amd64_edac.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  101. const char *func)
  102. {
  103. u32 reg = 0;
  104. u8 dct = 0;
  105. if (addr >= 0x140 && addr <= 0x1a0) {
  106. dct = 1;
  107. addr -= 0x100;
  108. }
  109. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  110. reg &= 0xfffffffe;
  111. reg |= dct;
  112. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  113. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  114. }
  115. /*
  116. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  117. * hardware and can involve L2 cache, dcache as well as the main memory. With
  118. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  119. * functionality.
  120. *
  121. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  122. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  123. * bytes/sec for the setting.
  124. *
  125. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  126. * other archs, we might not have access to the caches directly.
  127. */
  128. /*
  129. * scan the scrub rate mapping table for a close or matching bandwidth value to
  130. * issue. If requested is too big, then use last maximum value found.
  131. */
  132. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  133. {
  134. u32 scrubval;
  135. int i;
  136. /*
  137. * map the configured rate (new_bw) to a value specific to the AMD64
  138. * memory controller and apply to register. Search for the first
  139. * bandwidth entry that is greater or equal than the setting requested
  140. * and program that. If at last entry, turn off DRAM scrubbing.
  141. */
  142. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  143. /*
  144. * skip scrub rates which aren't recommended
  145. * (see F10 BKDG, F3x58)
  146. */
  147. if (scrubrates[i].scrubval < min_rate)
  148. continue;
  149. if (scrubrates[i].bandwidth <= new_bw)
  150. break;
  151. /*
  152. * if no suitable bandwidth found, turn off DRAM scrubbing
  153. * entirely by falling back to the last element in the
  154. * scrubrates array.
  155. */
  156. }
  157. scrubval = scrubrates[i].scrubval;
  158. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  159. if (scrubval)
  160. return scrubrates[i].bandwidth;
  161. return 0;
  162. }
  163. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  164. {
  165. struct amd64_pvt *pvt = mci->pvt_info;
  166. u32 min_scrubrate = 0x5;
  167. if (boot_cpu_data.x86 == 0xf)
  168. min_scrubrate = 0x0;
  169. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  170. }
  171. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  172. {
  173. struct amd64_pvt *pvt = mci->pvt_info;
  174. u32 scrubval = 0;
  175. int i, retval = -EINVAL;
  176. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  177. scrubval = scrubval & 0x001F;
  178. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  179. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  180. if (scrubrates[i].scrubval == scrubval) {
  181. retval = scrubrates[i].bandwidth;
  182. break;
  183. }
  184. }
  185. return retval;
  186. }
  187. /*
  188. * returns true if the SysAddr given by sys_addr matches the
  189. * DRAM base/limit associated with node_id
  190. */
  191. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  192. unsigned nid)
  193. {
  194. u64 addr;
  195. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  196. * all ones if the most significant implemented address bit is 1.
  197. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  198. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  199. * Application Programming.
  200. */
  201. addr = sys_addr & 0x000000ffffffffffull;
  202. return ((addr >= get_dram_base(pvt, nid)) &&
  203. (addr <= get_dram_limit(pvt, nid)));
  204. }
  205. /*
  206. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  207. * mem_ctl_info structure for the node that the SysAddr maps to.
  208. *
  209. * On failure, return NULL.
  210. */
  211. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  212. u64 sys_addr)
  213. {
  214. struct amd64_pvt *pvt;
  215. unsigned node_id;
  216. u32 intlv_en, bits;
  217. /*
  218. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  219. * 3.4.4.2) registers to map the SysAddr to a node ID.
  220. */
  221. pvt = mci->pvt_info;
  222. /*
  223. * The value of this field should be the same for all DRAM Base
  224. * registers. Therefore we arbitrarily choose to read it from the
  225. * register for node 0.
  226. */
  227. intlv_en = dram_intlv_en(pvt, 0);
  228. if (intlv_en == 0) {
  229. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  230. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  231. goto found;
  232. }
  233. goto err_no_match;
  234. }
  235. if (unlikely((intlv_en != 0x01) &&
  236. (intlv_en != 0x03) &&
  237. (intlv_en != 0x07))) {
  238. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  239. return NULL;
  240. }
  241. bits = (((u32) sys_addr) >> 12) & intlv_en;
  242. for (node_id = 0; ; ) {
  243. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  244. break; /* intlv_sel field matches */
  245. if (++node_id >= DRAM_RANGES)
  246. goto err_no_match;
  247. }
  248. /* sanity test for sys_addr */
  249. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  250. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  251. "range for node %d with node interleaving enabled.\n",
  252. __func__, sys_addr, node_id);
  253. return NULL;
  254. }
  255. found:
  256. return edac_mc_find((int)node_id);
  257. err_no_match:
  258. debugf2("sys_addr 0x%lx doesn't match any node\n",
  259. (unsigned long)sys_addr);
  260. return NULL;
  261. }
  262. /*
  263. * compute the CS base address of the @csrow on the DRAM controller @dct.
  264. * For details see F2x[5C:40] in the processor's BKDG
  265. */
  266. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  267. u64 *base, u64 *mask)
  268. {
  269. u64 csbase, csmask, base_bits, mask_bits;
  270. u8 addr_shift;
  271. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  272. csbase = pvt->csels[dct].csbases[csrow];
  273. csmask = pvt->csels[dct].csmasks[csrow];
  274. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  275. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  276. addr_shift = 4;
  277. } else {
  278. csbase = pvt->csels[dct].csbases[csrow];
  279. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  280. addr_shift = 8;
  281. if (boot_cpu_data.x86 == 0x15)
  282. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  283. else
  284. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  285. }
  286. *base = (csbase & base_bits) << addr_shift;
  287. *mask = ~0ULL;
  288. /* poke holes for the csmask */
  289. *mask &= ~(mask_bits << addr_shift);
  290. /* OR them in */
  291. *mask |= (csmask & mask_bits) << addr_shift;
  292. }
  293. #define for_each_chip_select(i, dct, pvt) \
  294. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  295. #define chip_select_base(i, dct, pvt) \
  296. pvt->csels[dct].csbases[i]
  297. #define for_each_chip_select_mask(i, dct, pvt) \
  298. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  299. /*
  300. * @input_addr is an InputAddr associated with the node given by mci. Return the
  301. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  302. */
  303. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  304. {
  305. struct amd64_pvt *pvt;
  306. int csrow;
  307. u64 base, mask;
  308. pvt = mci->pvt_info;
  309. for_each_chip_select(csrow, 0, pvt) {
  310. if (!csrow_enabled(csrow, 0, pvt))
  311. continue;
  312. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  313. mask = ~mask;
  314. if ((input_addr & mask) == (base & mask)) {
  315. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  316. (unsigned long)input_addr, csrow,
  317. pvt->mc_node_id);
  318. return csrow;
  319. }
  320. }
  321. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  322. (unsigned long)input_addr, pvt->mc_node_id);
  323. return -1;
  324. }
  325. /*
  326. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  327. * for the node represented by mci. Info is passed back in *hole_base,
  328. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  329. * info is invalid. Info may be invalid for either of the following reasons:
  330. *
  331. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  332. * Address Register does not exist.
  333. *
  334. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  335. * indicating that its contents are not valid.
  336. *
  337. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  338. * complete 32-bit values despite the fact that the bitfields in the DHAR
  339. * only represent bits 31-24 of the base and offset values.
  340. */
  341. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  342. u64 *hole_offset, u64 *hole_size)
  343. {
  344. struct amd64_pvt *pvt = mci->pvt_info;
  345. u64 base;
  346. /* only revE and later have the DRAM Hole Address Register */
  347. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  348. debugf1(" revision %d for node %d does not support DHAR\n",
  349. pvt->ext_model, pvt->mc_node_id);
  350. return 1;
  351. }
  352. /* valid for Fam10h and above */
  353. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  354. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  355. return 1;
  356. }
  357. if (!dhar_valid(pvt)) {
  358. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  359. pvt->mc_node_id);
  360. return 1;
  361. }
  362. /* This node has Memory Hoisting */
  363. /* +------------------+--------------------+--------------------+-----
  364. * | memory | DRAM hole | relocated |
  365. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  366. * | | | DRAM hole |
  367. * | | | [0x100000000, |
  368. * | | | (0x100000000+ |
  369. * | | | (0xffffffff-x))] |
  370. * +------------------+--------------------+--------------------+-----
  371. *
  372. * Above is a diagram of physical memory showing the DRAM hole and the
  373. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  374. * starts at address x (the base address) and extends through address
  375. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  376. * addresses in the hole so that they start at 0x100000000.
