vmx.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. MODULE_AUTHOR("Qumranet");
  42. MODULE_LICENSE("GPL");
  43. static int __read_mostly bypass_guest_pf = 1;
  44. module_param(bypass_guest_pf, bool, S_IRUGO);
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. static int __read_mostly yield_on_hlt = 1;
  59. module_param(yield_on_hlt, bool, S_IRUGO);
  60. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  61. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  62. #define KVM_GUEST_CR0_MASK \
  63. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  64. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  65. (X86_CR0_WP | X86_CR0_NE)
  66. #define KVM_VM_CR0_ALWAYS_ON \
  67. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  68. #define KVM_CR4_GUEST_OWNED_BITS \
  69. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  70. | X86_CR4_OSXMMEXCPT)
  71. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  72. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  73. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  74. /*
  75. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  76. * ple_gap: upper bound on the amount of time between two successive
  77. * executions of PAUSE in a loop. Also indicate if ple enabled.
  78. * According to test, this time is usually smaller than 128 cycles.
  79. * ple_window: upper bound on the amount of time a guest is allowed to execute
  80. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  81. * less than 2^12 cycles
  82. * Time is measured based on a counter that runs at the same rate as the TSC,
  83. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  84. */
  85. #define KVM_VMX_DEFAULT_PLE_GAP 128
  86. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  87. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  88. module_param(ple_gap, int, S_IRUGO);
  89. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  90. module_param(ple_window, int, S_IRUGO);
  91. #define NR_AUTOLOAD_MSRS 1
  92. struct vmcs {
  93. u32 revision_id;
  94. u32 abort;
  95. char data[0];
  96. };
  97. struct shared_msr_entry {
  98. unsigned index;
  99. u64 data;
  100. u64 mask;
  101. };
  102. struct vcpu_vmx {
  103. struct kvm_vcpu vcpu;
  104. struct list_head local_vcpus_link;
  105. unsigned long host_rsp;
  106. int launched;
  107. u8 fail;
  108. u32 exit_intr_info;
  109. u32 idt_vectoring_info;
  110. struct shared_msr_entry *guest_msrs;
  111. int nmsrs;
  112. int save_nmsrs;
  113. #ifdef CONFIG_X86_64
  114. u64 msr_host_kernel_gs_base;
  115. u64 msr_guest_kernel_gs_base;
  116. #endif
  117. struct vmcs *vmcs;
  118. struct msr_autoload {
  119. unsigned nr;
  120. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  121. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  122. } msr_autoload;
  123. struct {
  124. int loaded;
  125. u16 fs_sel, gs_sel, ldt_sel;
  126. int gs_ldt_reload_needed;
  127. int fs_reload_needed;
  128. } host_state;
  129. struct {
  130. int vm86_active;
  131. ulong save_rflags;
  132. struct kvm_save_segment {
  133. u16 selector;
  134. unsigned long base;
  135. u32 limit;
  136. u32 ar;
  137. } tr, es, ds, fs, gs;
  138. } rmode;
  139. int vpid;
  140. bool emulation_required;
  141. /* Support for vnmi-less CPUs */
  142. int soft_vnmi_blocked;
  143. ktime_t entry_time;
  144. s64 vnmi_blocked_time;
  145. u32 exit_reason;
  146. bool rdtscp_enabled;
  147. };
  148. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  149. {
  150. return container_of(vcpu, struct vcpu_vmx, vcpu);
  151. }
  152. static u64 construct_eptp(unsigned long root_hpa);
  153. static void kvm_cpu_vmxon(u64 addr);
  154. static void kvm_cpu_vmxoff(void);
  155. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  156. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  157. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  158. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  159. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  160. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  161. static unsigned long *vmx_io_bitmap_a;
  162. static unsigned long *vmx_io_bitmap_b;
  163. static unsigned long *vmx_msr_bitmap_legacy;
  164. static unsigned long *vmx_msr_bitmap_longmode;
  165. static bool cpu_has_load_ia32_efer;
  166. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  167. static DEFINE_SPINLOCK(vmx_vpid_lock);
  168. static struct vmcs_config {
  169. int size;
  170. int order;
  171. u32 revision_id;
  172. u32 pin_based_exec_ctrl;
  173. u32 cpu_based_exec_ctrl;
  174. u32 cpu_based_2nd_exec_ctrl;
  175. u32 vmexit_ctrl;
  176. u32 vmentry_ctrl;
  177. } vmcs_config;
  178. static struct vmx_capability {
  179. u32 ept;
  180. u32 vpid;
  181. } vmx_capability;
  182. #define VMX_SEGMENT_FIELD(seg) \
  183. [VCPU_SREG_##seg] = { \
  184. .selector = GUEST_##seg##_SELECTOR, \
  185. .base = GUEST_##seg##_BASE, \
  186. .limit = GUEST_##seg##_LIMIT, \
  187. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  188. }
  189. static struct kvm_vmx_segment_field {
  190. unsigned selector;
  191. unsigned base;
  192. unsigned limit;
  193. unsigned ar_bytes;
  194. } kvm_vmx_segment_fields[] = {
  195. VMX_SEGMENT_FIELD(CS),
  196. VMX_SEGMENT_FIELD(DS),
  197. VMX_SEGMENT_FIELD(ES),
  198. VMX_SEGMENT_FIELD(FS),
  199. VMX_SEGMENT_FIELD(GS),
  200. VMX_SEGMENT_FIELD(SS),
  201. VMX_SEGMENT_FIELD(TR),
  202. VMX_SEGMENT_FIELD(LDTR),
  203. };
  204. static u64 host_efer;
  205. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  206. /*
  207. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  208. * away by decrementing the array size.
