x86.c 157 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static
  77. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  78. #else
  79. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  80. #endif
  81. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  82. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  83. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  84. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  85. struct kvm_cpuid_entry2 __user *entries);
  86. struct kvm_x86_ops *kvm_x86_ops;
  87. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  88. int ignore_msrs = 0;
  89. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  90. #define KVM_NR_SHARED_MSRS 16
  91. struct kvm_shared_msrs_global {
  92. int nr;
  93. u32 msrs[KVM_NR_SHARED_MSRS];
  94. };
  95. struct kvm_shared_msrs {
  96. struct user_return_notifier urn;
  97. bool registered;
  98. struct kvm_shared_msr_values {
  99. u64 host;
  100. u64 curr;
  101. } values[KVM_NR_SHARED_MSRS];
  102. };
  103. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  104. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  105. struct kvm_stats_debugfs_item debugfs_entries[] = {
  106. { "pf_fixed", VCPU_STAT(pf_fixed) },
  107. { "pf_guest", VCPU_STAT(pf_guest) },
  108. { "tlb_flush", VCPU_STAT(tlb_flush) },
  109. { "invlpg", VCPU_STAT(invlpg) },
  110. { "exits", VCPU_STAT(exits) },
  111. { "io_exits", VCPU_STAT(io_exits) },
  112. { "mmio_exits", VCPU_STAT(mmio_exits) },
  113. { "signal_exits", VCPU_STAT(signal_exits) },
  114. { "irq_window", VCPU_STAT(irq_window_exits) },
  115. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  116. { "halt_exits", VCPU_STAT(halt_exits) },
  117. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  118. { "hypercalls", VCPU_STAT(hypercalls) },
  119. { "request_irq", VCPU_STAT(request_irq_exits) },
  120. { "irq_exits", VCPU_STAT(irq_exits) },
  121. { "host_state_reload", VCPU_STAT(host_state_reload) },
  122. { "efer_reload", VCPU_STAT(efer_reload) },
  123. { "fpu_reload", VCPU_STAT(fpu_reload) },
  124. { "insn_emulation", VCPU_STAT(insn_emulation) },
  125. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  126. { "irq_injections", VCPU_STAT(irq_injections) },
  127. { "nmi_injections", VCPU_STAT(nmi_injections) },
  128. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  129. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  130. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  131. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  132. { "mmu_flooded", VM_STAT(mmu_flooded) },
  133. { "mmu_recycled", VM_STAT(mmu_recycled) },
  134. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  135. { "mmu_unsync", VM_STAT(mmu_unsync) },
  136. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  137. { "largepages", VM_STAT(lpages) },
  138. { NULL }
  139. };
  140. u64 __read_mostly host_xcr0;
  141. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  142. {
  143. int i;
  144. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  145. vcpu->arch.apf.gfns[i] = ~0;
  146. }
  147. static void kvm_on_user_return(struct user_return_notifier *urn)
  148. {
  149. unsigned slot;
  150. struct kvm_shared_msrs *locals
  151. = container_of(urn, struct kvm_shared_msrs, urn);
  152. struct kvm_shared_msr_values *values;
  153. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  154. values = &locals->values[slot];
  155. if (values->host != values->curr) {
  156. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  157. values->curr = values->host;
  158. }
  159. }
  160. locals->registered = false;
  161. user_return_notifier_unregister(urn);
  162. }
  163. static void shared_msr_update(unsigned slot, u32 msr)
  164. {
  165. struct kvm_shared_msrs *smsr;
  166. u64 value;
  167. smsr = &__get_cpu_var(shared_msrs);
  168. /* only read, and nobody should modify it at this time,
  169. * so don't need lock */
  170. if (slot >= shared_msrs_global.nr) {
  171. printk(KERN_ERR "kvm: invalid MSR slot!");
  172. return;
  173. }
  174. rdmsrl_safe(msr, &value);
  175. smsr->values[slot].host = value;
  176. smsr->values[slot].curr = value;
  177. }
  178. void kvm_define_shared_msr(unsigned slot, u32 msr)
  179. {
  180. if (slot >= shared_msrs_global.nr)
  181. shared_msrs_global.nr = slot + 1;
  182. shared_msrs_global.msrs[slot] = msr;
  183. /* we need ensured the shared_msr_global have been updated */
  184. smp_wmb();
  185. }
  186. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  187. static void kvm_shared_msr_cpu_online(void)
  188. {
  189. unsigned i;
  190. for (i = 0; i < shared_msrs_global.nr; ++i)
  191. shared_msr_update(i, shared_msrs_global.msrs[i]);
  192. }
  193. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  194. {
  195. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  196. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  197. return;
  198. smsr->values[slot].curr = value;
  199. wrmsrl(shared_msrs_global.msrs[slot], value);
  200. if (!smsr->registered) {
  201. smsr->urn.on_user_return = kvm_on_user_return;
  202. user_return_notifier_register(&smsr->urn);
  203. smsr->registered = true;
  204. }
  205. }
  206. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  207. static void drop_user_return_notifiers(void *ignore)
  208. {
  209. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  210. if (smsr->registered)
  211. kvm_on_user_return(&smsr->urn);
  212. }
  213. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  214. {
  215. if (irqchip_in_kernel(vcpu->kvm))
  216. return vcpu->arch.apic_base;
  217. else
  218. return vcpu->arch.apic_base;
  219. }
  220. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  221. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  222. {
  223. /* TODO: reserve bits check */
  224. if (irqchip_in_kernel(vcpu->kvm))
  225. kvm_lapic_set_base(vcpu, data);
  226. else
  227. vcpu->arch.apic_base = data;
  228. }
  229. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  230. #define EXCPT_BENIGN 0
  231. #define EXCPT_CONTRIBUTORY 1
  232. #define EXCPT_PF 2
  233. static int exception_class(int vector)
  234. {
  235. switch (vector) {
  236. case PF_VECTOR:
  237. return EXCPT_PF;
  238. case DE_VECTOR:
  239. case TS_VECTOR:
  240. case NP_VECTOR:
  241. case SS_VECTOR:
  242. case GP_VECTOR:
  243. return EXCPT_CONTRIBUTORY;
  244. default:
  245. break;
  246. }
  247. return EXCPT_BENIGN;
  248. }
  249. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  250. unsigned nr, bool has_error, u32 error_code,
  251. bool reinject)
  252. {
  253. u32 prev_nr;
  254. int class1, class2;
  255. kvm_make_request(KVM_REQ_EVENT, vcpu);
  256. if (!vcpu->arch.exception.pending) {
  257. queue:
  258. vcpu->arch.exception.pending = true;
  259. vcpu->arch.exception.has_error_code = has_error;
  260. vcpu->arch.exception.nr = nr;
  261. vcpu->arch.exception.error_code = error_code;
  262. vcpu->arch.exception.reinject = reinject;
  263. return;
  264. }
  265. /* to check exception */
  266. prev_nr = vcpu->arch.exception.nr;
  267. if (prev_nr == DF_VECTOR) {
  268. /* triple fault -> shutdown */
  269. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  270. return;
  271. }
  272. class1 = exception_class(prev_nr);
  273. class2 = exception_class(nr);
  274. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  275. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  276. /* generate double fault per SDM Table 5-5 */
  277. vcpu->arch.exception.pending = true;
  278. vcpu->arch.exception.has_error_code = true;
  279. vcpu->arch.exception.nr = DF_VECTOR;
  280. vcpu->arch.exception.error_code = 0;
  281. } else
  282. /* replace previous exception with a new one in a hope
  283. that instruction re-execution will regenerate lost
  284. exception */
  285. goto queue;
  286. }
  287. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, false);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  292. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  293. {
  294. kvm_multiple_exception(vcpu, nr, false, 0, true);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  297. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  298. {
  299. if (err)
  300. kvm_inject_gp(vcpu, 0);
  301. else
  302. kvm_x86_ops->skip_emulated_instruction(vcpu);
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  305. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  306. {
  307. ++vcpu->stat.pf_guest;
  308. vcpu->arch.cr2 = fault->address;
  309. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  310. }
  311. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  312. {
  313. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  314. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  315. else
  316. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  317. }
  318. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  319. {
  320. kvm_make_request(KVM_REQ_NMI, vcpu);
  321. kvm_make_request(KVM_REQ_EVENT, vcpu);
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  324. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  325. {
  326. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  329. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  330. {
  331. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  334. /*
  335. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  336. * a #GP and return false.
  337. */
  338. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  339. {
  340. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  341. return true;
  342. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  343. return false;
  344. }
  345. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  346. /*
  347. * This function will be used to read from the physical memory of the currently
  348. * running guest. The difference to kvm_read_guest_page is that this function
  349. * can read from guest physical or from the guest's guest physical memory.
  350. */
  351. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  352. gfn_t ngfn, void *data, int offset, int len,
  353. u32 access)
  354. {
  355. gfn_t real_gfn;
  356. gpa_t ngpa;
  357. ngpa = gfn_to_gpa(ngfn);
  358. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  359. if (real_gfn == UNMAPPED_GVA)
  360. return -EFAULT;
  361. real_gfn = gpa_to_gfn(real_gfn);
  362. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  363. }
  364. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  365. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  366. void *data, int offset, int len, u32 access)
  367. {
  368. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  369. data, offset, len, access);
  370. }
  371. /*
  372. * Load the pae pdptrs. Return true is they are all valid.
  373. */
  374. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  375. {
  376. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  377. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  378. int i;
  379. int ret;
  380. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  381. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  382. offset * sizeof(u64), sizeof(pdpte),
  383. PFERR_USER_MASK|PFERR_WRITE_MASK);
  384. if (ret < 0) {
  385. ret = 0;
  386. goto out;
  387. }
  388. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  389. if (is_present_gpte(pdpte[i]) &&
  390. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  391. ret = 0;
  392. goto out;
  393. }
  394. }
  395. ret = 1;
  396. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  397. __set_bit(VCPU_EXREG_PDPTR,
  398. (unsigned long *)&vcpu->arch.regs_avail);
  399. __set_bit(VCPU_EXREG_PDPTR,
  400. (unsigned long *)&vcpu->arch.regs_dirty);
  401. out:
  402. return ret;
  403. }
  404. EXPORT_SYMBOL_GPL(load_pdptrs);
  405. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  406. {
  407. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  408. bool changed = true;
  409. int offset;
  410. gfn_t gfn;
  411. int r;
  412. if (is_long_mode(vcpu) || !is_pae(vcpu))
  413. return false;
  414. if (!test_bit(VCPU_EXREG_PDPTR,
  415. (unsigned long *)&vcpu->arch.regs_avail))
  416. return true;
  417. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  418. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  419. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  420. PFERR_USER_MASK | PFERR_WRITE_MASK);
  421. if (r < 0)
  422. goto out;
  423. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  424. out:
  425. return changed;
  426. }
  427. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  428. {
  429. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  430. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  431. X86_CR0_CD | X86_CR0_NW;
  432. cr0 |= X86_CR0_ET;
  433. #ifdef CONFIG_X86_64
  434. if (cr0 & 0xffffffff00000000UL)
  435. return 1;
  436. #endif
  437. cr0 &= ~CR0_RESERVED_BITS;
  438. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  439. return 1;
  440. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  441. return 1;
  442. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  443. #ifdef CONFIG_X86_64
  444. if ((vcpu->arch.efer & EFER_LME)) {
  445. int cs_db, cs_l;
  446. if (!is_pae(vcpu))
  447. return 1;
  448. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  449. if (cs_l)
  450. return 1;
  451. } else
  452. #endif
  453. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  454. kvm_read_cr3(vcpu)))
  455. return 1;
  456. }
  457. kvm_x86_ops->set_cr0(vcpu, cr0);
  458. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  459. kvm_clear_async_pf_completion_queue(vcpu);
  460. kvm_async_pf_hash_reset(vcpu);
  461. }
  462. if ((cr0 ^ old_cr0) & update_bits)
  463. kvm_mmu_reset_context(vcpu);
  464. return 0;
  465. }
  466. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  467. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  468. {
  469. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  470. }
  471. EXPORT_SYMBOL_GPL(kvm_lmsw);
  472. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  473. {
  474. u64 xcr0;
  475. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  476. if (index != XCR_XFEATURE_ENABLED_MASK)
  477. return 1;
  478. xcr0 = xcr;
  479. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  480. return 1;
  481. if (!(xcr0 & XSTATE_FP))
  482. return 1;
  483. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  484. return 1;
  485. if (xcr0 & ~host_xcr0)
  486. return 1;
  487. vcpu->arch.xcr0 = xcr0;
  488. vcpu->guest_xcr0_loaded = 0;
  489. return 0;
  490. }
  491. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  492. {
  493. if (__kvm_set_xcr(vcpu, index, xcr)) {
  494. kvm_inject_gp(vcpu, 0);
  495. return 1;
  496. }
  497. return 0;
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  500. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  501. {
  502. struct kvm_cpuid_entry2 *best;
  503. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  504. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  505. }
  506. static void update_cpuid(struct kvm_vcpu *vcpu)
  507. {
  508. struct kvm_cpuid_entry2 *best;
  509. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  510. if (!best)
  511. return;
  512. /* Update OSXSAVE bit */
  513. if (cpu_has_xsave && best->function == 0x1) {
  514. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  515. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  516. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  517. }
  518. }
  519. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  520. {
  521. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  522. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  523. if (cr4 & CR4_RESERVED_BITS)
  524. return 1;
  525. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  526. return 1;
  527. if (is_long_mode(vcpu)) {
  528. if (!(cr4 & X86_CR4_PAE))
  529. return 1;
  530. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  531. && ((cr4 ^ old_cr4) & pdptr_bits)
  532. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  533. kvm_read_cr3(vcpu)))
  534. return 1;
  535. if (cr4 & X86_CR4_VMXE)
  536. return 1;
  537. kvm_x86_ops->set_cr4(vcpu, cr4);
  538. if ((cr4 ^ old_cr4) & pdptr_bits)
  539. kvm_mmu_reset_context(vcpu);
  540. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  541. update_cpuid(vcpu);
  542. return 0;
  543. }
  544. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  545. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  546. {
  547. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  548. kvm_mmu_sync_roots(vcpu);
  549. kvm_mmu_flush_tlb(vcpu);
  550. return 0;
  551. }
  552. if (is_long_mode(vcpu)) {
  553. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  554. return 1;
  555. } else {
  556. if (is_pae(vcpu)) {
  557. if (cr3 & CR3_PAE_RESERVED_BITS)
  558. return 1;
  559. if (is_paging(vcpu) &&
  560. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  561. return 1;
  562. }
  563. /*
  564. * We don't check reserved bits in nonpae mode, because
  565. * this isn't enforced, and VMware depends on this.
  566. */
  567. }
  568. /*
  569. * Does the new cr3 value map to physical memory? (Note, we
  570. * catch an invalid cr3 even in real-mode, because it would
  571. * cause trouble later on when we turn on paging anyway.)
  572. *
  573. * A real CPU would silently accept an invalid cr3 and would
  574. * attempt to use it - with largely undefined (and often hard
  575. * to debug) behavior on the guest side.
  576. */
  577. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  578. return 1;
  579. vcpu->arch.cr3 = cr3;
  580. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  581. vcpu->arch.mmu.new_cr3(vcpu);
  582. return 0;
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  585. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  586. {
  587. if (cr8 & CR8_RESERVED_BITS)
  588. return 1;
  589. if (irqchip_in_kernel(vcpu->kvm))
  590. kvm_lapic_set_tpr(vcpu, cr8);
  591. else
  592. vcpu->arch.cr8 = cr8;
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  596. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  597. {
  598. if (irqchip_in_kernel(vcpu->kvm))
  599. return kvm_lapic_get_cr8(vcpu);
  600. else
  601. return vcpu->arch.cr8;
  602. }
  603. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  604. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  605. {
  606. switch (dr) {
  607. case 0 ... 3:
  608. vcpu->arch.db[dr] = val;
  609. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  610. vcpu->arch.eff_db[dr] = val;
  611. break;
  612. case 4:
  613. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  614. return 1; /* #UD */
  615. /* fall through */
  616. case 6:
  617. if (val & 0xffffffff00000000ULL)
  618. return -1; /* #GP */
  619. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  620. break;
  621. case 5:
  622. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  623. return 1; /* #UD */
  624. /* fall through */
  625. default: /* 7 */
  626. if (val & 0xffffffff00000000ULL)
  627. return -1; /* #GP */
  628. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  629. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  630. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  631. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  632. }
  633. break;
  634. }
  635. return 0;
  636. }
  637. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  638. {
  639. int res;
  640. res = __kvm_set_dr(vcpu, dr, val);
  641. if (res > 0)
  642. kvm_queue_exception(vcpu, UD_VECTOR);
  643. else if (res < 0)
  644. kvm_inject_gp(vcpu, 0);
  645. return res;
  646. }
  647. EXPORT_SYMBOL_GPL(kvm_set_dr);
  648. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  649. {
  650. switch (dr) {
  651. case 0 ... 3:
  652. *val = vcpu->arch.db[dr];
  653. break;
  654. case 4:
  655. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  656. return 1;
  657. /* fall through */
  658. case 6:
  659. *val = vcpu->arch.dr6;
  660. break;
  661. case 5:
  662. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  663. return 1;
  664. /* fall through */
  665. default: /* 7 */
  666. *val = vcpu->arch.dr7;
  667. break;
  668. }
  669. return 0;
  670. }
  671. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  672. {
  673. if (_kvm_get_dr(vcpu, dr, val)) {
  674. kvm_queue_exception(vcpu, UD_VECTOR);
  675. return 1;
  676. }
  677. return 0;
  678. }
  679. EXPORT_SYMBOL_GPL(kvm_get_dr);
  680. /*
  681. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  682. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  683. *
  684. * This list is modified at module load time to reflect the
  685. * capabilities of the host cpu. This capabilities test skips MSRs that are
  686. * kvm-specific. Those are put in the beginning of the list.
  687. */
  688. #define KVM_SAVE_MSRS_BEGIN 8
  689. static u32 msrs_to_save[] = {
  690. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  691. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  692. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  693. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  694. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  695. MSR_STAR,
  696. #ifdef CONFIG_X86_64
  697. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  698. #endif
  699. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  700. };
  701. static unsigned num_msrs_to_save;
  702. static u32 emulated_msrs[] = {
  703. MSR_IA32_MISC_ENABLE,
  704. MSR_IA32_MCG_STATUS,
  705. MSR_IA32_MCG_CTL,
  706. };
  707. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  708. {
  709. u64 old_efer = vcpu->arch.efer;
  710. if (efer & efer_reserved_bits)
  711. return 1;
  712. if (is_paging(vcpu)
  713. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  714. return 1;
  715. if (efer & EFER_FFXSR) {
  716. struct kvm_cpuid_entry2 *feat;
  717. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  718. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  719. return 1;
  720. }
  721. if (efer & EFER_SVME) {
  722. struct kvm_cpuid_entry2 *feat;
  723. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  724. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  725. return 1;
  726. }
  727. efer &= ~EFER_LMA;
  728. efer |= vcpu->arch.efer & EFER_LMA;
  729. kvm_x86_ops->set_efer(vcpu, efer);
  730. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  731. /* Update reserved bits */
  732. if ((efer ^ old_efer) & EFER_NX)
  733. kvm_mmu_reset_context(vcpu);
  734. return 0;
  735. }
  736. void kvm_enable_efer_bits(u64 mask)
  737. {
  738. efer_reserved_bits &= ~mask;
  739. }
  740. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  741. /*
  742. * Writes msr value into into the appropriate "register".
  743. * Returns 0 on success, non-0 otherwise.
  744. * Assumes vcpu_load() was already called.
  745. */
  746. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  747. {
  748. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  749. }
  750. /*
  751. * Adapt set_msr() to msr_io()'s calling convention
  752. */
  753. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  754. {
  755. return kvm_set_msr(vcpu, index, *data);
  756. }
  757. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  758. {
  759. int version;
  760. int r;
  761. struct pvclock_wall_clock wc;
  762. struct timespec boot;
  763. if (!wall_clock)
  764. return;
  765. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  766. if (r)
  767. return;
  768. if (version & 1)
  769. ++version; /* first time write, random junk */
  770. ++version;
  771. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  772. /*
  773. * The guest calculates current wall clock time by adding
  774. * system time (updated by kvm_guest_time_update below) to the
  775. * wall clock specified here. guest system time equals host
  776. * system time for us, thus we must fill in host boot time here.