  377. */
  378. base = dhar_base(pvt);
  379. *hole_base = base;
  380. *hole_size = (0x1ull << 32) - base;
  381. if (boot_cpu_data.x86 > 0xf)
  382. *hole_offset = f10_dhar_offset(pvt);
  383. else
  384. *hole_offset = k8_dhar_offset(pvt);
  385. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  386. pvt->mc_node_id, (unsigned long)*hole_base,
  387. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  388. return 0;
  389. }
  390. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  391. /*
  392. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  393. * assumed that sys_addr maps to the node given by mci.
  394. *
  395. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  396. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  397. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  398. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  399. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  400. * These parts of the documentation are unclear. I interpret them as follows:
  401. *
  402. * When node n receives a SysAddr, it processes the SysAddr as follows:
  403. *
  404. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  405. * Limit registers for node n. If the SysAddr is not within the range
  406. * specified by the base and limit values, then node n ignores the Sysaddr
  407. * (since it does not map to node n). Otherwise continue to step 2 below.
  408. *
  409. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  410. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  411. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  412. * hole. If not, skip to step 3 below. Else get the value of the
  413. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  414. * offset defined by this value from the SysAddr.
  415. *
  416. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  417. * Base register for node n. To obtain the DramAddr, subtract the base
  418. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  419. */
  420. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  421. {
  422. struct amd64_pvt *pvt = mci->pvt_info;
  423. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  424. int ret = 0;
  425. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  426. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  427. &hole_size);
  428. if (!ret) {
  429. if ((sys_addr >= (1ull << 32)) &&
  430. (sys_addr < ((1ull << 32) + hole_size))) {
  431. /* use DHAR to translate SysAddr to DramAddr */
  432. dram_addr = sys_addr - hole_offset;
  433. debugf2("using DHAR to translate SysAddr 0x%lx to "
  434. "DramAddr 0x%lx\n",
  435. (unsigned long)sys_addr,
  436. (unsigned long)dram_addr);
  437. return dram_addr;
  438. }
  439. }
  440. /*
  441. * Translate the SysAddr to a DramAddr as shown near the start of
  442. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  443. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  444. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  445. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  446. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  447. * Programmer's Manual Volume 1 Application Programming.
  448. */
  449. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  450. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  451. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  452. (unsigned long)dram_addr);
  453. return dram_addr;
  454. }
  455. /*
  456. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  457. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  458. * for node interleaving.
  459. */
  460. static int num_node_interleave_bits(unsigned intlv_en)
  461. {
  462. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  463. int n;
  464. BUG_ON(intlv_en > 7);
  465. n = intlv_shift_table[intlv_en];
  466. return n;
  467. }
  468. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  469. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  470. {
  471. struct amd64_pvt *pvt;
  472. int intlv_shift;
  473. u64 input_addr;
  474. pvt = mci->pvt_info;
  475. /*
  476. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  477. * concerning translating a DramAddr to an InputAddr.
  478. */
  479. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  480. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  481. (dram_addr & 0xfff);
  482. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  483. intlv_shift, (unsigned long)dram_addr,
  484. (unsigned long)input_addr);
  485. return input_addr;
  486. }
  487. /*
  488. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  489. * assumed that @sys_addr maps to the node given by mci.
  490. */
  491. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  492. {
  493. u64 input_addr;
  494. input_addr =
  495. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  496. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  497. (unsigned long)sys_addr, (unsigned long)input_addr);
  498. return input_addr;
  499. }
  500. /*
  501. * @input_addr is an InputAddr associated with the node represented by mci.
  502. * Translate @input_addr to a DramAddr and return the result.
  503. */
  504. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  505. {
  506. struct amd64_pvt *pvt;
  507. unsigned node_id, intlv_shift;
  508. u64 bits, dram_addr;
  509. u32 intlv_sel;
  510. /*
  511. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  512. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  513. * this procedure. When translating from a DramAddr to an InputAddr, the
  514. * bits used for node interleaving are discarded. Here we recover these
  515. * bits from the IntlvSel field of the DRAM Limit register (section
  516. * 3.4.4.2) for the node that input_addr is associated with.
  517. */
  518. pvt = mci->pvt_info;
  519. node_id = pvt->mc_node_id;
  520. BUG_ON(node_id > 7);
  521. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  522. if (intlv_shift == 0) {
  523. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  524. "same value\n", (unsigned long)input_addr);
  525. return input_addr;
  526. }
  527. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  528. (input_addr & 0xfff);
  529. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  530. dram_addr = bits + (intlv_sel << 12);
  531. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  532. "(%d node interleave bits)\n", (unsigned long)input_addr,
  533. (unsigned long)dram_addr, intlv_shift);
  534. return dram_addr;
  535. }
  536. /*
  537. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  538. * @dram_addr to a SysAddr.
  539. */
  540. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  541. {
  542. struct amd64_pvt *pvt = mci->pvt_info;
  543. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  544. int ret = 0;
  545. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  546. &hole_size);
  547. if (!ret) {
  548. if ((dram_addr >= hole_base) &&
  549. (dram_addr < (hole_base + hole_size))) {
  550. sys_addr = dram_addr + hole_offset;
  551. debugf1("using DHAR to translate DramAddr 0x%lx to "
  552. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  553. (unsigned long)sys_addr);
  554. return sys_addr;
  555. }
  556. }
  557. base = get_dram_base(pvt, pvt->mc_node_id);
  558. sys_addr = dram_addr + base;
  559. /*
  560. * The sys_addr we have computed up to this point is a 40-bit value
  561. * because the k8 deals with 40-bit values. However, the value we are
  562. * supposed to return is a full 64-bit physical address. The AMD
  563. * x86-64 architecture specifies that the most significant implemented
  564. * address bit through bit 63 of a physical address must be either all
  565. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  566. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  567. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  568. * Programming.
  569. */
  570. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  571. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  572. pvt->mc_node_id, (unsigned long)dram_addr,
  573. (unsigned long)sys_addr);
  574. return sys_addr;
  575. }
  576. /*
  577. * @input_addr is an InputAddr associated with the node given by mci. Translate
  578. * @input_addr to a SysAddr.
  579. */
  580. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  581. u64 input_addr)
  582. {
  583. return dram_addr_to_sys_addr(mci,
  584. input_addr_to_dram_addr(mci, input_addr));
  585. }
  586. /*
  587. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  588. * Pass back these values in *input_addr_min and *input_addr_max.
  589. */
  590. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  591. u64 *input_addr_min, u64 *input_addr_max)
  592. {
  593. struct amd64_pvt *pvt;
  594. u64 base, mask;
  595. pvt = mci->pvt_info;
  596. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  597. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  598. *input_addr_min = base & ~mask;
  599. *input_addr_max = base | mask;
  600. }
  601. /* Map the Error address to a PAGE and PAGE OFFSET. */
  602. static inline void error_address_to_page_and_offset(u64 error_address,
  603. u32 *page, u32 *offset)
  604. {
  605. *page = (u32) (error_address >> PAGE_SHIFT);
  606. *offset = ((u32) error_address) & ~PAGE_MASK;
  607. }
  608. /*
  609. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  610. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  611. * of a node that detected an ECC memory error. mci represents the node that
  612. * the error address maps to (possibly different from the node that detected
  613. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  614. * error.
  615. */
  616. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  617. {
  618. int csrow;
  619. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  620. if (csrow == -1)
  621. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  622. "address 0x%lx\n", (unsigned long)sys_addr);
  623. return csrow;
  624. }
  625. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  626. /*
  627. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  628. * are ECC capable.