  209. */
  210. static const u32 vmx_msr_index[] = {
  211. #ifdef CONFIG_X86_64
  212. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  213. #endif
  214. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  215. };
  216. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  217. static inline bool is_page_fault(u32 intr_info)
  218. {
  219. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  220. INTR_INFO_VALID_MASK)) ==
  221. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline bool is_no_device(u32 intr_info)
  224. {
  225. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  226. INTR_INFO_VALID_MASK)) ==
  227. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  228. }
  229. static inline bool is_invalid_opcode(u32 intr_info)
  230. {
  231. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  232. INTR_INFO_VALID_MASK)) ==
  233. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  234. }
  235. static inline bool is_external_interrupt(u32 intr_info)
  236. {
  237. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  238. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  239. }
  240. static inline bool is_machine_check(u32 intr_info)
  241. {
  242. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  243. INTR_INFO_VALID_MASK)) ==
  244. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  245. }
  246. static inline bool cpu_has_vmx_msr_bitmap(void)
  247. {
  248. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  249. }
  250. static inline bool cpu_has_vmx_tpr_shadow(void)
  251. {
  252. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  253. }
  254. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  255. {
  256. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  257. }
  258. static inline bool cpu_has_secondary_exec_ctrls(void)
  259. {
  260. return vmcs_config.cpu_based_exec_ctrl &
  261. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  262. }
  263. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  264. {
  265. return vmcs_config.cpu_based_2nd_exec_ctrl &
  266. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  267. }
  268. static inline bool cpu_has_vmx_flexpriority(void)
  269. {
  270. return cpu_has_vmx_tpr_shadow() &&
  271. cpu_has_vmx_virtualize_apic_accesses();
  272. }
  273. static inline bool cpu_has_vmx_ept_execute_only(void)
  274. {
  275. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  276. }
  277. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  278. {
  279. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  280. }
  281. static inline bool cpu_has_vmx_eptp_writeback(void)
  282. {
  283. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  284. }
  285. static inline bool cpu_has_vmx_ept_2m_page(void)
  286. {
  287. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  288. }
  289. static inline bool cpu_has_vmx_ept_1g_page(void)
  290. {
  291. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  292. }
  293. static inline bool cpu_has_vmx_ept_4levels(void)
  294. {
  295. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  296. }
  297. static inline bool cpu_has_vmx_invept_individual_addr(void)
  298. {
  299. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  300. }
  301. static inline bool cpu_has_vmx_invept_context(void)
  302. {
  303. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  304. }
  305. static inline bool cpu_has_vmx_invept_global(void)
  306. {
  307. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  308. }
  309. static inline bool cpu_has_vmx_invvpid_single(void)
  310. {
  311. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  312. }
  313. static inline bool cpu_has_vmx_invvpid_global(void)
  314. {
  315. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  316. }
  317. static inline bool cpu_has_vmx_ept(void)
  318. {
  319. return vmcs_config.cpu_based_2nd_exec_ctrl &
  320. SECONDARY_EXEC_ENABLE_EPT;
  321. }
  322. static inline bool cpu_has_vmx_unrestricted_guest(void)
  323. {
  324. return vmcs_config.cpu_based_2nd_exec_ctrl &
  325. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  326. }
  327. static inline bool cpu_has_vmx_ple(void)
  328. {
  329. return vmcs_config.cpu_based_2nd_exec_ctrl &
  330. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  331. }
  332. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  333. {
  334. return flexpriority_enabled && irqchip_in_kernel(kvm);
  335. }
  336. static inline bool cpu_has_vmx_vpid(void)
  337. {
  338. return vmcs_config.cpu_based_2nd_exec_ctrl &
  339. SECONDARY_EXEC_ENABLE_VPID;
  340. }
  341. static inline bool cpu_has_vmx_rdtscp(void)
  342. {
  343. return vmcs_config.cpu_based_2nd_exec_ctrl &
  344. SECONDARY_EXEC_RDTSCP;
  345. }
  346. static inline bool cpu_has_virtual_nmis(void)
  347. {
  348. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  349. }
  350. static inline bool cpu_has_vmx_wbinvd_exit(void)
  351. {
  352. return vmcs_config.cpu_based_2nd_exec_ctrl &
  353. SECONDARY_EXEC_WBINVD_EXITING;
  354. }
  355. static inline bool report_flexpriority(void)
  356. {
  357. return flexpriority_enabled;
  358. }
  359. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  360. {
  361. int i;
  362. for (i = 0; i < vmx->nmsrs; ++i)
  363. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  364. return i;
  365. return -1;
  366. }
  367. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  368. {
  369. struct {
  370. u64 vpid : 16;
  371. u64 rsvd : 48;
  372. u64 gva;
  373. } operand = { vpid, 0, gva };
  374. asm volatile (__ex(ASM_VMX_INVVPID)
  375. /* CF==1 or ZF==1 --> rc = -1 */
  376. "; ja 1f ; ud2 ; 1:"
  377. : : "a"(&operand), "c"(ext) : "cc", "memory");
  378. }
  379. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  380. {
  381. struct {
  382. u64 eptp, gpa;
  383. } operand = {eptp, gpa};
  384. asm volatile (__ex(ASM_VMX_INVEPT)
  385. /* CF==1 or ZF==1 --> rc = -1 */
  386. "; ja 1f ; ud2 ; 1:\n"
  387. : : "a" (&operand), "c" (ext) : "cc", "memory");
  388. }
  389. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  390. {
  391. int i;
  392. i = __find_msr_index(vmx, msr);
  393. if (i >= 0)
  394. return &vmx->guest_msrs[i];
  395. return NULL;
  396. }
  397. static void vmcs_clear(struct vmcs *vmcs)
  398. {
  399. u64 phys_addr = __pa(vmcs);
  400. u8 error;
  401. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  402. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  403. : "cc", "memory");
  404. if (error)
  405. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  406. vmcs, phys_addr);
  407. }
  408. static void vmcs_load(struct vmcs *vmcs)
  409. {
  410. u64 phys_addr = __pa(vmcs);
  411. u8 error;
  412. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  413. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  414. : "cc", "memory");
  415. if (error)
  416. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  417. vmcs, phys_addr);
  418. }
  419. static void __vcpu_clear(void *arg)
  420. {
  421. struct vcpu_vmx *vmx = arg;
  422. int cpu = raw_smp_processor_id();
  423. if (vmx->vcpu.cpu == cpu)
  424. vmcs_clear(vmx->vmcs);
  425. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  426. per_cpu(current_vmcs, cpu) = NULL;
  427. list_del(&vmx->local_vcpus_link);
  428. vmx->vcpu.cpu = -1;
  429. vmx->launched = 0;
  430. }
  431. static void vcpu_clear(struct vcpu_vmx *vmx)
  432. {
  433. if (vmx->vcpu.cpu == -1)
  434. return;
  435. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  436. }
  437. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  438. {
  439. if (vmx->vpid == 0)
  440. return;
  441. if (cpu_has_vmx_invvpid_single())
  442. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  443. }
  444. static inline void vpid_sync_vcpu_global(void)