  777. */
  778. getboottime(&boot);
  779. wc.sec = boot.tv_sec;
  780. wc.nsec = boot.tv_nsec;
  781. wc.version = version;
  782. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  783. version++;
  784. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  785. }
  786. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  787. {
  788. uint32_t quotient, remainder;
  789. /* Don't try to replace with do_div(), this one calculates
  790. * "(dividend << 32) / divisor" */
  791. __asm__ ( "divl %4"
  792. : "=a" (quotient), "=d" (remainder)
  793. : "0" (0), "1" (dividend), "r" (divisor) );
  794. return quotient;
  795. }
  796. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  797. s8 *pshift, u32 *pmultiplier)
  798. {
  799. uint64_t scaled64;
  800. int32_t shift = 0;
  801. uint64_t tps64;
  802. uint32_t tps32;
  803. tps64 = base_khz * 1000LL;
  804. scaled64 = scaled_khz * 1000LL;
  805. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  806. tps64 >>= 1;
  807. shift--;
  808. }
  809. tps32 = (uint32_t)tps64;
  810. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  811. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  812. scaled64 >>= 1;
  813. else
  814. tps32 <<= 1;
  815. shift++;
  816. }
  817. *pshift = shift;
  818. *pmultiplier = div_frac(scaled64, tps32);
  819. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  820. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  821. }
  822. static inline u64 get_kernel_ns(void)
  823. {
  824. struct timespec ts;
  825. WARN_ON(preemptible());
  826. ktime_get_ts(&ts);
  827. monotonic_to_bootbased(&ts);
  828. return timespec_to_ns(&ts);
  829. }
  830. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  831. unsigned long max_tsc_khz;
  832. static inline int kvm_tsc_changes_freq(void)
  833. {
  834. int cpu = get_cpu();
  835. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  836. cpufreq_quick_get(cpu) != 0;
  837. put_cpu();
  838. return ret;
  839. }
  840. static inline u64 nsec_to_cycles(u64 nsec)
  841. {
  842. u64 ret;
  843. WARN_ON(preemptible());
  844. if (kvm_tsc_changes_freq())
  845. printk_once(KERN_WARNING
  846. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  847. ret = nsec * __this_cpu_read(cpu_tsc_khz);
  848. do_div(ret, USEC_PER_SEC);
  849. return ret;
  850. }
  851. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  852. {
  853. /* Compute a scale to convert nanoseconds in TSC cycles */
  854. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  855. &kvm->arch.virtual_tsc_shift,
  856. &kvm->arch.virtual_tsc_mult);
  857. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  858. }
  859. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  860. {
  861. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  862. vcpu->kvm->arch.virtual_tsc_mult,
  863. vcpu->kvm->arch.virtual_tsc_shift);
  864. tsc += vcpu->arch.last_tsc_write;
  865. return tsc;
  866. }
  867. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  868. {
  869. struct kvm *kvm = vcpu->kvm;
  870. u64 offset, ns, elapsed;
  871. unsigned long flags;
  872. s64 sdiff;
  873. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  874. offset = data - native_read_tsc();
  875. ns = get_kernel_ns();
  876. elapsed = ns - kvm->arch.last_tsc_nsec;
  877. sdiff = data - kvm->arch.last_tsc_write;
  878. if (sdiff < 0)
  879. sdiff = -sdiff;
  880. /*
  881. * Special case: close write to TSC within 5 seconds of
  882. * another CPU is interpreted as an attempt to synchronize
  883. * The 5 seconds is to accommodate host load / swapping as
  884. * well as any reset of TSC during the boot process.
  885. *
  886. * In that case, for a reliable TSC, we can match TSC offsets,
  887. * or make a best guest using elapsed value.
  888. */
  889. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  890. elapsed < 5ULL * NSEC_PER_SEC) {
  891. if (!check_tsc_unstable()) {
  892. offset = kvm->arch.last_tsc_offset;
  893. pr_debug("kvm: matched tsc offset for %llu\n", data);
  894. } else {
  895. u64 delta = nsec_to_cycles(elapsed);
  896. offset += delta;
  897. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  898. }
  899. ns = kvm->arch.last_tsc_nsec;
  900. }
  901. kvm->arch.last_tsc_nsec = ns;
  902. kvm->arch.last_tsc_write = data;
  903. kvm->arch.last_tsc_offset = offset;
  904. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  905. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  906. /* Reset of TSC must disable overshoot protection below */
  907. vcpu->arch.hv_clock.tsc_timestamp = 0;
  908. vcpu->arch.last_tsc_write = data;
  909. vcpu->arch.last_tsc_nsec = ns;
  910. }
  911. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  912. static int kvm_guest_time_update(struct kvm_vcpu *v)
  913. {
  914. unsigned long flags;
  915. struct kvm_vcpu_arch *vcpu = &v->arch;
  916. void *shared_kaddr;
  917. unsigned long this_tsc_khz;
  918. s64 kernel_ns, max_kernel_ns;
  919. u64 tsc_timestamp;
  920. /* Keep irq disabled to prevent changes to the clock */
  921. local_irq_save(flags);
  922. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  923. kernel_ns = get_kernel_ns();
  924. this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
  925. if (unlikely(this_tsc_khz == 0)) {
  926. local_irq_restore(flags);
  927. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  928. return 1;
  929. }
  930. /*
  931. * We may have to catch up the TSC to match elapsed wall clock
  932. * time for two reasons, even if kvmclock is used.
  933. * 1) CPU could have been running below the maximum TSC rate
  934. * 2) Broken TSC compensation resets the base at each VCPU
  935. * entry to avoid unknown leaps of TSC even when running
  936. * again on the same CPU. This may cause apparent elapsed
  937. * time to disappear, and the guest to stand still or run
  938. * very slowly.
  939. */
  940. if (vcpu->tsc_catchup) {
  941. u64 tsc = compute_guest_tsc(v, kernel_ns);
  942. if (tsc > tsc_timestamp) {
  943. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  944. tsc_timestamp = tsc;
  945. }
  946. }
  947. local_irq_restore(flags);
  948. if (!vcpu->time_page)
  949. return 0;
  950. /*
  951. * Time as measured by the TSC may go backwards when resetting the base
  952. * tsc_timestamp. The reason for this is that the TSC resolution is
  953. * higher than the resolution of the other clock scales. Thus, many
  954. * possible measurments of the TSC correspond to one measurement of any
  955. * other clock, and so a spread of values is possible. This is not a
  956. * problem for the computation of the nanosecond clock; with TSC rates
  957. * around 1GHZ, there can only be a few cycles which correspond to one
  958. * nanosecond value, and any path through this code will inevitably
  959. * take longer than that. However, with the kernel_ns value itself,
  960. * the precision may be much lower, down to HZ granularity. If the
  961. * first sampling of TSC against kernel_ns ends in the low part of the
  962. * range, and the second in the high end of the range, we can get:
  963. *
  964. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  965. *
  966. * As the sampling errors potentially range in the thousands of cycles,
  967. * it is possible such a time value has already been observed by the
  968. * guest. To protect against this, we must compute the system time as
  969. * observed by the guest and ensure the new system time is greater.
  970. */
  971. max_kernel_ns = 0;
  972. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  973. max_kernel_ns = vcpu->last_guest_tsc -
  974. vcpu->hv_clock.tsc_timestamp;
  975. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  976. vcpu->hv_clock.tsc_to_system_mul,
  977. vcpu->hv_clock.tsc_shift);
  978. max_kernel_ns += vcpu->last_kernel_ns;
  979. }
  980. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  981. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  982. &vcpu->hv_clock.tsc_shift,
  983. &vcpu->hv_clock.tsc_to_system_mul);
  984. vcpu->hw_tsc_khz = this_tsc_khz;
  985. }
  986. if (max_kernel_ns > kernel_ns)
  987. kernel_ns = max_kernel_ns;
  988. /* With all the info we got, fill in the values */
  989. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  990. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  991. vcpu->last_kernel_ns = kernel_ns;
  992. vcpu->last_guest_tsc = tsc_timestamp;
  993. vcpu->hv_clock.flags = 0;
  994. /*
  995. * The interface expects us to write an even number signaling that the
  996. * update is finished. Since the guest won't see the intermediate
  997. * state, we just increase by 2 at the end.
  998. */
  999. vcpu->hv_clock.version += 2;
  1000. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  1001. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1002. sizeof(vcpu->hv_clock));
  1003. kunmap_atomic(shared_kaddr, KM_USER0);
  1004. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1005. return 0;
  1006. }
  1007. static bool msr_mtrr_valid(unsigned msr)
  1008. {
  1009. switch (msr) {
  1010. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1011. case MSR_MTRRfix64K_00000:
  1012. case MSR_MTRRfix16K_80000:
  1013. case MSR_MTRRfix16K_A0000:
  1014. case MSR_MTRRfix4K_C0000:
  1015. case MSR_MTRRfix4K_C8000:
  1016. case MSR_MTRRfix4K_D0000:
  1017. case MSR_MTRRfix4K_D8000:
  1018. case MSR_MTRRfix4K_E0000:
  1019. case MSR_MTRRfix4K_E8000:
  1020. case MSR_MTRRfix4K_F0000:
  1021. case MSR_MTRRfix4K_F8000:
  1022. case MSR_MTRRdefType:
  1023. case MSR_IA32_CR_PAT:
  1024. return true;
  1025. case 0x2f8:
  1026. return true;
  1027. }
  1028. return false;
  1029. }
  1030. static bool valid_pat_type(unsigned t)
  1031. {
  1032. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1033. }
  1034. static bool valid_mtrr_type(unsigned t)
  1035. {
  1036. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1037. }
  1038. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1039. {
  1040. int i;
  1041. if (!msr_mtrr_valid(msr))
  1042. return false;
  1043. if (msr == MSR_IA32_CR_PAT) {
  1044. for (i = 0; i < 8; i++)
  1045. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1046. return false;
  1047. return true;
  1048. } else if (msr == MSR_MTRRdefType) {
  1049. if (data & ~0xcff)
  1050. return false;
  1051. return valid_mtrr_type(data & 0xff);
  1052. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1053. for (i = 0; i < 8 ; i++)
  1054. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1055. return false;
  1056. return true;
  1057. }
  1058. /* variable MTRRs */
  1059. return valid_mtrr_type(data & 0xff);
  1060. }
  1061. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1062. {
  1063. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1064. if (!mtrr_valid(vcpu, msr, data))
  1065. return 1;
  1066. if (msr == MSR_MTRRdefType) {
  1067. vcpu->arch.mtrr_state.def_type = data;
  1068. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1069. } else if (msr == MSR_MTRRfix64K_00000)
  1070. p[0] = data;
  1071. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1072. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1073. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1074. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1075. else if (msr == MSR_IA32_CR_PAT)
  1076. vcpu->arch.pat = data;
  1077. else { /* Variable MTRRs */
  1078. int idx, is_mtrr_mask;
  1079. u64 *pt;
  1080. idx = (msr - 0x200) / 2;
  1081. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1082. if (!is_mtrr_mask)
  1083. pt =
  1084. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1085. else
  1086. pt =
  1087. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1088. *pt = data;
  1089. }
  1090. kvm_mmu_reset_context(vcpu);
  1091. return 0;
  1092. }
  1093. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1094. {
  1095. u64 mcg_cap = vcpu->arch.mcg_cap;
  1096. unsigned bank_num = mcg_cap & 0xff;
  1097. switch (msr) {
  1098. case MSR_IA32_MCG_STATUS:
  1099. vcpu->arch.mcg_status = data;
  1100. break;
  1101. case MSR_IA32_MCG_CTL:
  1102. if (!(mcg_cap & MCG_CTL_P))
  1103. return 1;
  1104. if (data != 0 && data != ~(u64)0)
  1105. return -1;
  1106. vcpu->arch.mcg_ctl = data;
  1107. break;
  1108. default:
  1109. if (msr >= MSR_IA32_MC0_CTL &&
  1110. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1111. u32 offset = msr - MSR_IA32_MC0_CTL;
  1112. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1113. * some Linux kernels though clear bit 10 in bank 4 to
  1114. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1115. * this to avoid an uncatched #GP in the guest
  1116. */
  1117. if ((offset & 0x3) == 0 &&
  1118. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1119. return -1;
  1120. vcpu->arch.mce_banks[offset] = data;
  1121. break;
  1122. }
  1123. return 1;
  1124. }
  1125. return 0;
  1126. }
  1127. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1128. {
  1129. struct kvm *kvm = vcpu->kvm;
  1130. int lm = is_long_mode(vcpu);
  1131. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1132. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1133. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1134. : kvm->arch.xen_hvm_config.blob_size_32;
  1135. u32 page_num = data & ~PAGE_MASK;
  1136. u64 page_addr = data & PAGE_MASK;
  1137. u8 *page;
  1138. int r;
  1139. r = -E2BIG;
  1140. if (page_num >= blob_size)
  1141. goto out;
  1142. r = -ENOMEM;
  1143. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1144. if (!page)
  1145. goto out;
  1146. r = -EFAULT;
  1147. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1148. goto out_free;
  1149. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1150. goto out_free;
  1151. r = 0;
  1152. out_free:
  1153. kfree(page);
  1154. out:
  1155. return r;
  1156. }
  1157. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1158. {
  1159. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1160. }
  1161. static bool kvm_hv_msr_partition_wide(u32 msr)
  1162. {
  1163. bool r = false;
  1164. switch (msr) {
  1165. case HV_X64_MSR_GUEST_OS_ID:
  1166. case HV_X64_MSR_HYPERCALL:
  1167. r = true;
  1168. break;
  1169. }
  1170. return r;
  1171. }
  1172. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1173. {
  1174. struct kvm *kvm = vcpu->kvm;
  1175. switch (msr) {
  1176. case HV_X64_MSR_GUEST_OS_ID:
  1177. kvm->arch.hv_guest_os_id = data;
  1178. /* setting guest os id to zero disables hypercall page */
  1179. if (!kvm->arch.hv_guest_os_id)
  1180. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1181. break;
  1182. case HV_X64_MSR_HYPERCALL: {
  1183. u64 gfn;
  1184. unsigned long addr;
  1185. u8 instructions[4];
  1186. /* if guest os id is not set hypercall should remain disabled */
  1187. if (!kvm->arch.hv_guest_os_id)
  1188. break;
  1189. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1190. kvm->arch.hv_hypercall = data;
  1191. break;
  1192. }
  1193. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1194. addr = gfn_to_hva(kvm, gfn);
  1195. if (kvm_is_error_hva(addr))
  1196. return 1;
  1197. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1198. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1199. if (copy_to_user((void __user *)addr, instructions, 4))
  1200. return 1;
  1201. kvm->arch.hv_hypercall = data;
  1202. break;
  1203. }
  1204. default:
  1205. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1206. "data 0x%llx\n", msr, data);
  1207. return 1;
  1208. }
  1209. return 0;
  1210. }
  1211. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1212. {
  1213. switch (msr) {
  1214. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1215. unsigned long addr;
  1216. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1217. vcpu->arch.hv_vapic = data;
  1218. break;
  1219. }
  1220. addr = gfn_to_hva(vcpu->kvm, data >>
  1221. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1222. if (kvm_is_error_hva(addr))
  1223. return 1;
  1224. if (clear_user((void __user *)addr, PAGE_SIZE))
  1225. return 1;
  1226. vcpu->arch.hv_vapic = data;
  1227. break;
  1228. }
  1229. case HV_X64_MSR_EOI:
  1230. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1231. case HV_X64_MSR_ICR:
  1232. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1233. case HV_X64_MSR_TPR:
  1234. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1235. default:
  1236. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1237. "data 0x%llx\n", msr, data);
  1238. return 1;
  1239. }
  1240. return 0;
  1241. }
  1242. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1243. {
  1244. gpa_t gpa = data & ~0x3f;
  1245. /* Bits 2:5 are resrved, Should be zero */
  1246. if (data & 0x3c)
  1247. return 1;
  1248. vcpu->arch.apf.msr_val = data;
  1249. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1250. kvm_clear_async_pf_completion_queue(vcpu);
  1251. kvm_async_pf_hash_reset(vcpu);
  1252. return 0;
  1253. }
  1254. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1255. return 1;
  1256. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1257. kvm_async_pf_wakeup_all(vcpu);
  1258. return 0;
  1259. }
  1260. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1261. {
  1262. if (vcpu->arch.time_page) {
  1263. kvm_release_page_dirty(vcpu->arch.time_page);
  1264. vcpu->arch.time_page = NULL;
  1265. }
  1266. }
  1267. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1268. {
  1269. switch (msr) {
  1270. case MSR_EFER:
  1271. return set_efer(vcpu, data);
  1272. case MSR_K7_HWCR:
  1273. data &= ~(u64)0x40; /* ignore flush filter disable */
  1274. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1275. if (data != 0) {
  1276. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1277. data);
  1278. return 1;
  1279. }
  1280. break;
  1281. case MSR_FAM10H_MMIO_CONF_BASE:
  1282. if (data != 0) {
  1283. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1284. "0x%llx\n", data);
  1285. return 1;
  1286. }
  1287. break;
  1288. case MSR_AMD64_NB_CFG:
  1289. break;
  1290. case MSR_IA32_DEBUGCTLMSR:
  1291. if (!data) {
  1292. /* We support the non-activated case already */
  1293. break;
  1294. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1295. /* Values other than LBR and BTF are vendor-specific,
  1296. thus reserved and should throw a #GP */
  1297. return 1;
  1298. }
  1299. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1300. __func__, data);
  1301. break;
  1302. case MSR_IA32_UCODE_REV:
  1303. case MSR_IA32_UCODE_WRITE:
  1304. case MSR_VM_HSAVE_PA:
  1305. case MSR_AMD64_PATCH_LOADER:
  1306. break;
  1307. case 0x200 ... 0x2ff:
  1308. return set_msr_mtrr(vcpu, msr, data);
  1309. case MSR_IA32_APICBASE:
  1310. kvm_set_apic_base(vcpu, data);
  1311. break;
  1312. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1313. return kvm_x2apic_msr_write(vcpu, msr, data);
  1314. case MSR_IA32_MISC_ENABLE:
  1315. vcpu->arch.ia32_misc_enable_msr = data;
  1316. break;
  1317. case MSR_KVM_WALL_CLOCK_NEW:
  1318. case MSR_KVM_WALL_CLOCK:
  1319. vcpu->kvm->arch.wall_clock = data;
  1320. kvm_write_wall_clock(vcpu->kvm, data);
  1321. break;
  1322. case MSR_KVM_SYSTEM_TIME_NEW:
  1323. case MSR_KVM_SYSTEM_TIME: {
  1324. kvmclock_reset(vcpu);
  1325. vcpu->arch.time = data;
  1326. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1327. /* we verify if the enable bit is set... */
  1328. if (!(data & 1))
  1329. break;
  1330. /* ...but clean it before doing the actual write */
  1331. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1332. vcpu->arch.time_page =
  1333. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1334. if (is_error_page(vcpu->arch.time_page)) {
  1335. kvm_release_page_clean(vcpu->arch.time_page);
  1336. vcpu->arch.time_page = NULL;
  1337. }
  1338. break;
  1339. }
  1340. case MSR_KVM_ASYNC_PF_EN:
  1341. if (kvm_pv_enable_async_pf(vcpu, data))
  1342. return 1;
  1343. break;
  1344. case MSR_IA32_MCG_CTL:
  1345. case MSR_IA32_MCG_STATUS:
  1346. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1347. return set_msr_mce(vcpu, msr, data);
  1348. /* Performance counters are not protected by a CPUID bit,
  1349. * so we should check all of them in the generic path for the sake of
  1350. * cross vendor migration.
  1351. * Writing a zero into the event select MSRs disables them,
  1352. * which we perfectly emulate ;-). Any other value should be at least
  1353. * reported, some guests depend on them.
  1354. */
  1355. case MSR_P6_EVNTSEL0:
  1356. case MSR_P6_EVNTSEL1:
  1357. case MSR_K7_EVNTSEL0:
  1358. case MSR_K7_EVNTSEL1:
  1359. case MSR_K7_EVNTSEL2:
  1360. case MSR_K7_EVNTSEL3:
  1361. if (data != 0)
  1362. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1363. "0x%x data 0x%llx\n", msr, data);
  1364. break;
  1365. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1366. * so we ignore writes to make it happy.
  1367. */
  1368. case MSR_P6_PERFCTR0:
  1369. case MSR_P6_PERFCTR1:
  1370. case MSR_K7_PERFCTR0:
  1371. case MSR_K7_PERFCTR1:
  1372. case MSR_K7_PERFCTR2:
  1373. case MSR_K7_PERFCTR3:
  1374. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1375. "0x%x data 0x%llx\n", msr, data);
  1376. break;
  1377. case MSR_K7_CLK_CTL:
  1378. /*
  1379. * Ignore all writes to this no longer documented MSR.
  1380. * Writes are only relevant for old K7 processors,
  1381. * all pre-dating SVM, but a recommended workaround from
  1382. * AMD for these chips. It is possible to speicify the
  1383. * affected processor models on the command line, hence
  1384. * the need to ignore the workaround.
  1385. */
  1386. break;
  1387. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1388. if (kvm_hv_msr_partition_wide(msr)) {
  1389. int r;
  1390. mutex_lock(&vcpu->kvm->lock);
  1391. r = set_msr_hyperv_pw(vcpu, msr, data);
  1392. mutex_unlock(&vcpu->kvm->lock);
  1393. return r;
  1394. } else
  1395. return set_msr_hyperv(vcpu, msr, data);
  1396. break;
  1397. case MSR_IA32_BBL_CR_CTL3:
  1398. /* Drop writes to this legacy MSR -- see rdmsr
  1399. * counterpart for further detail.
  1400. */
  1401. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1402. break;
  1403. default:
  1404. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1405. return xen_hvm_config(vcpu, data);
  1406. if (!ignore_msrs) {
  1407. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1408. msr, data);
  1409. return 1;
  1410. } else {
  1411. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1412. msr, data);
  1413. break;
  1414. }
  1415. }
  1416. return 0;
  1417. }
  1418. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1419. /*
  1420. * Reads an msr value (of 'msr_index') into 'pdata'.
  1421. * Returns 0 on success, non-0 otherwise.
