pch_dma.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 OKI SEMICONDUCTOR CO., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/module.h>
  25. #include <linux/pch_dma.h>
  26. #define DRV_NAME "pch-dma"
  27. #define DMA_CTL0_DISABLE 0x0
  28. #define DMA_CTL0_SG 0x1
  29. #define DMA_CTL0_ONESHOT 0x2
  30. #define DMA_CTL0_MODE_MASK_BITS 0x3
  31. #define DMA_CTL0_DIR_SHIFT_BITS 2
  32. #define DMA_CTL0_BITS_PER_CH 4
  33. #define DMA_CTL2_START_SHIFT_BITS 8
  34. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  35. #define DMA_STATUS_IDLE 0x0
  36. #define DMA_STATUS_DESC_READ 0x1
  37. #define DMA_STATUS_WAIT 0x2
  38. #define DMA_STATUS_ACCESS 0x3
  39. #define DMA_STATUS_BITS_PER_CH 2
  40. #define DMA_STATUS_MASK_BITS 0x3
  41. #define DMA_STATUS_SHIFT_BITS 16
  42. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  43. #define DMA_STATUS_ERR(x) (0x1 << ((x) + 8))
  44. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  45. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  46. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  48. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  49. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  50. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  51. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  52. #define DMA_DESC_END_WITH_IRQ 0x1
  53. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  54. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  55. #define MAX_CHAN_NR 8
  56. static unsigned int init_nr_desc_per_channel = 64;
  57. module_param(init_nr_desc_per_channel, uint, 0644);
  58. MODULE_PARM_DESC(init_nr_desc_per_channel,
  59. "initial descriptors per channel (default: 64)");
  60. struct pch_dma_desc_regs {
  61. u32 dev_addr;
  62. u32 mem_addr;
  63. u32 size;
  64. u32 next;
  65. };
  66. struct pch_dma_regs {
  67. u32 dma_ctl0;
  68. u32 dma_ctl1;
  69. u32 dma_ctl2;
  70. u32 reserved1;
  71. u32 dma_sts0;
  72. u32 dma_sts1;
  73. u32 reserved2;
  74. u32 reserved3;
  75. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  76. };
  77. struct pch_dma_desc {
  78. struct pch_dma_desc_regs regs;
  79. struct dma_async_tx_descriptor txd;
  80. struct list_head desc_node;
  81. struct list_head tx_list;
  82. };
  83. struct pch_dma_chan {
  84. struct dma_chan chan;
  85. void __iomem *membase;
  86. enum dma_data_direction dir;
  87. struct tasklet_struct tasklet;
  88. unsigned long err_status;
  89. spinlock_t lock;
  90. dma_cookie_t completed_cookie;
  91. struct list_head active_list;
  92. struct list_head queue;
  93. struct list_head free_list;
  94. unsigned int descs_allocated;
  95. };
  96. #define PDC_DEV_ADDR 0x00
  97. #define PDC_MEM_ADDR 0x04
  98. #define PDC_SIZE 0x08
  99. #define PDC_NEXT 0x0C
  100. #define channel_readl(pdc, name) \
  101. readl((pdc)->membase + PDC_##name)
  102. #define channel_writel(pdc, name, val) \
  103. writel((val), (pdc)->membase + PDC_##name)
  104. struct pch_dma {
  105. struct dma_device dma;
  106. void __iomem *membase;
  107. struct pci_pool *pool;
  108. struct pch_dma_regs regs;
  109. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  110. struct pch_dma_chan channels[MAX_CHAN_NR];
  111. };
  112. #define PCH_DMA_CTL0 0x00
  113. #define PCH_DMA_CTL1 0x04
  114. #define PCH_DMA_CTL2 0x08
  115. #define PCH_DMA_STS0 0x10
  116. #define PCH_DMA_STS1 0x14
  117. #define dma_readl(pd, name) \
  118. readl((pd)->membase + PCH_DMA_##name)
  119. #define dma_writel(pd, name, val) \
  120. writel((val), (pd)->membase + PCH_DMA_##name)
  121. static inline struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  122. {
  123. return container_of(txd, struct pch_dma_desc, txd);
  124. }
  125. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  126. {
  127. return container_of(chan, struct pch_dma_chan, chan);
  128. }
  129. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  130. {
  131. return container_of(ddev, struct pch_dma, dma);
  132. }
  133. static inline struct device *chan2dev(struct dma_chan *chan)
  134. {
  135. return &chan->dev->device;
  136. }
  137. static inline struct device *chan2parent(struct dma_chan *chan)
  138. {
  139. return chan->dev->device.parent;
  140. }
  141. static inline struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  142. {
  143. return list_first_entry(&pd_chan->active_list,
  144. struct pch_dma_desc, desc_node);
  145. }
  146. static inline struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  147. {