  445. {
  446. if (cpu_has_vmx_invvpid_global())
  447. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  448. }
  449. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  450. {
  451. if (cpu_has_vmx_invvpid_single())
  452. vpid_sync_vcpu_single(vmx);
  453. else
  454. vpid_sync_vcpu_global();
  455. }
  456. static inline void ept_sync_global(void)
  457. {
  458. if (cpu_has_vmx_invept_global())
  459. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  460. }
  461. static inline void ept_sync_context(u64 eptp)
  462. {
  463. if (enable_ept) {
  464. if (cpu_has_vmx_invept_context())
  465. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  466. else
  467. ept_sync_global();
  468. }
  469. }
  470. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  471. {
  472. if (enable_ept) {
  473. if (cpu_has_vmx_invept_individual_addr())
  474. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  475. eptp, gpa);
  476. else
  477. ept_sync_context(eptp);
  478. }
  479. }
  480. static unsigned long vmcs_readl(unsigned long field)
  481. {
  482. unsigned long value = 0;
  483. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  484. : "+a"(value) : "d"(field) : "cc");
  485. return value;
  486. }
  487. static u16 vmcs_read16(unsigned long field)
  488. {
  489. return vmcs_readl(field);
  490. }
  491. static u32 vmcs_read32(unsigned long field)
  492. {
  493. return vmcs_readl(field);
  494. }
  495. static u64 vmcs_read64(unsigned long field)
  496. {
  497. #ifdef CONFIG_X86_64
  498. return vmcs_readl(field);
  499. #else
  500. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  501. #endif
  502. }
  503. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  504. {
  505. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  506. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  507. dump_stack();
  508. }
  509. static void vmcs_writel(unsigned long field, unsigned long value)
  510. {
  511. u8 error;
  512. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  513. : "=q"(error) : "a"(value), "d"(field) : "cc");
  514. if (unlikely(error))
  515. vmwrite_error(field, value);
  516. }
  517. static void vmcs_write16(unsigned long field, u16 value)
  518. {
  519. vmcs_writel(field, value);
  520. }
  521. static void vmcs_write32(unsigned long field, u32 value)
  522. {
  523. vmcs_writel(field, value);
  524. }
  525. static void vmcs_write64(unsigned long field, u64 value)
  526. {
  527. vmcs_writel(field, value);
  528. #ifndef CONFIG_X86_64
  529. asm volatile ("");
  530. vmcs_writel(field+1, value >> 32);
  531. #endif
  532. }
  533. static void vmcs_clear_bits(unsigned long field, u32 mask)
  534. {
  535. vmcs_writel(field, vmcs_readl(field) & ~mask);
  536. }
  537. static void vmcs_set_bits(unsigned long field, u32 mask)
  538. {
  539. vmcs_writel(field, vmcs_readl(field) | mask);
  540. }
  541. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  542. {
  543. u32 eb;
  544. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  545. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  546. if ((vcpu->guest_debug &
  547. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  548. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  549. eb |= 1u << BP_VECTOR;
  550. if (to_vmx(vcpu)->rmode.vm86_active)
  551. eb = ~0;
  552. if (enable_ept)
  553. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  554. if (vcpu->fpu_active)
  555. eb &= ~(1u << NM_VECTOR);
  556. vmcs_write32(EXCEPTION_BITMAP, eb);
  557. }
  558. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  559. {
  560. unsigned i;
  561. struct msr_autoload *m = &vmx->msr_autoload;
  562. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  563. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  564. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  565. return;
  566. }
  567. for (i = 0; i < m->nr; ++i)
  568. if (m->guest[i].index == msr)
  569. break;
  570. if (i == m->nr)
  571. return;
  572. --m->nr;
  573. m->guest[i] = m->guest[m->nr];
  574. m->host[i] = m->host[m->nr];
  575. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  576. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  577. }
  578. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  579. u64 guest_val, u64 host_val)
  580. {
  581. unsigned i;
  582. struct msr_autoload *m = &vmx->msr_autoload;
  583. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  584. vmcs_write64(GUEST_IA32_EFER, guest_val);
  585. vmcs_write64(HOST_IA32_EFER, host_val);
  586. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  587. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  588. return;
  589. }
  590. for (i = 0; i < m->nr; ++i)
  591. if (m->guest[i].index == msr)
  592. break;
  593. if (i == m->nr) {
  594. ++m->nr;
  595. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  596. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  597. }
  598. m->guest[i].index = msr;
  599. m->guest[i].value = guest_val;
  600. m->host[i].index = msr;
  601. m->host[i].value = host_val;
  602. }
  603. static void reload_tss(void)
  604. {
  605. /*
  606. * VT restores TR but not its size. Useless.
  607. */
  608. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  609. struct desc_struct *descs;
  610. descs = (void *)gdt->address;
  611. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  612. load_TR_desc();
  613. }
  614. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  615. {
  616. u64 guest_efer;
  617. u64 ignore_bits;
  618. guest_efer = vmx->vcpu.arch.efer;
  619. /*
  620. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  621. * outside long mode
  622. */
  623. ignore_bits = EFER_NX | EFER_SCE;
  624. #ifdef CONFIG_X86_64
  625. ignore_bits |= EFER_LMA | EFER_LME;
  626. /* SCE is meaningful only in long mode on Intel */
  627. if (guest_efer & EFER_LMA)
  628. ignore_bits &= ~(u64)EFER_SCE;
  629. #endif
  630. guest_efer &= ~ignore_bits;
  631. guest_efer |= host_efer & ignore_bits;
  632. vmx->guest_msrs[efer_offset].data = guest_efer;
  633. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  634. clear_atomic_switch_msr(vmx, MSR_EFER);
  635. /* On ept, can't emulate nx, and must switch nx atomically */
  636. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  637. guest_efer = vmx->vcpu.arch.efer;
  638. if (!(guest_efer & EFER_LMA))
  639. guest_efer &= ~EFER_LME;
  640. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  641. return false;
  642. }
  643. return true;
  644. }
  645. static unsigned long segment_base(u16 selector)
  646. {
  647. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  648. struct desc_struct *d;
  649. unsigned long table_base;
  650. unsigned long v;
  651. if (!(selector & ~3))
  652. return 0;
  653. table_base = gdt->address;
  654. if (selector & 4) { /* from ldt */
  655. u16 ldt_selector = kvm_read_ldt();
  656. if (!(ldt_selector & ~3))
  657. return 0;
  658. table_base = segment_base(ldt_selector);
  659. }
  660. d = (struct desc_struct *)(table_base + (selector & ~7));
  661. v = get_desc_base(d);
  662. #ifdef CONFIG_X86_64
  663. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  664. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  665. #endif
  666. return v;
  667. }
  668. static inline unsigned long kvm_read_tr_base(void)
  669. {
  670. u16 tr;
  671. asm("str %0" : "=g"(tr));
  672. return segment_base(tr);
  673. }
  674. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  675. {
  676. struct vcpu_vmx *vmx = to_vmx(vcpu);
  677. int i;
  678. if (vmx->host_state.loaded)
  679. return;
  680. vmx->host_state.loaded = 1;
  681. /*
  682. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  683. * allow segment selectors with cpl > 0 or ti == 1.