  1422. * Assumes vcpu_load() was already called.
  1423. */
  1424. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1425. {
  1426. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1427. }
  1428. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1429. {
  1430. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1431. if (!msr_mtrr_valid(msr))
  1432. return 1;
  1433. if (msr == MSR_MTRRdefType)
  1434. *pdata = vcpu->arch.mtrr_state.def_type +
  1435. (vcpu->arch.mtrr_state.enabled << 10);
  1436. else if (msr == MSR_MTRRfix64K_00000)
  1437. *pdata = p[0];
  1438. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1439. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1440. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1441. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1442. else if (msr == MSR_IA32_CR_PAT)
  1443. *pdata = vcpu->arch.pat;
  1444. else { /* Variable MTRRs */
  1445. int idx, is_mtrr_mask;
  1446. u64 *pt;
  1447. idx = (msr - 0x200) / 2;
  1448. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1449. if (!is_mtrr_mask)
  1450. pt =
  1451. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1452. else
  1453. pt =
  1454. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1455. *pdata = *pt;
  1456. }
  1457. return 0;
  1458. }
  1459. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1460. {
  1461. u64 data;
  1462. u64 mcg_cap = vcpu->arch.mcg_cap;
  1463. unsigned bank_num = mcg_cap & 0xff;
  1464. switch (msr) {
  1465. case MSR_IA32_P5_MC_ADDR:
  1466. case MSR_IA32_P5_MC_TYPE:
  1467. data = 0;
  1468. break;
  1469. case MSR_IA32_MCG_CAP:
  1470. data = vcpu->arch.mcg_cap;
  1471. break;
  1472. case MSR_IA32_MCG_CTL:
  1473. if (!(mcg_cap & MCG_CTL_P))
  1474. return 1;
  1475. data = vcpu->arch.mcg_ctl;
  1476. break;
  1477. case MSR_IA32_MCG_STATUS:
  1478. data = vcpu->arch.mcg_status;
  1479. break;
  1480. default:
  1481. if (msr >= MSR_IA32_MC0_CTL &&
  1482. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1483. u32 offset = msr - MSR_IA32_MC0_CTL;
  1484. data = vcpu->arch.mce_banks[offset];
  1485. break;
  1486. }
  1487. return 1;
  1488. }
  1489. *pdata = data;
  1490. return 0;
  1491. }
  1492. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1493. {
  1494. u64 data = 0;
  1495. struct kvm *kvm = vcpu->kvm;
  1496. switch (msr) {
  1497. case HV_X64_MSR_GUEST_OS_ID:
  1498. data = kvm->arch.hv_guest_os_id;
  1499. break;
  1500. case HV_X64_MSR_HYPERCALL:
  1501. data = kvm->arch.hv_hypercall;
  1502. break;
  1503. default:
  1504. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1505. return 1;
  1506. }
  1507. *pdata = data;
  1508. return 0;
  1509. }
  1510. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1511. {
  1512. u64 data = 0;
  1513. switch (msr) {
  1514. case HV_X64_MSR_VP_INDEX: {
  1515. int r;
  1516. struct kvm_vcpu *v;
  1517. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1518. if (v == vcpu)
  1519. data = r;
  1520. break;
  1521. }
  1522. case HV_X64_MSR_EOI:
  1523. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1524. case HV_X64_MSR_ICR:
  1525. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1526. case HV_X64_MSR_TPR:
  1527. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1528. default:
  1529. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1530. return 1;
  1531. }
  1532. *pdata = data;
  1533. return 0;
  1534. }
  1535. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1536. {
  1537. u64 data;
  1538. switch (msr) {
  1539. case MSR_IA32_PLATFORM_ID:
  1540. case MSR_IA32_UCODE_REV:
  1541. case MSR_IA32_EBL_CR_POWERON:
  1542. case MSR_IA32_DEBUGCTLMSR:
  1543. case MSR_IA32_LASTBRANCHFROMIP:
  1544. case MSR_IA32_LASTBRANCHTOIP:
  1545. case MSR_IA32_LASTINTFROMIP:
  1546. case MSR_IA32_LASTINTTOIP:
  1547. case MSR_K8_SYSCFG:
  1548. case MSR_K7_HWCR:
  1549. case MSR_VM_HSAVE_PA:
  1550. case MSR_P6_PERFCTR0:
  1551. case MSR_P6_PERFCTR1:
  1552. case MSR_P6_EVNTSEL0:
  1553. case MSR_P6_EVNTSEL1:
  1554. case MSR_K7_EVNTSEL0:
  1555. case MSR_K7_PERFCTR0:
  1556. case MSR_K8_INT_PENDING_MSG:
  1557. case MSR_AMD64_NB_CFG:
  1558. case MSR_FAM10H_MMIO_CONF_BASE:
  1559. data = 0;
  1560. break;
  1561. case MSR_MTRRcap:
  1562. data = 0x500 | KVM_NR_VAR_MTRR;
  1563. break;
  1564. case 0x200 ... 0x2ff:
  1565. return get_msr_mtrr(vcpu, msr, pdata);
  1566. case 0xcd: /* fsb frequency */
  1567. data = 3;
  1568. break;
  1569. /*
  1570. * MSR_EBC_FREQUENCY_ID
  1571. * Conservative value valid for even the basic CPU models.
  1572. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1573. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1574. * and 266MHz for model 3, or 4. Set Core Clock
  1575. * Frequency to System Bus Frequency Ratio to 1 (bits
  1576. * 31:24) even though these are only valid for CPU
  1577. * models > 2, however guests may end up dividing or
  1578. * multiplying by zero otherwise.
  1579. */
  1580. case MSR_EBC_FREQUENCY_ID:
  1581. data = 1 << 24;
  1582. break;
  1583. case MSR_IA32_APICBASE:
  1584. data = kvm_get_apic_base(vcpu);
  1585. break;
  1586. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1587. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1588. break;
  1589. case MSR_IA32_MISC_ENABLE:
  1590. data = vcpu->arch.ia32_misc_enable_msr;
  1591. break;
  1592. case MSR_IA32_PERF_STATUS:
  1593. /* TSC increment by tick */
  1594. data = 1000ULL;
  1595. /* CPU multiplier */
  1596. data |= (((uint64_t)4ULL) << 40);
  1597. break;
  1598. case MSR_EFER:
  1599. data = vcpu->arch.efer;
  1600. break;
  1601. case MSR_KVM_WALL_CLOCK:
  1602. case MSR_KVM_WALL_CLOCK_NEW:
  1603. data = vcpu->kvm->arch.wall_clock;
  1604. break;
  1605. case MSR_KVM_SYSTEM_TIME:
  1606. case MSR_KVM_SYSTEM_TIME_NEW:
  1607. data = vcpu->arch.time;
  1608. break;
  1609. case MSR_KVM_ASYNC_PF_EN:
  1610. data = vcpu->arch.apf.msr_val;
  1611. break;
  1612. case MSR_IA32_P5_MC_ADDR:
  1613. case MSR_IA32_P5_MC_TYPE:
  1614. case MSR_IA32_MCG_CAP:
  1615. case MSR_IA32_MCG_CTL:
  1616. case MSR_IA32_MCG_STATUS:
  1617. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1618. return get_msr_mce(vcpu, msr, pdata);
  1619. case MSR_K7_CLK_CTL:
  1620. /*
  1621. * Provide expected ramp-up count for K7. All other
  1622. * are set to zero, indicating minimum divisors for
  1623. * every field.
  1624. *
  1625. * This prevents guest kernels on AMD host with CPU
  1626. * type 6, model 8 and higher from exploding due to
  1627. * the rdmsr failing.
  1628. */
  1629. data = 0x20000000;
  1630. break;
  1631. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1632. if (kvm_hv_msr_partition_wide(msr)) {
  1633. int r;
  1634. mutex_lock(&vcpu->kvm->lock);
  1635. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1636. mutex_unlock(&vcpu->kvm->lock);
  1637. return r;
  1638. } else
  1639. return get_msr_hyperv(vcpu, msr, pdata);
  1640. break;
  1641. case MSR_IA32_BBL_CR_CTL3:
  1642. /* This legacy MSR exists but isn't fully documented in current
  1643. * silicon. It is however accessed by winxp in very narrow
  1644. * scenarios where it sets bit #19, itself documented as
  1645. * a "reserved" bit. Best effort attempt to source coherent
  1646. * read data here should the balance of the register be
  1647. * interpreted by the guest:
  1648. *
  1649. * L2 cache control register 3: 64GB range, 256KB size,
  1650. * enabled, latency 0x1, configured
  1651. */
  1652. data = 0xbe702111;
  1653. break;
  1654. default:
  1655. if (!ignore_msrs) {
  1656. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1657. return 1;
  1658. } else {
  1659. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1660. data = 0;
  1661. }
  1662. break;
  1663. }
  1664. *pdata = data;
  1665. return 0;
  1666. }
  1667. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1668. /*
  1669. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1670. *
  1671. * @return number of msrs set successfully.
  1672. */
  1673. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1674. struct kvm_msr_entry *entries,
  1675. int (*do_msr)(struct kvm_vcpu *vcpu,
  1676. unsigned index, u64 *data))
  1677. {
  1678. int i, idx;
  1679. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1680. for (i = 0; i < msrs->nmsrs; ++i)
  1681. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1682. break;
  1683. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1684. return i;
  1685. }
  1686. /*
  1687. * Read or write a bunch of msrs. Parameters are user addresses.
  1688. *
  1689. * @return number of msrs set successfully.
  1690. */
  1691. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1692. int (*do_msr)(struct kvm_vcpu *vcpu,
  1693. unsigned index, u64 *data),
  1694. int writeback)
  1695. {
  1696. struct kvm_msrs msrs;
  1697. struct kvm_msr_entry *entries;
  1698. int r, n;
  1699. unsigned size;
  1700. r = -EFAULT;
  1701. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1702. goto out;
  1703. r = -E2BIG;
  1704. if (msrs.nmsrs >= MAX_IO_MSRS)
  1705. goto out;
  1706. r = -ENOMEM;
  1707. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1708. entries = kmalloc(size, GFP_KERNEL);
  1709. if (!entries)
  1710. goto out;
  1711. r = -EFAULT;
  1712. if (copy_from_user(entries, user_msrs->entries, size))
  1713. goto out_free;
  1714. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1715. if (r < 0)
  1716. goto out_free;
  1717. r = -EFAULT;
  1718. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1719. goto out_free;
  1720. r = n;
  1721. out_free:
  1722. kfree(entries);
  1723. out:
  1724. return r;
  1725. }
  1726. int kvm_dev_ioctl_check_extension(long ext)
  1727. {
  1728. int r;
  1729. switch (ext) {
  1730. case KVM_CAP_IRQCHIP:
  1731. case KVM_CAP_HLT:
  1732. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1733. case KVM_CAP_SET_TSS_ADDR:
  1734. case KVM_CAP_EXT_CPUID:
  1735. case KVM_CAP_CLOCKSOURCE:
  1736. case KVM_CAP_PIT:
  1737. case KVM_CAP_NOP_IO_DELAY:
  1738. case KVM_CAP_MP_STATE:
  1739. case KVM_CAP_SYNC_MMU:
  1740. case KVM_CAP_USER_NMI:
  1741. case KVM_CAP_REINJECT_CONTROL:
  1742. case KVM_CAP_IRQ_INJECT_STATUS:
  1743. case KVM_CAP_ASSIGN_DEV_IRQ:
  1744. case KVM_CAP_IRQFD:
  1745. case KVM_CAP_IOEVENTFD:
  1746. case KVM_CAP_PIT2:
  1747. case KVM_CAP_PIT_STATE2:
  1748. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1749. case KVM_CAP_XEN_HVM:
  1750. case KVM_CAP_ADJUST_CLOCK:
  1751. case KVM_CAP_VCPU_EVENTS:
  1752. case KVM_CAP_HYPERV:
  1753. case KVM_CAP_HYPERV_VAPIC:
  1754. case KVM_CAP_HYPERV_SPIN:
  1755. case KVM_CAP_PCI_SEGMENT:
  1756. case KVM_CAP_DEBUGREGS:
  1757. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1758. case KVM_CAP_XSAVE:
  1759. case KVM_CAP_ASYNC_PF:
  1760. r = 1;
  1761. break;
  1762. case KVM_CAP_COALESCED_MMIO:
  1763. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1764. break;
  1765. case KVM_CAP_VAPIC:
  1766. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1767. break;
  1768. case KVM_CAP_NR_VCPUS:
  1769. r = KVM_MAX_VCPUS;
  1770. break;
  1771. case KVM_CAP_NR_MEMSLOTS:
  1772. r = KVM_MEMORY_SLOTS;
  1773. break;
  1774. case KVM_CAP_PV_MMU: /* obsolete */
  1775. r = 0;
  1776. break;
  1777. case KVM_CAP_IOMMU:
  1778. r = iommu_found();
  1779. break;
  1780. case KVM_CAP_MCE:
  1781. r = KVM_MAX_MCE_BANKS;
  1782. break;
  1783. case KVM_CAP_XCRS:
  1784. r = cpu_has_xsave;
  1785. break;
  1786. default:
  1787. r = 0;
  1788. break;
  1789. }
  1790. return r;
  1791. }
  1792. long kvm_arch_dev_ioctl(struct file *filp,
  1793. unsigned int ioctl, unsigned long arg)
  1794. {
  1795. void __user *argp = (void __user *)arg;
  1796. long r;
  1797. switch (ioctl) {
  1798. case KVM_GET_MSR_INDEX_LIST: {
  1799. struct kvm_msr_list __user *user_msr_list = argp;
  1800. struct kvm_msr_list msr_list;
  1801. unsigned n;
  1802. r = -EFAULT;
  1803. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1804. goto out;
  1805. n = msr_list.nmsrs;
  1806. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1807. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1808. goto out;
  1809. r = -E2BIG;
  1810. if (n < msr_list.nmsrs)
  1811. goto out;
  1812. r = -EFAULT;
  1813. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1814. num_msrs_to_save * sizeof(u32)))
  1815. goto out;
  1816. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1817. &emulated_msrs,
  1818. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1819. goto out;
  1820. r = 0;
  1821. break;
  1822. }
  1823. case KVM_GET_SUPPORTED_CPUID: {
  1824. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1825. struct kvm_cpuid2 cpuid;
  1826. r = -EFAULT;
  1827. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1828. goto out;
  1829. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1830. cpuid_arg->entries);
  1831. if (r)
  1832. goto out;
  1833. r = -EFAULT;
  1834. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1835. goto out;
  1836. r = 0;
  1837. break;
  1838. }
  1839. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1840. u64 mce_cap;
  1841. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1842. r = -EFAULT;
  1843. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1844. goto out;
  1845. r = 0;
  1846. break;
  1847. }
  1848. default:
  1849. r = -EINVAL;
  1850. }
  1851. out:
  1852. return r;
  1853. }
  1854. static void wbinvd_ipi(void *garbage)
  1855. {
  1856. wbinvd();
  1857. }
  1858. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1859. {
  1860. return vcpu->kvm->arch.iommu_domain &&
  1861. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1862. }
  1863. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1864. {
  1865. /* Address WBINVD may be executed by guest */
  1866. if (need_emulate_wbinvd(vcpu)) {
  1867. if (kvm_x86_ops->has_wbinvd_exit())
  1868. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1869. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1870. smp_call_function_single(vcpu->cpu,
  1871. wbinvd_ipi, NULL, 1);
  1872. }
  1873. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1874. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1875. /* Make sure TSC doesn't go backwards */
  1876. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1877. native_read_tsc() - vcpu->arch.last_host_tsc;
  1878. if (tsc_delta < 0)
  1879. mark_tsc_unstable("KVM discovered backwards TSC");
  1880. if (check_tsc_unstable()) {
  1881. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1882. vcpu->arch.tsc_catchup = 1;
  1883. }
  1884. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1885. if (vcpu->cpu != cpu)
  1886. kvm_migrate_timers(vcpu);
  1887. vcpu->cpu = cpu;
  1888. }
  1889. }
  1890. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1891. {
  1892. kvm_x86_ops->vcpu_put(vcpu);
  1893. kvm_put_guest_fpu(vcpu);
  1894. vcpu->arch.last_host_tsc = native_read_tsc();
  1895. }
  1896. static int is_efer_nx(void)
  1897. {
  1898. unsigned long long efer = 0;
  1899. rdmsrl_safe(MSR_EFER, &efer);
  1900. return efer & EFER_NX;
  1901. }
  1902. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1903. {
  1904. int i;
  1905. struct kvm_cpuid_entry2 *e, *entry;
  1906. entry = NULL;
  1907. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1908. e = &vcpu->arch.cpuid_entries[i];
  1909. if (e->function == 0x80000001) {
  1910. entry = e;
  1911. break;
  1912. }
  1913. }
  1914. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1915. entry->edx &= ~(1 << 20);
  1916. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1917. }
  1918. }
  1919. /* when an old userspace process fills a new kernel module */
  1920. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1921. struct kvm_cpuid *cpuid,
  1922. struct kvm_cpuid_entry __user *entries)
  1923. {
  1924. int r, i;
  1925. struct kvm_cpuid_entry *cpuid_entries;
  1926. r = -E2BIG;
  1927. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1928. goto out;
  1929. r = -ENOMEM;
  1930. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1931. if (!cpuid_entries)
  1932. goto out;
  1933. r = -EFAULT;
  1934. if (copy_from_user(cpuid_entries, entries,
  1935. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1936. goto out_free;
  1937. for (i = 0; i < cpuid->nent; i++) {
  1938. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1939. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1940. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1941. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1942. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1943. vcpu->arch.cpuid_entries[i].index = 0;
  1944. vcpu->arch.cpuid_entries[i].flags = 0;
  1945. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1946. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1947. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1948. }
  1949. vcpu->arch.cpuid_nent = cpuid->nent;
  1950. cpuid_fix_nx_cap(vcpu);
  1951. r = 0;
  1952. kvm_apic_set_version(vcpu);
  1953. kvm_x86_ops->cpuid_update(vcpu);
  1954. update_cpuid(vcpu);
  1955. out_free:
  1956. vfree(cpuid_entries);
  1957. out:
  1958. return r;
  1959. }
  1960. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1961. struct kvm_cpuid2 *cpuid,
  1962. struct kvm_cpuid_entry2 __user *entries)
  1963. {
  1964. int r;
  1965. r = -E2BIG;
  1966. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1967. goto out;
  1968. r = -EFAULT;
  1969. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1970. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1971. goto out;
  1972. vcpu->arch.cpuid_nent = cpuid->nent;
  1973. kvm_apic_set_version(vcpu);
  1974. kvm_x86_ops->cpuid_update(vcpu);
  1975. update_cpuid(vcpu);
  1976. return 0;
  1977. out:
  1978. return r;
  1979. }
  1980. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1981. struct kvm_cpuid2 *cpuid,
  1982. struct kvm_cpuid_entry2 __user *entries)
  1983. {
  1984. int r;
  1985. r = -E2BIG;
  1986. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1987. goto out;
  1988. r = -EFAULT;
  1989. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1990. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1991. goto out;
  1992. return 0;
  1993. out:
  1994. cpuid->nent = vcpu->arch.cpuid_nent;
  1995. return r;
  1996. }
  1997. static void cpuid_mask(u32 *word, int wordnum)
  1998. {
  1999. *word &= boot_cpu_data.x86_capability[wordnum];
  2000. }
  2001. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2002. u32 index)
  2003. {
  2004. entry->function = function;
  2005. entry->index = index;
  2006. cpuid_count(entry->function, entry->index,
  2007. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2008. entry->flags = 0;
  2009. }
  2010. #define F(x) bit(X86_FEATURE_##x)
  2011. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2012. u32 index, int *nent, int maxnent)
  2013. {
  2014. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2015. #ifdef CONFIG_X86_64
  2016. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2017. ? F(GBPAGES) : 0;
  2018. unsigned f_lm = F(LM);
  2019. #else
  2020. unsigned f_gbpages = 0;
  2021. unsigned f_lm = 0;
  2022. #endif
  2023. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2024. /* cpuid 1.edx */
  2025. const u32 kvm_supported_word0_x86_features =
  2026. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2027. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2028. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2029. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2030. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2031. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2032. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2033. 0 /* HTT, TM, Reserved, PBE */;
  2034. /* cpuid 0x80000001.edx */
  2035. const u32 kvm_supported_word1_x86_features =
  2036. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2037. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2038. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2039. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2040. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2041. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2042. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2043. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2044. /* cpuid 1.ecx */
  2045. const u32 kvm_supported_word4_x86_features =
  2046. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2047. 0 /* DS-CPL, VMX, SMX, EST */ |
  2048. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2049. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2050. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2051. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2052. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2053. F(F16C);
  2054. /* cpuid 0x80000001.ecx */
  2055. const u32 kvm_supported_word6_x86_features =
  2056. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2057. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2058. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2059. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2060. /* all calls to cpuid_count() should be made on the same cpu */
  2061. get_cpu();
  2062. do_cpuid_1_ent(entry, function, index);
  2063. ++*nent;
  2064. switch (function) {
  2065. case 0:
  2066. entry->eax = min(entry->eax, (u32)0xd);
  2067. break;
  2068. case 1:
  2069. entry->edx &= kvm_supported_word0_x86_features;
  2070. cpuid_mask(&entry->edx, 0);
  2071. entry->ecx &= kvm_supported_word4_x86_features;
  2072. cpuid_mask(&entry->ecx, 4);
  2073. /* we support x2apic emulation even if host does not support
  2074. * it since we emulate x2apic in software */
  2075. entry->ecx |= F(X2APIC);
  2076. break;
  2077. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2078. * may return different values. This forces us to get_cpu() before
  2079. * issuing the first command, and also to emulate this annoying behavior
  2080. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2081. case 2: {
  2082. int t, times = entry->eax & 0xff;
  2083. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2084. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2085. for (t = 1; t < times && *nent < maxnent; ++t) {
  2086. do_cpuid_1_ent(&entry[t], function, 0);
  2087. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2088. ++*nent;
  2089. }
  2090. break;
  2091. }
  2092. /* function 4 and 0xb have additional index. */
  2093. case 4: {
  2094. int i, cache_type;
  2095. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2096. /* read more entries until cache_type is zero */
  2097. for (i = 1; *nent < maxnent; ++i) {
  2098. cache_type = entry[i - 1].eax & 0x1f;
  2099. if (!cache_type)
  2100. break;
  2101. do_cpuid_1_ent(&entry[i], function, i);
  2102. entry[i].flags |=
  2103. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2104. ++*nent;
  2105. }
  2106. break;
  2107. }
  2108. case 0xb: {
  2109. int i, level_type;
  2110. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2111. /* read more entries until level_type is zero */
  2112. for (i = 1; *nent < maxnent; ++i) {
  2113. level_type = entry[i - 1].ecx & 0xff00;
  2114. if (!level_type)
  2115. break;
  2116. do_cpuid_1_ent(&entry[i], function, i);
  2117. entry[i].flags |=
  2118. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2119. ++*nent;
  2120. }
  2121. break;
  2122. }
