.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset & (PAGE_SIZE-1);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  310. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  311. if (IS_ERR(page))
  312. return PTR_ERR(page);
  313. vaddr = kmap_atomic(page);
  314. ret = __copy_to_user_inatomic(user_data,
  315. vaddr + page_offset,
  316. page_length);
  317. kunmap_atomic(vaddr);
  318. mark_page_accessed(page);
  319. page_cache_release(page);
  320. if (ret)
  321. return -EFAULT;
  322. remain -= page_length;
  323. user_data += page_length;
  324. offset += page_length;
  325. }
  326. return 0;
  327. }
  328. /**
  329. * This is the fallback shmem pread path, which allocates temporary storage
  330. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  331. * can copy out of the object's backing pages while holding the struct mutex
  332. * and not take page faults.
  333. */
  334. static int
  335. i915_gem_shmem_pread_slow(struct drm_device *dev,
  336. struct drm_i915_gem_object *obj,
  337. struct drm_i915_gem_pread *args,
  338. struct drm_file *file)
  339. {
  340. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  341. struct mm_struct *mm = current->mm;
  342. struct page **user_pages;
  343. ssize_t remain;
  344. loff_t offset, pinned_pages, i;
  345. loff_t first_data_page, last_data_page, num_pages;
  346. int shmem_page_offset;
  347. int data_page_index, data_page_offset;
  348. int page_length;
  349. int ret;
  350. uint64_t data_ptr = args->data_ptr;
  351. int do_bit17_swizzling;
  352. remain = args->size;
  353. /* Pin the user pages containing the data. We can't fault while
  354. * holding the struct mutex, yet we want to hold it while
  355. * dereferencing the user data.
  356. */
  357. first_data_page = data_ptr / PAGE_SIZE;
  358. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  359. num_pages = last_data_page - first_data_page + 1;
  360. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  361. if (user_pages == NULL)
  362. return -ENOMEM;
  363. mutex_unlock(&dev->struct_mutex);
  364. down_read(&mm->mmap_sem);
  365. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  366. num_pages, 1, 0, user_pages, NULL);
  367. up_read(&mm->mmap_sem);
  368. mutex_lock(&dev->struct_mutex);
  369. if (pinned_pages < num_pages) {
  370. ret = -EFAULT;
  371. goto out;
  372. }
  373. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  374. args->offset,
  375. args->size);
  376. if (ret)
  377. goto out;
  378. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  379. offset = args->offset;
  380. while (remain > 0) {
  381. struct page *page;
  382. /* Operation in this page
  383. *
  384. * shmem_page_offset = offset within page in shmem file
  385. * data_page_index = page number in get_user_pages return
  386. * data_page_offset = offset with data_page_index page.
  387. * page_length = bytes to copy for this page
  388. */
  389. shmem_page_offset = offset & ~PAGE_MASK;
  390. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  391. data_page_offset = data_ptr & ~PAGE_MASK;
  392. page_length = remain;
  393. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  394. page_length = PAGE_SIZE - shmem_page_offset;
  395. if ((data_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - data_page_offset;
  397. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  398. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  399. if (IS_ERR(page))
  400. return PTR_ERR(page);
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = (offset & ~(PAGE_SIZE-1));
  545. page_offset = offset & (PAGE_SIZE-1);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset & ~PAGE_MASK;
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = data_ptr & ~PAGE_MASK;
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset & (PAGE_SIZE-1);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  679. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  680. if (IS_ERR(page))
  681. return PTR_ERR(page);
  682. vaddr = kmap_atomic(page, KM_USER0);
  683. ret = __copy_from_user_inatomic(vaddr + page_offset,
  684. user_data,
  685. page_length);
  686. kunmap_atomic(vaddr, KM_USER0);
  687. set_page_dirty(page);
  688. mark_page_accessed(page);
  689. page_cache_release(page);
  690. /* If we get a fault while copying data, then (presumably) our
  691. * source page isn't available. Return the error and we'll
  692. * retry in the slow path.
  693. */
  694. if (ret)
  695. return -EFAULT;
  696. remain -= page_length;
  697. user_data += page_length;
  698. offset += page_length;
  699. }
  700. return 0;
  701. }
  702. /**
  703. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  704. * the memory and maps it using kmap_atomic for copying.
  705. *
  706. * This avoids taking mmap_sem for faulting on the user's address while the
  707. * struct_mutex is held.
  708. */
  709. static int
  710. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  711. struct drm_i915_gem_object *obj,
  712. struct drm_i915_gem_pwrite *args,
  713. struct drm_file *file)
  714. {
  715. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  716. struct mm_struct *mm = current->mm;
  717. struct page **user_pages;
  718. ssize_t remain;
  719. loff_t offset, pinned_pages, i;
  720. loff_t first_data_page, last_data_page, num_pages;
  721. int shmem_page_offset;
  722. int data_page_index, data_page_offset;
  723. int page_length;
  724. int ret;
  725. uint64_t data_ptr = args->data_ptr;
  726. int do_bit17_swizzling;
  727. remain = args->size;
  728. /* Pin the user pages containing the data. We can't fault while
  729. * holding the struct mutex, and all of the pwrite implementations
  730. * want to hold it while dereferencing the user data.
  731. */
  732. first_data_page = data_ptr / PAGE_SIZE;
  733. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  734. num_pages = last_data_page - first_data_page + 1;
  735. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  736. if (user_pages == NULL)
  737. return -ENOMEM;
  738. mutex_unlock(&dev->struct_mutex);
  739. down_read(&mm->mmap_sem);
  740. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  741. num_pages, 0, 0, user_pages, NULL);
  742. up_read(&mm->mmap_sem);
  743. mutex_lock(&dev->struct_mutex);
  744. if (pinned_pages < num_pages) {
  745. ret = -EFAULT;
  746. goto out;
  747. }
  748. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  749. if (ret)
  750. goto out;
  751. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  752. offset = args->offset;
  753. obj->dirty = 1;
  754. while (remain > 0) {
  755. struct page *page;
  756. /* Operation in this page
  757. *
  758. * shmem_page_offset = offset within page in shmem file
  759. * data_page_index = page number in get_user_pages return
  760. * data_page_offset = offset with data_page_index page.
  761. * page_length = bytes to copy for this page
  762. */
  763. shmem_page_offset = offset & ~PAGE_MASK;
  764. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  765. data_page_offset = data_ptr & ~PAGE_MASK;
  766. page_length = remain;
  767. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  768. page_length = PAGE_SIZE - shmem_page_offset;
  769. if ((data_page_offset + page_length) > PAGE_SIZE)
  770. page_length = PAGE_SIZE - data_page_offset;
  771. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  772. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  773. if (IS_ERR(page)) {
  774. ret = PTR_ERR(page);
  775. goto out;
  776. }
  777. if (do_bit17_swizzling) {
  778. slow_shmem_bit17_copy(page,
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. slow_shmem_copy(page,
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. set_page_dirty(page);
  792. mark_page_accessed(page);
  793. page_cache_release(page);
  794. remain -= page_length;
  795. data_ptr += page_length;
  796. offset += page_length;
  797. }
  798. out:
  799. for (i = 0; i < pinned_pages; i++)
  800. page_cache_release(user_pages[i]);
  801. drm_free_large(user_pages);
  802. return ret;
  803. }
  804. /**
  805. * Writes data to the object referenced by handle.
  806. *
  807. * On error, the contents of the buffer that were to be modified are undefined.
  808. */
  809. int
  810. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  811. struct drm_file *file)
  812. {
  813. struct drm_i915_gem_pwrite *args = data;
  814. struct drm_i915_gem_object *obj;
  815. int ret;
  816. if (args->size == 0)
  817. return 0;
  818. if (!access_ok(VERIFY_READ,
  819. (char __user *)(uintptr_t)args->data_ptr,
  820. args->size))
  821. return -EFAULT;
  822. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  823. args->size);
  824. if (ret)
  825. return -EFAULT;
  826. ret = i915_mutex_lock_interruptible(dev);
  827. if (ret)
  828. return ret;
  829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  830. if (&obj->base == NULL) {
  831. ret = -ENOENT;
  832. goto unlock;
  833. }
  834. /* Bounds check destination. */
  835. if (args->offset > obj->base.size ||
  836. args->size > obj->base.size - args->offset) {
  837. ret = -EINVAL;
  838. goto out;
  839. }
  840. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  841. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  842. * it would end up going through the fenced access, and we'll get
  843. * different detiling behavior between reading and writing.
  844. * pread/pwrite currently are reading and writing from the CPU
  845. * perspective, requiring manual detiling by the client.
  846. */
  847. if (obj->phys_obj)
  848. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  849. else if (obj->gtt_space &&
  850. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  851. ret = i915_gem_object_pin(obj, 0, true);
  852. if (ret)
  853. goto out;
  854. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  855. if (ret)
  856. goto out_unpin;
  857. ret = i915_gem_object_put_fence(obj);
  858. if (ret)
  859. goto out_unpin;
  860. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  861. if (ret == -EFAULT)
  862. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  863. out_unpin:
  864. i915_gem_object_unpin(obj);
  865. } else {
  866. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  867. if (ret)
  868. goto out;
  869. ret = -EFAULT;
  870. if (!i915_gem_object_needs_bit17_swizzle(obj))
  871. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  872. if (ret == -EFAULT)
  873. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  874. }
  875. out:
  876. drm_gem_object_unreference(&obj->base);
  877. unlock:
  878. mutex_unlock(&dev->struct_mutex);
  879. return ret;
  880. }
  881. /**
  882. * Called when user space prepares to use an object with the CPU, either
  883. * through the mmap ioctl's mapping or a GTT mapping.
  884. */
  885. int
  886. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  887. struct drm_file *file)
  888. {
  889. struct drm_i915_gem_set_domain *args = data;
  890. struct drm_i915_gem_object *obj;
  891. uint32_t read_domains = args->read_domains;
  892. uint32_t write_domain = args->write_domain;
  893. int ret;
  894. if (!(dev->driver->driver_features & DRIVER_GEM))
  895. return -ENODEV;
  896. /* Only handle setting domains to types used by the CPU. */
  897. if (write_domain & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. if (read_domains & I915_GEM_GPU_DOMAINS)
  900. return -EINVAL;
  901. /* Having something in the write domain implies it's in the read
  902. * domain, and only that read domain. Enforce that in the request.
  903. */
  904. if (write_domain != 0 && read_domains != write_domain)
  905. return -EINVAL;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. return ret;
  909. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  910. if (&obj->base == NULL) {
  911. ret = -ENOENT;
  912. goto unlock;
  913. }
  914. if (read_domains & I915_GEM_DOMAIN_GTT) {
  915. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  916. /* Silently promote "you're not bound, there was nothing to do"
  917. * to success, since the client was just asking us to
  918. * make sure everything was done.
  919. */
  920. if (ret == -EINVAL)
  921. ret = 0;
  922. } else {
  923. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  924. }
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Called when user space has done writes to this buffer
  932. */
  933. int
  934. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  935. struct drm_file *file)
  936. {
  937. struct drm_i915_gem_sw_finish *args = data;
  938. struct drm_i915_gem_object *obj;
  939. int ret = 0;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. ret = i915_mutex_lock_interruptible(dev);
  943. if (ret)
  944. return ret;
  945. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  946. if (&obj->base == NULL) {
  947. ret = -ENOENT;
  948. goto unlock;
  949. }
  950. /* Pinned buffers may be scanout, so flush the cache */
  951. if (obj->pin_count)
  952. i915_gem_object_flush_cpu_write_domain(obj);
  953. drm_gem_object_unreference(&obj->base);
  954. unlock:
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. /**
  959. * Maps the contents of an object, returning the address it is mapped
  960. * into.
  961. *
  962. * While the mapping holds a reference on the contents of the object, it doesn't
  963. * imply a ref on the object itself.