  629. */
  630. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  631. {
  632. u8 bit;
  633. enum dev_type edac_cap = EDAC_FLAG_NONE;
  634. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  635. ? 19
  636. : 17;
  637. if (pvt->dclr0 & BIT(bit))
  638. edac_cap = EDAC_FLAG_SECDED;
  639. return edac_cap;
  640. }
  641. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  642. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  643. {
  644. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  645. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  646. (dclr & BIT(16)) ? "un" : "",
  647. (dclr & BIT(19)) ? "yes" : "no");
  648. debugf1(" PAR/ERR parity: %s\n",
  649. (dclr & BIT(8)) ? "enabled" : "disabled");
  650. if (boot_cpu_data.x86 == 0x10)
  651. debugf1(" DCT 128bit mode width: %s\n",
  652. (dclr & BIT(11)) ? "128b" : "64b");
  653. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  654. (dclr & BIT(12)) ? "yes" : "no",
  655. (dclr & BIT(13)) ? "yes" : "no",
  656. (dclr & BIT(14)) ? "yes" : "no",
  657. (dclr & BIT(15)) ? "yes" : "no");
  658. }
  659. /* Display and decode various NB registers for debug purposes. */
  660. static void dump_misc_regs(struct amd64_pvt *pvt)
  661. {
  662. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  663. debugf1(" NB two channel DRAM capable: %s\n",
  664. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  665. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  666. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  667. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  668. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  669. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  670. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  671. "offset: 0x%08x\n",
  672. pvt->dhar, dhar_base(pvt),
  673. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  674. : f10_dhar_offset(pvt));
  675. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  676. amd64_debug_display_dimm_sizes(pvt, 0);
  677. /* everything below this point is Fam10h and above */
  678. if (boot_cpu_data.x86 == 0xf)
  679. return;
  680. amd64_debug_display_dimm_sizes(pvt, 1);
  681. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  682. /* Only if NOT ganged does dclr1 have valid info */
  683. if (!dct_ganging_enabled(pvt))
  684. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  685. }
  686. /*
  687. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  688. */
  689. static void prep_chip_selects(struct amd64_pvt *pvt)
  690. {
  691. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  692. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  693. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  694. } else {
  695. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  696. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  697. }
  698. }
  699. /*
  700. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  701. */
  702. static void read_dct_base_mask(struct amd64_pvt *pvt)
  703. {
  704. int cs;
  705. prep_chip_selects(pvt);
  706. for_each_chip_select(cs, 0, pvt) {
  707. int reg0 = DCSB0 + (cs * 4);
  708. int reg1 = DCSB1 + (cs * 4);
  709. u32 *base0 = &pvt->csels[0].csbases[cs];
  710. u32 *base1 = &pvt->csels[1].csbases[cs];
  711. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  712. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  713. cs, *base0, reg0);
  714. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  715. continue;
  716. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  717. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  718. cs, *base1, reg1);
  719. }
  720. for_each_chip_select_mask(cs, 0, pvt) {
  721. int reg0 = DCSM0 + (cs * 4);
  722. int reg1 = DCSM1 + (cs * 4);
  723. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  724. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  725. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  726. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  727. cs, *mask0, reg0);
  728. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  729. continue;
  730. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  731. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  732. cs, *mask1, reg1);
  733. }
  734. }
  735. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  736. {
  737. enum mem_type type;
  738. /* F15h supports only DDR3 */
  739. if (boot_cpu_data.x86 >= 0x15)
  740. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  741. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  742. if (pvt->dchr0 & DDR3_MODE)
  743. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  744. else
  745. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  746. } else {
  747. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  748. }
  749. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  750. return type;
  751. }
  752. /* Get the number of DCT channels the memory controller is using. */
  753. static int k8_early_channel_count(struct amd64_pvt *pvt)
  754. {
  755. int flag;
  756. if (pvt->ext_model >= K8_REV_F)
  757. /* RevF (NPT) and later */
  758. flag = pvt->dclr0 & WIDTH_128;
  759. else
  760. /* RevE and earlier */
  761. flag = pvt->dclr0 & REVE_WIDTH_128;
  762. /* not used */
  763. pvt->dclr1 = 0;
  764. return (flag) ? 2 : 1;
  765. }
  766. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  767. static u64 get_error_address(struct mce *m)
  768. {
  769. u8 start_bit = 1;
  770. u8 end_bit = 47;
  771. if (boot_cpu_data.x86 == 0xf) {
  772. start_bit = 3;
  773. end_bit = 39;
  774. }
  775. return m->addr & GENMASK(start_bit, end_bit);
  776. }
  777. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  778. {
  779. int off = range << 3;
  780. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  781. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  782. if (boot_cpu_data.x86 == 0xf)
  783. return;
  784. if (!dram_rw(pvt, range))
  785. return;
  786. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  787. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  788. }
  789. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  790. u16 syndrome)
  791. {
  792. struct mem_ctl_info *src_mci;
  793. struct amd64_pvt *pvt = mci->pvt_info;
  794. int channel, csrow;
  795. u32 page, offset;
  796. /* CHIPKILL enabled */
  797. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  798. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  799. if (channel < 0) {
  800. /*
  801. * Syndrome didn't map, so we don't know which of the
  802. * 2 DIMMs is in error. So we need to ID 'both' of them
  803. * as suspect.
  804. */
  805. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  806. "error reporting race\n", syndrome);
  807. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  808. return;
  809. }
  810. } else {
  811. /*
  812. * non-chipkill ecc mode
  813. *
  814. * The k8 documentation is unclear about how to determine the
  815. * channel number when using non-chipkill memory. This method
  816. * was obtained from email communication with someone at AMD.
  817. * (Wish the email was placed in this comment - norsk)
  818. */
  819. channel = ((sys_addr & BIT(3)) != 0);
  820. }
  821. /*
  822. * Find out which node the error address belongs to. This may be
  823. * different from the node that detected the error.
  824. */
  825. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  826. if (!src_mci) {
  827. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  828. (unsigned long)sys_addr);
  829. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  830. return;
  831. }
  832. /* Now map the sys_addr to a CSROW */
  833. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  834. if (csrow < 0) {
  835. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  836. } else {
  837. error_address_to_page_and_offset(sys_addr, &page, &offset);
  838. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  839. channel, EDAC_MOD_STR);
  840. }
  841. }
  842. static int ddr2_cs_size(unsigned i, bool dct_width)
  843. {
  844. unsigned shift = 0;
  845. if (i <= 2)
  846. shift = i;
  847. else if (!(i & 0x1))
  848. shift = i >> 1;
  849. else
  850. shift = (i + 1) >> 1;
  851. return 128 << (shift + !!dct_width);
  852. }
  853. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  854. unsigned cs_mode)
  855. {
  856. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  857. if (pvt->ext_model >= K8_REV_F) {
  858. WARN_ON(cs_mode > 11);
  859. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  860. }
  861. else if (pvt->ext_model >= K8_REV_D) {
  862. WARN_ON(cs_mode > 10);
  863. if (cs_mode == 3 || cs_mode == 8)
  864. return 32 << (cs_mode - 1);
  865. else
  866. return 32 << cs_mode;
  867. }
  868. else {
  869. WARN_ON(cs_mode > 6);
  870. return 32 << cs_mode;
  871. }
  872. }
  873. /*
  874. * Get the number of DCT channels in use.
  875. *
  876. * Return:
  877. * number of Memory Channels in operation
  878. * Pass back:
  879. * contents of the DCL0_LOW register
  880. */
  881. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  882. {
  883. int i, j, channels = 0;
  884. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  885. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  886. return 2;
  887. /*
  888. * Need to check if in unganged mode: In such, there are 2 channels,
  889. * but they are not in 128 bit mode and thus the above 'dclr0' status
  890. * bit will be OFF.
  891. *
  892. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  893. * their CSEnable bit on. If so, then SINGLE DIMM case.
  894. */
  895. debugf0("Data width is not 128 bits - need more decoding\n");
  896. /*
  897. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  898. * is more than just one DIMM present in unganged mode. Need to check
  899. * both controllers since DIMMs can be placed in either one.
  900. */
  901. for (i = 0; i < 2; i++) {
  902. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  903. for (j = 0; j < 4; j++) {
  904. if (DBAM_DIMM(j, dbam) > 0) {
  905. channels++;
  906. break;
  907. }
  908. }
  909. }
  910. if (channels > 2)
  911. channels = 2;
  912. amd64_info("MCT channel count: %d\n", channels);
  913. return channels;
  914. }
  915. static int ddr3_cs_size(unsigned i, bool dct_width)
  916. {
  917. unsigned shift = 0;
  918. int cs_size = 0;
  919. if (i == 0 || i == 3 || i == 4)
  920. cs_size = -1;
  921. else if (i <= 2)
  922. shift = i;
  923. else if (i == 12)
  924. shift = 7;
  925. else if (!(i & 0x1))
  926. shift = i >> 1;
  927. else
  928. shift = (i + 1) >> 1;
  929. if (cs_size != -1)
  930. cs_size = (128 * (1 << !!dct_width)) << shift;
  931. return cs_size;
  932. }
  933. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  934. unsigned cs_mode)
  935. {
  936. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  937. WARN_ON(cs_mode > 11);
  938. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  939. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  940. else
  941. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  942. }
  943. /*
  944. * F15h supports only 64bit DCT interfaces
  945. */
  946. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  947. unsigned cs_mode)
  948. {
  949. WARN_ON(cs_mode > 12);
  950. return ddr3_cs_size(cs_mode, false);
  951. }
  952. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  953. {
  954. if (boot_cpu_data.x86 == 0xf)
  955. return;
  956. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  957. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  958. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  959. debugf0(" DCTs operate in %s mode.\n",
  960. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  961. if (!dct_ganging_enabled(pvt))
  962. debugf0(" Address range split per DCT: %s\n",
  963. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  964. debugf0(" data interleave for ECC: %s, "
  965. "DRAM cleared since last warm reset: %s\n",
  966. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  967. (dct_memory_cleared(pvt) ? "yes" : "no"));
  968. debugf0(" channel interleave: %s, "
  969. "interleave bits selector: 0x%x\n",
  970. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  971. dct_sel_interleave_addr(pvt));
  972. }
  973. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  974. }
  975. /*
  976. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  977. * Interleaving Modes.