  2123. case 0xd: {
  2124. int i;
  2125. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2126. for (i = 1; *nent < maxnent; ++i) {
  2127. if (entry[i - 1].eax == 0 && i != 2)
  2128. break;
  2129. do_cpuid_1_ent(&entry[i], function, i);
  2130. entry[i].flags |=
  2131. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2132. ++*nent;
  2133. }
  2134. break;
  2135. }
  2136. case KVM_CPUID_SIGNATURE: {
  2137. char signature[12] = "KVMKVMKVM\0\0";
  2138. u32 *sigptr = (u32 *)signature;
  2139. entry->eax = 0;
  2140. entry->ebx = sigptr[0];
  2141. entry->ecx = sigptr[1];
  2142. entry->edx = sigptr[2];
  2143. break;
  2144. }
  2145. case KVM_CPUID_FEATURES:
  2146. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2147. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2148. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2149. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2150. entry->ebx = 0;
  2151. entry->ecx = 0;
  2152. entry->edx = 0;
  2153. break;
  2154. case 0x80000000:
  2155. entry->eax = min(entry->eax, 0x8000001a);
  2156. break;
  2157. case 0x80000001:
  2158. entry->edx &= kvm_supported_word1_x86_features;
  2159. cpuid_mask(&entry->edx, 1);
  2160. entry->ecx &= kvm_supported_word6_x86_features;
  2161. cpuid_mask(&entry->ecx, 6);
  2162. break;
  2163. }
  2164. kvm_x86_ops->set_supported_cpuid(function, entry);
  2165. put_cpu();
  2166. }
  2167. #undef F
  2168. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2169. struct kvm_cpuid_entry2 __user *entries)
  2170. {
  2171. struct kvm_cpuid_entry2 *cpuid_entries;
  2172. int limit, nent = 0, r = -E2BIG;
  2173. u32 func;
  2174. if (cpuid->nent < 1)
  2175. goto out;
  2176. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2177. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2178. r = -ENOMEM;
  2179. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2180. if (!cpuid_entries)
  2181. goto out;
  2182. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2183. limit = cpuid_entries[0].eax;
  2184. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2185. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2186. &nent, cpuid->nent);
  2187. r = -E2BIG;
  2188. if (nent >= cpuid->nent)
  2189. goto out_free;
  2190. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2191. limit = cpuid_entries[nent - 1].eax;
  2192. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2193. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2194. &nent, cpuid->nent);
  2195. r = -E2BIG;
  2196. if (nent >= cpuid->nent)
  2197. goto out_free;
  2198. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2199. cpuid->nent);
  2200. r = -E2BIG;
  2201. if (nent >= cpuid->nent)
  2202. goto out_free;
  2203. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2204. cpuid->nent);
  2205. r = -E2BIG;
  2206. if (nent >= cpuid->nent)
  2207. goto out_free;
  2208. r = -EFAULT;
  2209. if (copy_to_user(entries, cpuid_entries,
  2210. nent * sizeof(struct kvm_cpuid_entry2)))
  2211. goto out_free;
  2212. cpuid->nent = nent;
  2213. r = 0;
  2214. out_free:
  2215. vfree(cpuid_entries);
  2216. out:
  2217. return r;
  2218. }
  2219. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2220. struct kvm_lapic_state *s)
  2221. {
  2222. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2223. return 0;
  2224. }
  2225. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2226. struct kvm_lapic_state *s)
  2227. {
  2228. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2229. kvm_apic_post_state_restore(vcpu);
  2230. update_cr8_intercept(vcpu);
  2231. return 0;
  2232. }
  2233. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2234. struct kvm_interrupt *irq)
  2235. {
  2236. if (irq->irq < 0 || irq->irq >= 256)
  2237. return -EINVAL;
  2238. if (irqchip_in_kernel(vcpu->kvm))
  2239. return -ENXIO;
  2240. kvm_queue_interrupt(vcpu, irq->irq, false);
  2241. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2242. return 0;
  2243. }
  2244. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2245. {
  2246. kvm_inject_nmi(vcpu);
  2247. return 0;
  2248. }
  2249. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2250. struct kvm_tpr_access_ctl *tac)
  2251. {
  2252. if (tac->flags)
  2253. return -EINVAL;
  2254. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2255. return 0;
  2256. }
  2257. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2258. u64 mcg_cap)
  2259. {
  2260. int r;
  2261. unsigned bank_num = mcg_cap & 0xff, bank;
  2262. r = -EINVAL;
  2263. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2264. goto out;
  2265. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2266. goto out;
  2267. r = 0;
  2268. vcpu->arch.mcg_cap = mcg_cap;
  2269. /* Init IA32_MCG_CTL to all 1s */
  2270. if (mcg_cap & MCG_CTL_P)
  2271. vcpu->arch.mcg_ctl = ~(u64)0;
  2272. /* Init IA32_MCi_CTL to all 1s */
  2273. for (bank = 0; bank < bank_num; bank++)
  2274. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2275. out:
  2276. return r;
  2277. }
  2278. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2279. struct kvm_x86_mce *mce)
  2280. {
  2281. u64 mcg_cap = vcpu->arch.mcg_cap;
  2282. unsigned bank_num = mcg_cap & 0xff;
  2283. u64 *banks = vcpu->arch.mce_banks;
  2284. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2285. return -EINVAL;
  2286. /*
  2287. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2288. * reporting is disabled
  2289. */
  2290. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2291. vcpu->arch.mcg_ctl != ~(u64)0)
  2292. return 0;
  2293. banks += 4 * mce->bank;
  2294. /*
  2295. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2296. * reporting is disabled for the bank
  2297. */
  2298. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2299. return 0;
  2300. if (mce->status & MCI_STATUS_UC) {
  2301. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2302. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2303. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2304. return 0;
  2305. }
  2306. if (banks[1] & MCI_STATUS_VAL)
  2307. mce->status |= MCI_STATUS_OVER;
  2308. banks[2] = mce->addr;
  2309. banks[3] = mce->misc;
  2310. vcpu->arch.mcg_status = mce->mcg_status;
  2311. banks[1] = mce->status;
  2312. kvm_queue_exception(vcpu, MC_VECTOR);
  2313. } else if (!(banks[1] & MCI_STATUS_VAL)
  2314. || !(banks[1] & MCI_STATUS_UC)) {
  2315. if (banks[1] & MCI_STATUS_VAL)
  2316. mce->status |= MCI_STATUS_OVER;
  2317. banks[2] = mce->addr;
  2318. banks[3] = mce->misc;
  2319. banks[1] = mce->status;
  2320. } else
  2321. banks[1] |= MCI_STATUS_OVER;
  2322. return 0;
  2323. }
  2324. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2325. struct kvm_vcpu_events *events)
  2326. {
  2327. events->exception.injected =
  2328. vcpu->arch.exception.pending &&
  2329. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2330. events->exception.nr = vcpu->arch.exception.nr;
  2331. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2332. events->exception.pad = 0;
  2333. events->exception.error_code = vcpu->arch.exception.error_code;
  2334. events->interrupt.injected =
  2335. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2336. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2337. events->interrupt.soft = 0;
  2338. events->interrupt.shadow =
  2339. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2340. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2341. events->nmi.injected = vcpu->arch.nmi_injected;
  2342. events->nmi.pending = vcpu->arch.nmi_pending;
  2343. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2344. events->nmi.pad = 0;
  2345. events->sipi_vector = vcpu->arch.sipi_vector;
  2346. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2347. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2348. | KVM_VCPUEVENT_VALID_SHADOW);
  2349. memset(&events->reserved, 0, sizeof(events->reserved));
  2350. }
  2351. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2352. struct kvm_vcpu_events *events)
  2353. {
  2354. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2355. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2356. | KVM_VCPUEVENT_VALID_SHADOW))
  2357. return -EINVAL;
  2358. vcpu->arch.exception.pending = events->exception.injected;
  2359. vcpu->arch.exception.nr = events->exception.nr;
  2360. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2361. vcpu->arch.exception.error_code = events->exception.error_code;
  2362. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2363. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2364. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2365. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2366. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2367. events->interrupt.shadow);
  2368. vcpu->arch.nmi_injected = events->nmi.injected;
  2369. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2370. vcpu->arch.nmi_pending = events->nmi.pending;
  2371. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2372. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2373. vcpu->arch.sipi_vector = events->sipi_vector;
  2374. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2375. return 0;
  2376. }
  2377. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2378. struct kvm_debugregs *dbgregs)
  2379. {
  2380. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2381. dbgregs->dr6 = vcpu->arch.dr6;
  2382. dbgregs->dr7 = vcpu->arch.dr7;
  2383. dbgregs->flags = 0;
  2384. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2385. }
  2386. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2387. struct kvm_debugregs *dbgregs)
  2388. {
  2389. if (dbgregs->flags)
  2390. return -EINVAL;
  2391. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2392. vcpu->arch.dr6 = dbgregs->dr6;
  2393. vcpu->arch.dr7 = dbgregs->dr7;
  2394. return 0;
  2395. }
  2396. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2397. struct kvm_xsave *guest_xsave)
  2398. {
  2399. if (cpu_has_xsave)
  2400. memcpy(guest_xsave->region,
  2401. &vcpu->arch.guest_fpu.state->xsave,
  2402. xstate_size);
  2403. else {
  2404. memcpy(guest_xsave->region,
  2405. &vcpu->arch.guest_fpu.state->fxsave,
  2406. sizeof(struct i387_fxsave_struct));
  2407. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2408. XSTATE_FPSSE;
  2409. }
  2410. }
  2411. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2412. struct kvm_xsave *guest_xsave)
  2413. {
  2414. u64 xstate_bv =
  2415. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2416. if (cpu_has_xsave)
  2417. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2418. guest_xsave->region, xstate_size);
  2419. else {
  2420. if (xstate_bv & ~XSTATE_FPSSE)
  2421. return -EINVAL;
  2422. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2423. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2424. }
  2425. return 0;
  2426. }
  2427. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2428. struct kvm_xcrs *guest_xcrs)
  2429. {
  2430. if (!cpu_has_xsave) {
  2431. guest_xcrs->nr_xcrs = 0;
  2432. return;
  2433. }
  2434. guest_xcrs->nr_xcrs = 1;
  2435. guest_xcrs->flags = 0;
  2436. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2437. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2438. }
  2439. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2440. struct kvm_xcrs *guest_xcrs)
  2441. {
  2442. int i, r = 0;
  2443. if (!cpu_has_xsave)
  2444. return -EINVAL;
  2445. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2446. return -EINVAL;
  2447. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2448. /* Only support XCR0 currently */
  2449. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2450. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2451. guest_xcrs->xcrs[0].value);
  2452. break;
  2453. }
  2454. if (r)
  2455. r = -EINVAL;
  2456. return r;
  2457. }
  2458. long kvm_arch_vcpu_ioctl(struct file *filp,
  2459. unsigned int ioctl, unsigned long arg)
  2460. {
  2461. struct kvm_vcpu *vcpu = filp->private_data;
  2462. void __user *argp = (void __user *)arg;
  2463. int r;
  2464. union {
  2465. struct kvm_lapic_state *lapic;
  2466. struct kvm_xsave *xsave;
  2467. struct kvm_xcrs *xcrs;
  2468. void *buffer;
  2469. } u;
  2470. u.buffer = NULL;
  2471. switch (ioctl) {
  2472. case KVM_GET_LAPIC: {
  2473. r = -EINVAL;
  2474. if (!vcpu->arch.apic)
  2475. goto out;
  2476. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2477. r = -ENOMEM;
  2478. if (!u.lapic)
  2479. goto out;
  2480. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2481. if (r)
  2482. goto out;
  2483. r = -EFAULT;
  2484. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2485. goto out;
  2486. r = 0;
  2487. break;
  2488. }
  2489. case KVM_SET_LAPIC: {
  2490. r = -EINVAL;
  2491. if (!vcpu->arch.apic)
  2492. goto out;
  2493. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2494. r = -ENOMEM;
  2495. if (!u.lapic)
  2496. goto out;
  2497. r = -EFAULT;
  2498. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2499. goto out;
  2500. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2501. if (r)
  2502. goto out;
  2503. r = 0;
  2504. break;
  2505. }
  2506. case KVM_INTERRUPT: {
  2507. struct kvm_interrupt irq;
  2508. r = -EFAULT;
  2509. if (copy_from_user(&irq, argp, sizeof irq))
  2510. goto out;
  2511. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2512. if (r)
  2513. goto out;
  2514. r = 0;
  2515. break;
  2516. }
  2517. case KVM_NMI: {
  2518. r = kvm_vcpu_ioctl_nmi(vcpu);
  2519. if (r)
  2520. goto out;
  2521. r = 0;
  2522. break;
  2523. }
  2524. case KVM_SET_CPUID: {
  2525. struct kvm_cpuid __user *cpuid_arg = argp;
  2526. struct kvm_cpuid cpuid;
  2527. r = -EFAULT;
  2528. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2529. goto out;
  2530. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2531. if (r)
  2532. goto out;
  2533. break;
  2534. }
  2535. case KVM_SET_CPUID2: {
  2536. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2537. struct kvm_cpuid2 cpuid;
  2538. r = -EFAULT;
  2539. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2540. goto out;
  2541. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2542. cpuid_arg->entries);
  2543. if (r)
  2544. goto out;
  2545. break;
  2546. }
  2547. case KVM_GET_CPUID2: {
  2548. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2549. struct kvm_cpuid2 cpuid;
  2550. r = -EFAULT;
  2551. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2552. goto out;
  2553. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2554. cpuid_arg->entries);
  2555. if (r)
  2556. goto out;
  2557. r = -EFAULT;
  2558. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2559. goto out;
  2560. r = 0;
  2561. break;
  2562. }
  2563. case KVM_GET_MSRS:
  2564. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2565. break;
  2566. case KVM_SET_MSRS:
  2567. r = msr_io(vcpu, argp, do_set_msr, 0);
  2568. break;
  2569. case KVM_TPR_ACCESS_REPORTING: {
  2570. struct kvm_tpr_access_ctl tac;
  2571. r = -EFAULT;
  2572. if (copy_from_user(&tac, argp, sizeof tac))
  2573. goto out;
  2574. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2575. if (r)
  2576. goto out;
  2577. r = -EFAULT;
  2578. if (copy_to_user(argp, &tac, sizeof tac))
  2579. goto out;
  2580. r = 0;
  2581. break;
  2582. };
  2583. case KVM_SET_VAPIC_ADDR: {
  2584. struct kvm_vapic_addr va;
  2585. r = -EINVAL;
  2586. if (!irqchip_in_kernel(vcpu->kvm))
  2587. goto out;
  2588. r = -EFAULT;
  2589. if (copy_from_user(&va, argp, sizeof va))
  2590. goto out;
  2591. r = 0;
  2592. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2593. break;
  2594. }
  2595. case KVM_X86_SETUP_MCE: {
  2596. u64 mcg_cap;
  2597. r = -EFAULT;
  2598. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2599. goto out;
  2600. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2601. break;
  2602. }
  2603. case KVM_X86_SET_MCE: {
  2604. struct kvm_x86_mce mce;
  2605. r = -EFAULT;
  2606. if (copy_from_user(&mce, argp, sizeof mce))
  2607. goto out;
  2608. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2609. break;
  2610. }
  2611. case KVM_GET_VCPU_EVENTS: {
  2612. struct kvm_vcpu_events events;
  2613. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2614. r = -EFAULT;
  2615. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2616. break;
  2617. r = 0;
  2618. break;
  2619. }
  2620. case KVM_SET_VCPU_EVENTS: {
  2621. struct kvm_vcpu_events events;
  2622. r = -EFAULT;
  2623. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2624. break;
  2625. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2626. break;
  2627. }
  2628. case KVM_GET_DEBUGREGS: {
  2629. struct kvm_debugregs dbgregs;
  2630. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2631. r = -EFAULT;
  2632. if (copy_to_user(argp, &dbgregs,
  2633. sizeof(struct kvm_debugregs)))
  2634. break;
  2635. r = 0;
  2636. break;
  2637. }
  2638. case KVM_SET_DEBUGREGS: {
  2639. struct kvm_debugregs dbgregs;
  2640. r = -EFAULT;
  2641. if (copy_from_user(&dbgregs, argp,
  2642. sizeof(struct kvm_debugregs)))
  2643. break;
  2644. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2645. break;
  2646. }
  2647. case KVM_GET_XSAVE: {
  2648. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2649. r = -ENOMEM;
  2650. if (!u.xsave)
  2651. break;
  2652. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2653. r = -EFAULT;
  2654. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2655. break;
  2656. r = 0;
  2657. break;
  2658. }
  2659. case KVM_SET_XSAVE: {
  2660. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2661. r = -ENOMEM;
  2662. if (!u.xsave)
  2663. break;
  2664. r = -EFAULT;
  2665. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2666. break;
  2667. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2668. break;
  2669. }
  2670. case KVM_GET_XCRS: {
  2671. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2672. r = -ENOMEM;
  2673. if (!u.xcrs)
  2674. break;
  2675. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2676. r = -EFAULT;
  2677. if (copy_to_user(argp, u.xcrs,
  2678. sizeof(struct kvm_xcrs)))
  2679. break;
  2680. r = 0;
  2681. break;
  2682. }
  2683. case KVM_SET_XCRS: {
  2684. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2685. r = -ENOMEM;
  2686. if (!u.xcrs)
  2687. break;
  2688. r = -EFAULT;
  2689. if (copy_from_user(u.xcrs, argp,
  2690. sizeof(struct kvm_xcrs)))
  2691. break;
  2692. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2693. break;
  2694. }
  2695. default:
  2696. r = -EINVAL;
  2697. }
  2698. out:
  2699. kfree(u.buffer);
  2700. return r;
  2701. }
  2702. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2703. {
  2704. int ret;
  2705. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2706. return -1;
  2707. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2708. return ret;
  2709. }
  2710. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2711. u64 ident_addr)
  2712. {
  2713. kvm->arch.ept_identity_map_addr = ident_addr;
  2714. return 0;
  2715. }
  2716. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2717. u32 kvm_nr_mmu_pages)
  2718. {
  2719. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2720. return -EINVAL;
  2721. mutex_lock(&kvm->slots_lock);
  2722. spin_lock(&kvm->mmu_lock);
  2723. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2724. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2725. spin_unlock(&kvm->mmu_lock);
  2726. mutex_unlock(&kvm->slots_lock);
  2727. return 0;
  2728. }
  2729. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2730. {
  2731. return kvm->arch.n_max_mmu_pages;
  2732. }
  2733. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2734. {
  2735. int r;
  2736. r = 0;
  2737. switch (chip->chip_id) {
  2738. case KVM_IRQCHIP_PIC_MASTER:
  2739. memcpy(&chip->chip.pic,
  2740. &pic_irqchip(kvm)->pics[0],
  2741. sizeof(struct kvm_pic_state));
  2742. break;
  2743. case KVM_IRQCHIP_PIC_SLAVE:
  2744. memcpy(&chip->chip.pic,
  2745. &pic_irqchip(kvm)->pics[1],
  2746. sizeof(struct kvm_pic_state));
  2747. break;
  2748. case KVM_IRQCHIP_IOAPIC:
  2749. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2750. break;
  2751. default:
  2752. r = -EINVAL;
  2753. break;
  2754. }
  2755. return r;
  2756. }
  2757. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2758. {
  2759. int r;
  2760. r = 0;
  2761. switch (chip->chip_id) {
  2762. case KVM_IRQCHIP_PIC_MASTER:
  2763. spin_lock(&pic_irqchip(kvm)->lock);
  2764. memcpy(&pic_irqchip(kvm)->pics[0],
  2765. &chip->chip.pic,
  2766. sizeof(struct kvm_pic_state));
  2767. spin_unlock(&pic_irqchip(kvm)->lock);
  2768. break;
  2769. case KVM_IRQCHIP_PIC_SLAVE:
  2770. spin_lock(&pic_irqchip(kvm)->lock);
  2771. memcpy(&pic_irqchip(kvm)->pics[1],
  2772. &chip->chip.pic,
  2773. sizeof(struct kvm_pic_state));
  2774. spin_unlock(&pic_irqchip(kvm)->lock);
  2775. break;
  2776. case KVM_IRQCHIP_IOAPIC:
  2777. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2778. break;
  2779. default:
  2780. r = -EINVAL;
  2781. break;
  2782. }
  2783. kvm_pic_update_irq(pic_irqchip(kvm));
  2784. return r;
  2785. }
  2786. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2787. {
  2788. int r = 0;
  2789. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2790. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2791. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2792. return r;
  2793. }
  2794. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2795. {
  2796. int r = 0;
  2797. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2798. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2799. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2800. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2801. return r;
  2802. }
  2803. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2804. {
  2805. int r = 0;
  2806. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2807. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2808. sizeof(ps->channels));
  2809. ps->flags = kvm->arch.vpit->pit_state.flags;
  2810. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2811. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2812. return r;
  2813. }
  2814. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2815. {
  2816. int r = 0, start = 0;
  2817. u32 prev_legacy, cur_legacy;
  2818. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2819. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2820. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2821. if (!prev_legacy && cur_legacy)
  2822. start = 1;
  2823. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2824. sizeof(kvm->arch.vpit->pit_state.channels));
  2825. kvm->arch.vpit->pit_state.flags = ps->flags;
  2826. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2827. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2828. return r;
  2829. }
  2830. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2831. struct kvm_reinject_control *control)
  2832. {
  2833. if (!kvm->arch.vpit)
  2834. return -ENXIO;
  2835. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2836. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2837. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2838. return 0;
  2839. }
  2840. /*
  2841. * Get (and clear) the dirty memory log for a memory slot.