  684. */
  685. vmx->host_state.ldt_sel = kvm_read_ldt();
  686. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  687. savesegment(fs, vmx->host_state.fs_sel);
  688. if (!(vmx->host_state.fs_sel & 7)) {
  689. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  690. vmx->host_state.fs_reload_needed = 0;
  691. } else {
  692. vmcs_write16(HOST_FS_SELECTOR, 0);
  693. vmx->host_state.fs_reload_needed = 1;
  694. }
  695. savesegment(gs, vmx->host_state.gs_sel);
  696. if (!(vmx->host_state.gs_sel & 7))
  697. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  698. else {
  699. vmcs_write16(HOST_GS_SELECTOR, 0);
  700. vmx->host_state.gs_ldt_reload_needed = 1;
  701. }
  702. #ifdef CONFIG_X86_64
  703. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  704. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  705. #else
  706. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  707. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  708. #endif
  709. #ifdef CONFIG_X86_64
  710. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  711. if (is_long_mode(&vmx->vcpu))
  712. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  713. #endif
  714. for (i = 0; i < vmx->save_nmsrs; ++i)
  715. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  716. vmx->guest_msrs[i].data,
  717. vmx->guest_msrs[i].mask);
  718. }
  719. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  720. {
  721. if (!vmx->host_state.loaded)
  722. return;
  723. ++vmx->vcpu.stat.host_state_reload;
  724. vmx->host_state.loaded = 0;
  725. #ifdef CONFIG_X86_64
  726. if (is_long_mode(&vmx->vcpu))
  727. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  728. #endif
  729. if (vmx->host_state.gs_ldt_reload_needed) {
  730. kvm_load_ldt(vmx->host_state.ldt_sel);
  731. #ifdef CONFIG_X86_64
  732. load_gs_index(vmx->host_state.gs_sel);
  733. #else
  734. loadsegment(gs, vmx->host_state.gs_sel);
  735. #endif
  736. }
  737. if (vmx->host_state.fs_reload_needed)
  738. loadsegment(fs, vmx->host_state.fs_sel);
  739. reload_tss();
  740. #ifdef CONFIG_X86_64
  741. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  742. #endif
  743. if (current_thread_info()->status & TS_USEDFPU)
  744. clts();
  745. load_gdt(&__get_cpu_var(host_gdt));
  746. }
  747. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  748. {
  749. preempt_disable();
  750. __vmx_load_host_state(vmx);
  751. preempt_enable();
  752. }
  753. /*
  754. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  755. * vcpu mutex is already taken.
  756. */
  757. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  758. {
  759. struct vcpu_vmx *vmx = to_vmx(vcpu);
  760. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  761. if (!vmm_exclusive)
  762. kvm_cpu_vmxon(phys_addr);
  763. else if (vcpu->cpu != cpu)
  764. vcpu_clear(vmx);
  765. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  766. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  767. vmcs_load(vmx->vmcs);
  768. }
  769. if (vcpu->cpu != cpu) {
  770. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  771. unsigned long sysenter_esp;
  772. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  773. local_irq_disable();
  774. list_add(&vmx->local_vcpus_link,
  775. &per_cpu(vcpus_on_cpu, cpu));
  776. local_irq_enable();
  777. /*
  778. * Linux uses per-cpu TSS and GDT, so set these when switching
  779. * processors.
