efi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * Common EFI (Extensible Firmware Interface) support functions
  3. * Based on Extensible Firmware Interface Specification version 1.0
  4. *
  5. * Copyright (C) 1999 VA Linux Systems
  6. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  7. * Copyright (C) 1999-2002 Hewlett-Packard Co.
  8. * David Mosberger-Tang <davidm@hpl.hp.com>
  9. * Stephane Eranian <eranian@hpl.hp.com>
  10. * Copyright (C) 2005-2008 Intel Co.
  11. * Fenghua Yu <fenghua.yu@intel.com>
  12. * Bibo Mao <bibo.mao@intel.com>
  13. * Chandramouli Narayanan <mouli@linux.intel.com>
  14. * Huang Ying <ying.huang@intel.com>
  15. *
  16. * Copied from efi_32.c to eliminate the duplicated code between EFI
  17. * 32/64 support code. --ying 2007-10-26
  18. *
  19. * All EFI Runtime Services are not implemented yet as EFI only
  20. * supports physical mode addressing on SoftSDV. This is to be fixed
  21. * in a future version. --drummond 1999-07-20
  22. *
  23. * Implemented EFI runtime services and virtual mode calls. --davidm
  24. *
  25. * Goutham Rao: <goutham.rao@intel.com>
  26. * Skip non-WB memory and ignore empty memory ranges.
  27. */
  28. #include <linux/kernel.h>
  29. #include <linux/init.h>
  30. #include <linux/efi.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/memblock.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/uaccess.h>
  35. #include <linux/time.h>
  36. #include <linux/io.h>
  37. #include <linux/reboot.h>
  38. #include <linux/bcd.h>
  39. #include <asm/setup.h>
  40. #include <asm/efi.h>
  41. #include <asm/time.h>
  42. #include <asm/cacheflush.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/x86_init.h>
  45. #define EFI_DEBUG 1
  46. #define PFX "EFI: "
  47. int efi_enabled;
  48. EXPORT_SYMBOL(efi_enabled);
  49. struct efi efi;
  50. EXPORT_SYMBOL(efi);
  51. struct efi_memory_map memmap;
  52. static struct efi efi_phys __initdata;
  53. static efi_system_table_t efi_systab __initdata;
  54. static int __init setup_noefi(char *arg)
  55. {
  56. efi_enabled = 0;
  57. return 0;
  58. }
  59. early_param("noefi", setup_noefi);
  60. int add_efi_memmap;
  61. EXPORT_SYMBOL(add_efi_memmap);
  62. static int __init setup_add_efi_memmap(char *arg)
  63. {
  64. add_efi_memmap = 1;
  65. return 0;
  66. }
  67. early_param("add_efi_memmap", setup_add_efi_memmap);
  68. static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
  69. {
  70. return efi_call_virt2(get_time, tm, tc);
  71. }
  72. static efi_status_t virt_efi_set_time(efi_time_t *tm)
  73. {
  74. return efi_call_virt1(set_time, tm);
  75. }
  76. static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
  77. efi_bool_t *pending,
  78. efi_time_t *tm)
  79. {
  80. return efi_call_virt3(get_wakeup_time,
  81. enabled, pending, tm);
  82. }
  83. static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
  84. {
  85. return efi_call_virt2(set_wakeup_time,
  86. enabled, tm);
  87. }
  88. static efi_status_t virt_efi_get_variable(efi_char16_t *name,
  89. efi_guid_t *vendor,
  90. u32 *attr,
  91. unsigned long *data_size,
  92. void *data)
  93. {
  94. return efi_call_virt5(get_variable,
  95. name, vendor, attr,
  96. data_size, data);
  97. }
  98. static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