  2842. */
  2843. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2844. struct kvm_dirty_log *log)
  2845. {
  2846. int r, i;
  2847. struct kvm_memory_slot *memslot;
  2848. unsigned long n;
  2849. unsigned long is_dirty = 0;
  2850. mutex_lock(&kvm->slots_lock);
  2851. r = -EINVAL;
  2852. if (log->slot >= KVM_MEMORY_SLOTS)
  2853. goto out;
  2854. memslot = &kvm->memslots->memslots[log->slot];
  2855. r = -ENOENT;
  2856. if (!memslot->dirty_bitmap)
  2857. goto out;
  2858. n = kvm_dirty_bitmap_bytes(memslot);
  2859. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2860. is_dirty = memslot->dirty_bitmap[i];
  2861. /* If nothing is dirty, don't bother messing with page tables. */
  2862. if (is_dirty) {
  2863. struct kvm_memslots *slots, *old_slots;
  2864. unsigned long *dirty_bitmap;
  2865. dirty_bitmap = memslot->dirty_bitmap_head;
  2866. if (memslot->dirty_bitmap == dirty_bitmap)
  2867. dirty_bitmap += n / sizeof(long);
  2868. memset(dirty_bitmap, 0, n);
  2869. r = -ENOMEM;
  2870. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2871. if (!slots)
  2872. goto out;
  2873. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2874. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2875. slots->generation++;
  2876. old_slots = kvm->memslots;
  2877. rcu_assign_pointer(kvm->memslots, slots);
  2878. synchronize_srcu_expedited(&kvm->srcu);
  2879. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2880. kfree(old_slots);
  2881. spin_lock(&kvm->mmu_lock);
  2882. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2883. spin_unlock(&kvm->mmu_lock);
  2884. r = -EFAULT;
  2885. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2886. goto out;
  2887. } else {
  2888. r = -EFAULT;
  2889. if (clear_user(log->dirty_bitmap, n))
  2890. goto out;
  2891. }
  2892. r = 0;
  2893. out:
  2894. mutex_unlock(&kvm->slots_lock);
  2895. return r;
  2896. }
  2897. long kvm_arch_vm_ioctl(struct file *filp,
  2898. unsigned int ioctl, unsigned long arg)
  2899. {
  2900. struct kvm *kvm = filp->private_data;
  2901. void __user *argp = (void __user *)arg;
  2902. int r = -ENOTTY;
  2903. /*
  2904. * This union makes it completely explicit to gcc-3.x
  2905. * that these two variables' stack usage should be
  2906. * combined, not added together.
  2907. */
  2908. union {
  2909. struct kvm_pit_state ps;
  2910. struct kvm_pit_state2 ps2;
  2911. struct kvm_pit_config pit_config;
  2912. } u;
  2913. switch (ioctl) {
  2914. case KVM_SET_TSS_ADDR:
  2915. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2916. if (r < 0)
  2917. goto out;
  2918. break;
  2919. case KVM_SET_IDENTITY_MAP_ADDR: {
  2920. u64 ident_addr;
  2921. r = -EFAULT;
  2922. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2923. goto out;
  2924. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2925. if (r < 0)
  2926. goto out;
  2927. break;
  2928. }
  2929. case KVM_SET_NR_MMU_PAGES:
  2930. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2931. if (r)
  2932. goto out;
  2933. break;
  2934. case KVM_GET_NR_MMU_PAGES:
  2935. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2936. break;
  2937. case KVM_CREATE_IRQCHIP: {
  2938. struct kvm_pic *vpic;
  2939. mutex_lock(&kvm->lock);
  2940. r = -EEXIST;
  2941. if (kvm->arch.vpic)
  2942. goto create_irqchip_unlock;
  2943. r = -ENOMEM;
  2944. vpic = kvm_create_pic(kvm);
  2945. if (vpic) {
  2946. r = kvm_ioapic_init(kvm);
  2947. if (r) {
  2948. mutex_lock(&kvm->slots_lock);
  2949. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2950. &vpic->dev);
  2951. mutex_unlock(&kvm->slots_lock);
  2952. kfree(vpic);
  2953. goto create_irqchip_unlock;
  2954. }
  2955. } else
  2956. goto create_irqchip_unlock;
  2957. smp_wmb();
  2958. kvm->arch.vpic = vpic;
  2959. smp_wmb();
  2960. r = kvm_setup_default_irq_routing(kvm);
  2961. if (r) {
  2962. mutex_lock(&kvm->slots_lock);
  2963. mutex_lock(&kvm->irq_lock);
  2964. kvm_ioapic_destroy(kvm);
  2965. kvm_destroy_pic(kvm);
  2966. mutex_unlock(&kvm->irq_lock);
  2967. mutex_unlock(&kvm->slots_lock);
  2968. }
  2969. create_irqchip_unlock:
  2970. mutex_unlock(&kvm->lock);
  2971. break;
  2972. }
  2973. case KVM_CREATE_PIT:
  2974. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2975. goto create_pit;
  2976. case KVM_CREATE_PIT2:
  2977. r = -EFAULT;
  2978. if (copy_from_user(&u.pit_config, argp,
  2979. sizeof(struct kvm_pit_config)))
  2980. goto out;
  2981. create_pit:
  2982. mutex_lock(&kvm->slots_lock);
  2983. r = -EEXIST;
  2984. if (kvm->arch.vpit)
  2985. goto create_pit_unlock;
  2986. r = -ENOMEM;
  2987. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2988. if (kvm->arch.vpit)
  2989. r = 0;
  2990. create_pit_unlock:
  2991. mutex_unlock(&kvm->slots_lock);
  2992. break;
  2993. case KVM_IRQ_LINE_STATUS:
  2994. case KVM_IRQ_LINE: {
  2995. struct kvm_irq_level irq_event;
  2996. r = -EFAULT;
  2997. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2998. goto out;
  2999. r = -ENXIO;
  3000. if (irqchip_in_kernel(kvm)) {
  3001. __s32 status;
  3002. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3003. irq_event.irq, irq_event.level);
  3004. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3005. r = -EFAULT;
  3006. irq_event.status = status;
  3007. if (copy_to_user(argp, &irq_event,
  3008. sizeof irq_event))
  3009. goto out;
  3010. }
  3011. r = 0;
  3012. }
  3013. break;
  3014. }
  3015. case KVM_GET_IRQCHIP: {
  3016. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3017. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3018. r = -ENOMEM;
  3019. if (!chip)
  3020. goto out;
  3021. r = -EFAULT;
  3022. if (copy_from_user(chip, argp, sizeof *chip))
  3023. goto get_irqchip_out;
  3024. r = -ENXIO;
  3025. if (!irqchip_in_kernel(kvm))
  3026. goto get_irqchip_out;
  3027. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3028. if (r)
  3029. goto get_irqchip_out;
  3030. r = -EFAULT;
  3031. if (copy_to_user(argp, chip, sizeof *chip))
  3032. goto get_irqchip_out;
  3033. r = 0;
  3034. get_irqchip_out:
  3035. kfree(chip);
  3036. if (r)
  3037. goto out;
  3038. break;
  3039. }
  3040. case KVM_SET_IRQCHIP: {
  3041. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3042. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3043. r = -ENOMEM;
  3044. if (!chip)
  3045. goto out;
  3046. r = -EFAULT;
  3047. if (copy_from_user(chip, argp, sizeof *chip))
  3048. goto set_irqchip_out;
  3049. r = -ENXIO;
  3050. if (!irqchip_in_kernel(kvm))
  3051. goto set_irqchip_out;
  3052. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3053. if (r)
  3054. goto set_irqchip_out;
  3055. r = 0;
  3056. set_irqchip_out:
  3057. kfree(chip);
  3058. if (r)
  3059. goto out;
  3060. break;
  3061. }
  3062. case KVM_GET_PIT: {
  3063. r = -EFAULT;
  3064. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3065. goto out;
  3066. r = -ENXIO;
  3067. if (!kvm->arch.vpit)
  3068. goto out;
  3069. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3070. if (r)
  3071. goto out;
  3072. r = -EFAULT;
  3073. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3074. goto out;
  3075. r = 0;
  3076. break;
  3077. }
  3078. case KVM_SET_PIT: {
  3079. r = -EFAULT;
  3080. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3081. goto out;
  3082. r = -ENXIO;
  3083. if (!kvm->arch.vpit)
  3084. goto out;
  3085. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3086. if (r)
  3087. goto out;
  3088. r = 0;
  3089. break;
  3090. }
  3091. case KVM_GET_PIT2: {
  3092. r = -ENXIO;
  3093. if (!kvm->arch.vpit)
  3094. goto out;
  3095. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3096. if (r)
  3097. goto out;
  3098. r = -EFAULT;
  3099. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3100. goto out;
  3101. r = 0;
  3102. break;
  3103. }
  3104. case KVM_SET_PIT2: {
  3105. r = -EFAULT;
  3106. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3107. goto out;
  3108. r = -ENXIO;
  3109. if (!kvm->arch.vpit)
  3110. goto out;
  3111. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3112. if (r)
  3113. goto out;
  3114. r = 0;
  3115. break;
  3116. }
  3117. case KVM_REINJECT_CONTROL: {
  3118. struct kvm_reinject_control control;
  3119. r = -EFAULT;
  3120. if (copy_from_user(&control, argp, sizeof(control)))
  3121. goto out;
  3122. r = kvm_vm_ioctl_reinject(kvm, &control);
  3123. if (r)
  3124. goto out;
  3125. r = 0;
  3126. break;
  3127. }
  3128. case KVM_XEN_HVM_CONFIG: {
  3129. r = -EFAULT;
  3130. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3131. sizeof(struct kvm_xen_hvm_config)))
  3132. goto out;
  3133. r = -EINVAL;
  3134. if (kvm->arch.xen_hvm_config.flags)
  3135. goto out;
  3136. r = 0;
  3137. break;
  3138. }
  3139. case KVM_SET_CLOCK: {
  3140. struct kvm_clock_data user_ns;
  3141. u64 now_ns;
  3142. s64 delta;
  3143. r = -EFAULT;
  3144. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3145. goto out;
  3146. r = -EINVAL;
  3147. if (user_ns.flags)
  3148. goto out;
  3149. r = 0;
  3150. local_irq_disable();
  3151. now_ns = get_kernel_ns();
  3152. delta = user_ns.clock - now_ns;
  3153. local_irq_enable();
  3154. kvm->arch.kvmclock_offset = delta;
  3155. break;
  3156. }
  3157. case KVM_GET_CLOCK: {
  3158. struct kvm_clock_data user_ns;
  3159. u64 now_ns;
  3160. local_irq_disable();
  3161. now_ns = get_kernel_ns();
  3162. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3163. local_irq_enable();
  3164. user_ns.flags = 0;
  3165. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3166. r = -EFAULT;
  3167. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3168. goto out;
  3169. r = 0;
  3170. break;
  3171. }
  3172. default:
  3173. ;
  3174. }
  3175. out:
  3176. return r;
  3177. }
  3178. static void kvm_init_msr_list(void)
  3179. {
  3180. u32 dummy[2];
  3181. unsigned i, j;
  3182. /* skip the first msrs in the list. KVM-specific */
  3183. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3184. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3185. continue;
  3186. if (j < i)
  3187. msrs_to_save[j] = msrs_to_save[i];
  3188. j++;
  3189. }
  3190. num_msrs_to_save = j;
  3191. }
  3192. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3193. const void *v)
  3194. {
  3195. if (vcpu->arch.apic &&
  3196. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3197. return 0;
  3198. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3199. }
  3200. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3201. {
  3202. if (vcpu->arch.apic &&
  3203. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3204. return 0;
  3205. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3206. }
  3207. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3208. struct kvm_segment *var, int seg)
  3209. {
  3210. kvm_x86_ops->set_segment(vcpu, var, seg);
  3211. }
  3212. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3213. struct kvm_segment *var, int seg)
  3214. {
  3215. kvm_x86_ops->get_segment(vcpu, var, seg);
  3216. }
  3217. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3218. {
  3219. return gpa;
  3220. }
  3221. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3222. {
  3223. gpa_t t_gpa;
  3224. struct x86_exception exception;
  3225. BUG_ON(!mmu_is_nested(vcpu));
  3226. /* NPT walks are always user-walks */
  3227. access |= PFERR_USER_MASK;
  3228. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3229. return t_gpa;
  3230. }
  3231. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3232. struct x86_exception *exception)
  3233. {
  3234. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3235. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3236. }
  3237. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3238. struct x86_exception *exception)
  3239. {
  3240. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3241. access |= PFERR_FETCH_MASK;
  3242. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3243. }
  3244. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3245. struct x86_exception *exception)
  3246. {
  3247. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3248. access |= PFERR_WRITE_MASK;
  3249. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3250. }
  3251. /* uses this to access any guest's mapped memory without checking CPL */
  3252. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3253. struct x86_exception *exception)
  3254. {
  3255. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3256. }
  3257. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3258. struct kvm_vcpu *vcpu, u32 access,
  3259. struct x86_exception *exception)
  3260. {
  3261. void *data = val;
  3262. int r = X86EMUL_CONTINUE;
  3263. while (bytes) {
  3264. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3265. exception);
  3266. unsigned offset = addr & (PAGE_SIZE-1);
  3267. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3268. int ret;
  3269. if (gpa == UNMAPPED_GVA)
  3270. return X86EMUL_PROPAGATE_FAULT;
  3271. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3272. if (ret < 0) {
  3273. r = X86EMUL_IO_NEEDED;
  3274. goto out;
  3275. }
  3276. bytes -= toread;
  3277. data += toread;
  3278. addr += toread;
  3279. }
  3280. out:
  3281. return r;
  3282. }
  3283. /* used for instruction fetching */
  3284. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3285. struct kvm_vcpu *vcpu,
  3286. struct x86_exception *exception)
  3287. {
  3288. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3289. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3290. access | PFERR_FETCH_MASK,
  3291. exception);
  3292. }
  3293. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3294. struct kvm_vcpu *vcpu,
  3295. struct x86_exception *exception)
  3296. {
  3297. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3298. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3299. exception);
  3300. }
  3301. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3302. struct kvm_vcpu *vcpu,
  3303. struct x86_exception *exception)
  3304. {
  3305. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3306. }
  3307. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3308. unsigned int bytes,
  3309. struct kvm_vcpu *vcpu,
  3310. struct x86_exception *exception)
  3311. {
  3312. void *data = val;
  3313. int r = X86EMUL_CONTINUE;
  3314. while (bytes) {
  3315. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3316. PFERR_WRITE_MASK,
  3317. exception);
  3318. unsigned offset = addr & (PAGE_SIZE-1);
  3319. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3320. int ret;
  3321. if (gpa == UNMAPPED_GVA)
  3322. return X86EMUL_PROPAGATE_FAULT;
  3323. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3324. if (ret < 0) {
  3325. r = X86EMUL_IO_NEEDED;
  3326. goto out;
  3327. }
  3328. bytes -= towrite;
  3329. data += towrite;
  3330. addr += towrite;
  3331. }
  3332. out:
  3333. return r;
  3334. }
  3335. static int emulator_read_emulated(unsigned long addr,
  3336. void *val,
  3337. unsigned int bytes,
  3338. struct x86_exception *exception,
  3339. struct kvm_vcpu *vcpu)
  3340. {
  3341. gpa_t gpa;
  3342. if (vcpu->mmio_read_completed) {
  3343. memcpy(val, vcpu->mmio_data, bytes);
  3344. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3345. vcpu->mmio_phys_addr, *(u64 *)val);
  3346. vcpu->mmio_read_completed = 0;
  3347. return X86EMUL_CONTINUE;
  3348. }
  3349. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3350. if (gpa == UNMAPPED_GVA)
  3351. return X86EMUL_PROPAGATE_FAULT;
  3352. /* For APIC access vmexit */
  3353. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3354. goto mmio;
  3355. if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
  3356. == X86EMUL_CONTINUE)
  3357. return X86EMUL_CONTINUE;
  3358. mmio:
  3359. /*
  3360. * Is this MMIO handled locally?
  3361. */
  3362. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3363. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3364. return X86EMUL_CONTINUE;
  3365. }
  3366. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3367. vcpu->mmio_needed = 1;
  3368. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3369. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3370. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3371. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3372. return X86EMUL_IO_NEEDED;
  3373. }
  3374. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3375. const void *val, int bytes)
  3376. {
  3377. int ret;
  3378. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3379. if (ret < 0)
  3380. return 0;
  3381. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3382. return 1;
  3383. }
  3384. static int emulator_write_emulated_onepage(unsigned long addr,
  3385. const void *val,
  3386. unsigned int bytes,
  3387. struct x86_exception *exception,
  3388. struct kvm_vcpu *vcpu)
  3389. {
  3390. gpa_t gpa;
  3391. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3392. if (gpa == UNMAPPED_GVA)
  3393. return X86EMUL_PROPAGATE_FAULT;
  3394. /* For APIC access vmexit */
  3395. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3396. goto mmio;
  3397. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3398. return X86EMUL_CONTINUE;
  3399. mmio:
  3400. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3401. /*
  3402. * Is this MMIO handled locally?