  780. */
  781. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  782. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  783. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  784. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  785. }
  786. }
  787. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  788. {
  789. __vmx_load_host_state(to_vmx(vcpu));
  790. if (!vmm_exclusive) {
  791. __vcpu_clear(to_vmx(vcpu));
  792. kvm_cpu_vmxoff();
  793. }
  794. }
  795. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  796. {
  797. ulong cr0;
  798. if (vcpu->fpu_active)
  799. return;
  800. vcpu->fpu_active = 1;
  801. cr0 = vmcs_readl(GUEST_CR0);
  802. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  803. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  804. vmcs_writel(GUEST_CR0, cr0);
  805. update_exception_bitmap(vcpu);
  806. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  807. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  808. }
  809. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  810. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  811. {
  812. vmx_decache_cr0_guest_bits(vcpu);
  813. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  814. update_exception_bitmap(vcpu);
  815. vcpu->arch.cr0_guest_owned_bits = 0;
  816. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  817. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  818. }
  819. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  820. {
  821. unsigned long rflags, save_rflags;
  822. rflags = vmcs_readl(GUEST_RFLAGS);
  823. if (to_vmx(vcpu)->rmode.vm86_active) {
  824. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  825. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  826. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  827. }
  828. return rflags;
  829. }
  830. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  831. {
  832. if (to_vmx(vcpu)->rmode.vm86_active) {
  833. to_vmx(vcpu)->rmode.save_rflags = rflags;
  834. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  835. }
  836. vmcs_writel(GUEST_RFLAGS, rflags);
  837. }
  838. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  839. {
  840. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  841. int ret = 0;
  842. if (interruptibility & GUEST_INTR_STATE_STI)
  843. ret |= KVM_X86_SHADOW_INT_STI;
  844. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  845. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  846. return ret & mask;
  847. }
  848. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  849. {
  850. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  851. u32 interruptibility = interruptibility_old;
  852. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  853. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  854. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  855. else if (mask & KVM_X86_SHADOW_INT_STI)
  856. interruptibility |= GUEST_INTR_STATE_STI;
  857. if ((interruptibility != interruptibility_old))
  858. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  859. }
  860. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  861. {
  862. unsigned long rip;
  863. rip = kvm_rip_read(vcpu);
  864. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  865. kvm_rip_write(vcpu, rip);
  866. /* skipping an emulated instruction also counts */
  867. vmx_set_interrupt_shadow(vcpu, 0);
  868. }
  869. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  870. {
  871. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  872. * explicitly skip the instruction because if the HLT state is set, then
  873. * the instruction is already executing and RIP has already been
  874. * advanced. */
  875. if (!yield_on_hlt &&
  876. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  877. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  878. }
  879. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  880. bool has_error_code, u32 error_code,
  881. bool reinject)
  882. {
  883. struct vcpu_vmx *vmx = to_vmx(vcpu);
  884. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  885. if (has_error_code) {
  886. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  887. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  888. }
  889. if (vmx->rmode.vm86_active) {
  890. if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
  891. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  892. return;
  893. }
  894. if (kvm_exception_is_soft(nr)) {
  895. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  896. vmx->vcpu.arch.event_exit_inst_len);
  897. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  898. } else
  899. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  900. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  901. vmx_clear_hlt(vcpu);
  902. }
  903. static bool vmx_rdtscp_supported(void)
  904. {
  905. return cpu_has_vmx_rdtscp();
  906. }
  907. /*
  908. * Swap MSR entry in host/guest MSR entry array.
  909. */
  910. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  911. {
  912. struct shared_msr_entry tmp;
  913. tmp = vmx->guest_msrs[to];
  914. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  915. vmx->guest_msrs[from] = tmp;
  916. }
  917. /*
  918. * Set up the vmcs to automatically save and restore system
  919. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  920. * mode, as fiddling with msrs is very expensive.
  921. */
  922. static void setup_msrs(struct vcpu_vmx *vmx)
  923. {
  924. int save_nmsrs, index;
  925. unsigned long *msr_bitmap;
  926. vmx_load_host_state(vmx);
  927. save_nmsrs = 0;
  928. #ifdef CONFIG_X86_64
  929. if (is_long_mode(&vmx->vcpu)) {
  930. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  931. if (index >= 0)
  932. move_msr_up(vmx, index, save_nmsrs++);
  933. index = __find_msr_index(vmx, MSR_LSTAR);
  934. if (index >= 0)
  935. move_msr_up(vmx, index, save_nmsrs++);
  936. index = __find_msr_index(vmx, MSR_CSTAR);
  937. if (index >= 0)
  938. move_msr_up(vmx, index, save_nmsrs++);
  939. index = __find_msr_index(vmx, MSR_TSC_AUX);
  940. if (index >= 0 && vmx->rdtscp_enabled)
  941. move_msr_up(vmx, index, save_nmsrs++);
  942. /*
  943. * MSR_STAR is only needed on long mode guests, and only
  944. * if efer.sce is enabled.
  945. */
  946. index = __find_msr_index(vmx, MSR_STAR);
  947. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  948. move_msr_up(vmx, index, save_nmsrs++);
  949. }
  950. #endif
  951. index = __find_msr_index(vmx, MSR_EFER);
  952. if (index >= 0 && update_transition_efer(vmx, index))
  953. move_msr_up(vmx, index, save_nmsrs++);
  954. vmx->save_nmsrs = save_nmsrs;
  955. if (cpu_has_vmx_msr_bitmap()) {
  956. if (is_long_mode(&vmx->vcpu))
  957. msr_bitmap = vmx_msr_bitmap_longmode;
  958. else
  959. msr_bitmap = vmx_msr_bitmap_legacy;
  960. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  961. }
  962. }
  963. /*
  964. * reads and returns guest's timestamp counter "register"
  965. * guest_tsc = host_tsc + tsc_offset -- 21.3
  966. */
  967. static u64 guest_read_tsc(void)
  968. {
  969. u64 host_tsc, tsc_offset;
  970. rdtscll(host_tsc);
  971. tsc_offset = vmcs_read64(TSC_OFFSET);
  972. return host_tsc + tsc_offset;
  973. }
  974. /*
  975. * writes 'offset' into guest's timestamp counter offset register
  976. */
  977. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  978. {
  979. vmcs_write64(TSC_OFFSET, offset);
  980. }
  981. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  982. {
  983. u64 offset = vmcs_read64(TSC_OFFSET);
  984. vmcs_write64(TSC_OFFSET, offset + adjustment);
  985. }
  986. /*
  987. * Reads an msr value (of 'msr_index') into 'pdata'.
  988. * Returns 0 on success, non-0 otherwise.
  989. * Assumes vcpu_load() was already called.
  990. */
  991. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  992. {
  993. u64 data;
  994. struct shared_msr_entry *msr;
  995. if (!pdata) {
  996. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  997. return -EINVAL;
  998. }
  999. switch (msr_index) {
  1000. #ifdef CONFIG_X86_64
  1001. case MSR_FS_BASE:
  1002. data = vmcs_readl(GUEST_FS_BASE);
  1003. break;
  1004. case MSR_GS_BASE:
  1005. data = vmcs_readl(GUEST_GS_BASE);
  1006. break;
  1007. case MSR_KERNEL_GS_BASE:
  1008. vmx_load_host_state(to_vmx(vcpu));
  1009. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1010. break;
  1011. #endif
  1012. case MSR_EFER:
  1013. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1014. case MSR_IA32_TSC:
  1015. data = guest_read_tsc();
  1016. break;
  1017. case MSR_IA32_SYSENTER_CS:
  1018. data = vmcs_read32(GUEST_SYSENTER_CS);
  1019. break;
  1020. case MSR_IA32_SYSENTER_EIP:
  1021. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1022. break;
  1023. case MSR_IA32_SYSENTER_ESP:
  1024. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1025. break;
  1026. case MSR_TSC_AUX:
  1027. if (!to_vmx(vcpu)->rdtscp_enabled)
  1028. return 1;
  1029. /* Otherwise falls through */
  1030. default:
  1031. vmx_load_host_state(to_vmx(vcpu));
  1032. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1033. if (msr) {
  1034. vmx_load_host_state(to_vmx(vcpu));
  1035. data = msr->data;
  1036. break;
  1037. }
  1038. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1039. }
  1040. *pdata = data;
  1041. return 0;
  1042. }
  1043. /*
  1044. * Writes msr value into into the appropriate "register".