  99. efi_char16_t *name,
  100. efi_guid_t *vendor)
  101. {
  102. return efi_call_virt3(get_next_variable,
  103. name_size, name, vendor);
  104. }
  105. static efi_status_t virt_efi_set_variable(efi_char16_t *name,
  106. efi_guid_t *vendor,
  107. unsigned long attr,
  108. unsigned long data_size,
  109. void *data)
  110. {
  111. return efi_call_virt5(set_variable,
  112. name, vendor, attr,
  113. data_size, data);
  114. }
  115. static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
  116. {
  117. return efi_call_virt1(get_next_high_mono_count, count);
  118. }
  119. static void virt_efi_reset_system(int reset_type,
  120. efi_status_t status,
  121. unsigned long data_size,
  122. efi_char16_t *data)
  123. {
  124. efi_call_virt4(reset_system, reset_type, status,
  125. data_size, data);
  126. }
  127. static efi_status_t virt_efi_set_virtual_address_map(
  128. unsigned long memory_map_size,
  129. unsigned long descriptor_size,
  130. u32 descriptor_version,
  131. efi_memory_desc_t *virtual_map)
  132. {
  133. return efi_call_virt4(set_virtual_address_map,
  134. memory_map_size, descriptor_size,
  135. descriptor_version, virtual_map);
  136. }
  137. static efi_status_t __init phys_efi_set_virtual_address_map(
  138. unsigned long memory_map_size,
  139. unsigned long descriptor_size,
  140. u32 descriptor_version,
  141. efi_memory_desc_t *virtual_map)
  142. {
  143. efi_status_t status;
  144. efi_call_phys_prelog();
  145. status = efi_call_phys4(efi_phys.set_virtual_address_map,
  146. memory_map_size, descriptor_size,
  147. descriptor_version, virtual_map);
  148. efi_call_phys_epilog();
  149. return status;
  150. }
  151. static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
  152. efi_time_cap_t *tc)
  153. {
  154. efi_status_t status;
  155. efi_call_phys_prelog();
  156. status = efi_call_phys2(efi_phys.get_time, tm, tc);
  157. efi_call_phys_epilog();
  158. return status;
  159. }
  160. int efi_set_rtc_mmss(unsigned long nowtime)
  161. {
  162. int real_seconds, real_minutes;
  163. efi_status_t status;
  164. efi_time_t eft;
  165. efi_time_cap_t cap;
  166. status = efi.get_time(&eft, &cap);
  167. if (status != EFI_SUCCESS) {
  168. printk(KERN_ERR "Oops: efitime: can't read time!\n");
  169. return -1;
  170. }
  171. real_seconds = nowtime % 60;
  172. real_minutes = nowtime / 60;
  173. if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
  174. real_minutes += 30;
  175. real_minutes %= 60;
  176. eft.minute = real_minutes;
  177. eft.second = real_seconds;
  178. status = efi.set_time(&eft);
  179. if (status != EFI_SUCCESS) {
  180. printk(KERN_ERR "Oops: efitime: can't write time!\n");
  181. return -1;
  182. }
  183. return 0;
  184. }
  185. unsigned long efi_get_time(void)
  186. {
  187. efi_status_t status;
  188. efi_time_t eft;
  189. efi_time_cap_t cap;
  190. status = efi.get_time(&eft, &cap);
  191. if (status != EFI_SUCCESS)
  192. printk(KERN_ERR "Oops: efitime: can't read time!\n");
  193. return mktime(eft.year, eft.month, eft.day, eft.hour,
  194. eft.minute, eft.second);
  195. }
  196. /*
  197. * Tell the kernel about the EFI memory map. This might include
  198. * more than the max 128 entries that can fit in the e820 legacy
  199. * (zeropage) memory map.