  3403. */
  3404. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3405. return X86EMUL_CONTINUE;
  3406. vcpu->mmio_needed = 1;
  3407. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3408. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3409. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3410. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3411. memcpy(vcpu->run->mmio.data, val, bytes);
  3412. return X86EMUL_CONTINUE;
  3413. }
  3414. int emulator_write_emulated(unsigned long addr,
  3415. const void *val,
  3416. unsigned int bytes,
  3417. struct x86_exception *exception,
  3418. struct kvm_vcpu *vcpu)
  3419. {
  3420. /* Crossing a page boundary? */
  3421. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3422. int rc, now;
  3423. now = -addr & ~PAGE_MASK;
  3424. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3425. vcpu);
  3426. if (rc != X86EMUL_CONTINUE)
  3427. return rc;
  3428. addr += now;
  3429. val += now;
  3430. bytes -= now;
  3431. }
  3432. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3433. vcpu);
  3434. }
  3435. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3436. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3437. #ifdef CONFIG_X86_64
  3438. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3439. #else
  3440. # define CMPXCHG64(ptr, old, new) \
  3441. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3442. #endif
  3443. static int emulator_cmpxchg_emulated(unsigned long addr,
  3444. const void *old,
  3445. const void *new,
  3446. unsigned int bytes,
  3447. struct x86_exception *exception,
  3448. struct kvm_vcpu *vcpu)
  3449. {
  3450. gpa_t gpa;
  3451. struct page *page;
  3452. char *kaddr;
  3453. bool exchanged;
  3454. /* guests cmpxchg8b have to be emulated atomically */
  3455. if (bytes > 8 || (bytes & (bytes - 1)))
  3456. goto emul_write;
  3457. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3458. if (gpa == UNMAPPED_GVA ||
  3459. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3460. goto emul_write;
  3461. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3462. goto emul_write;
  3463. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3464. if (is_error_page(page)) {
  3465. kvm_release_page_clean(page);
  3466. goto emul_write;
  3467. }
  3468. kaddr = kmap_atomic(page, KM_USER0);
  3469. kaddr += offset_in_page(gpa);
  3470. switch (bytes) {
  3471. case 1:
  3472. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3473. break;
  3474. case 2:
  3475. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3476. break;
  3477. case 4:
  3478. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3479. break;
  3480. case 8:
  3481. exchanged = CMPXCHG64(kaddr, old, new);
  3482. break;
  3483. default:
  3484. BUG();
  3485. }
  3486. kunmap_atomic(kaddr, KM_USER0);
  3487. kvm_release_page_dirty(page);
  3488. if (!exchanged)
  3489. return X86EMUL_CMPXCHG_FAILED;
  3490. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3491. return X86EMUL_CONTINUE;
  3492. emul_write:
  3493. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3494. return emulator_write_emulated(addr, new, bytes, exception, vcpu);
  3495. }
  3496. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3497. {
  3498. /* TODO: String I/O for in kernel device */
  3499. int r;
  3500. if (vcpu->arch.pio.in)
  3501. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3502. vcpu->arch.pio.size, pd);
  3503. else
  3504. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3505. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3506. pd);
  3507. return r;
  3508. }
  3509. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3510. unsigned int count, struct kvm_vcpu *vcpu)
  3511. {
  3512. if (vcpu->arch.pio.count)
  3513. goto data_avail;
  3514. trace_kvm_pio(0, port, size, count);
  3515. vcpu->arch.pio.port = port;
  3516. vcpu->arch.pio.in = 1;
  3517. vcpu->arch.pio.count = count;
  3518. vcpu->arch.pio.size = size;
  3519. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3520. data_avail:
  3521. memcpy(val, vcpu->arch.pio_data, size * count);
  3522. vcpu->arch.pio.count = 0;
  3523. return 1;
  3524. }
  3525. vcpu->run->exit_reason = KVM_EXIT_IO;
  3526. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3527. vcpu->run->io.size = size;
  3528. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3529. vcpu->run->io.count = count;
  3530. vcpu->run->io.port = port;
  3531. return 0;
  3532. }
  3533. static int emulator_pio_out_emulated(int size, unsigned short port,
  3534. const void *val, unsigned int count,
  3535. struct kvm_vcpu *vcpu)
  3536. {
  3537. trace_kvm_pio(1, port, size, count);
  3538. vcpu->arch.pio.port = port;
  3539. vcpu->arch.pio.in = 0;
  3540. vcpu->arch.pio.count = count;
  3541. vcpu->arch.pio.size = size;
  3542. memcpy(vcpu->arch.pio_data, val, size * count);
  3543. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3544. vcpu->arch.pio.count = 0;
  3545. return 1;
  3546. }
  3547. vcpu->run->exit_reason = KVM_EXIT_IO;
  3548. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3549. vcpu->run->io.size = size;
  3550. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3551. vcpu->run->io.count = count;
  3552. vcpu->run->io.port = port;
  3553. return 0;
  3554. }
  3555. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3556. {
  3557. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3558. }
  3559. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3560. {
  3561. kvm_mmu_invlpg(vcpu, address);
  3562. return X86EMUL_CONTINUE;
  3563. }
  3564. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3565. {
  3566. if (!need_emulate_wbinvd(vcpu))
  3567. return X86EMUL_CONTINUE;
  3568. if (kvm_x86_ops->has_wbinvd_exit()) {
  3569. int cpu = get_cpu();
  3570. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3571. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3572. wbinvd_ipi, NULL, 1);
  3573. put_cpu();
  3574. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3575. } else
  3576. wbinvd();
  3577. return X86EMUL_CONTINUE;
  3578. }
  3579. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3580. int emulate_clts(struct kvm_vcpu *vcpu)
  3581. {
  3582. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3583. kvm_x86_ops->fpu_activate(vcpu);
  3584. return X86EMUL_CONTINUE;
  3585. }
  3586. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3587. {
  3588. return _kvm_get_dr(vcpu, dr, dest);
  3589. }
  3590. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3591. {
  3592. return __kvm_set_dr(vcpu, dr, value);
  3593. }
  3594. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3595. {
  3596. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3597. }
  3598. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3599. {
  3600. unsigned long value;
  3601. switch (cr) {
  3602. case 0:
  3603. value = kvm_read_cr0(vcpu);
  3604. break;
  3605. case 2:
  3606. value = vcpu->arch.cr2;
  3607. break;
  3608. case 3:
  3609. value = kvm_read_cr3(vcpu);
  3610. break;
  3611. case 4:
  3612. value = kvm_read_cr4(vcpu);
  3613. break;
  3614. case 8:
  3615. value = kvm_get_cr8(vcpu);
  3616. break;
  3617. default:
  3618. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3619. return 0;
  3620. }
  3621. return value;
  3622. }
  3623. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3624. {
  3625. int res = 0;
  3626. switch (cr) {
  3627. case 0:
  3628. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3629. break;
  3630. case 2:
  3631. vcpu->arch.cr2 = val;
  3632. break;
  3633. case 3:
  3634. res = kvm_set_cr3(vcpu, val);
  3635. break;
  3636. case 4:
  3637. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3638. break;
  3639. case 8:
  3640. res = kvm_set_cr8(vcpu, val);
  3641. break;
  3642. default:
  3643. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3644. res = -1;
  3645. }
  3646. return res;
  3647. }
  3648. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3649. {
  3650. return kvm_x86_ops->get_cpl(vcpu);
  3651. }
  3652. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3653. {
  3654. kvm_x86_ops->get_gdt(vcpu, dt);
  3655. }
  3656. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3657. {
  3658. kvm_x86_ops->get_idt(vcpu, dt);
  3659. }
  3660. static unsigned long emulator_get_cached_segment_base(int seg,
  3661. struct kvm_vcpu *vcpu)
  3662. {
  3663. return get_segment_base(vcpu, seg);
  3664. }
  3665. static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
  3666. int seg, struct kvm_vcpu *vcpu)
  3667. {
  3668. struct kvm_segment var;
  3669. kvm_get_segment(vcpu, &var, seg);
  3670. if (var.unusable)
  3671. return false;
  3672. if (var.g)
  3673. var.limit >>= 12;
  3674. set_desc_limit(desc, var.limit);
  3675. set_desc_base(desc, (unsigned long)var.base);
  3676. #ifdef CONFIG_X86_64
  3677. if (base3)
  3678. *base3 = var.base >> 32;
  3679. #endif
  3680. desc->type = var.type;
  3681. desc->s = var.s;
  3682. desc->dpl = var.dpl;
  3683. desc->p = var.present;
  3684. desc->avl = var.avl;
  3685. desc->l = var.l;
  3686. desc->d = var.db;
  3687. desc->g = var.g;
  3688. return true;
  3689. }
  3690. static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
  3691. int seg, struct kvm_vcpu *vcpu)
  3692. {
  3693. struct kvm_segment var;
  3694. /* needed to preserve selector */
  3695. kvm_get_segment(vcpu, &var, seg);
  3696. var.base = get_desc_base(desc);
  3697. #ifdef CONFIG_X86_64
  3698. var.base |= ((u64)base3) << 32;
  3699. #endif
  3700. var.limit = get_desc_limit(desc);
  3701. if (desc->g)
  3702. var.limit = (var.limit << 12) | 0xfff;
  3703. var.type = desc->type;
  3704. var.present = desc->p;
  3705. var.dpl = desc->dpl;
  3706. var.db = desc->d;
  3707. var.s = desc->s;
  3708. var.l = desc->l;
  3709. var.g = desc->g;
  3710. var.avl = desc->avl;
  3711. var.present = desc->p;
  3712. var.unusable = !var.present;
  3713. var.padding = 0;
  3714. kvm_set_segment(vcpu, &var, seg);
  3715. return;
  3716. }
  3717. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3718. {
  3719. struct kvm_segment kvm_seg;
  3720. kvm_get_segment(vcpu, &kvm_seg, seg);
  3721. return kvm_seg.selector;
  3722. }
  3723. static void emulator_set_segment_selector(u16 sel, int seg,
  3724. struct kvm_vcpu *vcpu)
  3725. {
  3726. struct kvm_segment kvm_seg;
  3727. kvm_get_segment(vcpu, &kvm_seg, seg);
  3728. kvm_seg.selector = sel;
  3729. kvm_set_segment(vcpu, &kvm_seg, seg);
  3730. }
  3731. static struct x86_emulate_ops emulate_ops = {
  3732. .read_std = kvm_read_guest_virt_system,
  3733. .write_std = kvm_write_guest_virt_system,
  3734. .fetch = kvm_fetch_guest_virt,
  3735. .read_emulated = emulator_read_emulated,
  3736. .write_emulated = emulator_write_emulated,
  3737. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3738. .pio_in_emulated = emulator_pio_in_emulated,
  3739. .pio_out_emulated = emulator_pio_out_emulated,
  3740. .get_cached_descriptor = emulator_get_cached_descriptor,
  3741. .set_cached_descriptor = emulator_set_cached_descriptor,
  3742. .get_segment_selector = emulator_get_segment_selector,
  3743. .set_segment_selector = emulator_set_segment_selector,
  3744. .get_cached_segment_base = emulator_get_cached_segment_base,
  3745. .get_gdt = emulator_get_gdt,
  3746. .get_idt = emulator_get_idt,
  3747. .get_cr = emulator_get_cr,
  3748. .set_cr = emulator_set_cr,
  3749. .cpl = emulator_get_cpl,
  3750. .get_dr = emulator_get_dr,
  3751. .set_dr = emulator_set_dr,
  3752. .set_msr = kvm_set_msr,
  3753. .get_msr = kvm_get_msr,
  3754. };
  3755. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3756. {
  3757. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3758. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3759. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3760. vcpu->arch.regs_dirty = ~0;
  3761. }
  3762. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3763. {
  3764. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3765. /*
  3766. * an sti; sti; sequence only disable interrupts for the first
  3767. * instruction. So, if the last instruction, be it emulated or
  3768. * not, left the system with the INT_STI flag enabled, it
  3769. * means that the last instruction is an sti. We should not
  3770. * leave the flag on in this case. The same goes for mov ss
  3771. */
  3772. if (!(int_shadow & mask))
  3773. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3774. }
  3775. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3776. {
  3777. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3778. if (ctxt->exception.vector == PF_VECTOR)
  3779. kvm_propagate_fault(vcpu, &ctxt->exception);
  3780. else if (ctxt->exception.error_code_valid)
  3781. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3782. ctxt->exception.error_code);
  3783. else
  3784. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3785. }
  3786. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3787. {
  3788. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3789. int cs_db, cs_l;
  3790. cache_all_regs(vcpu);
  3791. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3792. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3793. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3794. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3795. vcpu->arch.emulate_ctxt.mode =
  3796. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3797. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3798. ? X86EMUL_MODE_VM86 : cs_l
  3799. ? X86EMUL_MODE_PROT64 : cs_db
  3800. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3801. memset(c, 0, sizeof(struct decode_cache));
  3802. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3803. }
  3804. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3805. {
  3806. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3807. int ret;
  3808. init_emulate_ctxt(vcpu);
  3809. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3810. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3811. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3812. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3813. if (ret != X86EMUL_CONTINUE)
  3814. return EMULATE_FAIL;
  3815. vcpu->arch.emulate_ctxt.eip = c->eip;
  3816. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3817. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3818. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3819. if (irq == NMI_VECTOR)
  3820. vcpu->arch.nmi_pending = false;
  3821. else
  3822. vcpu->arch.interrupt.pending = false;
  3823. return EMULATE_DONE;
  3824. }
  3825. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3826. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3827. {
  3828. int r = EMULATE_DONE;
  3829. ++vcpu->stat.insn_emulation_fail;
  3830. trace_kvm_emulate_insn_failed(vcpu);
  3831. if (!is_guest_mode(vcpu)) {
  3832. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3833. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3834. vcpu->run->internal.ndata = 0;
  3835. r = EMULATE_FAIL;
  3836. }
  3837. kvm_queue_exception(vcpu, UD_VECTOR);
  3838. return r;
  3839. }
  3840. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3841. {
  3842. gpa_t gpa;
  3843. if (tdp_enabled)
  3844. return false;
  3845. /*
  3846. * if emulation was due to access to shadowed page table
  3847. * and it failed try to unshadow page and re-entetr the
  3848. * guest to let CPU execute the instruction.
  3849. */
  3850. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3851. return true;
  3852. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3853. if (gpa == UNMAPPED_GVA)
  3854. return true; /* let cpu generate fault */
  3855. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3856. return true;
  3857. return false;
  3858. }
  3859. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3860. unsigned long cr2,
  3861. int emulation_type,
  3862. void *insn,
  3863. int insn_len)
  3864. {
  3865. int r;
  3866. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3867. kvm_clear_exception_queue(vcpu);
  3868. vcpu->arch.mmio_fault_cr2 = cr2;
  3869. /*
  3870. * TODO: fix emulate.c to use guest_read/write_register
  3871. * instead of direct ->regs accesses, can save hundred cycles
  3872. * on Intel for instructions that don't read/change RSP, for
  3873. * for example.
  3874. */
  3875. cache_all_regs(vcpu);
  3876. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3877. init_emulate_ctxt(vcpu);
  3878. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3879. vcpu->arch.emulate_ctxt.have_exception = false;
  3880. vcpu->arch.emulate_ctxt.perm_ok = false;
  3881. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  3882. = emulation_type & EMULTYPE_TRAP_UD;
  3883. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  3884. trace_kvm_emulate_insn_start(vcpu);
  3885. ++vcpu->stat.insn_emulation;
  3886. if (r) {
  3887. if (emulation_type & EMULTYPE_TRAP_UD)
  3888. return EMULATE_FAIL;
  3889. if (reexecute_instruction(vcpu, cr2))
  3890. return EMULATE_DONE;
  3891. if (emulation_type & EMULTYPE_SKIP)
  3892. return EMULATE_FAIL;
  3893. return handle_emulation_failure(vcpu);
  3894. }
  3895. }
  3896. if (emulation_type & EMULTYPE_SKIP) {
  3897. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3898. return EMULATE_DONE;
  3899. }
  3900. /* this is needed for vmware backdor interface to work since it
  3901. changes registers values during IO operation */
  3902. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3903. restart:
  3904. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3905. if (r == EMULATION_FAILED) {
  3906. if (reexecute_instruction(vcpu, cr2))
  3907. return EMULATE_DONE;
  3908. return handle_emulation_failure(vcpu);
  3909. }
  3910. if (vcpu->arch.emulate_ctxt.have_exception) {
  3911. inject_emulated_exception(vcpu);
  3912. r = EMULATE_DONE;
  3913. } else if (vcpu->arch.pio.count) {
  3914. if (!vcpu->arch.pio.in)
  3915. vcpu->arch.pio.count = 0;
  3916. r = EMULATE_DO_MMIO;
  3917. } else if (vcpu->mmio_needed) {
  3918. if (vcpu->mmio_is_write)
  3919. vcpu->mmio_needed = 0;
  3920. r = EMULATE_DO_MMIO;
  3921. } else if (r == EMULATION_RESTART)
  3922. goto restart;
  3923. else
  3924. r = EMULATE_DONE;
  3925. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3926. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3927. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3928. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3929. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3930. return r;
  3931. }
  3932. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  3933. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3934. {
  3935. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3936. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3937. /* do not return to emulator after return from userspace */
  3938. vcpu->arch.pio.count = 0;
  3939. return ret;
  3940. }
  3941. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3942. static void tsc_bad(void *info)
  3943. {
  3944. __this_cpu_write(cpu_tsc_khz, 0);
  3945. }
  3946. static void tsc_khz_changed(void *data)
  3947. {
  3948. struct cpufreq_freqs *freq = data;
  3949. unsigned long khz = 0;
  3950. if (data)
  3951. khz = freq->new;
  3952. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3953. khz = cpufreq_quick_get(raw_smp_processor_id());
  3954. if (!khz)
  3955. khz = tsc_khz;
  3956. __this_cpu_write(cpu_tsc_khz, khz);
  3957. }
  3958. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3959. void *data)
  3960. {
  3961. struct cpufreq_freqs *freq = data;
  3962. struct kvm *kvm;
  3963. struct kvm_vcpu *vcpu;
  3964. int i, send_ipi = 0;
  3965. /*
  3966. * We allow guests to temporarily run on slowing clocks,
  3967. * provided we notify them after, or to run on accelerating
  3968. * clocks, provided we notify them before. Thus time never
  3969. * goes backwards.
  3970. *
  3971. * However, we have a problem. We can't atomically update
  3972. * the frequency of a given CPU from this function; it is
  3973. * merely a notifier, which can be called from any CPU.
  3974. * Changing the TSC frequency at arbitrary points in time
  3975. * requires a recomputation of local variables related to
  3976. * the TSC for each VCPU. We must flag these local variables
  3977. * to be updated and be sure the update takes place with the
  3978. * new frequency before any guests proceed.
  3979. *
  3980. * Unfortunately, the combination of hotplug CPU and frequency
  3981. * change creates an intractable locking scenario; the order
  3982. * of when these callouts happen is undefined with respect to
  3983. * CPU hotplug, and they can race with each other. As such,
  3984. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3985. * undefined; you can actually have a CPU frequency change take
  3986. * place in between the computation of X and the setting of the
  3987. * variable. To protect against this problem, all updates of
  3988. * the per_cpu tsc_khz variable are done in an interrupt
  3989. * protected IPI, and all callers wishing to update the value
  3990. * must wait for a synchronous IPI to complete (which is trivial
  3991. * if the caller is on the CPU already). This establishes the
  3992. * necessary total order on variable updates.
  3993. *
  3994. * Note that because a guest time update may take place
  3995. * anytime after the setting of the VCPU's request bit, the
  3996. * correct TSC value must be set before the request. However,
  3997. * to ensure the update actually makes it to any guest which
  3998. * starts running in hardware virtualization between the set
  3999. * and the acquisition of the spinlock, we must also ping the
  4000. * CPU after setting the request bit.
  4001. *
  4002. */
  4003. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4004. return 0;
  4005. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4006. return 0;
  4007. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4008. raw_spin_lock(&kvm_lock);
  4009. list_for_each_entry(kvm, &vm_list, vm_list) {
  4010. kvm_for_each_vcpu(i, vcpu, kvm) {
  4011. if (vcpu->cpu != freq->cpu)
  4012. continue;
  4013. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4014. if (vcpu->cpu != smp_processor_id())
  4015. send_ipi = 1;
  4016. }
  4017. }
  4018. raw_spin_unlock(&kvm_lock);
  4019. if (freq->old < freq->new && send_ipi) {
  4020. /*
  4021. * We upscale the frequency. Must make the guest
  4022. * doesn't see old kvmclock values while running with
  4023. * the new frequency, otherwise we risk the guest sees
  4024. * time go backwards.
  4025. *
  4026. * In case we update the frequency for another cpu
  4027. * (which might be in guest context) send an interrupt
  4028. * to kick the cpu out of guest context. Next time
  4029. * guest context is entered kvmclock will be updated,
  4030. * so the guest will not see stale values.