  1045. * Returns 0 on success, non-0 otherwise.
  1046. * Assumes vcpu_load() was already called.
  1047. */
  1048. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1049. {
  1050. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1051. struct shared_msr_entry *msr;
  1052. int ret = 0;
  1053. switch (msr_index) {
  1054. case MSR_EFER:
  1055. vmx_load_host_state(vmx);
  1056. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1057. break;
  1058. #ifdef CONFIG_X86_64
  1059. case MSR_FS_BASE:
  1060. vmcs_writel(GUEST_FS_BASE, data);
  1061. break;
  1062. case MSR_GS_BASE:
  1063. vmcs_writel(GUEST_GS_BASE, data);
  1064. break;
  1065. case MSR_KERNEL_GS_BASE:
  1066. vmx_load_host_state(vmx);
  1067. vmx->msr_guest_kernel_gs_base = data;
  1068. break;
  1069. #endif
  1070. case MSR_IA32_SYSENTER_CS:
  1071. vmcs_write32(GUEST_SYSENTER_CS, data);
  1072. break;
  1073. case MSR_IA32_SYSENTER_EIP:
  1074. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1075. break;
  1076. case MSR_IA32_SYSENTER_ESP:
  1077. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1078. break;
  1079. case MSR_IA32_TSC:
  1080. kvm_write_tsc(vcpu, data);
  1081. break;
  1082. case MSR_IA32_CR_PAT:
  1083. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1084. vmcs_write64(GUEST_IA32_PAT, data);
  1085. vcpu->arch.pat = data;
  1086. break;
  1087. }
  1088. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1089. break;
  1090. case MSR_TSC_AUX:
  1091. if (!vmx->rdtscp_enabled)
  1092. return 1;
  1093. /* Check reserved bit, higher 32 bits should be zero */
  1094. if ((data >> 32) != 0)
  1095. return 1;
  1096. /* Otherwise falls through */
  1097. default:
  1098. msr = find_msr_entry(vmx, msr_index);
  1099. if (msr) {
  1100. vmx_load_host_state(vmx);
  1101. msr->data = data;
  1102. break;
  1103. }
  1104. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1105. }
  1106. return ret;
  1107. }
  1108. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1109. {
  1110. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1111. switch (reg) {
  1112. case VCPU_REGS_RSP:
  1113. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1114. break;
  1115. case VCPU_REGS_RIP:
  1116. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1117. break;
  1118. case VCPU_EXREG_PDPTR:
  1119. if (enable_ept)
  1120. ept_save_pdptrs(vcpu);
  1121. break;
  1122. default:
  1123. break;
  1124. }
  1125. }
  1126. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1127. {
  1128. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1129. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1130. else
  1131. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1132. update_exception_bitmap(vcpu);
  1133. }
  1134. static __init int cpu_has_kvm_support(void)
  1135. {
  1136. return cpu_has_vmx();
  1137. }
  1138. static __init int vmx_disabled_by_bios(void)
  1139. {
  1140. u64 msr;
  1141. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1142. if (msr & FEATURE_CONTROL_LOCKED) {
  1143. /* launched w/ TXT and VMX disabled */
  1144. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1145. && tboot_enabled())
  1146. return 1;
  1147. /* launched w/o TXT and VMX only enabled w/ TXT */
  1148. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1149. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1150. && !tboot_enabled()) {
  1151. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1152. "activate TXT before enabling KVM\n");
  1153. return 1;
  1154. }
  1155. /* launched w/o TXT and VMX disabled */
  1156. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1157. && !tboot_enabled())
  1158. return 1;
  1159. }
  1160. return 0;
  1161. }
  1162. static void kvm_cpu_vmxon(u64 addr)
  1163. {
  1164. asm volatile (ASM_VMX_VMXON_RAX
  1165. : : "a"(&addr), "m"(addr)
  1166. : "memory", "cc");
  1167. }
  1168. static int hardware_enable(void *garbage)
  1169. {
  1170. int cpu = raw_smp_processor_id();
  1171. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1172. u64 old, test_bits;
  1173. if (read_cr4() & X86_CR4_VMXE)
  1174. return -EBUSY;
  1175. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1176. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1177. test_bits = FEATURE_CONTROL_LOCKED;
  1178. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1179. if (tboot_enabled())
  1180. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1181. if ((old & test_bits) != test_bits) {
  1182. /* enable and lock */
  1183. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1184. }
  1185. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1186. if (vmm_exclusive) {
  1187. kvm_cpu_vmxon(phys_addr);
  1188. ept_sync_global();
  1189. }
  1190. store_gdt(&__get_cpu_var(host_gdt));
  1191. return 0;
  1192. }
  1193. static void vmclear_local_vcpus(void)
  1194. {
  1195. int cpu = raw_smp_processor_id();
  1196. struct vcpu_vmx *vmx, *n;
  1197. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1198. local_vcpus_link)
  1199. __vcpu_clear(vmx);
  1200. }
  1201. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1202. * tricks.