  978. */
  979. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  980. bool hi_range_sel, u8 intlv_en)
  981. {
  982. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  983. if (dct_ganging_enabled(pvt))
  984. return 0;
  985. if (hi_range_sel)
  986. return dct_sel_high;
  987. /*
  988. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  989. */
  990. if (dct_interleave_enabled(pvt)) {
  991. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  992. /* return DCT select function: 0=DCT0, 1=DCT1 */
  993. if (!intlv_addr)
  994. return sys_addr >> 6 & 1;
  995. if (intlv_addr & 0x2) {
  996. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  997. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  998. return ((sys_addr >> shift) & 1) ^ temp;
  999. }
  1000. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1001. }
  1002. if (dct_high_range_enabled(pvt))
  1003. return ~dct_sel_high & 1;
  1004. return 0;
  1005. }
  1006. /* Convert the sys_addr to the normalized DCT address */
  1007. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
  1008. u64 sys_addr, bool hi_rng,
  1009. u32 dct_sel_base_addr)
  1010. {
  1011. u64 chan_off;
  1012. u64 dram_base = get_dram_base(pvt, range);
  1013. u64 hole_off = f10_dhar_offset(pvt);
  1014. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1015. if (hi_rng) {
  1016. /*
  1017. * if
  1018. * base address of high range is below 4Gb
  1019. * (bits [47:27] at [31:11])
  1020. * DRAM address space on this DCT is hoisted above 4Gb &&
  1021. * sys_addr > 4Gb
  1022. *
  1023. * remove hole offset from sys_addr
  1024. * else
  1025. * remove high range offset from sys_addr
  1026. */
  1027. if ((!(dct_sel_base_addr >> 16) ||
  1028. dct_sel_base_addr < dhar_base(pvt)) &&
  1029. dhar_valid(pvt) &&
  1030. (sys_addr >= BIT_64(32)))
  1031. chan_off = hole_off;
  1032. else
  1033. chan_off = dct_sel_base_off;
  1034. } else {
  1035. /*
  1036. * if
  1037. * we have a valid hole &&
  1038. * sys_addr > 4Gb
  1039. *
  1040. * remove hole
  1041. * else
  1042. * remove dram base to normalize to DCT address
  1043. */
  1044. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1045. chan_off = hole_off;
  1046. else
  1047. chan_off = dram_base;
  1048. }
  1049. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1050. }
  1051. /*
  1052. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1053. * spare row
  1054. */
  1055. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1056. {
  1057. int tmp_cs;
  1058. if (online_spare_swap_done(pvt, dct) &&
  1059. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1060. for_each_chip_select(tmp_cs, dct, pvt) {
  1061. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1062. csrow = tmp_cs;
  1063. break;
  1064. }
  1065. }
  1066. }
  1067. return csrow;
  1068. }
  1069. /*
  1070. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1071. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1072. *
  1073. * Return:
  1074. * -EINVAL: NOT FOUND
  1075. * 0..csrow = Chip-Select Row
  1076. */
  1077. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1078. {
  1079. struct mem_ctl_info *mci;
  1080. struct amd64_pvt *pvt;
  1081. u64 cs_base, cs_mask;
  1082. int cs_found = -EINVAL;
  1083. int csrow;
  1084. mci = mcis[nid];
  1085. if (!mci)
  1086. return cs_found;
  1087. pvt = mci->pvt_info;
  1088. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1089. for_each_chip_select(csrow, dct, pvt) {
  1090. if (!csrow_enabled(csrow, dct, pvt))
  1091. continue;
  1092. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1093. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1094. csrow, cs_base, cs_mask);
  1095. cs_mask = ~cs_mask;
  1096. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1097. "(CSBase & ~CSMask)=0x%llx\n",
  1098. (in_addr & cs_mask), (cs_base & cs_mask));
  1099. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1100. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1101. debugf1(" MATCH csrow=%d\n", cs_found);
  1102. break;
  1103. }
  1104. }
  1105. return cs_found;
  1106. }
  1107. /*
  1108. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1109. * swapped with a region located at the bottom of memory so that the GPU can use
  1110. * the interleaved region and thus two channels.
  1111. */
  1112. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1113. {
  1114. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1115. if (boot_cpu_data.x86 == 0x10) {
  1116. /* only revC3 and revE have that feature */
  1117. if (boot_cpu_data.x86_model < 4 ||
  1118. (boot_cpu_data.x86_model < 0xa &&
  1119. boot_cpu_data.x86_mask < 3))
  1120. return sys_addr;
  1121. }
  1122. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1123. if (!(swap_reg & 0x1))
  1124. return sys_addr;
  1125. swap_base = (swap_reg >> 3) & 0x7f;
  1126. swap_limit = (swap_reg >> 11) & 0x7f;
  1127. rgn_size = (swap_reg >> 20) & 0x7f;
  1128. tmp_addr = sys_addr >> 27;
  1129. if (!(sys_addr >> 34) &&
  1130. (((tmp_addr >= swap_base) &&
  1131. (tmp_addr <= swap_limit)) ||
  1132. (tmp_addr < rgn_size)))
  1133. return sys_addr ^ (u64)swap_base << 27;
  1134. return sys_addr;
  1135. }
  1136. /* For a given @dram_range, check if @sys_addr falls within it. */
  1137. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1138. u64 sys_addr, int *nid, int *chan_sel)
  1139. {
  1140. int cs_found = -EINVAL;
  1141. u64 chan_addr;
  1142. u32 dct_sel_base;
  1143. u8 channel;
  1144. bool high_range = false;
  1145. u8 node_id = dram_dst_node(pvt, range);
  1146. u8 intlv_en = dram_intlv_en(pvt, range);
  1147. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1148. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1149. range, sys_addr, get_dram_limit(pvt, range));
  1150. if (dhar_valid(pvt) &&
  1151. dhar_base(pvt) <= sys_addr &&
  1152. sys_addr < BIT_64(32)) {
  1153. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1154. sys_addr);
  1155. return -EINVAL;
  1156. }
  1157. if (intlv_en &&
  1158. (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
  1159. amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
  1160. intlv_en, intlv_sel);
  1161. return -EINVAL;
  1162. }
  1163. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1164. dct_sel_base = dct_sel_baseaddr(pvt);
  1165. /*
  1166. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1167. * select between DCT0 and DCT1.
  1168. */
  1169. if (dct_high_range_enabled(pvt) &&
  1170. !dct_ganging_enabled(pvt) &&
  1171. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1172. high_range = true;
  1173. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1174. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1175. high_range, dct_sel_base);
  1176. /* Remove node interleaving, see F1x120 */
  1177. if (intlv_en)
  1178. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1179. (chan_addr & 0xfff);
  1180. /* remove channel interleave */
  1181. if (dct_interleave_enabled(pvt) &&
  1182. !dct_high_range_enabled(pvt) &&
  1183. !dct_ganging_enabled(pvt)) {
  1184. if (dct_sel_interleave_addr(pvt) != 1) {
  1185. if (dct_sel_interleave_addr(pvt) == 0x3)
  1186. /* hash 9 */
  1187. chan_addr = ((chan_addr >> 10) << 9) |
  1188. (chan_addr & 0x1ff);
  1189. else
  1190. /* A[6] or hash 6 */
  1191. chan_addr = ((chan_addr >> 7) << 6) |
  1192. (chan_addr & 0x3f);
  1193. } else
  1194. /* A[12] */
  1195. chan_addr = ((chan_addr >> 13) << 12) |
  1196. (chan_addr & 0xfff);
  1197. }
  1198. debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
  1199. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1200. if (cs_found >= 0) {
  1201. *nid = node_id;
  1202. *chan_sel = channel;
  1203. }
  1204. return cs_found;
  1205. }
  1206. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1207. int *node, int *chan_sel)
  1208. {
  1209. int cs_found = -EINVAL;
  1210. unsigned range;
  1211. for (range = 0; range < DRAM_RANGES; range++) {
  1212. if (!dram_rw(pvt, range))
  1213. continue;
  1214. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1215. (get_dram_limit(pvt, range) >= sys_addr)) {
  1216. cs_found = f1x_match_to_this_node(pvt, range,
  1217. sys_addr, node,
  1218. chan_sel);
  1219. if (cs_found >= 0)
  1220. break;
  1221. }
  1222. }
  1223. return cs_found;
  1224. }
  1225. /*
  1226. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1227. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1228. *
  1229. * The @sys_addr is usually an error address received from the hardware
  1230. * (MCX_ADDR).