  4031. */
  4032. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4033. }
  4034. return 0;
  4035. }
  4036. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4037. .notifier_call = kvmclock_cpufreq_notifier
  4038. };
  4039. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4040. unsigned long action, void *hcpu)
  4041. {
  4042. unsigned int cpu = (unsigned long)hcpu;
  4043. switch (action) {
  4044. case CPU_ONLINE:
  4045. case CPU_DOWN_FAILED:
  4046. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4047. break;
  4048. case CPU_DOWN_PREPARE:
  4049. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4050. break;
  4051. }
  4052. return NOTIFY_OK;
  4053. }
  4054. static struct notifier_block kvmclock_cpu_notifier_block = {
  4055. .notifier_call = kvmclock_cpu_notifier,
  4056. .priority = -INT_MAX
  4057. };
  4058. static void kvm_timer_init(void)
  4059. {
  4060. int cpu;
  4061. max_tsc_khz = tsc_khz;
  4062. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4063. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4064. #ifdef CONFIG_CPU_FREQ
  4065. struct cpufreq_policy policy;
  4066. memset(&policy, 0, sizeof(policy));
  4067. cpu = get_cpu();
  4068. cpufreq_get_policy(&policy, cpu);
  4069. if (policy.cpuinfo.max_freq)
  4070. max_tsc_khz = policy.cpuinfo.max_freq;
  4071. put_cpu();
  4072. #endif
  4073. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4074. CPUFREQ_TRANSITION_NOTIFIER);
  4075. }
  4076. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4077. for_each_online_cpu(cpu)
  4078. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4079. }
  4080. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4081. static int kvm_is_in_guest(void)
  4082. {
  4083. return percpu_read(current_vcpu) != NULL;
  4084. }
  4085. static int kvm_is_user_mode(void)
  4086. {
  4087. int user_mode = 3;
  4088. if (percpu_read(current_vcpu))
  4089. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4090. return user_mode != 0;
  4091. }
  4092. static unsigned long kvm_get_guest_ip(void)
  4093. {
  4094. unsigned long ip = 0;
  4095. if (percpu_read(current_vcpu))
  4096. ip = kvm_rip_read(percpu_read(current_vcpu));
  4097. return ip;
  4098. }
  4099. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4100. .is_in_guest = kvm_is_in_guest,
  4101. .is_user_mode = kvm_is_user_mode,
  4102. .get_guest_ip = kvm_get_guest_ip,
  4103. };
  4104. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4105. {
  4106. percpu_write(current_vcpu, vcpu);
  4107. }
  4108. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4109. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4110. {
  4111. percpu_write(current_vcpu, NULL);
  4112. }
  4113. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4114. int kvm_arch_init(void *opaque)
  4115. {
  4116. int r;
  4117. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4118. if (kvm_x86_ops) {
  4119. printk(KERN_ERR "kvm: already loaded the other module\n");
  4120. r = -EEXIST;
  4121. goto out;
  4122. }
  4123. if (!ops->cpu_has_kvm_support()) {
  4124. printk(KERN_ERR "kvm: no hardware support\n");
  4125. r = -EOPNOTSUPP;
  4126. goto out;
  4127. }
  4128. if (ops->disabled_by_bios()) {
  4129. printk(KERN_ERR "kvm: disabled by bios\n");
  4130. r = -EOPNOTSUPP;
  4131. goto out;
  4132. }
  4133. r = kvm_mmu_module_init();
  4134. if (r)
  4135. goto out;
  4136. kvm_init_msr_list();
  4137. kvm_x86_ops = ops;
  4138. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4139. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4140. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4141. kvm_timer_init();
  4142. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4143. if (cpu_has_xsave)
  4144. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4145. return 0;
  4146. out:
  4147. return r;
  4148. }
  4149. void kvm_arch_exit(void)
  4150. {
  4151. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4152. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4153. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4154. CPUFREQ_TRANSITION_NOTIFIER);
  4155. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4156. kvm_x86_ops = NULL;
  4157. kvm_mmu_module_exit();
  4158. }
  4159. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4160. {
  4161. ++vcpu->stat.halt_exits;
  4162. if (irqchip_in_kernel(vcpu->kvm)) {
  4163. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4164. return 1;
  4165. } else {
  4166. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4167. return 0;
  4168. }
  4169. }
  4170. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4171. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4172. unsigned long a1)
  4173. {
  4174. if (is_long_mode(vcpu))
  4175. return a0;
  4176. else
  4177. return a0 | ((gpa_t)a1 << 32);
  4178. }
  4179. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4180. {
  4181. u64 param, ingpa, outgpa, ret;
  4182. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4183. bool fast, longmode;
  4184. int cs_db, cs_l;
  4185. /*
  4186. * hypercall generates UD from non zero cpl and real mode
  4187. * per HYPER-V spec
  4188. */
  4189. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4190. kvm_queue_exception(vcpu, UD_VECTOR);
  4191. return 0;
  4192. }
  4193. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4194. longmode = is_long_mode(vcpu) && cs_l == 1;
  4195. if (!longmode) {
  4196. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4197. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4198. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4199. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4200. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4201. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4202. }
  4203. #ifdef CONFIG_X86_64
  4204. else {
  4205. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4206. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4207. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4208. }
  4209. #endif
  4210. code = param & 0xffff;
  4211. fast = (param >> 16) & 0x1;
  4212. rep_cnt = (param >> 32) & 0xfff;
  4213. rep_idx = (param >> 48) & 0xfff;
  4214. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4215. switch (code) {
  4216. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4217. kvm_vcpu_on_spin(vcpu);
  4218. break;
  4219. default:
  4220. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4221. break;
  4222. }
  4223. ret = res | (((u64)rep_done & 0xfff) << 32);
  4224. if (longmode) {
  4225. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4226. } else {
  4227. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4228. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4229. }
  4230. return 1;
  4231. }
  4232. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4233. {
  4234. unsigned long nr, a0, a1, a2, a3, ret;
  4235. int r = 1;
  4236. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4237. return kvm_hv_hypercall(vcpu);
  4238. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4239. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4240. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4241. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4242. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4243. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4244. if (!is_long_mode(vcpu)) {
  4245. nr &= 0xFFFFFFFF;
  4246. a0 &= 0xFFFFFFFF;
  4247. a1 &= 0xFFFFFFFF;
  4248. a2 &= 0xFFFFFFFF;
  4249. a3 &= 0xFFFFFFFF;
  4250. }
  4251. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4252. ret = -KVM_EPERM;
  4253. goto out;
  4254. }
  4255. switch (nr) {
  4256. case KVM_HC_VAPIC_POLL_IRQ:
  4257. ret = 0;
  4258. break;
  4259. case KVM_HC_MMU_OP:
  4260. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4261. break;
  4262. default:
  4263. ret = -KVM_ENOSYS;
  4264. break;
  4265. }
  4266. out:
  4267. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4268. ++vcpu->stat.hypercalls;
  4269. return r;
  4270. }
  4271. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4272. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4273. {
  4274. char instruction[3];
  4275. unsigned long rip = kvm_rip_read(vcpu);
  4276. /*
  4277. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4278. * to ensure that the updated hypercall appears atomically across all
  4279. * VCPUs.
  4280. */
  4281. kvm_mmu_zap_all(vcpu->kvm);
  4282. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4283. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4284. }
  4285. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4286. {
  4287. struct desc_ptr dt = { limit, base };
  4288. kvm_x86_ops->set_gdt(vcpu, &dt);
  4289. }
  4290. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4291. {
  4292. struct desc_ptr dt = { limit, base };
  4293. kvm_x86_ops->set_idt(vcpu, &dt);
  4294. }
  4295. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4296. {
  4297. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4298. int j, nent = vcpu->arch.cpuid_nent;
  4299. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4300. /* when no next entry is found, the current entry[i] is reselected */
  4301. for (j = i + 1; ; j = (j + 1) % nent) {
  4302. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4303. if (ej->function == e->function) {
  4304. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4305. return j;
  4306. }
  4307. }
  4308. return 0; /* silence gcc, even though control never reaches here */
  4309. }
  4310. /* find an entry with matching function, matching index (if needed), and that
  4311. * should be read next (if it's stateful) */
  4312. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4313. u32 function, u32 index)
  4314. {
  4315. if (e->function != function)
  4316. return 0;
  4317. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4318. return 0;
  4319. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4320. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4321. return 0;
  4322. return 1;
  4323. }
  4324. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4325. u32 function, u32 index)
  4326. {
  4327. int i;
  4328. struct kvm_cpuid_entry2 *best = NULL;
  4329. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4330. struct kvm_cpuid_entry2 *e;
  4331. e = &vcpu->arch.cpuid_entries[i];
  4332. if (is_matching_cpuid_entry(e, function, index)) {
  4333. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4334. move_to_next_stateful_cpuid_entry(vcpu, i);
  4335. best = e;
  4336. break;
  4337. }
  4338. /*
  4339. * Both basic or both extended?
  4340. */
  4341. if (((e->function ^ function) & 0x80000000) == 0)
  4342. if (!best || e->function > best->function)
  4343. best = e;
  4344. }
  4345. return best;
  4346. }
  4347. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4348. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4349. {
  4350. struct kvm_cpuid_entry2 *best;
  4351. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4352. if (!best || best->eax < 0x80000008)
  4353. goto not_found;
  4354. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4355. if (best)
  4356. return best->eax & 0xff;
  4357. not_found:
  4358. return 36;
  4359. }
  4360. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4361. {
  4362. u32 function, index;
  4363. struct kvm_cpuid_entry2 *best;
  4364. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4365. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4366. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4367. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4368. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4369. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4370. best = kvm_find_cpuid_entry(vcpu, function, index);
  4371. if (best) {
  4372. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4373. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4374. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4375. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4376. }
  4377. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4378. trace_kvm_cpuid(function,
  4379. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4380. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4381. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4382. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4383. }
  4384. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4385. /*
  4386. * Check if userspace requested an interrupt window, and that the
  4387. * interrupt window is open.
  4388. *
  4389. * No need to exit to userspace if we already have an interrupt queued.
  4390. */
  4391. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4392. {
  4393. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4394. vcpu->run->request_interrupt_window &&
  4395. kvm_arch_interrupt_allowed(vcpu));
  4396. }
  4397. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4398. {
  4399. struct kvm_run *kvm_run = vcpu->run;
  4400. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4401. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4402. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4403. if (irqchip_in_kernel(vcpu->kvm))
  4404. kvm_run->ready_for_interrupt_injection = 1;
  4405. else
  4406. kvm_run->ready_for_interrupt_injection =
  4407. kvm_arch_interrupt_allowed(vcpu) &&
  4408. !kvm_cpu_has_interrupt(vcpu) &&
  4409. !kvm_event_needs_reinjection(vcpu);
  4410. }
  4411. static void vapic_enter(struct kvm_vcpu *vcpu)
  4412. {
  4413. struct kvm_lapic *apic = vcpu->arch.apic;
  4414. struct page *page;
  4415. if (!apic || !apic->vapic_addr)
  4416. return;
  4417. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4418. vcpu->arch.apic->vapic_page = page;
  4419. }
  4420. static void vapic_exit(struct kvm_vcpu *vcpu)
  4421. {
  4422. struct kvm_lapic *apic = vcpu->arch.apic;
  4423. int idx;
  4424. if (!apic || !apic->vapic_addr)
  4425. return;
  4426. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4427. kvm_release_page_dirty(apic->vapic_page);
  4428. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4429. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4430. }
  4431. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4432. {
  4433. int max_irr, tpr;
  4434. if (!kvm_x86_ops->update_cr8_intercept)
  4435. return;
  4436. if (!vcpu->arch.apic)
  4437. return;
  4438. if (!vcpu->arch.apic->vapic_addr)
  4439. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4440. else
  4441. max_irr = -1;
  4442. if (max_irr != -1)
  4443. max_irr >>= 4;
  4444. tpr = kvm_lapic_get_cr8(vcpu);
  4445. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4446. }
  4447. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4448. {
  4449. /* try to reinject previous events if any */
  4450. if (vcpu->arch.exception.pending) {
  4451. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4452. vcpu->arch.exception.has_error_code,
  4453. vcpu->arch.exception.error_code);
  4454. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4455. vcpu->arch.exception.has_error_code,
  4456. vcpu->arch.exception.error_code,
  4457. vcpu->arch.exception.reinject);
  4458. return;
  4459. }
  4460. if (vcpu->arch.nmi_injected) {
  4461. kvm_x86_ops->set_nmi(vcpu);
  4462. return;
  4463. }
  4464. if (vcpu->arch.interrupt.pending) {
  4465. kvm_x86_ops->set_irq(vcpu);
  4466. return;
  4467. }
  4468. /* try to inject new event if pending */
  4469. if (vcpu->arch.nmi_pending) {
  4470. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4471. vcpu->arch.nmi_pending = false;
  4472. vcpu->arch.nmi_injected = true;
  4473. kvm_x86_ops->set_nmi(vcpu);
  4474. }
  4475. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4476. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4477. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4478. false);
  4479. kvm_x86_ops->set_irq(vcpu);
  4480. }
  4481. }
  4482. }
  4483. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4484. {
  4485. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4486. !vcpu->guest_xcr0_loaded) {
  4487. /* kvm_set_xcr() also depends on this */
  4488. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4489. vcpu->guest_xcr0_loaded = 1;
  4490. }
  4491. }
  4492. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4493. {
  4494. if (vcpu->guest_xcr0_loaded) {
  4495. if (vcpu->arch.xcr0 != host_xcr0)
  4496. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4497. vcpu->guest_xcr0_loaded = 0;
  4498. }
  4499. }
  4500. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4501. {
  4502. int r;
  4503. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4504. vcpu->run->request_interrupt_window;
  4505. if (vcpu->requests) {
  4506. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4507. kvm_mmu_unload(vcpu);
  4508. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4509. __kvm_migrate_timers(vcpu);
  4510. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4511. r = kvm_guest_time_update(vcpu);
  4512. if (unlikely(r))
  4513. goto out;
  4514. }
  4515. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4516. kvm_mmu_sync_roots(vcpu);
  4517. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4518. kvm_x86_ops->tlb_flush(vcpu);
  4519. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4520. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4521. r = 0;
  4522. goto out;
  4523. }
  4524. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4525. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4526. r = 0;
  4527. goto out;
  4528. }
  4529. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4530. vcpu->fpu_active = 0;
  4531. kvm_x86_ops->fpu_deactivate(vcpu);
  4532. }
  4533. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4534. /* Page is swapped out. Do synthetic halt */
  4535. vcpu->arch.apf.halted = true;
  4536. r = 1;
  4537. goto out;
  4538. }
  4539. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  4540. vcpu->arch.nmi_pending = true;
  4541. }
  4542. r = kvm_mmu_reload(vcpu);
  4543. if (unlikely(r))
  4544. goto out;
  4545. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4546. inject_pending_event(vcpu);
  4547. /* enable NMI/IRQ window open exits if needed */
  4548. if (vcpu->arch.nmi_pending)
  4549. kvm_x86_ops->enable_nmi_window(vcpu);
  4550. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4551. kvm_x86_ops->enable_irq_window(vcpu);
  4552. if (kvm_lapic_enabled(vcpu)) {
  4553. update_cr8_intercept(vcpu);
  4554. kvm_lapic_sync_to_vapic(vcpu);
  4555. }
  4556. }
  4557. preempt_disable();
  4558. kvm_x86_ops->prepare_guest_switch(vcpu);
  4559. if (vcpu->fpu_active)
  4560. kvm_load_guest_fpu(vcpu);
  4561. kvm_load_guest_xcr0(vcpu);
  4562. vcpu->mode = IN_GUEST_MODE;
  4563. /* We should set ->mode before check ->requests,
  4564. * see the comment in make_all_cpus_request.
  4565. */
  4566. smp_mb();
  4567. local_irq_disable();
  4568. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4569. || need_resched() || signal_pending(current)) {
  4570. vcpu->mode = OUTSIDE_GUEST_MODE;
  4571. smp_wmb();
  4572. local_irq_enable();
  4573. preempt_enable();
  4574. kvm_x86_ops->cancel_injection(vcpu);
  4575. r = 1;
  4576. goto out;
  4577. }
  4578. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4579. kvm_guest_enter();
  4580. if (unlikely(vcpu->arch.switch_db_regs)) {
  4581. set_debugreg(0, 7);
  4582. set_debugreg(vcpu->arch.eff_db[0], 0);
  4583. set_debugreg(vcpu->arch.eff_db[1], 1);
  4584. set_debugreg(vcpu->arch.eff_db[2], 2);
  4585. set_debugreg(vcpu->arch.eff_db[3], 3);
  4586. }
  4587. trace_kvm_entry(vcpu->vcpu_id);
  4588. kvm_x86_ops->run(vcpu);
  4589. /*
  4590. * If the guest has used debug registers, at least dr7
  4591. * will be disabled while returning to the host.
  4592. * If we don't have active breakpoints in the host, we don't
  4593. * care about the messed up debug address registers. But if
  4594. * we have some of them active, restore the old state.
  4595. */
  4596. if (hw_breakpoint_active())
  4597. hw_breakpoint_restore();
  4598. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4599. vcpu->mode = OUTSIDE_GUEST_MODE;
  4600. smp_wmb();
  4601. local_irq_enable();
  4602. ++vcpu->stat.exits;
  4603. /*
  4604. * We must have an instruction between local_irq_enable() and
  4605. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4606. * the interrupt shadow. The stat.exits increment will do nicely.
  4607. * But we need to prevent reordering, hence this barrier():
  4608. */
  4609. barrier();
  4610. kvm_guest_exit();
  4611. preempt_enable();
  4612. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4613. /*
  4614. * Profile KVM exit RIPs:
  4615. */
  4616. if (unlikely(prof_on == KVM_PROFILING)) {
  4617. unsigned long rip = kvm_rip_read(vcpu);
  4618. profile_hit(KVM_PROFILING, (void *)rip);
  4619. }
  4620. kvm_lapic_sync_from_vapic(vcpu);
  4621. r = kvm_x86_ops->handle_exit(vcpu);
  4622. out:
  4623. return r;
  4624. }
  4625. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4626. {
  4627. int r;
  4628. struct kvm *kvm = vcpu->kvm;
  4629. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4630. pr_debug("vcpu %d received sipi with vector # %x\n",
  4631. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4632. kvm_lapic_reset(vcpu);
  4633. r = kvm_arch_vcpu_reset(vcpu);
  4634. if (r)
  4635. return r;
  4636. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4637. }
  4638. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4639. vapic_enter(vcpu);
  4640. r = 1;
  4641. while (r > 0) {
  4642. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4643. !vcpu->arch.apf.halted)
  4644. r = vcpu_enter_guest(vcpu);
  4645. else {
  4646. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4647. kvm_vcpu_block(vcpu);
  4648. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4649. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4650. {
  4651. switch(vcpu->arch.mp_state) {
  4652. case KVM_MP_STATE_HALTED:
  4653. vcpu->arch.mp_state =
  4654. KVM_MP_STATE_RUNNABLE;
  4655. case KVM_MP_STATE_RUNNABLE:
  4656. vcpu->arch.apf.halted = false;
  4657. break;
  4658. case KVM_MP_STATE_SIPI_RECEIVED:
  4659. default:
  4660. r = -EINTR;
  4661. break;
  4662. }
  4663. }
  4664. }
  4665. if (r <= 0)
  4666. break;
  4667. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4668. if (kvm_cpu_has_pending_timer(vcpu))
  4669. kvm_inject_pending_timer_irqs(vcpu);
  4670. if (dm_request_for_irq_injection(vcpu)) {
  4671. r = -EINTR;
  4672. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4673. ++vcpu->stat.request_irq_exits;
  4674. }
  4675. kvm_check_async_pf_completion(vcpu);
  4676. if (signal_pending(current)) {
  4677. r = -EINTR;
  4678. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4679. ++vcpu->stat.signal_exits;
  4680. }
  4681. if (need_resched()) {
  4682. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4683. kvm_resched(vcpu);
  4684. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4685. }
  4686. }
  4687. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4688. vapic_exit(vcpu);
  4689. return r;
  4690. }
  4691. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4692. {
  4693. int r;
  4694. sigset_t sigsaved;
  4695. if (!tsk_used_math(current) && init_fpu(current))
  4696. return -ENOMEM;
  4697. if (vcpu->sigset_active)
  4698. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4699. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4700. kvm_vcpu_block(vcpu);
  4701. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4702. r = -EAGAIN;
  4703. goto out;
  4704. }
  4705. /* re-sync apic's tpr */
  4706. if (!irqchip_in_kernel(vcpu->kvm)) {
  4707. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4708. r = -EINVAL;
  4709. goto out;
  4710. }
  4711. }
  4712. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4713. if (vcpu->mmio_needed) {
  4714. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4715. vcpu->mmio_read_completed = 1;
  4716. vcpu->mmio_needed = 0;
  4717. }
  4718. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4719. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4720. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4721. if (r != EMULATE_DONE) {
  4722. r = 0;
  4723. goto out;
  4724. }
  4725. }
  4726. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4727. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4728. kvm_run->hypercall.ret);
  4729. r = __vcpu_run(vcpu);
  4730. out:
  4731. post_kvm_run_save(vcpu);
  4732. if (vcpu->sigset_active)
  4733. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4734. return r;
  4735. }
  4736. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4737. {
  4738. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4739. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4740. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4741. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4742. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4743. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4744. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4745. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4746. #ifdef CONFIG_X86_64
  4747. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4748. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4749. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4750. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4751. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4752. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4753. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4754. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4755. #endif
  4756. regs->rip = kvm_rip_read(vcpu);
  4757. regs->rflags = kvm_get_rflags(vcpu);
  4758. return 0;
  4759. }
  4760. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4761. {
  4762. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4763. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4764. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4765. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4766. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4767. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4768. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4769. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4770. #ifdef CONFIG_X86_64
  4771. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4772. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4773. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4774. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4775. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4776. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4777. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4778. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4779. #endif
  4780. kvm_rip_write(vcpu, regs->rip);
  4781. kvm_set_rflags(vcpu, regs->rflags);
  4782. vcpu->arch.exception.pending = false;
  4783. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4784. return 0;
  4785. }
  4786. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4787. {
  4788. struct kvm_segment cs;
  4789. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4790. *db = cs.db;
  4791. *l = cs.l;
  4792. }
  4793. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4794. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4795. struct kvm_sregs *sregs)
  4796. {
  4797. struct desc_ptr dt;
  4798. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4799. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4800. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4801. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4802. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4803. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4804. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4805. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4806. kvm_x86_ops->get_idt(vcpu, &dt);
  4807. sregs->idt.limit = dt.size;
  4808. sregs->idt.base = dt.address;
  4809. kvm_x86_ops->get_gdt(vcpu, &dt);
  4810. sregs->gdt.limit = dt.size;
  4811. sregs->gdt.base = dt.address;
  4812. sregs->cr0 = kvm_read_cr0(vcpu);
  4813. sregs->cr2 = vcpu->arch.cr2;
  4814. sregs->cr3 = kvm_read_cr3(vcpu);
  4815. sregs->cr4 = kvm_read_cr4(vcpu);
  4816. sregs->cr8 = kvm_get_cr8(vcpu);
  4817. sregs->efer = vcpu->arch.efer;
  4818. sregs->apic_base = kvm_get_apic_base(vcpu);
  4819. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4820. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4821. set_bit(vcpu->arch.interrupt.nr,
  4822. (unsigned long *)sregs->interrupt_bitmap);
  4823. return 0;
  4824. }
  4825. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4826. struct kvm_mp_state *mp_state)
  4827. {
  4828. mp_state->mp_state = vcpu->arch.mp_state;
  4829. return 0;
  4830. }
  4831. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4832. struct kvm_mp_state *mp_state)
  4833. {
  4834. vcpu->arch.mp_state = mp_state->mp_state;
  4835. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4836. return 0;
  4837. }
  4838. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4839. bool has_error_code, u32 error_code)
  4840. {
  4841. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4842. int ret;
  4843. init_emulate_ctxt(vcpu);
  4844. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4845. tss_selector, reason, has_error_code,
  4846. error_code);
  4847. if (ret)
  4848. return EMULATE_FAIL;
  4849. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4850. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4851. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4852. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4853. return EMULATE_DONE;
  4854. }
  4855. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4856. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4857. struct kvm_sregs *sregs)
  4858. {
  4859. int mmu_reset_needed = 0;
  4860. int pending_vec, max_bits, idx;
  4861. struct desc_ptr dt;
  4862. dt.size = sregs->idt.limit;
  4863. dt.address = sregs->idt.base;
  4864. kvm_x86_ops->set_idt(vcpu, &dt);
  4865. dt.size = sregs->gdt.limit;
  4866. dt.address = sregs->gdt.base;
  4867. kvm_x86_ops->set_gdt(vcpu, &dt);
  4868. vcpu->arch.cr2 = sregs->cr2;
  4869. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  4870. vcpu->arch.cr3 = sregs->cr3;
  4871. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  4872. kvm_set_cr8(vcpu, sregs->cr8);
  4873. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4874. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4875. kvm_set_apic_base(vcpu, sregs->apic_base);
  4876. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4877. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4878. vcpu->arch.cr0 = sregs->cr0;
  4879. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4880. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4881. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4882. update_cpuid(vcpu);
  4883. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4884. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4885. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  4886. mmu_reset_needed = 1;
  4887. }
  4888. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4889. if (mmu_reset_needed)
  4890. kvm_mmu_reset_context(vcpu);
  4891. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4892. pending_vec = find_first_bit(
  4893. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4894. if (pending_vec < max_bits) {
  4895. kvm_queue_interrupt(vcpu, pending_vec, false);
  4896. pr_debug("Set back pending irq %d\n", pending_vec);
  4897. }
  4898. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4899. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4900. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4901. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4902. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4903. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4904. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4905. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4906. update_cr8_intercept(vcpu);
  4907. /* Older userspace won't unhalt the vcpu on reset. */
  4908. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4909. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4910. !is_protmode(vcpu))
  4911. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4912. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4913. return 0;
  4914. }
  4915. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4916. struct kvm_guest_debug *dbg)
  4917. {
  4918. unsigned long rflags;
  4919. int i, r;
  4920. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4921. r = -EBUSY;
  4922. if (vcpu->arch.exception.pending)
  4923. goto out;
  4924. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4925. kvm_queue_exception(vcpu, DB_VECTOR);
  4926. else
  4927. kvm_queue_exception(vcpu, BP_VECTOR);
  4928. }
  4929. /*
  4930. * Read rflags as long as potentially injected trace flags are still
  4931. * filtered out.