  1203. */
  1204. static void kvm_cpu_vmxoff(void)
  1205. {
  1206. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1207. }
  1208. static void hardware_disable(void *garbage)
  1209. {
  1210. if (vmm_exclusive) {
  1211. vmclear_local_vcpus();
  1212. kvm_cpu_vmxoff();
  1213. }
  1214. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1215. }
  1216. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1217. u32 msr, u32 *result)
  1218. {
  1219. u32 vmx_msr_low, vmx_msr_high;
  1220. u32 ctl = ctl_min | ctl_opt;
  1221. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1222. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1223. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1224. /* Ensure minimum (required) set of control bits are supported. */
  1225. if (ctl_min & ~ctl)
  1226. return -EIO;
  1227. *result = ctl;
  1228. return 0;
  1229. }
  1230. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1231. {
  1232. u32 vmx_msr_low, vmx_msr_high;
  1233. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1234. return vmx_msr_high & ctl;
  1235. }
  1236. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1237. {
  1238. u32 vmx_msr_low, vmx_msr_high;
  1239. u32 min, opt, min2, opt2;
  1240. u32 _pin_based_exec_control = 0;
  1241. u32 _cpu_based_exec_control = 0;
  1242. u32 _cpu_based_2nd_exec_control = 0;
  1243. u32 _vmexit_control = 0;
  1244. u32 _vmentry_control = 0;
  1245. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1246. opt = PIN_BASED_VIRTUAL_NMIS;
  1247. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1248. &_pin_based_exec_control) < 0)
  1249. return -EIO;
  1250. min =
  1251. #ifdef CONFIG_X86_64
  1252. CPU_BASED_CR8_LOAD_EXITING |
  1253. CPU_BASED_CR8_STORE_EXITING |
  1254. #endif
  1255. CPU_BASED_CR3_LOAD_EXITING |
  1256. CPU_BASED_CR3_STORE_EXITING |
  1257. CPU_BASED_USE_IO_BITMAPS |
  1258. CPU_BASED_MOV_DR_EXITING |
  1259. CPU_BASED_USE_TSC_OFFSETING |
  1260. CPU_BASED_MWAIT_EXITING |
  1261. CPU_BASED_MONITOR_EXITING |
  1262. CPU_BASED_INVLPG_EXITING;
  1263. if (yield_on_hlt)
  1264. min |= CPU_BASED_HLT_EXITING;
  1265. opt = CPU_BASED_TPR_SHADOW |
  1266. CPU_BASED_USE_MSR_BITMAPS |
  1267. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1268. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1269. &_cpu_based_exec_control) < 0)
  1270. return -EIO;
  1271. #ifdef CONFIG_X86_64
  1272. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1273. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1274. ~CPU_BASED_CR8_STORE_EXITING;
  1275. #endif
  1276. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1277. min2 = 0;
  1278. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1279. SECONDARY_EXEC_WBINVD_EXITING |
  1280. SECONDARY_EXEC_ENABLE_VPID |
  1281. SECONDARY_EXEC_ENABLE_EPT |
  1282. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1283. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1284. SECONDARY_EXEC_RDTSCP;
  1285. if (adjust_vmx_controls(min2, opt2,
  1286. MSR_IA32_VMX_PROCBASED_CTLS2,
  1287. &_cpu_based_2nd_exec_control) < 0)
  1288. return -EIO;
  1289. }
  1290. #ifndef CONFIG_X86_64
  1291. if (!(_cpu_based_2nd_exec_control &
  1292. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1293. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1294. #endif
  1295. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1296. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1297. enabled */
  1298. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1299. CPU_BASED_CR3_STORE_EXITING |
  1300. CPU_BASED_INVLPG_EXITING);
  1301. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1302. vmx_capability.ept, vmx_capability.vpid);
  1303. }
  1304. min = 0;
  1305. #ifdef CONFIG_X86_64
  1306. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1307. #endif
  1308. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1309. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1310. &_vmexit_control) < 0)
  1311. return -EIO;
  1312. min = 0;
  1313. opt = VM_ENTRY_LOAD_IA32_PAT;
  1314. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1315. &_vmentry_control) < 0)
  1316. return -EIO;
  1317. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1318. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1319. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1320. return -EIO;
  1321. #ifdef CONFIG_X86_64
  1322. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1323. if (vmx_msr_high & (1u<<16))
  1324. return -EIO;
  1325. #endif
  1326. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1327. if (((vmx_msr_high >> 18) & 15) != 6)
  1328. return -EIO;
  1329. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1330. vmcs_conf->order = get_order(vmcs_config.size);
  1331. vmcs_conf->revision_id = vmx_msr_low;
  1332. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1333. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1334. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1335. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1336. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1337. cpu_has_load_ia32_efer =
  1338. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  1339. VM_ENTRY_LOAD_IA32_EFER)
  1340. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  1341. VM_EXIT_LOAD_IA32_EFER);
  1342. return 0;
  1343. }
  1344. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1345. {
  1346. int node = cpu_to_node(cpu);
  1347. struct page *pages;
  1348. struct vmcs *vmcs;
  1349. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1350. if (!pages)
  1351. return NULL;
  1352. vmcs = page_address(pages);
  1353. memset(vmcs, 0, vmcs_config.size);
  1354. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1355. return vmcs;
  1356. }
  1357. static struct vmcs *alloc_vmcs(void)
  1358. {
  1359. return alloc_vmcs_cpu(raw_smp_processor_id());
  1360. }
  1361. static void free_vmcs(struct vmcs *vmcs)
  1362. {
  1363. free_pages((unsigned long)vmcs, vmcs_config.order);
  1364. }
  1365. static void free_kvm_area(void)
  1366. {
  1367. int cpu;
  1368. for_each_possible_cpu(cpu) {
  1369. free_vmcs(per_cpu(vmxarea, cpu));
  1370. per_cpu(vmxarea, cpu) = NULL;
  1371. }
  1372. }
  1373. static __init int alloc_kvm_area(void)
  1374. {
  1375. int cpu;
  1376. for_each_possible_cpu(cpu) {
  1377. struct vmcs *vmcs;
  1378. vmcs = alloc_vmcs_cpu(cpu);
  1379. if (!vmcs) {
  1380. free_kvm_area();
  1381. return -ENOMEM;
  1382. }
  1383. per_cpu(vmxarea, cpu) = vmcs;
  1384. }
  1385. return 0;
  1386. }
  1387. static __init int hardware_setup(void)
  1388. {
  1389. if (setup_vmcs_config(&vmcs_config) < 0)
  1390. return -EIO;
  1391. if (boot_cpu_has(X86_FEATURE_NX))
  1392. kvm_enable_efer_bits(EFER_NX);
  1393. if (!cpu_has_vmx_vpid())
  1394. enable_vpid = 0;
  1395. if (!cpu_has_vmx_ept() ||
  1396. !cpu_has_vmx_ept_4levels()) {
  1397. enable_ept = 0;
  1398. enable_unrestricted_guest = 0;
  1399. }
  1400. if (!cpu_has_vmx_unrestricted_guest())
  1401. enable_unrestricted_guest = 0;
  1402. if (!cpu_has_vmx_flexpriority())
  1403. flexpriority_enabled = 0;
  1404. if (!cpu_has_vmx_tpr_shadow())
  1405. kvm_x86_ops->update_cr8_intercept = NULL;