  1231. */
  1232. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1233. u16 syndrome)
  1234. {
  1235. struct amd64_pvt *pvt = mci->pvt_info;
  1236. u32 page, offset;
  1237. int nid, csrow, chan = 0;
  1238. csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1239. if (csrow < 0) {
  1240. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1241. return;
  1242. }
  1243. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1244. /*
  1245. * We need the syndromes for channel detection only when we're
  1246. * ganged. Otherwise @chan should already contain the channel at
  1247. * this point.
  1248. */
  1249. if (dct_ganging_enabled(pvt))
  1250. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1251. if (chan >= 0)
  1252. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1253. EDAC_MOD_STR);
  1254. else
  1255. /*
  1256. * Channel unknown, report all channels on this CSROW as failed.
  1257. */
  1258. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1259. edac_mc_handle_ce(mci, page, offset, syndrome,
  1260. csrow, chan, EDAC_MOD_STR);
  1261. }
  1262. /*
  1263. * debug routine to display the memory sizes of all logical DIMMs and its
  1264. * CSROWs
  1265. */
  1266. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1267. {
  1268. int dimm, size0, size1, factor = 0;
  1269. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1270. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1271. if (boot_cpu_data.x86 == 0xf) {
  1272. if (pvt->dclr0 & WIDTH_128)
  1273. factor = 1;
  1274. /* K8 families < revF not supported yet */
  1275. if (pvt->ext_model < K8_REV_F)
  1276. return;
  1277. else
  1278. WARN_ON(ctrl != 0);
  1279. }
  1280. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1281. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1282. : pvt->csels[0].csbases;
  1283. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1284. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1285. /* Dump memory sizes for DIMM and its CSROWs */
  1286. for (dimm = 0; dimm < 4; dimm++) {
  1287. size0 = 0;
  1288. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1289. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1290. DBAM_DIMM(dimm, dbam));
  1291. size1 = 0;
  1292. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1293. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1294. DBAM_DIMM(dimm, dbam));
  1295. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1296. dimm * 2, size0 << factor,
  1297. dimm * 2 + 1, size1 << factor);
  1298. }
  1299. }
  1300. static struct amd64_family_type amd64_family_types[] = {
  1301. [K8_CPUS] = {
  1302. .ctl_name = "K8",
  1303. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1304. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1305. .ops = {
  1306. .early_channel_count = k8_early_channel_count,
  1307. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1308. .dbam_to_cs = k8_dbam_to_chip_select,
  1309. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1310. }
  1311. },
  1312. [F10_CPUS] = {
  1313. .ctl_name = "F10h",
  1314. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1315. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1316. .ops = {
  1317. .early_channel_count = f1x_early_channel_count,
  1318. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1319. .dbam_to_cs = f10_dbam_to_chip_select,
  1320. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1321. }
  1322. },
  1323. [F15_CPUS] = {
  1324. .ctl_name = "F15h",
  1325. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1326. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1327. .ops = {
  1328. .early_channel_count = f1x_early_channel_count,
  1329. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1330. .dbam_to_cs = f15_dbam_to_chip_select,
  1331. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1332. }
  1333. },
  1334. };
  1335. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1336. unsigned int device,
  1337. struct pci_dev *related)
  1338. {
  1339. struct pci_dev *dev = NULL;
  1340. dev = pci_get_device(vendor, device, dev);
  1341. while (dev) {
  1342. if ((dev->bus->number == related->bus->number) &&
  1343. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1344. break;
  1345. dev = pci_get_device(vendor, device, dev);
  1346. }
  1347. return dev;
  1348. }
  1349. /*
  1350. * These are tables of eigenvectors (one per line) which can be used for the
  1351. * construction of the syndrome tables. The modified syndrome search algorithm
  1352. * uses those to find the symbol in error and thus the DIMM.
  1353. *
  1354. * Algorithm courtesy of Ross LaFetra from AMD.
  1355. */
  1356. static u16 x4_vectors[] = {
  1357. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1358. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1359. 0x0001, 0x0002, 0x0004, 0x0008,
  1360. 0x1013, 0x3032, 0x4044, 0x8088,
  1361. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1362. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1363. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1364. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1365. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1366. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1367. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1368. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1369. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1370. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1371. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1372. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1373. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1374. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1375. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1376. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1377. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1378. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1379. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1380. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1381. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1382. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1383. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1384. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1385. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1386. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1387. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1388. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1389. 0x4807, 0xc40e, 0x130c, 0x3208,
  1390. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1391. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1392. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1393. };
  1394. static u16 x8_vectors[] = {
  1395. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1396. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1397. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1398. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1399. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1400. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1401. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1402. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1403. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1404. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1405. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1406. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1407. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1408. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1409. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1410. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1411. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1412. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1413. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1414. };
  1415. static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
  1416. unsigned v_dim)
  1417. {
  1418. unsigned int i, err_sym;
  1419. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1420. u16 s = syndrome;
  1421. unsigned v_idx = err_sym * v_dim;
  1422. unsigned v_end = (err_sym + 1) * v_dim;
  1423. /* walk over all 16 bits of the syndrome */
  1424. for (i = 1; i < (1U << 16); i <<= 1) {
  1425. /* if bit is set in that eigenvector... */
  1426. if (v_idx < v_end && vectors[v_idx] & i) {
  1427. u16 ev_comp = vectors[v_idx++];
  1428. /* ... and bit set in the modified syndrome, */
  1429. if (s & i) {
  1430. /* remove it. */
  1431. s ^= ev_comp;
  1432. if (!s)
  1433. return err_sym;
  1434. }
  1435. } else if (s & i)
  1436. /* can't get to zero, move to next symbol */
  1437. break;
  1438. }
  1439. }
  1440. debugf0("syndrome(%x) not found\n", syndrome);
  1441. return -1;
  1442. }
  1443. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1444. {
  1445. if (sym_size == 4)
  1446. switch (err_sym) {
  1447. case 0x20:
  1448. case 0x21:
  1449. return 0;
  1450. break;
  1451. case 0x22:
  1452. case 0x23:
  1453. return 1;
  1454. break;
  1455. default:
  1456. return err_sym >> 4;
  1457. break;
  1458. }
  1459. /* x8 symbols */
  1460. else
  1461. switch (err_sym) {
  1462. /* imaginary bits not in a DIMM */
  1463. case 0x10:
  1464. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1465. err_sym);
  1466. return -1;
  1467. break;
  1468. case 0x11:
  1469. return 0;
  1470. break;
  1471. case 0x12:
  1472. return 1;
  1473. break;
  1474. default:
  1475. return err_sym >> 3;
  1476. break;
  1477. }
  1478. return -1;
  1479. }
  1480. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1481. {
  1482. struct amd64_pvt *pvt = mci->pvt_info;
  1483. int err_sym = -1;
  1484. if (pvt->ecc_sym_sz == 8)
  1485. err_sym = decode_syndrome(syndrome, x8_vectors,
  1486. ARRAY_SIZE(x8_vectors),
  1487. pvt->ecc_sym_sz);
  1488. else if (pvt->ecc_sym_sz == 4)
  1489. err_sym = decode_syndrome(syndrome, x4_vectors,
  1490. ARRAY_SIZE(x4_vectors),
  1491. pvt->ecc_sym_sz);
  1492. else {
  1493. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1494. return err_sym;
  1495. }
  1496. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1497. }
  1498. /*
  1499. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1500. * ADDRESS and process.