  964. */
  965. int
  966. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  967. struct drm_file *file)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct drm_i915_gem_mmap *args = data;
  971. struct drm_gem_object *obj;
  972. unsigned long addr;
  973. if (!(dev->driver->driver_features & DRIVER_GEM))
  974. return -ENODEV;
  975. obj = drm_gem_object_lookup(dev, file, args->handle);
  976. if (obj == NULL)
  977. return -ENOENT;
  978. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  979. drm_gem_object_unreference_unlocked(obj);
  980. return -E2BIG;
  981. }
  982. down_write(&current->mm->mmap_sem);
  983. addr = do_mmap(obj->filp, 0, args->size,
  984. PROT_READ | PROT_WRITE, MAP_SHARED,
  985. args->offset);
  986. up_write(&current->mm->mmap_sem);
  987. drm_gem_object_unreference_unlocked(obj);
  988. if (IS_ERR((void *)addr))
  989. return addr;
  990. args->addr_ptr = (uint64_t) addr;
  991. return 0;
  992. }
  993. /**
  994. * i915_gem_fault - fault a page into the GTT
  995. * vma: VMA in question
  996. * vmf: fault info
  997. *
  998. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  999. * from userspace. The fault handler takes care of binding the object to
  1000. * the GTT (if needed), allocating and programming a fence register (again,
  1001. * only if needed based on whether the old reg is still valid or the object
  1002. * is tiled) and inserting a new PTE into the faulting process.
  1003. *
  1004. * Note that the faulting process may involve evicting existing objects
  1005. * from the GTT and/or fence registers to make room. So performance may
  1006. * suffer if the GTT working set is large or there are few fence registers
  1007. * left.
  1008. */
  1009. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1010. {
  1011. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1012. struct drm_device *dev = obj->base.dev;
  1013. drm_i915_private_t *dev_priv = dev->dev_private;
  1014. pgoff_t page_offset;
  1015. unsigned long pfn;
  1016. int ret = 0;
  1017. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1018. /* We don't use vmf->pgoff since that has the fake offset */
  1019. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1020. PAGE_SHIFT;
  1021. ret = i915_mutex_lock_interruptible(dev);
  1022. if (ret)
  1023. goto out;
  1024. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1025. /* Now bind it into the GTT if needed */
  1026. if (!obj->map_and_fenceable) {
  1027. ret = i915_gem_object_unbind(obj);
  1028. if (ret)
  1029. goto unlock;
  1030. }
  1031. if (!obj->gtt_space) {
  1032. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1033. if (ret)
  1034. goto unlock;
  1035. }
  1036. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1037. if (ret)
  1038. goto unlock;
  1039. if (obj->tiling_mode == I915_TILING_NONE)
  1040. ret = i915_gem_object_put_fence(obj);
  1041. else
  1042. ret = i915_gem_object_get_fence(obj, NULL);
  1043. if (ret)
  1044. goto unlock;
  1045. if (i915_gem_object_is_inactive(obj))
  1046. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1047. obj->fault_mappable = true;
  1048. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1049. page_offset;
  1050. /* Finally, remap it using the new GTT offset */
  1051. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1052. unlock:
  1053. mutex_unlock(&dev->struct_mutex);
  1054. out:
  1055. switch (ret) {
  1056. case -EIO:
  1057. case -EAGAIN:
  1058. /* Give the error handler a chance to run and move the
  1059. * objects off the GPU active list. Next time we service the
  1060. * fault, we should be able to transition the page into the
  1061. * GTT without touching the GPU (and so avoid further
  1062. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1063. * with coherency, just lost writes.
  1064. */
  1065. set_need_resched();
  1066. case 0:
  1067. case -ERESTARTSYS:
  1068. case -EINTR:
  1069. return VM_FAULT_NOPAGE;
  1070. case -ENOMEM:
  1071. return VM_FAULT_OOM;
  1072. default:
  1073. return VM_FAULT_SIGBUS;
  1074. }
  1075. }
  1076. /**
  1077. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1078. * @obj: obj in question
  1079. *
  1080. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1081. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1082. * up the object based on the offset and sets up the various memory mapping
  1083. * structures.
  1084. *
  1085. * This routine allocates and attaches a fake offset for @obj.
  1086. */
  1087. static int
  1088. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1089. {
  1090. struct drm_device *dev = obj->base.dev;
  1091. struct drm_gem_mm *mm = dev->mm_private;
  1092. struct drm_map_list *list;
  1093. struct drm_local_map *map;
  1094. int ret = 0;
  1095. /* Set the object up for mmap'ing */
  1096. list = &obj->base.map_list;
  1097. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1098. if (!list->map)
  1099. return -ENOMEM;
  1100. map = list->map;
  1101. map->type = _DRM_GEM;
  1102. map->size = obj->base.size;
  1103. map->handle = obj;
  1104. /* Get a DRM GEM mmap offset allocated... */
  1105. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1106. obj->base.size / PAGE_SIZE,
  1107. 0, 0);
  1108. if (!list->file_offset_node) {
  1109. DRM_ERROR("failed to allocate offset for bo %d\n",
  1110. obj->base.name);
  1111. ret = -ENOSPC;
  1112. goto out_free_list;
  1113. }
  1114. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1115. obj->base.size / PAGE_SIZE,
  1116. 0);
  1117. if (!list->file_offset_node) {
  1118. ret = -ENOMEM;
  1119. goto out_free_list;
  1120. }
  1121. list->hash.key = list->file_offset_node->start;
  1122. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1123. if (ret) {
  1124. DRM_ERROR("failed to add to map hash\n");
  1125. goto out_free_mm;
  1126. }
  1127. return 0;
  1128. out_free_mm:
  1129. drm_mm_put_block(list->file_offset_node);
  1130. out_free_list:
  1131. kfree(list->map);
  1132. list->map = NULL;
  1133. return ret;
  1134. }
  1135. /**
  1136. * i915_gem_release_mmap - remove physical page mappings
  1137. * @obj: obj in question
  1138. *
  1139. * Preserve the reservation of the mmapping with the DRM core code, but
  1140. * relinquish ownership of the pages back to the system.
  1141. *
  1142. * It is vital that we remove the page mapping if we have mapped a tiled
  1143. * object through the GTT and then lose the fence register due to
  1144. * resource pressure. Similarly if the object has been moved out of the
  1145. * aperture, than pages mapped into userspace must be revoked. Removing the
  1146. * mapping will then trigger a page fault on the next user access, allowing
  1147. * fixup by i915_gem_fault().
  1148. */
  1149. void
  1150. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1151. {
  1152. if (!obj->fault_mappable)
  1153. return;
  1154. if (obj->base.dev->dev_mapping)
  1155. unmap_mapping_range(obj->base.dev->dev_mapping,
  1156. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1157. obj->base.size, 1);
  1158. obj->fault_mappable = false;
  1159. }
  1160. static void
  1161. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1162. {
  1163. struct drm_device *dev = obj->base.dev;
  1164. struct drm_gem_mm *mm = dev->mm_private;
  1165. struct drm_map_list *list = &obj->base.map_list;
  1166. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1167. drm_mm_put_block(list->file_offset_node);
  1168. kfree(list->map);
  1169. list->map = NULL;
  1170. }
  1171. static uint32_t
  1172. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1173. {
  1174. struct drm_device *dev = obj->base.dev;
  1175. uint32_t size;
  1176. if (INTEL_INFO(dev)->gen >= 4 ||
  1177. obj->tiling_mode == I915_TILING_NONE)
  1178. return obj->base.size;
  1179. /* Previous chips need a power-of-two fence region when tiling */
  1180. if (INTEL_INFO(dev)->gen == 3)
  1181. size = 1024*1024;
  1182. else
  1183. size = 512*1024;
  1184. while (size < obj->base.size)
  1185. size <<= 1;
  1186. return size;
  1187. }
  1188. /**
  1189. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1190. * @obj: object to check
  1191. *
  1192. * Return the required GTT alignment for an object, taking into account
  1193. * potential fence register mapping.
  1194. */
  1195. static uint32_t
  1196. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1197. {
  1198. struct drm_device *dev = obj->base.dev;
  1199. /*
  1200. * Minimum alignment is 4k (GTT page size), but might be greater
  1201. * if a fence register is needed for the object.
  1202. */
  1203. if (INTEL_INFO(dev)->gen >= 4 ||
  1204. obj->tiling_mode == I915_TILING_NONE)
  1205. return 4096;
  1206. /*
  1207. * Previous chips need to be aligned to the size of the smallest
  1208. * fence register that can contain the object.
  1209. */
  1210. return i915_gem_get_gtt_size(obj);
  1211. }
  1212. /**
  1213. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1214. * unfenced object
  1215. * @obj: object to check
  1216. *
  1217. * Return the required GTT alignment for an object, only taking into account
  1218. * unfenced tiled surface requirements.
  1219. */
  1220. uint32_t
  1221. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1222. {
  1223. struct drm_device *dev = obj->base.dev;
  1224. int tile_height;
  1225. /*
  1226. * Minimum alignment is 4k (GTT page size) for sane hw.
  1227. */
  1228. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1229. obj->tiling_mode == I915_TILING_NONE)
  1230. return 4096;
  1231. /*
  1232. * Older chips need unfenced tiled buffers to be aligned to the left
  1233. * edge of an even tile row (where tile rows are counted as if the bo is
  1234. * placed in a fenced gtt region).
  1235. */
  1236. if (IS_GEN2(dev) ||
  1237. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1238. tile_height = 32;
  1239. else
  1240. tile_height = 8;
  1241. return tile_height * obj->stride * 2;
  1242. }
  1243. int
  1244. i915_gem_mmap_gtt(struct drm_file *file,
  1245. struct drm_device *dev,
  1246. uint32_t handle,
  1247. uint64_t *offset)
  1248. {
  1249. struct drm_i915_private *dev_priv = dev->dev_private;
  1250. struct drm_i915_gem_object *obj;
  1251. int ret;
  1252. if (!(dev->driver->driver_features & DRIVER_GEM))
  1253. return -ENODEV;
  1254. ret = i915_mutex_lock_interruptible(dev);
  1255. if (ret)
  1256. return ret;
  1257. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1258. if (&obj->base == NULL) {
  1259. ret = -ENOENT;
  1260. goto unlock;
  1261. }
  1262. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1263. ret = -E2BIG;
  1264. goto unlock;
  1265. }
  1266. if (obj->madv != I915_MADV_WILLNEED) {
  1267. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1268. ret = -EINVAL;
  1269. goto out;
  1270. }
  1271. if (!obj->base.map_list.map) {
  1272. ret = i915_gem_create_mmap_offset(obj);
  1273. if (ret)
  1274. goto out;
  1275. }
  1276. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1277. out:
  1278. drm_gem_object_unreference(&obj->base);
  1279. unlock:
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return ret;
  1282. }
  1283. /**
  1284. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1285. * @dev: DRM device
  1286. * @data: GTT mapping ioctl data
  1287. * @file: GEM object info
  1288. *
  1289. * Simply returns the fake offset to userspace so it can mmap it.
  1290. * The mmap call will end up in drm_gem_mmap(), which will set things
  1291. * up so we can get faults in the handler above.
  1292. *
  1293. * The fault handler will take care of binding the object into the GTT
  1294. * (since it may have been evicted to make room for something), allocating
  1295. * a fence register, and mapping the appropriate aperture address into
  1296. * userspace.
  1297. */
  1298. int
  1299. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1300. struct drm_file *file)
  1301. {
  1302. struct drm_i915_gem_mmap_gtt *args = data;
  1303. if (!(dev->driver->driver_features & DRIVER_GEM))
  1304. return -ENODEV;
  1305. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1306. }
  1307. static int
  1308. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1309. gfp_t gfpmask)
  1310. {
  1311. int page_count, i;
  1312. struct address_space *mapping;
  1313. struct inode *inode;
  1314. struct page *page;
  1315. /* Get the list of pages out of our struct file. They'll be pinned
  1316. * at this point until we release them.