  148. return list_first_entry(&pd_chan->queue,
  149. struct pch_dma_desc, desc_node);
  150. }
  151. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  152. {
  153. struct pch_dma *pd = to_pd(chan->device);
  154. u32 val;
  155. val = dma_readl(pd, CTL2);
  156. if (enable)
  157. val |= 0x1 << chan->chan_id;
  158. else
  159. val &= ~(0x1 << chan->chan_id);
  160. dma_writel(pd, CTL2, val);
  161. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  162. chan->chan_id, val);
  163. }
  164. static void pdc_set_dir(struct dma_chan *chan)
  165. {
  166. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  167. struct pch_dma *pd = to_pd(chan->device);
  168. u32 val;
  169. val = dma_readl(pd, CTL0);
  170. if (pd_chan->dir == DMA_TO_DEVICE)
  171. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  172. DMA_CTL0_DIR_SHIFT_BITS);
  173. else
  174. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  175. DMA_CTL0_DIR_SHIFT_BITS));
  176. dma_writel(pd, CTL0, val);
  177. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  178. chan->chan_id, val);
  179. }
  180. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  181. {
  182. struct pch_dma *pd = to_pd(chan->device);
  183. u32 val;
  184. val = dma_readl(pd, CTL0);
  185. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  186. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  187. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  188. dma_writel(pd, CTL0, val);
  189. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  190. chan->chan_id, val);
  191. }
  192. static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
  193. {
  194. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  195. u32 val;
  196. val = dma_readl(pd, STS0);
  197. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  198. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  199. }
  200. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  201. {
  202. if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
  203. return true;
  204. else
  205. return false;
  206. }
  207. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  208. {
  209. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  210. u32 val;
  211. if (!pdc_is_idle(pd_chan)) {
  212. dev_err(chan2dev(&pd_chan->chan),
  213. "BUG: Attempt to start non-idle channel\n");
  214. return;
  215. }
  216. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  217. pd_chan->chan.chan_id, desc->regs.dev_addr);
  218. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  219. pd_chan->chan.chan_id, desc->regs.mem_addr);
  220. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  221. pd_chan->chan.chan_id, desc->regs.size);
  222. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  223. pd_chan->chan.chan_id, desc->regs.next);
  224. if (list_empty(&desc->tx_list)) {
  225. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  226. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  227. channel_writel(pd_chan, SIZE, desc->regs.size);
  228. channel_writel(pd_chan, NEXT, desc->regs.next);
  229. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  230. } else {
  231. channel_writel(pd_chan, NEXT, desc->txd.phys);
  232. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  233. }
  234. val = dma_readl(pd, CTL2);
  235. val |= 1 << (DMA_CTL2_START_SHIFT_BITS + pd_chan->chan.chan_id);
  236. dma_writel(pd, CTL2, val);
  237. }
  238. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  239. struct pch_dma_desc *desc)
  240. {
  241. struct dma_async_tx_descriptor *txd = &desc->txd;
  242. dma_async_tx_callback callback = txd->callback;
  243. void *param = txd->callback_param;
  244. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  245. list_move(&desc->desc_node, &pd_chan->free_list);
  246. if (callback)
  247. callback(param);
  248. }
  249. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  250. {
  251. struct pch_dma_desc *desc, *_d;
  252. LIST_HEAD(list);
  253. BUG_ON(!pdc_is_idle(pd_chan));
  254. if (!list_empty(&pd_chan->queue))
  255. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  256. list_splice_init(&pd_chan->active_list, &list);
  257. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  258. list_for_each_entry_safe(desc, _d, &list, desc_node)
  259. pdc_chain_complete(pd_chan, desc);
  260. }
  261. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  262. {
  263. struct pch_dma_desc *bad_desc;
  264. bad_desc = pdc_first_active(pd_chan);
  265. list_del(&bad_desc->desc_node);