  1501. */
  1502. static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
  1503. {
  1504. struct amd64_pvt *pvt = mci->pvt_info;
  1505. u64 sys_addr;
  1506. u16 syndrome;
  1507. /* Ensure that the Error Address is VALID */
  1508. if (!(m->status & MCI_STATUS_ADDRV)) {
  1509. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1510. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1511. return;
  1512. }
  1513. sys_addr = get_error_address(m);
  1514. syndrome = extract_syndrome(m->status);
  1515. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1516. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
  1517. }
  1518. /* Handle any Un-correctable Errors (UEs) */
  1519. static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
  1520. {
  1521. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1522. int csrow;
  1523. u64 sys_addr;
  1524. u32 page, offset;
  1525. log_mci = mci;
  1526. if (!(m->status & MCI_STATUS_ADDRV)) {
  1527. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1528. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1529. return;
  1530. }
  1531. sys_addr = get_error_address(m);
  1532. /*
  1533. * Find out which node the error address belongs to. This may be
  1534. * different from the node that detected the error.
  1535. */
  1536. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1537. if (!src_mci) {
  1538. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1539. (unsigned long)sys_addr);
  1540. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1541. return;
  1542. }
  1543. log_mci = src_mci;
  1544. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1545. if (csrow < 0) {
  1546. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1547. (unsigned long)sys_addr);
  1548. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1549. } else {
  1550. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1551. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1552. }
  1553. }
  1554. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1555. struct mce *m)
  1556. {
  1557. u16 ec = EC(m->status);
  1558. u8 xec = XEC(m->status, 0x1f);
  1559. u8 ecc_type = (m->status >> 45) & 0x3;
  1560. /* Bail early out if this was an 'observed' error */
  1561. if (PP(ec) == NBSL_PP_OBS)
  1562. return;
  1563. /* Do only ECC errors */
  1564. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1565. return;
  1566. if (ecc_type == 2)
  1567. amd64_handle_ce(mci, m);
  1568. else if (ecc_type == 1)
  1569. amd64_handle_ue(mci, m);
  1570. }
  1571. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1572. {
  1573. struct mem_ctl_info *mci = mcis[node_id];
  1574. __amd64_decode_bus_error(mci, m);
  1575. }
  1576. /*
  1577. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1578. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1579. */
  1580. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1581. {
  1582. /* Reserve the ADDRESS MAP Device */
  1583. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1584. if (!pvt->F1) {
  1585. amd64_err("error address map device not found: "
  1586. "vendor %x device 0x%x (broken BIOS?)\n",
  1587. PCI_VENDOR_ID_AMD, f1_id);
  1588. return -ENODEV;
  1589. }
  1590. /* Reserve the MISC Device */
  1591. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1592. if (!pvt->F3) {
  1593. pci_dev_put(pvt->F1);
  1594. pvt->F1 = NULL;
  1595. amd64_err("error F3 device not found: "
  1596. "vendor %x device 0x%x (broken BIOS?)\n",
  1597. PCI_VENDOR_ID_AMD, f3_id);
  1598. return -ENODEV;
  1599. }
  1600. debugf1("F1: %s\n", pci_name(pvt->F1));
  1601. debugf1("F2: %s\n", pci_name(pvt->F2));
  1602. debugf1("F3: %s\n", pci_name(pvt->F3));
  1603. return 0;
  1604. }
  1605. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1606. {
  1607. pci_dev_put(pvt->F1);
  1608. pci_dev_put(pvt->F3);
  1609. }
  1610. /*
  1611. * Retrieve the hardware registers of the memory controller (this includes the
  1612. * 'Address Map' and 'Misc' device regs)
  1613. */
  1614. static void read_mc_regs(struct amd64_pvt *pvt)
  1615. {
  1616. struct cpuinfo_x86 *c = &boot_cpu_data;
  1617. u64 msr_val;
  1618. u32 tmp;
  1619. unsigned range;
  1620. /*
  1621. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1622. * those are Read-As-Zero
  1623. */
  1624. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1625. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1626. /* check first whether TOP_MEM2 is enabled */
  1627. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1628. if (msr_val & (1U << 21)) {
  1629. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1630. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1631. } else
  1632. debugf0(" TOP_MEM2 disabled.\n");
  1633. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1634. read_dram_ctl_register(pvt);
  1635. for (range = 0; range < DRAM_RANGES; range++) {
  1636. u8 rw;
  1637. /* read settings for this DRAM range */
  1638. read_dram_base_limit_regs(pvt, range);
  1639. rw = dram_rw(pvt, range);
  1640. if (!rw)
  1641. continue;
  1642. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1643. range,
  1644. get_dram_base(pvt, range),
  1645. get_dram_limit(pvt, range));
  1646. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1647. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1648. (rw & 0x1) ? "R" : "-",
  1649. (rw & 0x2) ? "W" : "-",
  1650. dram_intlv_sel(pvt, range),
  1651. dram_dst_node(pvt, range));
  1652. }
  1653. read_dct_base_mask(pvt);
  1654. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1655. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1656. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1657. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1658. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1659. if (!dct_ganging_enabled(pvt)) {
  1660. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1661. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1662. }
  1663. pvt->ecc_sym_sz = 4;
  1664. if (c->x86 >= 0x10) {
  1665. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1666. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1667. /* F10h, revD and later can do x8 ECC too */
  1668. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1669. pvt->ecc_sym_sz = 8;
  1670. }
  1671. dump_misc_regs(pvt);
  1672. }
  1673. /*
  1674. * NOTE: CPU Revision Dependent code
  1675. *
  1676. * Input:
  1677. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1678. * k8 private pointer to -->
  1679. * DRAM Bank Address mapping register
  1680. * node_id
  1681. * DCL register where dual_channel_active is
  1682. *
  1683. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1684. *
  1685. * Bits: CSROWs
  1686. * 0-3 CSROWs 0 and 1
  1687. * 4-7 CSROWs 2 and 3
  1688. * 8-11 CSROWs 4 and 5
  1689. * 12-15 CSROWs 6 and 7
  1690. *
  1691. * Values range from: 0 to 15
  1692. * The meaning of the values depends on CPU revision and dual-channel state,
  1693. * see relevant BKDG more info.
  1694. *
  1695. * The memory controller provides for total of only 8 CSROWs in its current
  1696. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1697. * single channel or two (2) DIMMs in dual channel mode.
  1698. *
  1699. * The following code logic collapses the various tables for CSROW based on CPU
  1700. * revision.
  1701. *
  1702. * Returns:
  1703. * The number of PAGE_SIZE pages on the specified CSROW number it
  1704. * encompasses
  1705. *
  1706. */
  1707. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1708. {
  1709. u32 cs_mode, nr_pages;
  1710. /*
  1711. * The math on this doesn't look right on the surface because x/2*4 can
  1712. * be simplified to x*2 but this expression makes use of the fact that
  1713. * it is integral math where 1/2=0. This intermediate value becomes the
  1714. * number of bits to shift the DBAM register to extract the proper CSROW
  1715. * field.
  1716. */
  1717. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1718. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1719. /*
  1720. * If dual channel then double the memory size of single channel.
  1721. * Channel count is 1 or 2
  1722. */
  1723. nr_pages <<= (pvt->channel_count - 1);
  1724. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1725. debugf0(" nr_pages= %u channel-count = %d\n",
  1726. nr_pages, pvt->channel_count);
  1727. return nr_pages;
  1728. }
  1729. /*
  1730. * Initialize the array of csrow attribute instances, based on the values
  1731. * from pci config hardware registers.