  1317. */
  1318. page_count = obj->base.size / PAGE_SIZE;
  1319. BUG_ON(obj->pages != NULL);
  1320. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1321. if (obj->pages == NULL)
  1322. return -ENOMEM;
  1323. inode = obj->base.filp->f_path.dentry->d_inode;
  1324. mapping = inode->i_mapping;
  1325. for (i = 0; i < page_count; i++) {
  1326. page = read_cache_page_gfp(mapping, i,
  1327. GFP_HIGHUSER |
  1328. __GFP_COLD |
  1329. __GFP_RECLAIMABLE |
  1330. gfpmask);
  1331. if (IS_ERR(page))
  1332. goto err_pages;
  1333. obj->pages[i] = page;
  1334. }
  1335. if (obj->tiling_mode != I915_TILING_NONE)
  1336. i915_gem_object_do_bit_17_swizzle(obj);
  1337. return 0;
  1338. err_pages:
  1339. while (i--)
  1340. page_cache_release(obj->pages[i]);
  1341. drm_free_large(obj->pages);
  1342. obj->pages = NULL;
  1343. return PTR_ERR(page);
  1344. }
  1345. static void
  1346. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1347. {
  1348. int page_count = obj->base.size / PAGE_SIZE;
  1349. int i;
  1350. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1351. if (obj->tiling_mode != I915_TILING_NONE)
  1352. i915_gem_object_save_bit_17_swizzle(obj);
  1353. if (obj->madv == I915_MADV_DONTNEED)
  1354. obj->dirty = 0;
  1355. for (i = 0; i < page_count; i++) {
  1356. if (obj->dirty)
  1357. set_page_dirty(obj->pages[i]);
  1358. if (obj->madv == I915_MADV_WILLNEED)
  1359. mark_page_accessed(obj->pages[i]);
  1360. page_cache_release(obj->pages[i]);
  1361. }
  1362. obj->dirty = 0;
  1363. drm_free_large(obj->pages);
  1364. obj->pages = NULL;
  1365. }
  1366. void
  1367. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1368. struct intel_ring_buffer *ring,
  1369. u32 seqno)
  1370. {
  1371. struct drm_device *dev = obj->base.dev;
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. BUG_ON(ring == NULL);
  1374. obj->ring = ring;
  1375. /* Add a reference if we're newly entering the active list. */
  1376. if (!obj->active) {
  1377. drm_gem_object_reference(&obj->base);
  1378. obj->active = 1;
  1379. }
  1380. /* Move from whatever list we were on to the tail of execution. */
  1381. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1382. list_move_tail(&obj->ring_list, &ring->active_list);
  1383. obj->last_rendering_seqno = seqno;
  1384. if (obj->fenced_gpu_access) {
  1385. struct drm_i915_fence_reg *reg;
  1386. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1387. obj->last_fenced_seqno = seqno;
  1388. obj->last_fenced_ring = ring;
  1389. reg = &dev_priv->fence_regs[obj->fence_reg];
  1390. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1391. }
  1392. }
  1393. static void
  1394. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1395. {
  1396. list_del_init(&obj->ring_list);
  1397. obj->last_rendering_seqno = 0;
  1398. }
  1399. static void
  1400. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1401. {
  1402. struct drm_device *dev = obj->base.dev;
  1403. drm_i915_private_t *dev_priv = dev->dev_private;
  1404. BUG_ON(!obj->active);
  1405. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1406. i915_gem_object_move_off_active(obj);
  1407. }
  1408. static void
  1409. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1410. {
  1411. struct drm_device *dev = obj->base.dev;
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. if (obj->pin_count != 0)
  1414. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1415. else
  1416. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1417. BUG_ON(!list_empty(&obj->gpu_write_list));
  1418. BUG_ON(!obj->active);
  1419. obj->ring = NULL;
  1420. i915_gem_object_move_off_active(obj);
  1421. obj->fenced_gpu_access = false;
  1422. obj->active = 0;
  1423. obj->pending_gpu_write = false;
  1424. drm_gem_object_unreference(&obj->base);
  1425. WARN_ON(i915_verify_lists(dev));
  1426. }
  1427. /* Immediately discard the backing storage */
  1428. static void
  1429. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1430. {
  1431. struct inode *inode;
  1432. /* Our goal here is to return as much of the memory as
  1433. * is possible back to the system as we are called from OOM.
  1434. * To do this we must instruct the shmfs to drop all of its
  1435. * backing pages, *now*. Here we mirror the actions taken
  1436. * when by shmem_delete_inode() to release the backing store.
  1437. */
  1438. inode = obj->base.filp->f_path.dentry->d_inode;
  1439. truncate_inode_pages(inode->i_mapping, 0);
  1440. if (inode->i_op->truncate_range)
  1441. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1442. obj->madv = __I915_MADV_PURGED;
  1443. }
  1444. static inline int
  1445. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1446. {
  1447. return obj->madv == I915_MADV_DONTNEED;
  1448. }
  1449. static void
  1450. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1451. uint32_t flush_domains)
  1452. {
  1453. struct drm_i915_gem_object *obj, *next;
  1454. list_for_each_entry_safe(obj, next,
  1455. &ring->gpu_write_list,
  1456. gpu_write_list) {
  1457. if (obj->base.write_domain & flush_domains) {
  1458. uint32_t old_write_domain = obj->base.write_domain;
  1459. obj->base.write_domain = 0;
  1460. list_del_init(&obj->gpu_write_list);
  1461. i915_gem_object_move_to_active(obj, ring,
  1462. i915_gem_next_request_seqno(ring));
  1463. trace_i915_gem_object_change_domain(obj,
  1464. obj->base.read_domains,
  1465. old_write_domain);
  1466. }
  1467. }
  1468. }
  1469. int
  1470. i915_add_request(struct intel_ring_buffer *ring,
  1471. struct drm_file *file,
  1472. struct drm_i915_gem_request *request)
  1473. {
  1474. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1475. uint32_t seqno;
  1476. int was_empty;
  1477. int ret;
  1478. BUG_ON(request == NULL);
  1479. ret = ring->add_request(ring, &seqno);
  1480. if (ret)
  1481. return ret;
  1482. trace_i915_gem_request_add(ring, seqno);
  1483. request->seqno = seqno;
  1484. request->ring = ring;
  1485. request->emitted_jiffies = jiffies;
  1486. was_empty = list_empty(&ring->request_list);
  1487. list_add_tail(&request->list, &ring->request_list);
  1488. if (file) {
  1489. struct drm_i915_file_private *file_priv = file->driver_priv;
  1490. spin_lock(&file_priv->mm.lock);
  1491. request->file_priv = file_priv;
  1492. list_add_tail(&request->client_list,
  1493. &file_priv->mm.request_list);
  1494. spin_unlock(&file_priv->mm.lock);
  1495. }
  1496. ring->outstanding_lazy_request = false;
  1497. if (!dev_priv->mm.suspended) {
  1498. mod_timer(&dev_priv->hangcheck_timer,
  1499. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1500. if (was_empty)
  1501. queue_delayed_work(dev_priv->wq,
  1502. &dev_priv->mm.retire_work, HZ);
  1503. }
  1504. return 0;
  1505. }
  1506. static inline void
  1507. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1508. {
  1509. struct drm_i915_file_private *file_priv = request->file_priv;
  1510. if (!file_priv)
  1511. return;
  1512. spin_lock(&file_priv->mm.lock);
  1513. if (request->file_priv) {
  1514. list_del(&request->client_list);
  1515. request->file_priv = NULL;
  1516. }
  1517. spin_unlock(&file_priv->mm.lock);
  1518. }
  1519. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1520. struct intel_ring_buffer *ring)
  1521. {
  1522. while (!list_empty(&ring->request_list)) {
  1523. struct drm_i915_gem_request *request;
  1524. request = list_first_entry(&ring->request_list,
  1525. struct drm_i915_gem_request,
  1526. list);
  1527. list_del(&request->list);
  1528. i915_gem_request_remove_from_client(request);
  1529. kfree(request);
  1530. }
  1531. while (!list_empty(&ring->active_list)) {
  1532. struct drm_i915_gem_object *obj;
  1533. obj = list_first_entry(&ring->active_list,
  1534. struct drm_i915_gem_object,
  1535. ring_list);
  1536. obj->base.write_domain = 0;
  1537. list_del_init(&obj->gpu_write_list);
  1538. i915_gem_object_move_to_inactive(obj);
  1539. }
  1540. }
  1541. static void i915_gem_reset_fences(struct drm_device *dev)
  1542. {
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. int i;
  1545. for (i = 0; i < 16; i++) {
  1546. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1547. struct drm_i915_gem_object *obj = reg->obj;
  1548. if (!obj)
  1549. continue;
  1550. if (obj->tiling_mode)
  1551. i915_gem_release_mmap(obj);
  1552. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1553. reg->obj->fenced_gpu_access = false;
  1554. reg->obj->last_fenced_seqno = 0;
  1555. reg->obj->last_fenced_ring = NULL;
  1556. i915_gem_clear_fence_reg(dev, reg);
  1557. }
  1558. }
  1559. void i915_gem_reset(struct drm_device *dev)
  1560. {
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct drm_i915_gem_object *obj;
  1563. int i;
  1564. for (i = 0; i < I915_NUM_RINGS; i++)
  1565. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1566. /* Remove anything from the flushing lists. The GPU cache is likely
  1567. * to be lost on reset along with the data, so simply move the
  1568. * lost bo to the inactive list.
  1569. */
  1570. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1571. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1572. struct drm_i915_gem_object,
  1573. mm_list);
  1574. obj->base.write_domain = 0;
  1575. list_del_init(&obj->gpu_write_list);
  1576. i915_gem_object_move_to_inactive(obj);
  1577. }
  1578. /* Move everything out of the GPU domains to ensure we do any
  1579. * necessary invalidation upon reuse.
  1580. */
  1581. list_for_each_entry(obj,
  1582. &dev_priv->mm.inactive_list,
  1583. mm_list)
  1584. {
  1585. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1586. }
  1587. /* The fence registers are invalidated so clear them out */
  1588. i915_gem_reset_fences(dev);
  1589. }
  1590. /**
  1591. * This function clears the request list as sequence numbers are passed.
  1592. */
  1593. static void
  1594. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1595. {
  1596. uint32_t seqno;
  1597. int i;
  1598. if (list_empty(&ring->request_list))
  1599. return;
  1600. WARN_ON(i915_verify_lists(ring->dev));
  1601. seqno = ring->get_seqno(ring);
  1602. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1603. if (seqno >= ring->sync_seqno[i])
  1604. ring->sync_seqno[i] = 0;
  1605. while (!list_empty(&ring->request_list)) {
  1606. struct drm_i915_gem_request *request;
  1607. request = list_first_entry(&ring->request_list,
  1608. struct drm_i915_gem_request,
  1609. list);
  1610. if (!i915_seqno_passed(seqno, request->seqno))
  1611. break;
  1612. trace_i915_gem_request_retire(ring, request->seqno);
  1613. list_del(&request->list);
  1614. i915_gem_request_remove_from_client(request);
  1615. kfree(request);
  1616. }
  1617. /* Move any buffers on the active list that are no longer referenced
  1618. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1619. */
  1620. while (!list_empty(&ring->active_list)) {
  1621. struct drm_i915_gem_object *obj;
  1622. obj= list_first_entry(&ring->active_list,
  1623. struct drm_i915_gem_object,
  1624. ring_list);
  1625. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1626. break;
  1627. if (obj->base.write_domain != 0)
  1628. i915_gem_object_move_to_flushing(obj);
  1629. else
  1630. i915_gem_object_move_to_inactive(obj);
  1631. }
  1632. if (unlikely(ring->trace_irq_seqno &&
  1633. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1634. ring->irq_put(ring);
  1635. ring->trace_irq_seqno = 0;
  1636. }
  1637. WARN_ON(i915_verify_lists(ring->dev));
  1638. }
  1639. void
  1640. i915_gem_retire_requests(struct drm_device *dev)
  1641. {
  1642. drm_i915_private_t *dev_priv = dev->dev_private;
  1643. int i;
  1644. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1645. struct drm_i915_gem_object *obj, *next;
  1646. /* We must be careful that during unbind() we do not
  1647. * accidentally infinitely recurse into retire requests.
  1648. * Currently:
  1649. * retire -> free -> unbind -> wait -> retire_ring
  1650. */
  1651. list_for_each_entry_safe(obj, next,
  1652. &dev_priv->mm.deferred_free_list,
  1653. mm_list)
  1654. i915_gem_free_object_tail(obj);
  1655. }
  1656. for (i = 0; i < I915_NUM_RINGS; i++)
  1657. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1658. }
  1659. static void
  1660. i915_gem_retire_work_handler(struct work_struct *work)
  1661. {
  1662. drm_i915_private_t *dev_priv;
  1663. struct drm_device *dev;
  1664. bool idle;
  1665. int i;
  1666. dev_priv = container_of(work, drm_i915_private_t,
  1667. mm.retire_work.work);
  1668. dev = dev_priv->dev;
  1669. /* Come back later if the device is busy... */
  1670. if (!mutex_trylock(&dev->struct_mutex)) {
  1671. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1672. return;
  1673. }
  1674. i915_gem_retire_requests(dev);
  1675. /* Send a periodic flush down the ring so we don't hold onto GEM
  1676. * objects indefinitely.