  266. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  267. if (!list_empty(&pd_chan->active_list))
  268. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  269. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  270. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  271. bad_desc->txd.cookie);
  272. pdc_chain_complete(pd_chan, bad_desc);
  273. }
  274. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  275. {
  276. if (list_empty(&pd_chan->active_list) ||
  277. list_is_singular(&pd_chan->active_list)) {
  278. pdc_complete_all(pd_chan);
  279. } else {
  280. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  281. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  282. }
  283. }
  284. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  285. struct pch_dma_desc *desc)
  286. {
  287. dma_cookie_t cookie = pd_chan->chan.cookie;
  288. if (++cookie < 0)
  289. cookie = 1;
  290. pd_chan->chan.cookie = cookie;
  291. desc->txd.cookie = cookie;
  292. return cookie;
  293. }
  294. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  295. {
  296. struct pch_dma_desc *desc = to_pd_desc(txd);
  297. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  298. dma_cookie_t cookie;
  299. spin_lock(&pd_chan->lock);
  300. cookie = pdc_assign_cookie(pd_chan, desc);
  301. if (list_empty(&pd_chan->active_list)) {
  302. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  303. pdc_dostart(pd_chan, desc);
  304. } else {
  305. list_add_tail(&desc->desc_node, &pd_chan->queue);
  306. }
  307. spin_unlock(&pd_chan->lock);
  308. return 0;
  309. }
  310. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  311. {
  312. struct pch_dma_desc *desc = NULL;
  313. struct pch_dma *pd = to_pd(chan->device);
  314. dma_addr_t addr;
  315. desc = pci_pool_alloc(pd->pool, flags, &addr);
  316. if (desc) {
  317. memset(desc, 0, sizeof(struct pch_dma_desc));
  318. INIT_LIST_HEAD(&desc->tx_list);
  319. dma_async_tx_descriptor_init(&desc->txd, chan);
  320. desc->txd.tx_submit = pd_tx_submit;
  321. desc->txd.flags = DMA_CTRL_ACK;
  322. desc->txd.phys = addr;
  323. }
  324. return desc;
  325. }
  326. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  327. {
  328. struct pch_dma_desc *desc, *_d;
  329. struct pch_dma_desc *ret = NULL;
  330. int i;
  331. spin_lock(&pd_chan->lock);
  332. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  333. i++;
  334. if (async_tx_test_ack(&desc->txd)) {
  335. list_del(&desc->desc_node);
  336. ret = desc;
  337. break;
  338. }
  339. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  340. }
  341. spin_unlock(&pd_chan->lock);
  342. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  343. if (!ret) {
  344. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  345. if (ret) {
  346. spin_lock(&pd_chan->lock);
  347. pd_chan->descs_allocated++;
  348. spin_unlock(&pd_chan->lock);
  349. } else {
  350. dev_err(chan2dev(&pd_chan->chan),
  351. "failed to alloc desc\n");
  352. }
  353. }
  354. return ret;
  355. }
  356. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  357. struct pch_dma_desc *desc)
  358. {
  359. if (desc) {
  360. spin_lock(&pd_chan->lock);
  361. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  362. list_add(&desc->desc_node, &pd_chan->free_list);
  363. spin_unlock(&pd_chan->lock);
  364. }
  365. }
  366. static int pd_alloc_chan_resources(struct dma_chan *chan)
  367. {
  368. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  369. struct pch_dma_desc *desc;
  370. LIST_HEAD(tmp_list);
  371. int i;
  372. if (!pdc_is_idle(pd_chan)) {
  373. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  374. return -EIO;
  375. }
  376. if (!list_empty(&pd_chan->free_list))
  377. return pd_chan->descs_allocated;
  378. for (i = 0; i < init_nr_desc_per_channel; i++) {
  379. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  380. if (!desc) {
  381. dev_warn(chan2dev(chan),
  382. "Only allocated %d initial descriptors\n", i);
  383. break;
  384. }
  385. list_add_tail(&desc->desc_node, &tmp_list);
  386. }
  387. spin_lock_bh(&pd_chan->lock);
  388. list_splice(&tmp_list, &pd_chan->free_list);
  389. pd_chan->descs_allocated = i;
  390. pd_chan->completed_cookie = chan->cookie = 1;
  391. spin_unlock_bh(&pd_chan->lock);
  392. pdc_enable_irq(chan, 1);
  393. pdc_set_dir(chan);
  394. return pd_chan->descs_allocated;
  395. }
  396. static void pd_free_chan_resources(struct dma_chan *chan)
  397. {