  1732. */
  1733. static int init_csrows(struct mem_ctl_info *mci)
  1734. {
  1735. struct csrow_info *csrow;
  1736. struct amd64_pvt *pvt = mci->pvt_info;
  1737. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1738. u32 val;
  1739. int i, empty = 1;
  1740. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1741. pvt->nbcfg = val;
  1742. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1743. pvt->mc_node_id, val,
  1744. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1745. for_each_chip_select(i, 0, pvt) {
  1746. csrow = &mci->csrows[i];
  1747. if (!csrow_enabled(i, 0, pvt)) {
  1748. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1749. pvt->mc_node_id);
  1750. continue;
  1751. }
  1752. debugf1("----CSROW %d VALID for MC node %d\n",
  1753. i, pvt->mc_node_id);
  1754. empty = 0;
  1755. csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1756. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1757. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1758. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1759. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1760. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1761. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1762. csrow->page_mask = ~mask;
  1763. /* 8 bytes of resolution */
  1764. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1765. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1766. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1767. (unsigned long)input_addr_min,
  1768. (unsigned long)input_addr_max);
  1769. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1770. (unsigned long)sys_addr, csrow->page_mask);
  1771. debugf1(" nr_pages: %u first_page: 0x%lx "
  1772. "last_page: 0x%lx\n",
  1773. (unsigned)csrow->nr_pages,
  1774. csrow->first_page, csrow->last_page);
  1775. /*
  1776. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1777. */
  1778. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1779. csrow->edac_mode =
  1780. (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1781. EDAC_S4ECD4ED : EDAC_SECDED;
  1782. else
  1783. csrow->edac_mode = EDAC_NONE;
  1784. }
  1785. return empty;
  1786. }
  1787. /* get all cores on this DCT */
  1788. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
  1789. {
  1790. int cpu;
  1791. for_each_online_cpu(cpu)
  1792. if (amd_get_nb_id(cpu) == nid)
  1793. cpumask_set_cpu(cpu, mask);
  1794. }
  1795. /* check MCG_CTL on all the cpus on this node */
  1796. static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
  1797. {
  1798. cpumask_var_t mask;
  1799. int cpu, nbe;
  1800. bool ret = false;
  1801. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1802. amd64_warn("%s: Error allocating mask\n", __func__);
  1803. return false;
  1804. }
  1805. get_cpus_on_this_dct_cpumask(mask, nid);
  1806. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1807. for_each_cpu(cpu, mask) {
  1808. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1809. nbe = reg->l & MSR_MCGCTL_NBE;
  1810. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1811. cpu, reg->q,
  1812. (nbe ? "enabled" : "disabled"));
  1813. if (!nbe)
  1814. goto out;
  1815. }
  1816. ret = true;
  1817. out:
  1818. free_cpumask_var(mask);
  1819. return ret;
  1820. }
  1821. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1822. {
  1823. cpumask_var_t cmask;
  1824. int cpu;
  1825. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1826. amd64_warn("%s: error allocating mask\n", __func__);
  1827. return false;
  1828. }
  1829. get_cpus_on_this_dct_cpumask(cmask, nid);
  1830. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1831. for_each_cpu(cpu, cmask) {
  1832. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1833. if (on) {
  1834. if (reg->l & MSR_MCGCTL_NBE)
  1835. s->flags.nb_mce_enable = 1;
  1836. reg->l |= MSR_MCGCTL_NBE;
  1837. } else {
  1838. /*
  1839. * Turn off NB MCE reporting only when it was off before
  1840. */
  1841. if (!s->flags.nb_mce_enable)
  1842. reg->l &= ~MSR_MCGCTL_NBE;
  1843. }
  1844. }
  1845. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1846. free_cpumask_var(cmask);
  1847. return 0;
  1848. }
  1849. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1850. struct pci_dev *F3)
  1851. {
  1852. bool ret = true;
  1853. u32 value, mask = 0x3; /* UECC/CECC enable */
  1854. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1855. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1856. return false;
  1857. }
  1858. amd64_read_pci_cfg(F3, NBCTL, &value);
  1859. s->old_nbctl = value & mask;
  1860. s->nbctl_valid = true;
  1861. value |= mask;
  1862. amd64_write_pci_cfg(F3, NBCTL, value);
  1863. amd64_read_pci_cfg(F3, NBCFG, &value);
  1864. debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1865. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1866. if (!(value & NBCFG_ECC_ENABLE)) {
  1867. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1868. s->flags.nb_ecc_prev = 0;
  1869. /* Attempt to turn on DRAM ECC Enable */
  1870. value |= NBCFG_ECC_ENABLE;
  1871. amd64_write_pci_cfg(F3, NBCFG, value);
  1872. amd64_read_pci_cfg(F3, NBCFG, &value);
  1873. if (!(value & NBCFG_ECC_ENABLE)) {
  1874. amd64_warn("Hardware rejected DRAM ECC enable,"
  1875. "check memory DIMM configuration.\n");
  1876. ret = false;
  1877. } else {
  1878. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1879. }
  1880. } else {
  1881. s->flags.nb_ecc_prev = 1;
  1882. }
  1883. debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1884. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1885. return ret;
  1886. }
  1887. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1888. struct pci_dev *F3)
  1889. {
  1890. u32 value, mask = 0x3; /* UECC/CECC enable */
  1891. if (!s->nbctl_valid)
  1892. return;
  1893. amd64_read_pci_cfg(F3, NBCTL, &value);
  1894. value &= ~mask;
  1895. value |= s->old_nbctl;
  1896. amd64_write_pci_cfg(F3, NBCTL, value);
  1897. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1898. if (!s->flags.nb_ecc_prev) {
  1899. amd64_read_pci_cfg(F3, NBCFG, &value);
  1900. value &= ~NBCFG_ECC_ENABLE;
  1901. amd64_write_pci_cfg(F3, NBCFG, value);
  1902. }
  1903. /* restore the NB Enable MCGCTL bit */
  1904. if (toggle_ecc_err_reporting(s, nid, OFF))
  1905. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1906. }
  1907. /*
  1908. * EDAC requires that the BIOS have ECC enabled before
  1909. * taking over the processing of ECC errors. A command line
  1910. * option allows to force-enable hardware ECC later in
  1911. * enable_ecc_error_reporting().
  1912. */
  1913. static const char *ecc_msg =
  1914. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1915. " Either enable ECC checking or force module loading by setting "
  1916. "'ecc_enable_override'.\n"
  1917. " (Note that use of the override may cause unknown side effects.)\n";
  1918. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1919. {
  1920. u32 value;
  1921. u8 ecc_en = 0;
  1922. bool nb_mce_en = false;
  1923. amd64_read_pci_cfg(F3, NBCFG, &value);
  1924. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1925. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1926. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1927. if (!nb_mce_en)
  1928. amd64_notice("NB MCE bank disabled, set MSR "
  1929. "0x%08x[4] on node %d to enable.\n",
  1930. MSR_IA32_MCG_CTL, nid);
  1931. if (!ecc_en || !nb_mce_en) {
  1932. amd64_notice("%s", ecc_msg);
  1933. return false;
  1934. }
  1935. return true;
  1936. }
  1937. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1938. ARRAY_SIZE(amd64_inj_attrs) +
  1939. 1];
  1940. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  1941. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1942. {
  1943. unsigned int i = 0, j = 0;
  1944. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  1945. sysfs_attrs[i] = amd64_dbg_attrs[i];
  1946. if (boot_cpu_data.x86 >= 0x10)
  1947. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  1948. sysfs_attrs[i] = amd64_inj_attrs[j];
  1949. sysfs_attrs[i] = terminator;
  1950. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  1951. }
  1952. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  1953. struct amd64_family_type *fam)
  1954. {
  1955. struct amd64_pvt *pvt = mci->pvt_info;
  1956. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1957. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1958. if (pvt->nbcap & NBCAP_SECDED)
  1959. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1960. if (pvt->nbcap & NBCAP_CHIPKILL)
  1961. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1962. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1963. mci->mod_name = EDAC_MOD_STR;
  1964. mci->mod_ver = EDAC_AMD64_VERSION;
  1965. mci->ctl_name = fam->ctl_name;
  1966. mci->dev_name = pci_name(pvt->F2);
  1967. mci->ctl_page_to_phys = NULL;
  1968. /* memory scrubber interface */
  1969. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1970. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1971. }
  1972. /*
  1973. * returns a pointer to the family descriptor on success, NULL otherwise.
  1974. */
  1975. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1976. {
  1977. u8 fam = boot_cpu_data.x86;
  1978. struct amd64_family_type *fam_type = NULL;
  1979. switch (fam) {
  1980. case 0xf:
  1981. fam_type = &amd64_family_types[K8_CPUS];
  1982. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1983. break;
  1984. case 0x10:
  1985. fam_type = &amd64_family_types[F10_CPUS];
  1986. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1987. break;
  1988. case 0x15:
  1989. fam_type = &amd64_family_types[F15_CPUS];
  1990. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  1991. break;
  1992. default:
  1993. amd64_err("Unsupported family!\n");
  1994. return NULL;
  1995. }
  1996. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1997. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  1998. (fam == 0xf ?