  1677. */
  1678. idle = true;
  1679. for (i = 0; i < I915_NUM_RINGS; i++) {
  1680. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1681. if (!list_empty(&ring->gpu_write_list)) {
  1682. struct drm_i915_gem_request *request;
  1683. int ret;
  1684. ret = i915_gem_flush_ring(ring,
  1685. 0, I915_GEM_GPU_DOMAINS);
  1686. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1687. if (ret || request == NULL ||
  1688. i915_add_request(ring, NULL, request))
  1689. kfree(request);
  1690. }
  1691. idle &= list_empty(&ring->request_list);
  1692. }
  1693. if (!dev_priv->mm.suspended && !idle)
  1694. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1695. mutex_unlock(&dev->struct_mutex);
  1696. }
  1697. /**
  1698. * Waits for a sequence number to be signaled, and cleans up the
  1699. * request and object lists appropriately for that event.
  1700. */
  1701. int
  1702. i915_wait_request(struct intel_ring_buffer *ring,
  1703. uint32_t seqno)
  1704. {
  1705. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1706. u32 ier;
  1707. int ret = 0;
  1708. BUG_ON(seqno == 0);
  1709. if (atomic_read(&dev_priv->mm.wedged)) {
  1710. struct completion *x = &dev_priv->error_completion;
  1711. bool recovery_complete;
  1712. unsigned long flags;
  1713. /* Give the error handler a chance to run. */
  1714. spin_lock_irqsave(&x->wait.lock, flags);
  1715. recovery_complete = x->done > 0;
  1716. spin_unlock_irqrestore(&x->wait.lock, flags);
  1717. return recovery_complete ? -EIO : -EAGAIN;
  1718. }
  1719. if (seqno == ring->outstanding_lazy_request) {
  1720. struct drm_i915_gem_request *request;
  1721. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1722. if (request == NULL)
  1723. return -ENOMEM;
  1724. ret = i915_add_request(ring, NULL, request);
  1725. if (ret) {
  1726. kfree(request);
  1727. return ret;
  1728. }
  1729. seqno = request->seqno;
  1730. }
  1731. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1732. if (HAS_PCH_SPLIT(ring->dev))
  1733. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1734. else
  1735. ier = I915_READ(IER);
  1736. if (!ier) {
  1737. DRM_ERROR("something (likely vbetool) disabled "
  1738. "interrupts, re-enabling\n");
  1739. i915_driver_irq_preinstall(ring->dev);
  1740. i915_driver_irq_postinstall(ring->dev);
  1741. }
  1742. trace_i915_gem_request_wait_begin(ring, seqno);
  1743. ring->waiting_seqno = seqno;
  1744. if (ring->irq_get(ring)) {
  1745. if (dev_priv->mm.interruptible)
  1746. ret = wait_event_interruptible(ring->irq_queue,
  1747. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1748. || atomic_read(&dev_priv->mm.wedged));
  1749. else
  1750. wait_event(ring->irq_queue,
  1751. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1752. || atomic_read(&dev_priv->mm.wedged));
  1753. ring->irq_put(ring);
  1754. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1755. seqno) ||
  1756. atomic_read(&dev_priv->mm.wedged), 3000))
  1757. ret = -EBUSY;
  1758. ring->waiting_seqno = 0;
  1759. trace_i915_gem_request_wait_end(ring, seqno);
  1760. }
  1761. if (atomic_read(&dev_priv->mm.wedged))
  1762. ret = -EAGAIN;
  1763. if (ret && ret != -ERESTARTSYS)
  1764. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1765. __func__, ret, seqno, ring->get_seqno(ring),
  1766. dev_priv->next_seqno);
  1767. /* Directly dispatch request retiring. While we have the work queue
  1768. * to handle this, the waiter on a request often wants an associated
  1769. * buffer to have made it to the inactive list, and we would need
  1770. * a separate wait queue to handle that.
  1771. */
  1772. if (ret == 0)
  1773. i915_gem_retire_requests_ring(ring);
  1774. return ret;
  1775. }
  1776. /**
  1777. * Ensures that all rendering to the object has completed and the object is
  1778. * safe to unbind from the GTT or access from the CPU.
  1779. */
  1780. int
  1781. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1782. {
  1783. int ret;
  1784. /* This function only exists to support waiting for existing rendering,
  1785. * not for emitting required flushes.
  1786. */
  1787. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1788. /* If there is rendering queued on the buffer being evicted, wait for
  1789. * it.
  1790. */
  1791. if (obj->active) {
  1792. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1793. if (ret)
  1794. return ret;
  1795. }
  1796. return 0;
  1797. }
  1798. /**
  1799. * Unbinds an object from the GTT aperture.
  1800. */
  1801. int
  1802. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1803. {
  1804. int ret = 0;
  1805. if (obj->gtt_space == NULL)
  1806. return 0;
  1807. if (obj->pin_count != 0) {
  1808. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1809. return -EINVAL;
  1810. }
  1811. /* blow away mappings if mapped through GTT */
  1812. i915_gem_release_mmap(obj);
  1813. /* Move the object to the CPU domain to ensure that
  1814. * any possible CPU writes while it's not in the GTT
  1815. * are flushed when we go to remap it. This will
  1816. * also ensure that all pending GPU writes are finished
  1817. * before we unbind.
  1818. */
  1819. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1820. if (ret == -ERESTARTSYS)
  1821. return ret;
  1822. /* Continue on if we fail due to EIO, the GPU is hung so we
  1823. * should be safe and we need to cleanup or else we might
  1824. * cause memory corruption through use-after-free.
  1825. */
  1826. if (ret) {
  1827. i915_gem_clflush_object(obj);
  1828. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1829. }
  1830. /* release the fence reg _after_ flushing */
  1831. ret = i915_gem_object_put_fence(obj);
  1832. if (ret == -ERESTARTSYS)
  1833. return ret;
  1834. trace_i915_gem_object_unbind(obj);
  1835. i915_gem_gtt_unbind_object(obj);
  1836. i915_gem_object_put_pages_gtt(obj);
  1837. list_del_init(&obj->gtt_list);
  1838. list_del_init(&obj->mm_list);
  1839. /* Avoid an unnecessary call to unbind on rebind. */
  1840. obj->map_and_fenceable = true;
  1841. drm_mm_put_block(obj->gtt_space);
  1842. obj->gtt_space = NULL;
  1843. obj->gtt_offset = 0;
  1844. if (i915_gem_object_is_purgeable(obj))
  1845. i915_gem_object_truncate(obj);
  1846. return ret;
  1847. }
  1848. int
  1849. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1850. uint32_t invalidate_domains,
  1851. uint32_t flush_domains)
  1852. {
  1853. int ret;
  1854. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1855. return 0;
  1856. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1857. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1858. if (ret)
  1859. return ret;
  1860. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1861. i915_gem_process_flushing_list(ring, flush_domains);
  1862. return 0;
  1863. }
  1864. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1865. {
  1866. int ret;
  1867. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1868. return 0;
  1869. if (!list_empty(&ring->gpu_write_list)) {
  1870. ret = i915_gem_flush_ring(ring,
  1871. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1872. if (ret)
  1873. return ret;
  1874. }
  1875. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1876. }
  1877. int
  1878. i915_gpu_idle(struct drm_device *dev)
  1879. {
  1880. drm_i915_private_t *dev_priv = dev->dev_private;
  1881. bool lists_empty;
  1882. int ret, i;
  1883. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1884. list_empty(&dev_priv->mm.active_list));
  1885. if (lists_empty)
  1886. return 0;
  1887. /* Flush everything onto the inactive list. */
  1888. for (i = 0; i < I915_NUM_RINGS; i++) {
  1889. ret = i915_ring_idle(&dev_priv->ring[i]);
  1890. if (ret)
  1891. return ret;
  1892. }
  1893. return 0;
  1894. }
  1895. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1896. struct intel_ring_buffer *pipelined)
  1897. {
  1898. struct drm_device *dev = obj->base.dev;
  1899. drm_i915_private_t *dev_priv = dev->dev_private;
  1900. u32 size = obj->gtt_space->size;
  1901. int regnum = obj->fence_reg;
  1902. uint64_t val;
  1903. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1904. 0xfffff000) << 32;
  1905. val |= obj->gtt_offset & 0xfffff000;
  1906. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1907. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1908. if (obj->tiling_mode == I915_TILING_Y)
  1909. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1910. val |= I965_FENCE_REG_VALID;
  1911. if (pipelined) {
  1912. int ret = intel_ring_begin(pipelined, 6);
  1913. if (ret)
  1914. return ret;
  1915. intel_ring_emit(pipelined, MI_NOOP);
  1916. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1917. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1918. intel_ring_emit(pipelined, (u32)val);
  1919. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1920. intel_ring_emit(pipelined, (u32)(val >> 32));
  1921. intel_ring_advance(pipelined);
  1922. } else
  1923. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1924. return 0;
  1925. }
  1926. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1927. struct intel_ring_buffer *pipelined)
  1928. {
  1929. struct drm_device *dev = obj->base.dev;
  1930. drm_i915_private_t *dev_priv = dev->dev_private;
  1931. u32 size = obj->gtt_space->size;
  1932. int regnum = obj->fence_reg;
  1933. uint64_t val;
  1934. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1935. 0xfffff000) << 32;
  1936. val |= obj->gtt_offset & 0xfffff000;
  1937. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1938. if (obj->tiling_mode == I915_TILING_Y)
  1939. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1940. val |= I965_FENCE_REG_VALID;
  1941. if (pipelined) {
  1942. int ret = intel_ring_begin(pipelined, 6);
  1943. if (ret)
  1944. return ret;
  1945. intel_ring_emit(pipelined, MI_NOOP);
  1946. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1947. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1948. intel_ring_emit(pipelined, (u32)val);
  1949. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1950. intel_ring_emit(pipelined, (u32)(val >> 32));
  1951. intel_ring_advance(pipelined);
  1952. } else
  1953. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1954. return 0;
  1955. }
  1956. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1957. struct intel_ring_buffer *pipelined)
  1958. {
  1959. struct drm_device *dev = obj->base.dev;
  1960. drm_i915_private_t *dev_priv = dev->dev_private;
  1961. u32 size = obj->gtt_space->size;
  1962. u32 fence_reg, val, pitch_val;
  1963. int tile_width;
  1964. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1965. (size & -size) != size ||
  1966. (obj->gtt_offset & (size - 1)),
  1967. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1968. obj->gtt_offset, obj->map_and_fenceable, size))
  1969. return -EINVAL;
  1970. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1971. tile_width = 128;
  1972. else
  1973. tile_width = 512;
  1974. /* Note: pitch better be a power of two tile widths */
  1975. pitch_val = obj->stride / tile_width;
  1976. pitch_val = ffs(pitch_val) - 1;
  1977. val = obj->gtt_offset;
  1978. if (obj->tiling_mode == I915_TILING_Y)
  1979. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1980. val |= I915_FENCE_SIZE_BITS(size);
  1981. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1982. val |= I830_FENCE_REG_VALID;
  1983. fence_reg = obj->fence_reg;
  1984. if (fence_reg < 8)
  1985. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1986. else
  1987. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1988. if (pipelined) {
  1989. int ret = intel_ring_begin(pipelined, 4);
  1990. if (ret)
  1991. return ret;
  1992. intel_ring_emit(pipelined, MI_NOOP);
  1993. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1994. intel_ring_emit(pipelined, fence_reg);
  1995. intel_ring_emit(pipelined, val);
  1996. intel_ring_advance(pipelined);
  1997. } else
  1998. I915_WRITE(fence_reg, val);
  1999. return 0;
  2000. }
  2001. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2002. struct intel_ring_buffer *pipelined)
  2003. {
  2004. struct drm_device *dev = obj->base.dev;
  2005. drm_i915_private_t *dev_priv = dev->dev_private;
  2006. u32 size = obj->gtt_space->size;
  2007. int regnum = obj->fence_reg;
  2008. uint32_t val;
  2009. uint32_t pitch_val;
  2010. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2011. (size & -size) != size ||
  2012. (obj->gtt_offset & (size - 1)),
  2013. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2014. obj->gtt_offset, size))
  2015. return -EINVAL;
  2016. pitch_val = obj->stride / 128;
  2017. pitch_val = ffs(pitch_val) - 1;
  2018. val = obj->gtt_offset;
  2019. if (obj->tiling_mode == I915_TILING_Y)
  2020. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2021. val |= I830_FENCE_SIZE_BITS(size);
  2022. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2023. val |= I830_FENCE_REG_VALID;
  2024. if (pipelined) {
  2025. int ret = intel_ring_begin(pipelined, 4);
  2026. if (ret)
  2027. return ret;
  2028. intel_ring_emit(pipelined, MI_NOOP);
  2029. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2030. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2031. intel_ring_emit(pipelined, val);
  2032. intel_ring_advance(pipelined);
  2033. } else
  2034. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2035. return 0;
  2036. }
  2037. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2038. {
  2039. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2040. }
  2041. static int
  2042. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2043. struct intel_ring_buffer *pipelined)
  2044. {
  2045. int ret;
  2046. if (obj->fenced_gpu_access) {
  2047. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2048. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2049. 0, obj->base.write_domain);
  2050. if (ret)
  2051. return ret;
  2052. }
  2053. obj->fenced_gpu_access = false;
  2054. }
  2055. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2056. if (!ring_passed_seqno(obj->last_fenced_ring,
  2057. obj->last_fenced_seqno)) {
  2058. ret = i915_wait_request(obj->last_fenced_ring,
  2059. obj->last_fenced_seqno);
  2060. if (ret)
  2061. return ret;
  2062. }
  2063. obj->last_fenced_seqno = 0;
  2064. obj->last_fenced_ring = NULL;
  2065. }
  2066. /* Ensure that all CPU reads are completed before installing a fence
  2067. * and all writes before removing the fence.