  398. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  399. struct pch_dma *pd = to_pd(chan->device);
  400. struct pch_dma_desc *desc, *_d;
  401. LIST_HEAD(tmp_list);
  402. BUG_ON(!pdc_is_idle(pd_chan));
  403. BUG_ON(!list_empty(&pd_chan->active_list));
  404. BUG_ON(!list_empty(&pd_chan->queue));
  405. spin_lock_bh(&pd_chan->lock);
  406. list_splice_init(&pd_chan->free_list, &tmp_list);
  407. pd_chan->descs_allocated = 0;
  408. spin_unlock_bh(&pd_chan->lock);
  409. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  410. pci_pool_free(pd->pool, desc, desc->txd.phys);
  411. pdc_enable_irq(chan, 0);
  412. }
  413. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  414. struct dma_tx_state *txstate)
  415. {
  416. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  417. dma_cookie_t last_used;
  418. dma_cookie_t last_completed;
  419. int ret;
  420. spin_lock_bh(&pd_chan->lock);
  421. last_completed = pd_chan->completed_cookie;
  422. last_used = chan->cookie;
  423. spin_unlock_bh(&pd_chan->lock);
  424. ret = dma_async_is_complete(cookie, last_completed, last_used);
  425. dma_set_tx_state(txstate, last_completed, last_used, 0);
  426. return ret;
  427. }
  428. static void pd_issue_pending(struct dma_chan *chan)
  429. {
  430. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  431. if (pdc_is_idle(pd_chan)) {
  432. spin_lock(&pd_chan->lock);
  433. pdc_advance_work(pd_chan);
  434. spin_unlock(&pd_chan->lock);
  435. }
  436. }
  437. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  438. struct scatterlist *sgl, unsigned int sg_len,
  439. enum dma_data_direction direction, unsigned long flags)
  440. {
  441. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  442. struct pch_dma_slave *pd_slave = chan->private;
  443. struct pch_dma_desc *first = NULL;
  444. struct pch_dma_desc *prev = NULL;
  445. struct pch_dma_desc *desc = NULL;
  446. struct scatterlist *sg;
  447. dma_addr_t reg;
  448. int i;
  449. if (unlikely(!sg_len)) {
  450. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  451. return NULL;
  452. }
  453. if (direction == DMA_FROM_DEVICE)
  454. reg = pd_slave->rx_reg;
  455. else if (direction == DMA_TO_DEVICE)
  456. reg = pd_slave->tx_reg;
  457. else
  458. return NULL;
  459. for_each_sg(sgl, sg, sg_len, i) {
  460. desc = pdc_desc_get(pd_chan);
  461. if (!desc)
  462. goto err_desc_get;
  463. desc->regs.dev_addr = reg;
  464. desc->regs.mem_addr = sg_phys(sg);
  465. desc->regs.size = sg_dma_len(sg);
  466. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  467. switch (pd_slave->width) {
  468. case PCH_DMA_WIDTH_1_BYTE:
  469. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  470. goto err_desc_get;
  471. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  472. break;
  473. case PCH_DMA_WIDTH_2_BYTES:
  474. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  475. goto err_desc_get;
  476. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  477. break;
  478. case PCH_DMA_WIDTH_4_BYTES:
  479. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  480. goto err_desc_get;
  481. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  482. break;
  483. default:
  484. goto err_desc_get;
  485. }
  486. if (!first) {
  487. first = desc;
  488. } else {
  489. prev->regs.next |= desc->txd.phys;
  490. list_add_tail(&desc->desc_node, &first->tx_list);
  491. }
  492. prev = desc;
  493. }
  494. if (flags & DMA_PREP_INTERRUPT)
  495. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  496. else
  497. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  498. first->txd.cookie = -EBUSY;
  499. desc->txd.flags = flags;
  500. return &first->txd;
  501. err_desc_get:
  502. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  503. pdc_desc_put(pd_chan, first);
  504. return NULL;
  505. }
  506. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  507. unsigned long arg)
  508. {
  509. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  510. struct pch_dma_desc *desc, *_d;
  511. LIST_HEAD(list);
  512. if (cmd != DMA_TERMINATE_ALL)
  513. return -ENXIO;
  514. spin_lock_bh(&pd_chan->lock);
  515. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  516. list_splice_init(&pd_chan->active_list, &list);
  517. list_splice_init(&pd_chan->queue, &list);
  518. list_for_each_entry_safe(desc, _d, &list, desc_node)
  519. pdc_chain_complete(pd_chan, desc);
  520. spin_unlock_bh(&pd_chan->lock);
  521. return 0;
  522. }
  523. static void pdc_tasklet(unsigned long data)
  524. {