  4932. */
  4933. rflags = kvm_get_rflags(vcpu);
  4934. vcpu->guest_debug = dbg->control;
  4935. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4936. vcpu->guest_debug = 0;
  4937. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4938. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4939. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4940. vcpu->arch.switch_db_regs =
  4941. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4942. } else {
  4943. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4944. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4945. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4946. }
  4947. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4948. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4949. get_segment_base(vcpu, VCPU_SREG_CS);
  4950. /*
  4951. * Trigger an rflags update that will inject or remove the trace
  4952. * flags.
  4953. */
  4954. kvm_set_rflags(vcpu, rflags);
  4955. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4956. r = 0;
  4957. out:
  4958. return r;
  4959. }
  4960. /*
  4961. * Translate a guest virtual address to a guest physical address.
  4962. */
  4963. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4964. struct kvm_translation *tr)
  4965. {
  4966. unsigned long vaddr = tr->linear_address;
  4967. gpa_t gpa;
  4968. int idx;
  4969. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4970. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4971. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4972. tr->physical_address = gpa;
  4973. tr->valid = gpa != UNMAPPED_GVA;
  4974. tr->writeable = 1;
  4975. tr->usermode = 0;
  4976. return 0;
  4977. }
  4978. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4979. {
  4980. struct i387_fxsave_struct *fxsave =
  4981. &vcpu->arch.guest_fpu.state->fxsave;
  4982. memcpy(fpu->fpr, fxsave->st_space, 128);
  4983. fpu->fcw = fxsave->cwd;
  4984. fpu->fsw = fxsave->swd;
  4985. fpu->ftwx = fxsave->twd;
  4986. fpu->last_opcode = fxsave->fop;
  4987. fpu->last_ip = fxsave->rip;
  4988. fpu->last_dp = fxsave->rdp;
  4989. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4990. return 0;
  4991. }
  4992. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4993. {
  4994. struct i387_fxsave_struct *fxsave =
  4995. &vcpu->arch.guest_fpu.state->fxsave;
  4996. memcpy(fxsave->st_space, fpu->fpr, 128);
  4997. fxsave->cwd = fpu->fcw;
  4998. fxsave->swd = fpu->fsw;
  4999. fxsave->twd = fpu->ftwx;
  5000. fxsave->fop = fpu->last_opcode;
  5001. fxsave->rip = fpu->last_ip;
  5002. fxsave->rdp = fpu->last_dp;
  5003. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5004. return 0;
  5005. }
  5006. int fx_init(struct kvm_vcpu *vcpu)
  5007. {
  5008. int err;
  5009. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5010. if (err)
  5011. return err;
  5012. fpu_finit(&vcpu->arch.guest_fpu);
  5013. /*
  5014. * Ensure guest xcr0 is valid for loading
  5015. */
  5016. vcpu->arch.xcr0 = XSTATE_FP;
  5017. vcpu->arch.cr0 |= X86_CR0_ET;
  5018. return 0;
  5019. }
  5020. EXPORT_SYMBOL_GPL(fx_init);
  5021. static void fx_free(struct kvm_vcpu *vcpu)
  5022. {
  5023. fpu_free(&vcpu->arch.guest_fpu);
  5024. }
  5025. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5026. {
  5027. if (vcpu->guest_fpu_loaded)
  5028. return;
  5029. /*
  5030. * Restore all possible states in the guest,
  5031. * and assume host would use all available bits.
  5032. * Guest xcr0 would be loaded later.
  5033. */
  5034. kvm_put_guest_xcr0(vcpu);
  5035. vcpu->guest_fpu_loaded = 1;
  5036. unlazy_fpu(current);
  5037. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5038. trace_kvm_fpu(1);
  5039. }
  5040. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5041. {
  5042. kvm_put_guest_xcr0(vcpu);
  5043. if (!vcpu->guest_fpu_loaded)
  5044. return;
  5045. vcpu->guest_fpu_loaded = 0;
  5046. fpu_save_init(&vcpu->arch.guest_fpu);
  5047. ++vcpu->stat.fpu_reload;
  5048. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5049. trace_kvm_fpu(0);
  5050. }
  5051. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5052. {
  5053. kvmclock_reset(vcpu);
  5054. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5055. fx_free(vcpu);
  5056. kvm_x86_ops->vcpu_free(vcpu);
  5057. }
  5058. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5059. unsigned int id)
  5060. {
  5061. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5062. printk_once(KERN_WARNING
  5063. "kvm: SMP vm created on host with unstable TSC; "
  5064. "guest TSC will not be reliable\n");
  5065. return kvm_x86_ops->vcpu_create(kvm, id);
  5066. }
  5067. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5068. {
  5069. int r;
  5070. vcpu->arch.mtrr_state.have_fixed = 1;
  5071. vcpu_load(vcpu);
  5072. r = kvm_arch_vcpu_reset(vcpu);
  5073. if (r == 0)
  5074. r = kvm_mmu_setup(vcpu);
  5075. vcpu_put(vcpu);
  5076. if (r < 0)
  5077. goto free_vcpu;
  5078. return 0;
  5079. free_vcpu:
  5080. kvm_x86_ops->vcpu_free(vcpu);
  5081. return r;
  5082. }
  5083. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5084. {
  5085. vcpu->arch.apf.msr_val = 0;
  5086. vcpu_load(vcpu);
  5087. kvm_mmu_unload(vcpu);
  5088. vcpu_put(vcpu);
  5089. fx_free(vcpu);
  5090. kvm_x86_ops->vcpu_free(vcpu);
  5091. }
  5092. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5093. {
  5094. vcpu->arch.nmi_pending = false;
  5095. vcpu->arch.nmi_injected = false;
  5096. vcpu->arch.switch_db_regs = 0;
  5097. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5098. vcpu->arch.dr6 = DR6_FIXED_1;
  5099. vcpu->arch.dr7 = DR7_FIXED_1;
  5100. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5101. vcpu->arch.apf.msr_val = 0;
  5102. kvmclock_reset(vcpu);
  5103. kvm_clear_async_pf_completion_queue(vcpu);
  5104. kvm_async_pf_hash_reset(vcpu);
  5105. vcpu->arch.apf.halted = false;
  5106. return kvm_x86_ops->vcpu_reset(vcpu);
  5107. }
  5108. int kvm_arch_hardware_enable(void *garbage)
  5109. {
  5110. struct kvm *kvm;
  5111. struct kvm_vcpu *vcpu;
  5112. int i;
  5113. kvm_shared_msr_cpu_online();
  5114. list_for_each_entry(kvm, &vm_list, vm_list)
  5115. kvm_for_each_vcpu(i, vcpu, kvm)
  5116. if (vcpu->cpu == smp_processor_id())
  5117. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5118. return kvm_x86_ops->hardware_enable(garbage);
  5119. }
  5120. void kvm_arch_hardware_disable(void *garbage)
  5121. {
  5122. kvm_x86_ops->hardware_disable(garbage);
  5123. drop_user_return_notifiers(garbage);
  5124. }
  5125. int kvm_arch_hardware_setup(void)
  5126. {
  5127. return kvm_x86_ops->hardware_setup();
  5128. }
  5129. void kvm_arch_hardware_unsetup(void)
  5130. {
  5131. kvm_x86_ops->hardware_unsetup();
  5132. }
  5133. void kvm_arch_check_processor_compat(void *rtn)
  5134. {
  5135. kvm_x86_ops->check_processor_compatibility(rtn);
  5136. }
  5137. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5138. {
  5139. struct page *page;
  5140. struct kvm *kvm;
  5141. int r;
  5142. BUG_ON(vcpu->kvm == NULL);
  5143. kvm = vcpu->kvm;
  5144. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5145. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5146. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5147. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5148. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5149. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5150. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5151. else
  5152. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5153. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5154. if (!page) {
  5155. r = -ENOMEM;
  5156. goto fail;
  5157. }
  5158. vcpu->arch.pio_data = page_address(page);
  5159. if (!kvm->arch.virtual_tsc_khz)
  5160. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5161. r = kvm_mmu_create(vcpu);
  5162. if (r < 0)
  5163. goto fail_free_pio_data;
  5164. if (irqchip_in_kernel(kvm)) {
  5165. r = kvm_create_lapic(vcpu);
  5166. if (r < 0)
  5167. goto fail_mmu_destroy;
  5168. }
  5169. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5170. GFP_KERNEL);
  5171. if (!vcpu->arch.mce_banks) {
  5172. r = -ENOMEM;
  5173. goto fail_free_lapic;
  5174. }
  5175. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5176. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5177. goto fail_free_mce_banks;
  5178. kvm_async_pf_hash_reset(vcpu);
  5179. return 0;
  5180. fail_free_mce_banks:
  5181. kfree(vcpu->arch.mce_banks);
  5182. fail_free_lapic:
  5183. kvm_free_lapic(vcpu);
  5184. fail_mmu_destroy:
  5185. kvm_mmu_destroy(vcpu);
  5186. fail_free_pio_data:
  5187. free_page((unsigned long)vcpu->arch.pio_data);
  5188. fail:
  5189. return r;
  5190. }
  5191. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5192. {
  5193. int idx;
  5194. kfree(vcpu->arch.mce_banks);
  5195. kvm_free_lapic(vcpu);
  5196. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5197. kvm_mmu_destroy(vcpu);
  5198. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5199. free_page((unsigned long)vcpu->arch.pio_data);
  5200. }
  5201. int kvm_arch_init_vm(struct kvm *kvm)
  5202. {
  5203. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5204. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5205. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5206. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5207. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5208. return 0;
  5209. }
  5210. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5211. {
  5212. vcpu_load(vcpu);
  5213. kvm_mmu_unload(vcpu);
  5214. vcpu_put(vcpu);
  5215. }
  5216. static void kvm_free_vcpus(struct kvm *kvm)
  5217. {
  5218. unsigned int i;
  5219. struct kvm_vcpu *vcpu;
  5220. /*
  5221. * Unpin any mmu pages first.
  5222. */
  5223. kvm_for_each_vcpu(i, vcpu, kvm) {
  5224. kvm_clear_async_pf_completion_queue(vcpu);
  5225. kvm_unload_vcpu_mmu(vcpu);
  5226. }
  5227. kvm_for_each_vcpu(i, vcpu, kvm)
  5228. kvm_arch_vcpu_free(vcpu);
  5229. mutex_lock(&kvm->lock);
  5230. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5231. kvm->vcpus[i] = NULL;
  5232. atomic_set(&kvm->online_vcpus, 0);
  5233. mutex_unlock(&kvm->lock);
  5234. }
  5235. void kvm_arch_sync_events(struct kvm *kvm)
  5236. {
  5237. kvm_free_all_assigned_devices(kvm);
  5238. kvm_free_pit(kvm);
  5239. }
  5240. void kvm_arch_destroy_vm(struct kvm *kvm)
  5241. {
  5242. kvm_iommu_unmap_guest(kvm);
  5243. kfree(kvm->arch.vpic);
  5244. kfree(kvm->arch.vioapic);
  5245. kvm_free_vcpus(kvm);
  5246. if (kvm->arch.apic_access_page)
  5247. put_page(kvm->arch.apic_access_page);
  5248. if (kvm->arch.ept_identity_pagetable)
  5249. put_page(kvm->arch.ept_identity_pagetable);
  5250. }
  5251. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5252. struct kvm_memory_slot *memslot,
  5253. struct kvm_memory_slot old,
  5254. struct kvm_userspace_memory_region *mem,
  5255. int user_alloc)
  5256. {
  5257. int npages = memslot->npages;
  5258. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5259. /* Prevent internal slot pages from being moved by fork()/COW. */
  5260. if (memslot->id >= KVM_MEMORY_SLOTS)
  5261. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5262. /*To keep backward compatibility with older userspace,
  5263. *x86 needs to hanlde !user_alloc case.
  5264. */
  5265. if (!user_alloc) {
  5266. if (npages && !old.rmap) {
  5267. unsigned long userspace_addr;
  5268. down_write(&current->mm->mmap_sem);
  5269. userspace_addr = do_mmap(NULL, 0,
  5270. npages * PAGE_SIZE,
  5271. PROT_READ | PROT_WRITE,
  5272. map_flags,
  5273. 0);
  5274. up_write(&current->mm->mmap_sem);
  5275. if (IS_ERR((void *)userspace_addr))
  5276. return PTR_ERR((void *)userspace_addr);
  5277. memslot->userspace_addr = userspace_addr;
  5278. }
  5279. }
  5280. return 0;
  5281. }
  5282. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5283. struct kvm_userspace_memory_region *mem,
  5284. struct kvm_memory_slot old,
  5285. int user_alloc)
  5286. {
  5287. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5288. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5289. int ret;
  5290. down_write(&current->mm->mmap_sem);
  5291. ret = do_munmap(current->mm, old.userspace_addr,
  5292. old.npages * PAGE_SIZE);
  5293. up_write(&current->mm->mmap_sem);
  5294. if (ret < 0)
  5295. printk(KERN_WARNING
  5296. "kvm_vm_ioctl_set_memory_region: "
  5297. "failed to munmap memory\n");
  5298. }
  5299. if (!kvm->arch.n_requested_mmu_pages)
  5300. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5301. spin_lock(&kvm->mmu_lock);
  5302. if (nr_mmu_pages)
  5303. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5304. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5305. spin_unlock(&kvm->mmu_lock);
  5306. }
  5307. void kvm_arch_flush_shadow(struct kvm *kvm)
  5308. {
  5309. kvm_mmu_zap_all(kvm);
  5310. kvm_reload_remote_mmus(kvm);
  5311. }
  5312. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5313. {
  5314. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5315. !vcpu->arch.apf.halted)
  5316. || !list_empty_careful(&vcpu->async_pf.done)
  5317. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5318. || vcpu->arch.nmi_pending ||
  5319. (kvm_arch_interrupt_allowed(vcpu) &&
  5320. kvm_cpu_has_interrupt(vcpu));
  5321. }
  5322. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5323. {
  5324. int me;
  5325. int cpu = vcpu->cpu;
  5326. if (waitqueue_active(&vcpu->wq)) {
  5327. wake_up_interruptible(&vcpu->wq);
  5328. ++vcpu->stat.halt_wakeup;
  5329. }
  5330. me = get_cpu();
  5331. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5332. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5333. smp_send_reschedule(cpu);
  5334. put_cpu();
  5335. }
  5336. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5337. {
  5338. return kvm_x86_ops->interrupt_allowed(vcpu);
  5339. }
  5340. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5341. {
  5342. unsigned long current_rip = kvm_rip_read(vcpu) +
  5343. get_segment_base(vcpu, VCPU_SREG_CS);
  5344. return current_rip == linear_rip;
  5345. }
  5346. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5347. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5348. {
  5349. unsigned long rflags;
  5350. rflags = kvm_x86_ops->get_rflags(vcpu);
  5351. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5352. rflags &= ~X86_EFLAGS_TF;
  5353. return rflags;
  5354. }
  5355. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5356. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5357. {
  5358. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5359. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5360. rflags |= X86_EFLAGS_TF;
  5361. kvm_x86_ops->set_rflags(vcpu, rflags);
  5362. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5363. }
  5364. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5365. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5366. {
  5367. int r;
  5368. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5369. is_error_page(work->page))
  5370. return;
  5371. r = kvm_mmu_reload(vcpu);
  5372. if (unlikely(r))
  5373. return;
  5374. if (!vcpu->arch.mmu.direct_map &&
  5375. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5376. return;
  5377. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5378. }
  5379. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5380. {
  5381. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5382. }
  5383. static inline u32 kvm_async_pf_next_probe(u32 key)
  5384. {
  5385. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5386. }
  5387. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5388. {
  5389. u32 key = kvm_async_pf_hash_fn(gfn);
  5390. while (vcpu->arch.apf.gfns[key] != ~0)
  5391. key = kvm_async_pf_next_probe(key);
  5392. vcpu->arch.apf.gfns[key] = gfn;
  5393. }
  5394. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5395. {
  5396. int i;
  5397. u32 key = kvm_async_pf_hash_fn(gfn);
  5398. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5399. (vcpu->arch.apf.gfns[key] != gfn &&
  5400. vcpu->arch.apf.gfns[key] != ~0); i++)
  5401. key = kvm_async_pf_next_probe(key);
  5402. return key;
  5403. }
  5404. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5405. {
  5406. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5407. }
  5408. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5409. {
  5410. u32 i, j, k;
  5411. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5412. while (true) {
  5413. vcpu->arch.apf.gfns[i] = ~0;
  5414. do {
  5415. j = kvm_async_pf_next_probe(j);
  5416. if (vcpu->arch.apf.gfns[j] == ~0)
  5417. return;
  5418. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5419. /*
  5420. * k lies cyclically in ]i,j]
  5421. * | i.k.j |
  5422. * |....j i.k.| or |.k..j i...|
  5423. */
  5424. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5425. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5426. i = j;
  5427. }
  5428. }
  5429. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5430. {
  5431. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5432. sizeof(val));
  5433. }
  5434. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5435. struct kvm_async_pf *work)
  5436. {
  5437. struct x86_exception fault;
  5438. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5439. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5440. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5441. (vcpu->arch.apf.send_user_only &&
  5442. kvm_x86_ops->get_cpl(vcpu) == 0))
  5443. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5444. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5445. fault.vector = PF_VECTOR;
  5446. fault.error_code_valid = true;
  5447. fault.error_code = 0;
  5448. fault.nested_page_fault = false;
  5449. fault.address = work->arch.token;
  5450. kvm_inject_page_fault(vcpu, &fault);
  5451. }
  5452. }
  5453. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5454. struct kvm_async_pf *work)
  5455. {
  5456. struct x86_exception fault;
  5457. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5458. if (is_error_page(work->page))
  5459. work->arch.token = ~0; /* broadcast wakeup */
  5460. else
  5461. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5462. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5463. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5464. fault.vector = PF_VECTOR;
  5465. fault.error_code_valid = true;
  5466. fault.error_code = 0;
  5467. fault.nested_page_fault = false;
  5468. fault.address = work->arch.token;
  5469. kvm_inject_page_fault(vcpu, &fault);
  5470. }
  5471. vcpu->arch.apf.halted = false;
  5472. }
  5473. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5474. {
  5475. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5476. return true;
  5477. else
  5478. return !kvm_event_needs_reinjection(vcpu) &&
  5479. kvm_x86_ops->interrupt_allowed(vcpu);
  5480. }
  5481. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5482. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5483. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5484. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5485. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5486. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5487. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5488. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5489. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5490. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5491. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5492. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);