  2068. */
  2069. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2070. mb();
  2071. return 0;
  2072. }
  2073. int
  2074. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2075. {
  2076. int ret;
  2077. if (obj->tiling_mode)
  2078. i915_gem_release_mmap(obj);
  2079. ret = i915_gem_object_flush_fence(obj, NULL);
  2080. if (ret)
  2081. return ret;
  2082. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2083. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2084. i915_gem_clear_fence_reg(obj->base.dev,
  2085. &dev_priv->fence_regs[obj->fence_reg]);
  2086. obj->fence_reg = I915_FENCE_REG_NONE;
  2087. }
  2088. return 0;
  2089. }
  2090. static struct drm_i915_fence_reg *
  2091. i915_find_fence_reg(struct drm_device *dev,
  2092. struct intel_ring_buffer *pipelined)
  2093. {
  2094. struct drm_i915_private *dev_priv = dev->dev_private;
  2095. struct drm_i915_fence_reg *reg, *first, *avail;
  2096. int i;
  2097. /* First try to find a free reg */
  2098. avail = NULL;
  2099. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2100. reg = &dev_priv->fence_regs[i];
  2101. if (!reg->obj)
  2102. return reg;
  2103. if (!reg->obj->pin_count)
  2104. avail = reg;
  2105. }
  2106. if (avail == NULL)
  2107. return NULL;
  2108. /* None available, try to steal one or wait for a user to finish */
  2109. avail = first = NULL;
  2110. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2111. if (reg->obj->pin_count)
  2112. continue;
  2113. if (first == NULL)
  2114. first = reg;
  2115. if (!pipelined ||
  2116. !reg->obj->last_fenced_ring ||
  2117. reg->obj->last_fenced_ring == pipelined) {
  2118. avail = reg;
  2119. break;
  2120. }
  2121. }
  2122. if (avail == NULL)
  2123. avail = first;
  2124. return avail;
  2125. }
  2126. /**
  2127. * i915_gem_object_get_fence - set up a fence reg for an object
  2128. * @obj: object to map through a fence reg
  2129. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2130. * @interruptible: must we wait uninterruptibly for the register to retire?
  2131. *
  2132. * When mapping objects through the GTT, userspace wants to be able to write
  2133. * to them without having to worry about swizzling if the object is tiled.
  2134. *
  2135. * This function walks the fence regs looking for a free one for @obj,
  2136. * stealing one if it can't find any.
  2137. *
  2138. * It then sets up the reg based on the object's properties: address, pitch
  2139. * and tiling format.
  2140. */
  2141. int
  2142. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2143. struct intel_ring_buffer *pipelined)
  2144. {
  2145. struct drm_device *dev = obj->base.dev;
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. struct drm_i915_fence_reg *reg;
  2148. int ret;
  2149. /* XXX disable pipelining. There are bugs. Shocking. */
  2150. pipelined = NULL;
  2151. /* Just update our place in the LRU if our fence is getting reused. */
  2152. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2153. reg = &dev_priv->fence_regs[obj->fence_reg];
  2154. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2155. if (obj->tiling_changed) {
  2156. ret = i915_gem_object_flush_fence(obj, pipelined);
  2157. if (ret)
  2158. return ret;
  2159. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2160. pipelined = NULL;
  2161. if (pipelined) {
  2162. reg->setup_seqno =
  2163. i915_gem_next_request_seqno(pipelined);
  2164. obj->last_fenced_seqno = reg->setup_seqno;
  2165. obj->last_fenced_ring = pipelined;
  2166. }
  2167. goto update;
  2168. }
  2169. if (!pipelined) {
  2170. if (reg->setup_seqno) {
  2171. if (!ring_passed_seqno(obj->last_fenced_ring,
  2172. reg->setup_seqno)) {
  2173. ret = i915_wait_request(obj->last_fenced_ring,
  2174. reg->setup_seqno);
  2175. if (ret)
  2176. return ret;
  2177. }
  2178. reg->setup_seqno = 0;
  2179. }
  2180. } else if (obj->last_fenced_ring &&
  2181. obj->last_fenced_ring != pipelined) {
  2182. ret = i915_gem_object_flush_fence(obj, pipelined);
  2183. if (ret)
  2184. return ret;
  2185. }
  2186. return 0;
  2187. }
  2188. reg = i915_find_fence_reg(dev, pipelined);
  2189. if (reg == NULL)
  2190. return -ENOSPC;
  2191. ret = i915_gem_object_flush_fence(obj, pipelined);
  2192. if (ret)
  2193. return ret;
  2194. if (reg->obj) {
  2195. struct drm_i915_gem_object *old = reg->obj;
  2196. drm_gem_object_reference(&old->base);
  2197. if (old->tiling_mode)
  2198. i915_gem_release_mmap(old);
  2199. ret = i915_gem_object_flush_fence(old, pipelined);
  2200. if (ret) {
  2201. drm_gem_object_unreference(&old->base);
  2202. return ret;
  2203. }
  2204. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2205. pipelined = NULL;
  2206. old->fence_reg = I915_FENCE_REG_NONE;
  2207. old->last_fenced_ring = pipelined;
  2208. old->last_fenced_seqno =
  2209. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2210. drm_gem_object_unreference(&old->base);
  2211. } else if (obj->last_fenced_seqno == 0)
  2212. pipelined = NULL;
  2213. reg->obj = obj;
  2214. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2215. obj->fence_reg = reg - dev_priv->fence_regs;
  2216. obj->last_fenced_ring = pipelined;
  2217. reg->setup_seqno =
  2218. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2219. obj->last_fenced_seqno = reg->setup_seqno;
  2220. update:
  2221. obj->tiling_changed = false;
  2222. switch (INTEL_INFO(dev)->gen) {
  2223. case 6:
  2224. ret = sandybridge_write_fence_reg(obj, pipelined);
  2225. break;
  2226. case 5:
  2227. case 4:
  2228. ret = i965_write_fence_reg(obj, pipelined);
  2229. break;
  2230. case 3:
  2231. ret = i915_write_fence_reg(obj, pipelined);
  2232. break;
  2233. case 2:
  2234. ret = i830_write_fence_reg(obj, pipelined);
  2235. break;
  2236. }
  2237. return ret;
  2238. }
  2239. /**
  2240. * i915_gem_clear_fence_reg - clear out fence register info
  2241. * @obj: object to clear
  2242. *
  2243. * Zeroes out the fence register itself and clears out the associated
  2244. * data structures in dev_priv and obj.
  2245. */
  2246. static void
  2247. i915_gem_clear_fence_reg(struct drm_device *dev,
  2248. struct drm_i915_fence_reg *reg)
  2249. {
  2250. drm_i915_private_t *dev_priv = dev->dev_private;
  2251. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2252. switch (INTEL_INFO(dev)->gen) {
  2253. case 6:
  2254. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2255. break;
  2256. case 5:
  2257. case 4:
  2258. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2259. break;
  2260. case 3:
  2261. if (fence_reg >= 8)
  2262. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2263. else
  2264. case 2:
  2265. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2266. I915_WRITE(fence_reg, 0);
  2267. break;
  2268. }
  2269. list_del_init(&reg->lru_list);
  2270. reg->obj = NULL;
  2271. reg->setup_seqno = 0;
  2272. }
  2273. /**
  2274. * Finds free space in the GTT aperture and binds the object there.
  2275. */
  2276. static int
  2277. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2278. unsigned alignment,
  2279. bool map_and_fenceable)
  2280. {
  2281. struct drm_device *dev = obj->base.dev;
  2282. drm_i915_private_t *dev_priv = dev->dev_private;
  2283. struct drm_mm_node *free_space;
  2284. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2285. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2286. bool mappable, fenceable;
  2287. int ret;
  2288. if (obj->madv != I915_MADV_WILLNEED) {
  2289. DRM_ERROR("Attempting to bind a purgeable object\n");
  2290. return -EINVAL;
  2291. }
  2292. fence_size = i915_gem_get_gtt_size(obj);
  2293. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2294. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2295. if (alignment == 0)
  2296. alignment = map_and_fenceable ? fence_alignment :
  2297. unfenced_alignment;
  2298. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2299. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2300. return -EINVAL;
  2301. }
  2302. size = map_and_fenceable ? fence_size : obj->base.size;
  2303. /* If the object is bigger than the entire aperture, reject it early
  2304. * before evicting everything in a vain attempt to find space.
  2305. */
  2306. if (obj->base.size >
  2307. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2308. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2309. return -E2BIG;
  2310. }
  2311. search_free:
  2312. if (map_and_fenceable)
  2313. free_space =
  2314. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2315. size, alignment, 0,
  2316. dev_priv->mm.gtt_mappable_end,
  2317. 0);
  2318. else
  2319. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2320. size, alignment, 0);
  2321. if (free_space != NULL) {
  2322. if (map_and_fenceable)
  2323. obj->gtt_space =
  2324. drm_mm_get_block_range_generic(free_space,
  2325. size, alignment, 0,
  2326. dev_priv->mm.gtt_mappable_end,
  2327. 0);
  2328. else
  2329. obj->gtt_space =
  2330. drm_mm_get_block(free_space, size, alignment);
  2331. }
  2332. if (obj->gtt_space == NULL) {
  2333. /* If the gtt is empty and we're still having trouble
  2334. * fitting our object in, we're out of memory.
  2335. */
  2336. ret = i915_gem_evict_something(dev, size, alignment,
  2337. map_and_fenceable);
  2338. if (ret)
  2339. return ret;
  2340. goto search_free;
  2341. }
  2342. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2343. if (ret) {
  2344. drm_mm_put_block(obj->gtt_space);
  2345. obj->gtt_space = NULL;
  2346. if (ret == -ENOMEM) {
  2347. /* first try to reclaim some memory by clearing the GTT */
  2348. ret = i915_gem_evict_everything(dev, false);
  2349. if (ret) {
  2350. /* now try to shrink everyone else */
  2351. if (gfpmask) {
  2352. gfpmask = 0;
  2353. goto search_free;
  2354. }
  2355. return -ENOMEM;
  2356. }
  2357. goto search_free;
  2358. }
  2359. return ret;
  2360. }
  2361. ret = i915_gem_gtt_bind_object(obj);
  2362. if (ret) {
  2363. i915_gem_object_put_pages_gtt(obj);
  2364. drm_mm_put_block(obj->gtt_space);
  2365. obj->gtt_space = NULL;
  2366. if (i915_gem_evict_everything(dev, false))
  2367. return ret;
  2368. goto search_free;
  2369. }
  2370. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2371. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2372. /* Assert that the object is not currently in any GPU domain. As it
  2373. * wasn't in the GTT, there shouldn't be any way it could have been in
  2374. * a GPU cache
  2375. */
  2376. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2377. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2378. obj->gtt_offset = obj->gtt_space->start;
  2379. fenceable =
  2380. obj->gtt_space->size == fence_size &&
  2381. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2382. mappable =
  2383. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2384. obj->map_and_fenceable = mappable && fenceable;
  2385. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2386. return 0;
  2387. }
  2388. void
  2389. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2390. {
  2391. /* If we don't have a page list set up, then we're not pinned
  2392. * to GPU, and we can ignore the cache flush because it'll happen
  2393. * again at bind time.