  200. */
  201. static void __init do_add_efi_memmap(void)
  202. {
  203. void *p;
  204. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  205. efi_memory_desc_t *md = p;
  206. unsigned long long start = md->phys_addr;
  207. unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
  208. int e820_type;
  209. switch (md->type) {
  210. case EFI_LOADER_CODE:
  211. case EFI_LOADER_DATA:
  212. case EFI_BOOT_SERVICES_CODE:
  213. case EFI_BOOT_SERVICES_DATA:
  214. case EFI_CONVENTIONAL_MEMORY:
  215. if (md->attribute & EFI_MEMORY_WB)
  216. e820_type = E820_RAM;
  217. else
  218. e820_type = E820_RESERVED;
  219. break;
  220. case EFI_ACPI_RECLAIM_MEMORY:
  221. e820_type = E820_ACPI;
  222. break;
  223. case EFI_ACPI_MEMORY_NVS:
  224. e820_type = E820_NVS;
  225. break;
  226. case EFI_UNUSABLE_MEMORY:
  227. e820_type = E820_UNUSABLE;
  228. break;
  229. default:
  230. /*
  231. * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
  232. * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
  233. * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
  234. */
  235. e820_type = E820_RESERVED;
  236. break;
  237. }
  238. e820_add_region(start, size, e820_type);
  239. }
  240. sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
  241. }
  242. void __init efi_memblock_x86_reserve_range(void)
  243. {
  244. unsigned long pmap;
  245. #ifdef CONFIG_X86_32
  246. pmap = boot_params.efi_info.efi_memmap;
  247. #else
  248. pmap = (boot_params.efi_info.efi_memmap |
  249. ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
  250. #endif
  251. memmap.phys_map = (void *)pmap;
  252. memmap.nr_map = boot_params.efi_info.efi_memmap_size /
  253. boot_params.efi_info.efi_memdesc_size;
  254. memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
  255. memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
  256. memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
  257. "EFI memmap");
  258. }
  259. #if EFI_DEBUG
  260. static void __init print_efi_memmap(void)
  261. {
  262. efi_memory_desc_t *md;
  263. void *p;
  264. int i;
  265. for (p = memmap.map, i = 0;
  266. p < memmap.map_end;
  267. p += memmap.desc_size, i++) {
  268. md = p;
  269. printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
  270. "range=[0x%016llx-0x%016llx) (%lluMB)\n",
  271. i, md->type, md->attribute, md->phys_addr,
  272. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  273. (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
  274. }
  275. }
  276. #endif /* EFI_DEBUG */
  277. void __init efi_init(void)
  278. {
  279. efi_config_table_t *config_tables;
  280. efi_runtime_services_t *runtime;
  281. efi_char16_t *c16;
  282. char vendor[100] = "unknown";
  283. int i = 0;
  284. void *tmp;
  285. #ifdef CONFIG_X86_32
  286. efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
  287. #else
  288. efi_phys.systab = (efi_system_table_t *)
  289. (boot_params.efi_info.efi_systab |
  290. ((__u64)boot_params.efi_info.efi_systab_hi<<32));
  291. #endif
  292. efi.systab = early_ioremap((unsigned long)efi_phys.systab,
  293. sizeof(efi_system_table_t));
  294. if (efi.systab == NULL)
  295. printk(KERN_ERR "Couldn't map the EFI system table!\n");
  296. memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
  297. early_iounmap(efi.systab, sizeof(efi_system_table_t));
  298. efi.systab = &efi_systab;
  299. /*
  300. * Verify the EFI Table
  301. */
  302. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  303. printk(KERN_ERR "EFI system table signature incorrect!\n");
  304. if ((efi.systab->hdr.revision >> 16) == 0)
  305. printk(KERN_ERR "Warning: EFI system table version "
  306. "%d.%02d, expected 1.00 or greater!\n",
  307. efi.systab->hdr.revision >> 16,
  308. efi.systab->hdr.revision & 0xffff);
  309. /*
  310. * Show what we know for posterity
  311. */
  312. c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
  313. if (c16) {
  314. for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
  315. vendor[i] = *c16++;
  316. vendor[i] = '\0';
  317. } else
  318. printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
  319. early_iounmap(tmp, 2);
  320. printk(KERN_INFO "EFI v%u.%.02u by %s\n",
  321. efi.systab->hdr.revision >> 16,
  322. efi.systab->hdr.revision & 0xffff, vendor);
  323. /*
  324. * Let's see what config tables the firmware passed to us.