  1999. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2000. : "revE or earlier ")
  2001. : ""), pvt->mc_node_id);
  2002. return fam_type;
  2003. }
  2004. static int amd64_init_one_instance(struct pci_dev *F2)
  2005. {
  2006. struct amd64_pvt *pvt = NULL;
  2007. struct amd64_family_type *fam_type = NULL;
  2008. struct mem_ctl_info *mci = NULL;
  2009. int err = 0, ret;
  2010. u8 nid = get_node_id(F2);
  2011. ret = -ENOMEM;
  2012. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2013. if (!pvt)
  2014. goto err_ret;
  2015. pvt->mc_node_id = nid;
  2016. pvt->F2 = F2;
  2017. ret = -EINVAL;
  2018. fam_type = amd64_per_family_init(pvt);
  2019. if (!fam_type)
  2020. goto err_free;
  2021. ret = -ENODEV;
  2022. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2023. if (err)
  2024. goto err_free;
  2025. read_mc_regs(pvt);
  2026. /*
  2027. * We need to determine how many memory channels there are. Then use
  2028. * that information for calculating the size of the dynamic instance
  2029. * tables in the 'mci' structure.
  2030. */
  2031. ret = -EINVAL;
  2032. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2033. if (pvt->channel_count < 0)
  2034. goto err_siblings;
  2035. ret = -ENOMEM;
  2036. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2037. if (!mci)
  2038. goto err_siblings;
  2039. mci->pvt_info = pvt;
  2040. mci->dev = &pvt->F2->dev;
  2041. setup_mci_misc_attrs(mci, fam_type);
  2042. if (init_csrows(mci))
  2043. mci->edac_cap = EDAC_FLAG_NONE;
  2044. set_mc_sysfs_attrs(mci);
  2045. ret = -ENODEV;
  2046. if (edac_mc_add_mc(mci)) {
  2047. debugf1("failed edac_mc_add_mc()\n");
  2048. goto err_add_mc;
  2049. }
  2050. /* register stuff with EDAC MCE */
  2051. if (report_gart_errors)
  2052. amd_report_gart_errors(true);
  2053. amd_register_ecc_decoder(amd64_decode_bus_error);
  2054. mcis[nid] = mci;
  2055. atomic_inc(&drv_instances);
  2056. return 0;
  2057. err_add_mc:
  2058. edac_mc_free(mci);
  2059. err_siblings:
  2060. free_mc_sibling_devs(pvt);
  2061. err_free:
  2062. kfree(pvt);
  2063. err_ret:
  2064. return ret;
  2065. }
  2066. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2067. const struct pci_device_id *mc_type)
  2068. {
  2069. u8 nid = get_node_id(pdev);
  2070. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2071. struct ecc_settings *s;
  2072. int ret = 0;
  2073. ret = pci_enable_device(pdev);
  2074. if (ret < 0) {
  2075. debugf0("ret=%d\n", ret);
  2076. return -EIO;
  2077. }
  2078. ret = -ENOMEM;
  2079. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2080. if (!s)
  2081. goto err_out;
  2082. ecc_stngs[nid] = s;
  2083. if (!ecc_enabled(F3, nid)) {
  2084. ret = -ENODEV;
  2085. if (!ecc_enable_override)
  2086. goto err_enable;
  2087. amd64_warn("Forcing ECC on!\n");
  2088. if (!enable_ecc_error_reporting(s, nid, F3))
  2089. goto err_enable;
  2090. }
  2091. ret = amd64_init_one_instance(pdev);
  2092. if (ret < 0) {
  2093. amd64_err("Error probing instance: %d\n", nid);
  2094. restore_ecc_error_reporting(s, nid, F3);
  2095. }
  2096. return ret;
  2097. err_enable:
  2098. kfree(s);
  2099. ecc_stngs[nid] = NULL;
  2100. err_out:
  2101. return ret;
  2102. }
  2103. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2104. {
  2105. struct mem_ctl_info *mci;
  2106. struct amd64_pvt *pvt;
  2107. u8 nid = get_node_id(pdev);
  2108. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2109. struct ecc_settings *s = ecc_stngs[nid];
  2110. /* Remove from EDAC CORE tracking list */
  2111. mci = edac_mc_del_mc(&pdev->dev);
  2112. if (!mci)
  2113. return;
  2114. pvt = mci->pvt_info;
  2115. restore_ecc_error_reporting(s, nid, F3);
  2116. free_mc_sibling_devs(pvt);
  2117. /* unregister from EDAC MCE */
  2118. amd_report_gart_errors(false);
  2119. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2120. kfree(ecc_stngs[nid]);
  2121. ecc_stngs[nid] = NULL;
  2122. /* Free the EDAC CORE resources */
  2123. mci->pvt_info = NULL;
  2124. mcis[nid] = NULL;
  2125. kfree(pvt);
  2126. edac_mc_free(mci);
  2127. }
  2128. /*
  2129. * This table is part of the interface for loading drivers for PCI devices. The
  2130. * PCI core identifies what devices are on a system during boot, and then
  2131. * inquiry this table to see if this driver is for a given device found.
  2132. */
  2133. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2134. {
  2135. .vendor = PCI_VENDOR_ID_AMD,
  2136. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2137. .subvendor = PCI_ANY_ID,
  2138. .subdevice = PCI_ANY_ID,
  2139. .class = 0,
  2140. .class_mask = 0,
  2141. },
  2142. {
  2143. .vendor = PCI_VENDOR_ID_AMD,
  2144. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2145. .subvendor = PCI_ANY_ID,
  2146. .subdevice = PCI_ANY_ID,
  2147. .class = 0,
  2148. .class_mask = 0,
  2149. },
  2150. {
  2151. .vendor = PCI_VENDOR_ID_AMD,
  2152. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2153. .subvendor = PCI_ANY_ID,
  2154. .subdevice = PCI_ANY_ID,
  2155. .class = 0,
  2156. .class_mask = 0,
  2157. },
  2158. {0, }
  2159. };
  2160. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2161. static struct pci_driver amd64_pci_driver = {
  2162. .name = EDAC_MOD_STR,
  2163. .probe = amd64_probe_one_instance,
  2164. .remove = __devexit_p(amd64_remove_one_instance),
  2165. .id_table = amd64_pci_table,
  2166. };
  2167. static void setup_pci_device(void)
  2168. {
  2169. struct mem_ctl_info *mci;
  2170. struct amd64_pvt *pvt;
  2171. if (amd64_ctl_pci)
  2172. return;
  2173. mci = mcis[0];
  2174. if (mci) {
  2175. pvt = mci->pvt_info;
  2176. amd64_ctl_pci =
  2177. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2178. if (!amd64_ctl_pci) {
  2179. pr_warning("%s(): Unable to create PCI control\n",
  2180. __func__);
  2181. pr_warning("%s(): PCI error report via EDAC not set\n",
  2182. __func__);
  2183. }
  2184. }
  2185. }
  2186. static int __init amd64_edac_init(void)
  2187. {
  2188. int err = -ENODEV;
  2189. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2190. opstate_init();
  2191. if (amd_cache_northbridges() < 0)
  2192. goto err_ret;
  2193. err = -ENOMEM;
  2194. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2195. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2196. if (!(mcis && ecc_stngs))
  2197. goto err_free;
  2198. msrs = msrs_alloc();
  2199. if (!msrs)
  2200. goto err_free;
  2201. err = pci_register_driver(&amd64_pci_driver);
  2202. if (err)
  2203. goto err_pci;
  2204. err = -ENODEV;
  2205. if (!atomic_read(&drv_instances))
  2206. goto err_no_instances;
  2207. setup_pci_device();
  2208. return 0;
  2209. err_no_instances:
  2210. pci_unregister_driver(&amd64_pci_driver);
  2211. err_pci:
  2212. msrs_free(msrs);
  2213. msrs = NULL;
  2214. err_free:
  2215. kfree(mcis);
  2216. mcis = NULL;
  2217. kfree(ecc_stngs);
  2218. ecc_stngs = NULL;
  2219. err_ret:
  2220. return err;
  2221. }
  2222. static void __exit amd64_edac_exit(void)
  2223. {
  2224. if (amd64_ctl_pci)
  2225. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2226. pci_unregister_driver(&amd64_pci_driver);
  2227. kfree(ecc_stngs);
  2228. ecc_stngs = NULL;
  2229. kfree(mcis);
  2230. mcis = NULL;
  2231. msrs_free(msrs);
  2232. msrs = NULL;
  2233. }
  2234. module_init(amd64_edac_init);
  2235. module_exit(amd64_edac_exit);
  2236. MODULE_LICENSE("GPL");
  2237. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2238. "Dave Peterson, Thayne Harbaugh");
  2239. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2240. EDAC_AMD64_VERSION);
  2241. module_param(edac_op_state, int, 0444);
  2242. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");