  2394. */
  2395. if (obj->pages == NULL)
  2396. return;
  2397. trace_i915_gem_object_clflush(obj);
  2398. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2399. }
  2400. /** Flushes any GPU write domain for the object if it's dirty. */
  2401. static int
  2402. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2403. {
  2404. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2405. return 0;
  2406. /* Queue the GPU write cache flushing we need. */
  2407. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2408. }
  2409. /** Flushes the GTT write domain for the object if it's dirty. */
  2410. static void
  2411. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2412. {
  2413. uint32_t old_write_domain;
  2414. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2415. return;
  2416. /* No actual flushing is required for the GTT write domain. Writes
  2417. * to it immediately go to main memory as far as we know, so there's
  2418. * no chipset flush. It also doesn't land in render cache.
  2419. *
  2420. * However, we do have to enforce the order so that all writes through
  2421. * the GTT land before any writes to the device, such as updates to
  2422. * the GATT itself.
  2423. */
  2424. wmb();
  2425. i915_gem_release_mmap(obj);
  2426. old_write_domain = obj->base.write_domain;
  2427. obj->base.write_domain = 0;
  2428. trace_i915_gem_object_change_domain(obj,
  2429. obj->base.read_domains,
  2430. old_write_domain);
  2431. }
  2432. /** Flushes the CPU write domain for the object if it's dirty. */
  2433. static void
  2434. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2435. {
  2436. uint32_t old_write_domain;
  2437. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2438. return;
  2439. i915_gem_clflush_object(obj);
  2440. intel_gtt_chipset_flush();
  2441. old_write_domain = obj->base.write_domain;
  2442. obj->base.write_domain = 0;
  2443. trace_i915_gem_object_change_domain(obj,
  2444. obj->base.read_domains,
  2445. old_write_domain);
  2446. }
  2447. /**
  2448. * Moves a single object to the GTT read, and possibly write domain.
  2449. *
  2450. * This function returns when the move is complete, including waiting on
  2451. * flushes to occur.
  2452. */
  2453. int
  2454. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2455. {
  2456. uint32_t old_write_domain, old_read_domains;
  2457. int ret;
  2458. /* Not valid to be called on unbound objects. */
  2459. if (obj->gtt_space == NULL)
  2460. return -EINVAL;
  2461. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2462. return 0;
  2463. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2464. if (ret)
  2465. return ret;
  2466. if (obj->pending_gpu_write || write) {
  2467. ret = i915_gem_object_wait_rendering(obj);
  2468. if (ret)
  2469. return ret;
  2470. }
  2471. i915_gem_object_flush_cpu_write_domain(obj);
  2472. old_write_domain = obj->base.write_domain;
  2473. old_read_domains = obj->base.read_domains;
  2474. /* It should now be out of any other write domains, and we can update
  2475. * the domain values for our changes.
  2476. */
  2477. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2478. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2479. if (write) {
  2480. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2481. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2482. obj->dirty = 1;
  2483. }
  2484. trace_i915_gem_object_change_domain(obj,
  2485. old_read_domains,
  2486. old_write_domain);
  2487. return 0;
  2488. }
  2489. /*
  2490. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2491. * wait, as in modesetting process we're not supposed to be interrupted.
  2492. */
  2493. int
  2494. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2495. struct intel_ring_buffer *pipelined)
  2496. {
  2497. uint32_t old_read_domains;
  2498. int ret;
  2499. /* Not valid to be called on unbound objects. */
  2500. if (obj->gtt_space == NULL)
  2501. return -EINVAL;
  2502. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2503. if (ret)
  2504. return ret;
  2505. /* Currently, we are always called from an non-interruptible context. */
  2506. if (pipelined != obj->ring) {
  2507. ret = i915_gem_object_wait_rendering(obj);
  2508. if (ret)
  2509. return ret;
  2510. }
  2511. i915_gem_object_flush_cpu_write_domain(obj);
  2512. old_read_domains = obj->base.read_domains;
  2513. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2514. trace_i915_gem_object_change_domain(obj,
  2515. old_read_domains,
  2516. obj->base.write_domain);
  2517. return 0;
  2518. }
  2519. int
  2520. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2521. {
  2522. int ret;
  2523. if (!obj->active)
  2524. return 0;
  2525. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2526. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2527. if (ret)
  2528. return ret;
  2529. }
  2530. return i915_gem_object_wait_rendering(obj);
  2531. }
  2532. /**
  2533. * Moves a single object to the CPU read, and possibly write domain.
  2534. *
  2535. * This function returns when the move is complete, including waiting on
  2536. * flushes to occur.
  2537. */
  2538. static int
  2539. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2540. {
  2541. uint32_t old_write_domain, old_read_domains;
  2542. int ret;
  2543. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2544. return 0;
  2545. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2546. if (ret)
  2547. return ret;
  2548. ret = i915_gem_object_wait_rendering(obj);
  2549. if (ret)
  2550. return ret;
  2551. i915_gem_object_flush_gtt_write_domain(obj);
  2552. /* If we have a partially-valid cache of the object in the CPU,
  2553. * finish invalidating it and free the per-page flags.
  2554. */
  2555. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2556. old_write_domain = obj->base.write_domain;
  2557. old_read_domains = obj->base.read_domains;
  2558. /* Flush the CPU cache if it's still invalid. */
  2559. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2560. i915_gem_clflush_object(obj);
  2561. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2562. }
  2563. /* It should now be out of any other write domains, and we can update
  2564. * the domain values for our changes.
  2565. */
  2566. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2567. /* If we're writing through the CPU, then the GPU read domains will
  2568. * need to be invalidated at next use.
  2569. */
  2570. if (write) {
  2571. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2572. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2573. }
  2574. trace_i915_gem_object_change_domain(obj,
  2575. old_read_domains,
  2576. old_write_domain);
  2577. return 0;
  2578. }
  2579. /**
  2580. * Moves the object from a partially CPU read to a full one.
  2581. *
  2582. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2583. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2584. */
  2585. static void
  2586. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2587. {
  2588. if (!obj->page_cpu_valid)
  2589. return;
  2590. /* If we're partially in the CPU read domain, finish moving it in.
  2591. */
  2592. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2593. int i;
  2594. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2595. if (obj->page_cpu_valid[i])
  2596. continue;
  2597. drm_clflush_pages(obj->pages + i, 1);
  2598. }
  2599. }
  2600. /* Free the page_cpu_valid mappings which are now stale, whether
  2601. * or not we've got I915_GEM_DOMAIN_CPU.
  2602. */
  2603. kfree(obj->page_cpu_valid);
  2604. obj->page_cpu_valid = NULL;
  2605. }
  2606. /**
  2607. * Set the CPU read domain on a range of the object.
  2608. *
  2609. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2610. * not entirely valid. The page_cpu_valid member of the object flags which
  2611. * pages have been flushed, and will be respected by
  2612. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2613. * of the whole object.
  2614. *
  2615. * This function returns when the move is complete, including waiting on
  2616. * flushes to occur.
  2617. */
  2618. static int
  2619. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2620. uint64_t offset, uint64_t size)
  2621. {
  2622. uint32_t old_read_domains;
  2623. int i, ret;
  2624. if (offset == 0 && size == obj->base.size)
  2625. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2626. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2627. if (ret)
  2628. return ret;
  2629. ret = i915_gem_object_wait_rendering(obj);
  2630. if (ret)
  2631. return ret;
  2632. i915_gem_object_flush_gtt_write_domain(obj);
  2633. /* If we're already fully in the CPU read domain, we're done. */
  2634. if (obj->page_cpu_valid == NULL &&
  2635. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2636. return 0;
  2637. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2638. * newly adding I915_GEM_DOMAIN_CPU
  2639. */
  2640. if (obj->page_cpu_valid == NULL) {
  2641. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2642. GFP_KERNEL);
  2643. if (obj->page_cpu_valid == NULL)
  2644. return -ENOMEM;
  2645. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2646. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2647. /* Flush the cache on any pages that are still invalid from the CPU's
  2648. * perspective.
  2649. */
  2650. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2651. i++) {
  2652. if (obj->page_cpu_valid[i])
  2653. continue;
  2654. drm_clflush_pages(obj->pages + i, 1);
  2655. obj->page_cpu_valid[i] = 1;
  2656. }
  2657. /* It should now be out of any other write domains, and we can update
  2658. * the domain values for our changes.
  2659. */
  2660. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2661. old_read_domains = obj->base.read_domains;
  2662. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2663. trace_i915_gem_object_change_domain(obj,
  2664. old_read_domains,
  2665. obj->base.write_domain);
  2666. return 0;
  2667. }
  2668. /* Throttle our rendering by waiting until the ring has completed our requests
  2669. * emitted over 20 msec ago.
  2670. *
  2671. * Note that if we were to use the current jiffies each time around the loop,
  2672. * we wouldn't escape the function with any frames outstanding if the time to
  2673. * render a frame was over 20ms.
  2674. *
  2675. * This should get us reasonable parallelism between CPU and GPU but also
  2676. * relatively low latency when blocking on a particular request to finish.
  2677. */
  2678. static int
  2679. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2680. {
  2681. struct drm_i915_private *dev_priv = dev->dev_private;
  2682. struct drm_i915_file_private *file_priv = file->driver_priv;
  2683. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2684. struct drm_i915_gem_request *request;
  2685. struct intel_ring_buffer *ring = NULL;
  2686. u32 seqno = 0;
  2687. int ret;
  2688. if (atomic_read(&dev_priv->mm.wedged))
  2689. return -EIO;
  2690. spin_lock(&file_priv->mm.lock);
  2691. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2692. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2693. break;
  2694. ring = request->ring;
  2695. seqno = request->seqno;
  2696. }
  2697. spin_unlock(&file_priv->mm.lock);
  2698. if (seqno == 0)
  2699. return 0;
  2700. ret = 0;
  2701. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2702. /* And wait for the seqno passing without holding any locks and
  2703. * causing extra latency for others. This is safe as the irq
  2704. * generation is designed to be run atomically and so is
  2705. * lockless.