  325. */
  326. config_tables = early_ioremap(
  327. efi.systab->tables,
  328. efi.systab->nr_tables * sizeof(efi_config_table_t));
  329. if (config_tables == NULL)
  330. printk(KERN_ERR "Could not map EFI Configuration Table!\n");
  331. printk(KERN_INFO);
  332. for (i = 0; i < efi.systab->nr_tables; i++) {
  333. if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
  334. efi.mps = config_tables[i].table;
  335. printk(" MPS=0x%lx ", config_tables[i].table);
  336. } else if (!efi_guidcmp(config_tables[i].guid,
  337. ACPI_20_TABLE_GUID)) {
  338. efi.acpi20 = config_tables[i].table;
  339. printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
  340. } else if (!efi_guidcmp(config_tables[i].guid,
  341. ACPI_TABLE_GUID)) {
  342. efi.acpi = config_tables[i].table;
  343. printk(" ACPI=0x%lx ", config_tables[i].table);
  344. } else if (!efi_guidcmp(config_tables[i].guid,
  345. SMBIOS_TABLE_GUID)) {
  346. efi.smbios = config_tables[i].table;
  347. printk(" SMBIOS=0x%lx ", config_tables[i].table);
  348. #ifdef CONFIG_X86_UV
  349. } else if (!efi_guidcmp(config_tables[i].guid,
  350. UV_SYSTEM_TABLE_GUID)) {
  351. efi.uv_systab = config_tables[i].table;
  352. printk(" UVsystab=0x%lx ", config_tables[i].table);
  353. #endif
  354. } else if (!efi_guidcmp(config_tables[i].guid,
  355. HCDP_TABLE_GUID)) {
  356. efi.hcdp = config_tables[i].table;
  357. printk(" HCDP=0x%lx ", config_tables[i].table);
  358. } else if (!efi_guidcmp(config_tables[i].guid,
  359. UGA_IO_PROTOCOL_GUID)) {
  360. efi.uga = config_tables[i].table;
  361. printk(" UGA=0x%lx ", config_tables[i].table);
  362. }
  363. }
  364. printk("\n");
  365. early_iounmap(config_tables,
  366. efi.systab->nr_tables * sizeof(efi_config_table_t));
  367. /*
  368. * Check out the runtime services table. We need to map
  369. * the runtime services table so that we can grab the physical
  370. * address of several of the EFI runtime functions, needed to
  371. * set the firmware into virtual mode.
  372. */
  373. runtime = early_ioremap((unsigned long)efi.systab->runtime,
  374. sizeof(efi_runtime_services_t));
  375. if (runtime != NULL) {
  376. /*
  377. * We will only need *early* access to the following
  378. * two EFI runtime services before set_virtual_address_map
  379. * is invoked.
  380. */
  381. efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
  382. efi_phys.set_virtual_address_map =
  383. (efi_set_virtual_address_map_t *)
  384. runtime->set_virtual_address_map;
  385. /*
  386. * Make efi_get_time can be called before entering
  387. * virtual mode.
  388. */
  389. efi.get_time = phys_efi_get_time;
  390. } else
  391. printk(KERN_ERR "Could not map the EFI runtime service "
  392. "table!\n");
  393. early_iounmap(runtime, sizeof(efi_runtime_services_t));
  394. /* Map the EFI memory map */
  395. memmap.map = early_ioremap((unsigned long)memmap.phys_map,
  396. memmap.nr_map * memmap.desc_size);
  397. if (memmap.map == NULL)
  398. printk(KERN_ERR "Could not map the EFI memory map!\n");
  399. memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
  400. if (memmap.desc_size != sizeof(efi_memory_desc_t))
  401. printk(KERN_WARNING
  402. "Kernel-defined memdesc doesn't match the one from EFI!\n");
  403. if (add_efi_memmap)
  404. do_add_efi_memmap();
  405. #ifdef CONFIG_X86_32
  406. x86_platform.get_wallclock = efi_get_time;
  407. x86_platform.set_wallclock = efi_set_rtc_mmss;
  408. #endif
  409. /* Setup for EFI runtime service */
  410. reboot_type = BOOT_EFI;
  411. #if EFI_DEBUG
  412. print_efi_memmap();
  413. #endif
  414. }
  415. static void __init runtime_code_page_mkexec(void)
  416. {
  417. efi_memory_desc_t *md;
  418. void *p;
  419. u64 addr, npages;
  420. /* Make EFI runtime service code area executable */
  421. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  422. md = p;
  423. if (md->type != EFI_RUNTIME_SERVICES_CODE)
  424. continue;
  425. addr = md->virt_addr;
  426. npages = md->num_pages;
  427. memrange_efi_to_native(&addr, &npages);
  428. set_memory_x(addr, npages);
  429. }
  430. }
  431. /*
  432. * This function will switch the EFI runtime services to virtual mode.