  525. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  526. unsigned long flags;
  527. if (!pdc_is_idle(pd_chan)) {
  528. dev_err(chan2dev(&pd_chan->chan),
  529. "BUG: handle non-idle channel in tasklet\n");
  530. return;
  531. }
  532. spin_lock_irqsave(&pd_chan->lock, flags);
  533. if (test_and_clear_bit(0, &pd_chan->err_status))
  534. pdc_handle_error(pd_chan);
  535. else
  536. pdc_advance_work(pd_chan);
  537. spin_unlock_irqrestore(&pd_chan->lock, flags);
  538. }
  539. static irqreturn_t pd_irq(int irq, void *devid)
  540. {
  541. struct pch_dma *pd = (struct pch_dma *)devid;
  542. struct pch_dma_chan *pd_chan;
  543. u32 sts0;
  544. int i;
  545. int ret = IRQ_NONE;
  546. sts0 = dma_readl(pd, STS0);
  547. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  548. for (i = 0; i < pd->dma.chancnt; i++) {
  549. pd_chan = &pd->channels[i];
  550. if (sts0 & DMA_STATUS_IRQ(i)) {
  551. if (sts0 & DMA_STATUS_ERR(i))
  552. set_bit(0, &pd_chan->err_status);
  553. tasklet_schedule(&pd_chan->tasklet);
  554. ret = IRQ_HANDLED;
  555. }
  556. }
  557. /* clear interrupt bits in status register */
  558. dma_writel(pd, STS0, sts0);
  559. return ret;
  560. }
  561. #ifdef CONFIG_PM
  562. static void pch_dma_save_regs(struct pch_dma *pd)
  563. {
  564. struct pch_dma_chan *pd_chan;
  565. struct dma_chan *chan, *_c;
  566. int i = 0;
  567. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  568. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  569. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  570. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  571. pd_chan = to_pd_chan(chan);
  572. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  573. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  574. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  575. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  576. i++;
  577. }
  578. }
  579. static void pch_dma_restore_regs(struct pch_dma *pd)
  580. {
  581. struct pch_dma_chan *pd_chan;
  582. struct dma_chan *chan, *_c;
  583. int i = 0;
  584. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  585. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  586. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  587. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  588. pd_chan = to_pd_chan(chan);
  589. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  590. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  591. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  592. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  593. i++;
  594. }
  595. }
  596. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  597. {
  598. struct pch_dma *pd = pci_get_drvdata(pdev);
  599. if (pd)
  600. pch_dma_save_regs(pd);
  601. pci_save_state(pdev);
  602. pci_disable_device(pdev);
  603. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  604. return 0;
  605. }
  606. static int pch_dma_resume(struct pci_dev *pdev)
  607. {
  608. struct pch_dma *pd = pci_get_drvdata(pdev);
  609. int err;
  610. pci_set_power_state(pdev, PCI_D0);
  611. pci_restore_state(pdev);
  612. err = pci_enable_device(pdev);
  613. if (err) {
  614. dev_dbg(&pdev->dev, "failed to enable device\n");
  615. return err;
  616. }
  617. if (pd)
  618. pch_dma_restore_regs(pd);
  619. return 0;
  620. }
  621. #endif
  622. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  623. const struct pci_device_id *id)
  624. {
  625. struct pch_dma *pd;
  626. struct pch_dma_regs *regs;
  627. unsigned int nr_channels;
  628. int err;
  629. int i;
  630. nr_channels = id->driver_data;
  631. pd = kzalloc(sizeof(struct pch_dma)+
  632. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  633. if (!pd)
  634. return -ENOMEM;
  635. pci_set_drvdata(pdev, pd);
  636. err = pci_enable_device(pdev);
  637. if (err) {
  638. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  639. goto err_free_mem;
  640. }
  641. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  642. dev_err(&pdev->dev, "Cannot find proper base address\n");
  643. goto err_disable_pdev;
  644. }
  645. err = pci_request_regions(pdev, DRV_NAME);
  646. if (err) {
  647. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  648. goto err_disable_pdev;
  649. }
  650. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  651. if (err) {
  652. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  653. goto err_free_res;
  654. }
  655. regs = pd->membase = pci_iomap(pdev, 1, 0);
  656. if (!pd->membase) {