  2706. */
  2707. if (ring->irq_get(ring)) {
  2708. ret = wait_event_interruptible(ring->irq_queue,
  2709. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2710. || atomic_read(&dev_priv->mm.wedged));
  2711. ring->irq_put(ring);
  2712. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2713. ret = -EIO;
  2714. }
  2715. }
  2716. if (ret == 0)
  2717. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2718. return ret;
  2719. }
  2720. int
  2721. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2722. uint32_t alignment,
  2723. bool map_and_fenceable)
  2724. {
  2725. struct drm_device *dev = obj->base.dev;
  2726. struct drm_i915_private *dev_priv = dev->dev_private;
  2727. int ret;
  2728. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2729. WARN_ON(i915_verify_lists(dev));
  2730. if (obj->gtt_space != NULL) {
  2731. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2732. (map_and_fenceable && !obj->map_and_fenceable)) {
  2733. WARN(obj->pin_count,
  2734. "bo is already pinned with incorrect alignment:"
  2735. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2736. " obj->map_and_fenceable=%d\n",
  2737. obj->gtt_offset, alignment,
  2738. map_and_fenceable,
  2739. obj->map_and_fenceable);
  2740. ret = i915_gem_object_unbind(obj);
  2741. if (ret)
  2742. return ret;
  2743. }
  2744. }
  2745. if (obj->gtt_space == NULL) {
  2746. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2747. map_and_fenceable);
  2748. if (ret)
  2749. return ret;
  2750. }
  2751. if (obj->pin_count++ == 0) {
  2752. if (!obj->active)
  2753. list_move_tail(&obj->mm_list,
  2754. &dev_priv->mm.pinned_list);
  2755. }
  2756. obj->pin_mappable |= map_and_fenceable;
  2757. WARN_ON(i915_verify_lists(dev));
  2758. return 0;
  2759. }
  2760. void
  2761. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2762. {
  2763. struct drm_device *dev = obj->base.dev;
  2764. drm_i915_private_t *dev_priv = dev->dev_private;
  2765. WARN_ON(i915_verify_lists(dev));
  2766. BUG_ON(obj->pin_count == 0);
  2767. BUG_ON(obj->gtt_space == NULL);
  2768. if (--obj->pin_count == 0) {
  2769. if (!obj->active)
  2770. list_move_tail(&obj->mm_list,
  2771. &dev_priv->mm.inactive_list);
  2772. obj->pin_mappable = false;
  2773. }
  2774. WARN_ON(i915_verify_lists(dev));
  2775. }
  2776. int
  2777. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2778. struct drm_file *file)
  2779. {
  2780. struct drm_i915_gem_pin *args = data;
  2781. struct drm_i915_gem_object *obj;
  2782. int ret;
  2783. ret = i915_mutex_lock_interruptible(dev);
  2784. if (ret)
  2785. return ret;
  2786. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2787. if (&obj->base == NULL) {
  2788. ret = -ENOENT;
  2789. goto unlock;
  2790. }
  2791. if (obj->madv != I915_MADV_WILLNEED) {
  2792. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2793. ret = -EINVAL;
  2794. goto out;
  2795. }
  2796. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2797. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2798. args->handle);
  2799. ret = -EINVAL;
  2800. goto out;
  2801. }
  2802. obj->user_pin_count++;
  2803. obj->pin_filp = file;
  2804. if (obj->user_pin_count == 1) {
  2805. ret = i915_gem_object_pin(obj, args->alignment, true);
  2806. if (ret)
  2807. goto out;
  2808. }
  2809. /* XXX - flush the CPU caches for pinned objects
  2810. * as the X server doesn't manage domains yet
  2811. */
  2812. i915_gem_object_flush_cpu_write_domain(obj);
  2813. args->offset = obj->gtt_offset;
  2814. out:
  2815. drm_gem_object_unreference(&obj->base);
  2816. unlock:
  2817. mutex_unlock(&dev->struct_mutex);
  2818. return ret;
  2819. }
  2820. int
  2821. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2822. struct drm_file *file)
  2823. {
  2824. struct drm_i915_gem_pin *args = data;
  2825. struct drm_i915_gem_object *obj;
  2826. int ret;
  2827. ret = i915_mutex_lock_interruptible(dev);
  2828. if (ret)
  2829. return ret;
  2830. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2831. if (&obj->base == NULL) {
  2832. ret = -ENOENT;
  2833. goto unlock;
  2834. }
  2835. if (obj->pin_filp != file) {
  2836. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2837. args->handle);
  2838. ret = -EINVAL;
  2839. goto out;
  2840. }
  2841. obj->user_pin_count--;
  2842. if (obj->user_pin_count == 0) {
  2843. obj->pin_filp = NULL;
  2844. i915_gem_object_unpin(obj);
  2845. }
  2846. out:
  2847. drm_gem_object_unreference(&obj->base);
  2848. unlock:
  2849. mutex_unlock(&dev->struct_mutex);
  2850. return ret;
  2851. }
  2852. int
  2853. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2854. struct drm_file *file)
  2855. {
  2856. struct drm_i915_gem_busy *args = data;
  2857. struct drm_i915_gem_object *obj;
  2858. int ret;
  2859. ret = i915_mutex_lock_interruptible(dev);
  2860. if (ret)
  2861. return ret;
  2862. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2863. if (&obj->base == NULL) {
  2864. ret = -ENOENT;
  2865. goto unlock;
  2866. }
  2867. /* Count all active objects as busy, even if they are currently not used
  2868. * by the gpu. Users of this interface expect objects to eventually
  2869. * become non-busy without any further actions, therefore emit any
  2870. * necessary flushes here.
  2871. */
  2872. args->busy = obj->active;
  2873. if (args->busy) {
  2874. /* Unconditionally flush objects, even when the gpu still uses this
  2875. * object. Userspace calling this function indicates that it wants to
  2876. * use this buffer rather sooner than later, so issuing the required
  2877. * flush earlier is beneficial.
  2878. */
  2879. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2880. ret = i915_gem_flush_ring(obj->ring,
  2881. 0, obj->base.write_domain);
  2882. } else if (obj->ring->outstanding_lazy_request ==
  2883. obj->last_rendering_seqno) {
  2884. struct drm_i915_gem_request *request;
  2885. /* This ring is not being cleared by active usage,
  2886. * so emit a request to do so.
  2887. */
  2888. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2889. if (request)
  2890. ret = i915_add_request(obj->ring, NULL,request);
  2891. else
  2892. ret = -ENOMEM;
  2893. }
  2894. /* Update the active list for the hardware's current position.
  2895. * Otherwise this only updates on a delayed timer or when irqs
  2896. * are actually unmasked, and our working set ends up being
  2897. * larger than required.
  2898. */
  2899. i915_gem_retire_requests_ring(obj->ring);
  2900. args->busy = obj->active;
  2901. }
  2902. drm_gem_object_unreference(&obj->base);
  2903. unlock:
  2904. mutex_unlock(&dev->struct_mutex);
  2905. return ret;
  2906. }
  2907. int
  2908. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2909. struct drm_file *file_priv)
  2910. {
  2911. return i915_gem_ring_throttle(dev, file_priv);
  2912. }
  2913. int
  2914. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2915. struct drm_file *file_priv)
  2916. {
  2917. struct drm_i915_gem_madvise *args = data;
  2918. struct drm_i915_gem_object *obj;
  2919. int ret;
  2920. switch (args->madv) {
  2921. case I915_MADV_DONTNEED:
  2922. case I915_MADV_WILLNEED:
  2923. break;
  2924. default:
  2925. return -EINVAL;
  2926. }
  2927. ret = i915_mutex_lock_interruptible(dev);
  2928. if (ret)
  2929. return ret;
  2930. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2931. if (&obj->base == NULL) {
  2932. ret = -ENOENT;
  2933. goto unlock;
  2934. }
  2935. if (obj->pin_count) {
  2936. ret = -EINVAL;
  2937. goto out;
  2938. }
  2939. if (obj->madv != __I915_MADV_PURGED)
  2940. obj->madv = args->madv;
  2941. /* if the object is no longer bound, discard its backing storage */
  2942. if (i915_gem_object_is_purgeable(obj) &&
  2943. obj->gtt_space == NULL)
  2944. i915_gem_object_truncate(obj);
  2945. args->retained = obj->madv != __I915_MADV_PURGED;
  2946. out:
  2947. drm_gem_object_unreference(&obj->base);
  2948. unlock:
  2949. mutex_unlock(&dev->struct_mutex);
  2950. return ret;
  2951. }
  2952. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2953. size_t size)
  2954. {
  2955. struct drm_i915_private *dev_priv = dev->dev_private;
  2956. struct drm_i915_gem_object *obj;
  2957. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2958. if (obj == NULL)
  2959. return NULL;
  2960. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2961. kfree(obj);
  2962. return NULL;
  2963. }
  2964. i915_gem_info_add_obj(dev_priv, size);
  2965. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2966. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2967. obj->agp_type = AGP_USER_MEMORY;
  2968. obj->base.driver_private = NULL;
  2969. obj->fence_reg = I915_FENCE_REG_NONE;
  2970. INIT_LIST_HEAD(&obj->mm_list);
  2971. INIT_LIST_HEAD(&obj->gtt_list);
  2972. INIT_LIST_HEAD(&obj->ring_list);
  2973. INIT_LIST_HEAD(&obj->exec_list);
  2974. INIT_LIST_HEAD(&obj->gpu_write_list);
  2975. obj->madv = I915_MADV_WILLNEED;
  2976. /* Avoid an unnecessary call to unbind on the first bind. */
  2977. obj->map_and_fenceable = true;
  2978. return obj;
  2979. }
  2980. int i915_gem_init_object(struct drm_gem_object *obj)
  2981. {
  2982. BUG();
  2983. return 0;
  2984. }
  2985. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2986. {
  2987. struct drm_device *dev = obj->base.dev;
  2988. drm_i915_private_t *dev_priv = dev->dev_private;
  2989. int ret;
  2990. ret = i915_gem_object_unbind(obj);
  2991. if (ret == -ERESTARTSYS) {
  2992. list_move(&obj->mm_list,
  2993. &dev_priv->mm.deferred_free_list);
  2994. return;
  2995. }
  2996. trace_i915_gem_object_destroy(obj);
  2997. if (obj->base.map_list.map)
  2998. i915_gem_free_mmap_offset(obj);
  2999. drm_gem_object_release(&obj->base);
  3000. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3001. kfree(obj->page_cpu_valid);
  3002. kfree(obj->bit_17);
  3003. kfree(obj);
  3004. }
  3005. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3006. {
  3007. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3008. struct drm_device *dev = obj->base.dev;
  3009. while (obj->pin_count > 0)
  3010. i915_gem_object_unpin(obj);
  3011. if (obj->phys_obj)
  3012. i915_gem_detach_phys_object(dev, obj);
  3013. i915_gem_free_object_tail(obj);
  3014. }
  3015. int
  3016. i915_gem_idle(struct drm_device *dev)
  3017. {
  3018. drm_i915_private_t *dev_priv = dev->dev_private;
  3019. int ret;
  3020. mutex_lock(&dev->struct_mutex);
  3021. if (dev_priv->mm.suspended) {
  3022. mutex_unlock(&dev->struct_mutex);
  3023. return 0;
  3024. }
  3025. ret = i915_gpu_idle(dev);
  3026. if (ret) {
  3027. mutex_unlock(&dev->struct_mutex);
  3028. return ret;
  3029. }
  3030. /* Under UMS, be paranoid and evict. */
  3031. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3032. ret = i915_gem_evict_inactive(dev, false);
  3033. if (ret) {
  3034. mutex_unlock(&dev->struct_mutex);
  3035. return ret;
  3036. }
  3037. }
  3038. i915_gem_reset_fences(dev);
  3039. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3040. * We need to replace this with a semaphore, or something.
  3041. * And not confound mm.suspended!