  433. * Essentially, look through the EFI memmap and map every region that
  434. * has the runtime attribute bit set in its memory descriptor and update
  435. * that memory descriptor with the virtual address obtained from ioremap().
  436. * This enables the runtime services to be called without having to
  437. * thunk back into physical mode for every invocation.
  438. */
  439. void __init efi_enter_virtual_mode(void)
  440. {
  441. efi_memory_desc_t *md;
  442. efi_status_t status;
  443. unsigned long size;
  444. u64 end, systab, addr, npages, end_pfn;
  445. void *p, *va;
  446. efi.systab = NULL;
  447. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  448. md = p;
  449. if (!(md->attribute & EFI_MEMORY_RUNTIME))
  450. continue;
  451. size = md->num_pages << EFI_PAGE_SHIFT;
  452. end = md->phys_addr + size;
  453. end_pfn = PFN_UP(end);
  454. if (end_pfn <= max_low_pfn_mapped
  455. || (end_pfn > (1UL << (32 - PAGE_SHIFT))
  456. && end_pfn <= max_pfn_mapped))
  457. va = __va(md->phys_addr);
  458. else
  459. va = efi_ioremap(md->phys_addr, size, md->type);
  460. md->virt_addr = (u64) (unsigned long) va;
  461. if (!va) {
  462. printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
  463. (unsigned long long)md->phys_addr);
  464. continue;
  465. }
  466. if (!(md->attribute & EFI_MEMORY_WB)) {
  467. addr = md->virt_addr;
  468. npages = md->num_pages;
  469. memrange_efi_to_native(&addr, &npages);
  470. set_memory_uc(addr, npages);
  471. }
  472. systab = (u64) (unsigned long) efi_phys.systab;
  473. if (md->phys_addr <= systab && systab < end) {
  474. systab += md->virt_addr - md->phys_addr;
  475. efi.systab = (efi_system_table_t *) (unsigned long) systab;
  476. }
  477. }
  478. BUG_ON(!efi.systab);
  479. status = phys_efi_set_virtual_address_map(
  480. memmap.desc_size * memmap.nr_map,
  481. memmap.desc_size,
  482. memmap.desc_version,
  483. memmap.phys_map);
  484. if (status != EFI_SUCCESS) {
  485. printk(KERN_ALERT "Unable to switch EFI into virtual mode "
  486. "(status=%lx)!\n", status);
  487. panic("EFI call to SetVirtualAddressMap() failed!");
  488. }
  489. /*
  490. * Now that EFI is in virtual mode, update the function
  491. * pointers in the runtime service table to the new virtual addresses.
  492. *
  493. * Call EFI services through wrapper functions.
  494. */
  495. efi.get_time = virt_efi_get_time;
  496. efi.set_time = virt_efi_set_time;
  497. efi.get_wakeup_time = virt_efi_get_wakeup_time;
  498. efi.set_wakeup_time = virt_efi_set_wakeup_time;
  499. efi.get_variable = virt_efi_get_variable;
  500. efi.get_next_variable = virt_efi_get_next_variable;
  501. efi.set_variable = virt_efi_set_variable;
  502. efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
  503. efi.reset_system = virt_efi_reset_system;
  504. efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
  505. if (__supported_pte_mask & _PAGE_NX)
  506. runtime_code_page_mkexec();
  507. early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
  508. memmap.map = NULL;
  509. }
  510. /*
  511. * Convenience functions to obtain memory types and attributes
  512. */
  513. u32 efi_mem_type(unsigned long phys_addr)
  514. {
  515. efi_memory_desc_t *md;
  516. void *p;
  517. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  518. md = p;
  519. if ((md->phys_addr <= phys_addr) &&
  520. (phys_addr < (md->phys_addr +
  521. (md->num_pages << EFI_PAGE_SHIFT))))
  522. return md->type;
  523. }
  524. return 0;
  525. }
  526. u64 efi_mem_attributes(unsigned long phys_addr)
  527. {
  528. efi_memory_desc_t *md;
  529. void *p;
  530. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  531. md = p;
  532. if ((md->phys_addr <= phys_addr) &&
  533. (phys_addr < (md->phys_addr +
  534. (md->num_pages << EFI_PAGE_SHIFT))))
  535. return md->attribute;
  536. }
  537. return 0;
  538. }