  657. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  658. err = -ENOMEM;
  659. goto err_free_res;
  660. }
  661. pci_set_master(pdev);
  662. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  663. if (err) {
  664. dev_err(&pdev->dev, "Failed to request IRQ\n");
  665. goto err_iounmap;
  666. }
  667. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  668. sizeof(struct pch_dma_desc), 4, 0);
  669. if (!pd->pool) {
  670. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  671. err = -ENOMEM;
  672. goto err_free_irq;
  673. }
  674. pd->dma.dev = &pdev->dev;
  675. pd->dma.chancnt = nr_channels;
  676. INIT_LIST_HEAD(&pd->dma.channels);
  677. for (i = 0; i < nr_channels; i++) {
  678. struct pch_dma_chan *pd_chan = &pd->channels[i];
  679. pd_chan->chan.device = &pd->dma;
  680. pd_chan->chan.cookie = 1;
  681. pd_chan->chan.chan_id = i;
  682. pd_chan->membase = &regs->desc[i];
  683. pd_chan->dir = (i % 2) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  684. spin_lock_init(&pd_chan->lock);
  685. INIT_LIST_HEAD(&pd_chan->active_list);
  686. INIT_LIST_HEAD(&pd_chan->queue);
  687. INIT_LIST_HEAD(&pd_chan->free_list);
  688. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  689. (unsigned long)pd_chan);
  690. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  691. }
  692. dma_cap_zero(pd->dma.cap_mask);
  693. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  694. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  695. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  696. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  697. pd->dma.device_tx_status = pd_tx_status;
  698. pd->dma.device_issue_pending = pd_issue_pending;
  699. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  700. pd->dma.device_control = pd_device_control;
  701. err = dma_async_device_register(&pd->dma);
  702. if (err) {
  703. dev_err(&pdev->dev, "Failed to register DMA device\n");
  704. goto err_free_pool;
  705. }
  706. return 0;
  707. err_free_pool:
  708. pci_pool_destroy(pd->pool);
  709. err_free_irq:
  710. free_irq(pdev->irq, pd);
  711. err_iounmap:
  712. pci_iounmap(pdev, pd->membase);
  713. err_free_res:
  714. pci_release_regions(pdev);
  715. err_disable_pdev:
  716. pci_disable_device(pdev);
  717. err_free_mem:
  718. return err;
  719. }
  720. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  721. {
  722. struct pch_dma *pd = pci_get_drvdata(pdev);
  723. struct pch_dma_chan *pd_chan;
  724. struct dma_chan *chan, *_c;
  725. if (pd) {
  726. dma_async_device_unregister(&pd->dma);
  727. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  728. device_node) {
  729. pd_chan = to_pd_chan(chan);
  730. tasklet_disable(&pd_chan->tasklet);
  731. tasklet_kill(&pd_chan->tasklet);
  732. }
  733. pci_pool_destroy(pd->pool);
  734. free_irq(pdev->irq, pd);
  735. pci_iounmap(pdev, pd->membase);
  736. pci_release_regions(pdev);
  737. pci_disable_device(pdev);
  738. kfree(pd);
  739. }
  740. }
  741. /* PCI Device ID of DMA device */
  742. #define PCI_VENDOR_ID_ROHM 0x10DB
  743. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  744. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  745. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  746. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  747. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  748. static const struct pci_device_id pch_dma_id_table[] = {
  749. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  750. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  751. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  752. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  753. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  754. { 0, },
  755. };
  756. static struct pci_driver pch_dma_driver = {
  757. .name = DRV_NAME,
  758. .id_table = pch_dma_id_table,
  759. .probe = pch_dma_probe,
  760. .remove = __devexit_p(pch_dma_remove),
  761. #ifdef CONFIG_PM
  762. .suspend = pch_dma_suspend,
  763. .resume = pch_dma_resume,
  764. #endif
  765. };
  766. static int __init pch_dma_init(void)
  767. {
  768. return pci_register_driver(&pch_dma_driver);
  769. }
  770. static void __exit pch_dma_exit(void)
  771. {
  772. pci_unregister_driver(&pch_dma_driver);
  773. }
  774. module_init(pch_dma_init);
  775. module_exit(pch_dma_exit);
  776. MODULE_DESCRIPTION("Intel EG20T PCH / OKI SEMICONDUCTOR ML7213 IOH "
  777. "DMA controller driver");
  778. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  779. MODULE_LICENSE("GPL v2");