  3042. */
  3043. dev_priv->mm.suspended = 1;
  3044. del_timer_sync(&dev_priv->hangcheck_timer);
  3045. i915_kernel_lost_context(dev);
  3046. i915_gem_cleanup_ringbuffer(dev);
  3047. mutex_unlock(&dev->struct_mutex);
  3048. /* Cancel the retire work handler, which should be idle now. */
  3049. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3050. return 0;
  3051. }
  3052. int
  3053. i915_gem_init_ringbuffer(struct drm_device *dev)
  3054. {
  3055. drm_i915_private_t *dev_priv = dev->dev_private;
  3056. int ret;
  3057. ret = intel_init_render_ring_buffer(dev);
  3058. if (ret)
  3059. return ret;
  3060. if (HAS_BSD(dev)) {
  3061. ret = intel_init_bsd_ring_buffer(dev);
  3062. if (ret)
  3063. goto cleanup_render_ring;
  3064. }
  3065. if (HAS_BLT(dev)) {
  3066. ret = intel_init_blt_ring_buffer(dev);
  3067. if (ret)
  3068. goto cleanup_bsd_ring;
  3069. }
  3070. dev_priv->next_seqno = 1;
  3071. return 0;
  3072. cleanup_bsd_ring:
  3073. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3074. cleanup_render_ring:
  3075. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3076. return ret;
  3077. }
  3078. void
  3079. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3080. {
  3081. drm_i915_private_t *dev_priv = dev->dev_private;
  3082. int i;
  3083. for (i = 0; i < I915_NUM_RINGS; i++)
  3084. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3085. }
  3086. int
  3087. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3088. struct drm_file *file_priv)
  3089. {
  3090. drm_i915_private_t *dev_priv = dev->dev_private;
  3091. int ret, i;
  3092. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3093. return 0;
  3094. if (atomic_read(&dev_priv->mm.wedged)) {
  3095. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3096. atomic_set(&dev_priv->mm.wedged, 0);
  3097. }
  3098. mutex_lock(&dev->struct_mutex);
  3099. dev_priv->mm.suspended = 0;
  3100. ret = i915_gem_init_ringbuffer(dev);
  3101. if (ret != 0) {
  3102. mutex_unlock(&dev->struct_mutex);
  3103. return ret;
  3104. }
  3105. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3106. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3107. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3108. for (i = 0; i < I915_NUM_RINGS; i++) {
  3109. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3110. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3111. }
  3112. mutex_unlock(&dev->struct_mutex);
  3113. ret = drm_irq_install(dev);
  3114. if (ret)
  3115. goto cleanup_ringbuffer;
  3116. return 0;
  3117. cleanup_ringbuffer:
  3118. mutex_lock(&dev->struct_mutex);
  3119. i915_gem_cleanup_ringbuffer(dev);
  3120. dev_priv->mm.suspended = 1;
  3121. mutex_unlock(&dev->struct_mutex);
  3122. return ret;
  3123. }
  3124. int
  3125. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3126. struct drm_file *file_priv)
  3127. {
  3128. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3129. return 0;
  3130. drm_irq_uninstall(dev);
  3131. return i915_gem_idle(dev);
  3132. }
  3133. void
  3134. i915_gem_lastclose(struct drm_device *dev)
  3135. {
  3136. int ret;
  3137. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3138. return;
  3139. ret = i915_gem_idle(dev);
  3140. if (ret)
  3141. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3142. }
  3143. static void
  3144. init_ring_lists(struct intel_ring_buffer *ring)
  3145. {
  3146. INIT_LIST_HEAD(&ring->active_list);
  3147. INIT_LIST_HEAD(&ring->request_list);
  3148. INIT_LIST_HEAD(&ring->gpu_write_list);
  3149. }
  3150. void
  3151. i915_gem_load(struct drm_device *dev)
  3152. {
  3153. int i;
  3154. drm_i915_private_t *dev_priv = dev->dev_private;
  3155. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3156. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3157. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3158. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3159. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3160. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3161. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3162. for (i = 0; i < I915_NUM_RINGS; i++)
  3163. init_ring_lists(&dev_priv->ring[i]);
  3164. for (i = 0; i < 16; i++)
  3165. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3166. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3167. i915_gem_retire_work_handler);
  3168. init_completion(&dev_priv->error_completion);
  3169. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3170. if (IS_GEN3(dev)) {
  3171. u32 tmp = I915_READ(MI_ARB_STATE);
  3172. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3173. /* arb state is a masked write, so set bit + bit in mask */
  3174. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3175. I915_WRITE(MI_ARB_STATE, tmp);
  3176. }
  3177. }
  3178. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3179. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3180. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3181. dev_priv->fence_reg_start = 3;
  3182. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3183. dev_priv->num_fence_regs = 16;
  3184. else
  3185. dev_priv->num_fence_regs = 8;
  3186. /* Initialize fence registers to zero */
  3187. switch (INTEL_INFO(dev)->gen) {
  3188. case 6:
  3189. for (i = 0; i < 16; i++)
  3190. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3191. break;
  3192. case 5:
  3193. case 4:
  3194. for (i = 0; i < 16; i++)
  3195. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3196. break;
  3197. case 3:
  3198. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3199. for (i = 0; i < 8; i++)
  3200. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3201. case 2:
  3202. for (i = 0; i < 8; i++)
  3203. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3204. break;
  3205. }
  3206. i915_gem_detect_bit_6_swizzle(dev);
  3207. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3208. dev_priv->mm.interruptible = true;
  3209. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3210. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3211. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3212. }
  3213. /*
  3214. * Create a physically contiguous memory object for this object
  3215. * e.g. for cursor + overlay regs
  3216. */
  3217. static int i915_gem_init_phys_object(struct drm_device *dev,
  3218. int id, int size, int align)
  3219. {
  3220. drm_i915_private_t *dev_priv = dev->dev_private;
  3221. struct drm_i915_gem_phys_object *phys_obj;
  3222. int ret;
  3223. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3224. return 0;
  3225. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3226. if (!phys_obj)
  3227. return -ENOMEM;
  3228. phys_obj->id = id;
  3229. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3230. if (!phys_obj->handle) {
  3231. ret = -ENOMEM;
  3232. goto kfree_obj;
  3233. }
  3234. #ifdef CONFIG_X86
  3235. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3236. #endif
  3237. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3238. return 0;
  3239. kfree_obj:
  3240. kfree(phys_obj);
  3241. return ret;
  3242. }
  3243. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3244. {
  3245. drm_i915_private_t *dev_priv = dev->dev_private;
  3246. struct drm_i915_gem_phys_object *phys_obj;
  3247. if (!dev_priv->mm.phys_objs[id - 1])
  3248. return;
  3249. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3250. if (phys_obj->cur_obj) {
  3251. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3252. }
  3253. #ifdef CONFIG_X86
  3254. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3255. #endif
  3256. drm_pci_free(dev, phys_obj->handle);
  3257. kfree(phys_obj);
  3258. dev_priv->mm.phys_objs[id - 1] = NULL;
  3259. }
  3260. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3261. {
  3262. int i;
  3263. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3264. i915_gem_free_phys_object(dev, i);
  3265. }
  3266. void i915_gem_detach_phys_object(struct drm_device *dev,
  3267. struct drm_i915_gem_object *obj)
  3268. {
  3269. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3270. char *vaddr;
  3271. int i;
  3272. int page_count;
  3273. if (!obj->phys_obj)
  3274. return;
  3275. vaddr = obj->phys_obj->handle->vaddr;
  3276. page_count = obj->base.size / PAGE_SIZE;
  3277. for (i = 0; i < page_count; i++) {
  3278. struct page *page = read_cache_page_gfp(mapping, i,
  3279. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3280. if (!IS_ERR(page)) {
  3281. char *dst = kmap_atomic(page);
  3282. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3283. kunmap_atomic(dst);
  3284. drm_clflush_pages(&page, 1);
  3285. set_page_dirty(page);
  3286. mark_page_accessed(page);
  3287. page_cache_release(page);
  3288. }
  3289. }
  3290. intel_gtt_chipset_flush();
  3291. obj->phys_obj->cur_obj = NULL;
  3292. obj->phys_obj = NULL;
  3293. }
  3294. int
  3295. i915_gem_attach_phys_object(struct drm_device *dev,
  3296. struct drm_i915_gem_object *obj,
  3297. int id,
  3298. int align)
  3299. {
  3300. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3301. drm_i915_private_t *dev_priv = dev->dev_private;
  3302. int ret = 0;
  3303. int page_count;
  3304. int i;
  3305. if (id > I915_MAX_PHYS_OBJECT)
  3306. return -EINVAL;
  3307. if (obj->phys_obj) {
  3308. if (obj->phys_obj->id == id)
  3309. return 0;
  3310. i915_gem_detach_phys_object(dev, obj);
  3311. }
  3312. /* create a new object */
  3313. if (!dev_priv->mm.phys_objs[id - 1]) {
  3314. ret = i915_gem_init_phys_object(dev, id,
  3315. obj->base.size, align);
  3316. if (ret) {
  3317. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3318. id, obj->base.size);
  3319. return ret;
  3320. }
  3321. }
  3322. /* bind to the object */
  3323. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3324. obj->phys_obj->cur_obj = obj;
  3325. page_count = obj->base.size / PAGE_SIZE;
  3326. for (i = 0; i < page_count; i++) {
  3327. struct page *page;
  3328. char *dst, *src;
  3329. page = read_cache_page_gfp(mapping, i,
  3330. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3331. if (IS_ERR(page))
  3332. return PTR_ERR(page);
  3333. src = kmap_atomic(page);
  3334. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3335. memcpy(dst, src, PAGE_SIZE);
  3336. kunmap_atomic(src);
  3337. mark_page_accessed(page);
  3338. page_cache_release(page);
  3339. }
  3340. return 0;
  3341. }
  3342. static int
  3343. i915_gem_phys_pwrite(struct drm_device *dev,
  3344. struct drm_i915_gem_object *obj,
  3345. struct drm_i915_gem_pwrite *args,
  3346. struct drm_file *file_priv)
  3347. {
  3348. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3349. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3350. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3351. unsigned long unwritten;
  3352. /* The physical object once assigned is fixed for the lifetime
  3353. * of the obj, so we can safely drop the lock and continue
  3354. * to access vaddr.
  3355. */
  3356. mutex_unlock(&dev->struct_mutex);
  3357. unwritten = copy_from_user(vaddr, user_data, args->size);
  3358. mutex_lock(&dev->struct_mutex);
  3359. if (unwritten)
  3360. return -EFAULT;
  3361. }
  3362. intel_gtt_chipset_flush();
  3363. return 0;
  3364. }
  3365. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3366. {
  3367. struct drm_i915_file_private *file_priv = file->driver_priv;
  3368. /* Clean up our request list when the client is going away, so that
  3369. * later retire_requests won't dereference our soon-to-be-gone
  3370. * file_priv.
  3371. */
  3372. spin_lock(&file_priv->mm.lock);
  3373. while (!list_empty(&file_priv->mm.request_list)) {
  3374. struct drm_i915_gem_request *request;
  3375. request = list_first_entry(&file_priv->mm.request_list,
  3376. struct drm_i915_gem_request,
  3377. client_list);
  3378. list_del(&request->client_list);
  3379. request->file_priv = NULL;
  3380. }
  3381. spin_unlock(&file_priv->mm.lock);
  3382. }
  3383. static int
  3384. i915_gpu_is_active(struct drm_device *dev)
  3385. {
  3386. drm_i915_private_t *dev_priv = dev->dev_private;
  3387. int lists_empty;
  3388. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3389. list_empty(&dev_priv->mm.active_list);
  3390. return !lists_empty;
  3391. }
  3392. static int
  3393. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3394. int nr_to_scan,
  3395. gfp_t gfp_mask)
  3396. {
  3397. struct drm_i915_private *dev_priv =
  3398. container_of(shrinker,
  3399. struct drm_i915_private,
  3400. mm.inactive_shrinker);
  3401. struct drm_device *dev = dev_priv->dev;
  3402. struct drm_i915_gem_object *obj, *next;
  3403. int cnt;
  3404. if (!mutex_trylock(&dev->struct_mutex))
  3405. return 0;
  3406. /* "fast-path" to count number of available objects */
  3407. if (nr_to_scan == 0) {
  3408. cnt = 0;
  3409. list_for_each_entry(obj,
  3410. &dev_priv->mm.inactive_list,
  3411. mm_list)
  3412. cnt++;
  3413. mutex_unlock(&dev->struct_mutex);
  3414. return cnt / 100 * sysctl_vfs_cache_pressure;
  3415. }
  3416. rescan:
  3417. /* first scan for clean buffers */
  3418. i915_gem_retire_requests(dev);
  3419. list_for_each_entry_safe(obj, next,
  3420. &dev_priv->mm.inactive_list,
  3421. mm_list) {
  3422. if (i915_gem_object_is_purgeable(obj)) {
  3423. if (i915_gem_object_unbind(obj) == 0 &&
  3424. --nr_to_scan == 0)
  3425. break;
  3426. }
  3427. }
  3428. /* second pass, evict/count anything still on the inactive list */
  3429. cnt = 0;
  3430. list_for_each_entry_safe(obj, next,
  3431. &dev_priv->mm.inactive_list,
  3432. mm_list) {
  3433. if (nr_to_scan &&
  3434. i915_gem_object_unbind(obj) == 0)
  3435. nr_to_scan--;
  3436. else
  3437. cnt++;
  3438. }
  3439. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3440. /*
  3441. * We are desperate for pages, so as a last resort, wait
  3442. * for the GPU to finish and discard whatever we can.
  3443. * This has a dramatic impact to reduce the number of
  3444. * OOM-killer events whilst running the GPU aggressively.
  3445. */
  3446. if (i915_gpu_idle(dev) == 0)
  3447. goto rescan;
  3448. }
  3449. mutex_unlock(&dev->struct_mutex);
  3450. return cnt / 100 * sysctl_vfs_cache_pressure;
  3451. }