  1406. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1407. kvm_disable_largepages();
  1408. if (!cpu_has_vmx_ple())
  1409. ple_gap = 0;
  1410. return alloc_kvm_area();
  1411. }
  1412. static __exit void hardware_unsetup(void)
  1413. {
  1414. free_kvm_area();
  1415. }
  1416. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1417. {
  1418. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1419. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1420. vmcs_write16(sf->selector, save->selector);
  1421. vmcs_writel(sf->base, save->base);
  1422. vmcs_write32(sf->limit, save->limit);
  1423. vmcs_write32(sf->ar_bytes, save->ar);
  1424. } else {
  1425. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1426. << AR_DPL_SHIFT;
  1427. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1428. }
  1429. }
  1430. static void enter_pmode(struct kvm_vcpu *vcpu)
  1431. {
  1432. unsigned long flags;
  1433. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1434. vmx->emulation_required = 1;
  1435. vmx->rmode.vm86_active = 0;
  1436. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  1437. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1438. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1439. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1440. flags = vmcs_readl(GUEST_RFLAGS);
  1441. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1442. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1443. vmcs_writel(GUEST_RFLAGS, flags);
  1444. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1445. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1446. update_exception_bitmap(vcpu);
  1447. if (emulate_invalid_guest_state)
  1448. return;
  1449. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1450. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1451. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1452. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1453. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1454. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1455. vmcs_write16(GUEST_CS_SELECTOR,
  1456. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1457. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1458. }
  1459. static gva_t rmode_tss_base(struct kvm *kvm)
  1460. {
  1461. if (!kvm->arch.tss_addr) {
  1462. struct kvm_memslots *slots;
  1463. gfn_t base_gfn;
  1464. slots = kvm_memslots(kvm);
  1465. base_gfn = slots->memslots[0].base_gfn +
  1466. kvm->memslots->memslots[0].npages - 3;
  1467. return base_gfn << PAGE_SHIFT;
  1468. }
  1469. return kvm->arch.tss_addr;
  1470. }
  1471. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1472. {
  1473. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1474. save->selector = vmcs_read16(sf->selector);
  1475. save->base = vmcs_readl(sf->base);
  1476. save->limit = vmcs_read32(sf->limit);
  1477. save->ar = vmcs_read32(sf->ar_bytes);
  1478. vmcs_write16(sf->selector, save->base >> 4);
  1479. vmcs_write32(sf->base, save->base & 0xffff0);
  1480. vmcs_write32(sf->limit, 0xffff);
  1481. vmcs_write32(sf->ar_bytes, 0xf3);
  1482. if (save->base & 0xf)
  1483. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  1484. " aligned when entering protected mode (seg=%d)",
  1485. seg);
  1486. }
  1487. static void enter_rmode(struct kvm_vcpu *vcpu)
  1488. {
  1489. unsigned long flags;
  1490. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1491. if (enable_unrestricted_guest)
  1492. return;
  1493. vmx->emulation_required = 1;
  1494. vmx->rmode.vm86_active = 1;
  1495. /*
  1496. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  1497. * vcpu. Call it here with phys address pointing 16M below 4G.
  1498. */
  1499. if (!vcpu->kvm->arch.tss_addr) {
  1500. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  1501. "called before entering vcpu\n");
  1502. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  1503. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  1504. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1505. }
  1506. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  1507. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1508. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1509. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1510. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1511. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1512. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1513. flags = vmcs_readl(GUEST_RFLAGS);
  1514. vmx->rmode.save_rflags = flags;
  1515. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1516. vmcs_writel(GUEST_RFLAGS, flags);
  1517. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1518. update_exception_bitmap(vcpu);
  1519. if (emulate_invalid_guest_state)
  1520. goto continue_rmode;
  1521. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1522. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1523. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1524. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1525. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1526. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1527. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1528. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1529. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1530. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1531. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1532. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1533. continue_rmode:
  1534. kvm_mmu_reset_context(vcpu);
  1535. }
  1536. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1537. {
  1538. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1539. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1540. if (!msr)
  1541. return;
  1542. /*
  1543. * Force kernel_gs_base reloading before EFER changes, as control
  1544. * of this msr depends on is_long_mode().
  1545. */
  1546. vmx_load_host_state(to_vmx(vcpu));
  1547. vcpu->arch.efer = efer;
  1548. if (efer & EFER_LMA) {
  1549. vmcs_write32(VM_ENTRY_CONTROLS,
  1550. vmcs_read32(VM_ENTRY_CONTROLS) |
  1551. VM_ENTRY_IA32E_MODE);
  1552. msr->data = efer;
  1553. } else {
  1554. vmcs_write32(VM_ENTRY_CONTROLS,
  1555. vmcs_read32(VM_ENTRY_CONTROLS) &
  1556. ~VM_ENTRY_IA32E_MODE);
  1557. msr->data = efer & ~EFER_LME;
  1558. }
  1559. setup_msrs(vmx);
  1560. }
  1561. #ifdef CONFIG_X86_64
  1562. static void enter_lmode(struct kvm_vcpu *vcpu)
  1563. {
  1564. u32 guest_tr_ar;
  1565. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1566. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1567. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1568. __func__);
  1569. vmcs_write32(GUEST_TR_AR_BYTES,
  1570. (guest_tr_ar & ~AR_TYPE_MASK)
  1571. | AR_TYPE_BUSY_64_TSS);
  1572. }
  1573. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1574. }
  1575. static void exit_lmode(struct kvm_vcpu *vcpu)
  1576. {
  1577. vmcs_write32(VM_ENTRY_CONTROLS,
  1578. vmcs_read32(VM_ENTRY_CONTROLS)
  1579. & ~VM_ENTRY_IA32E_MODE);
  1580. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1581. }
  1582. #endif
  1583. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1584. {
  1585. vpid_sync_context(to_vmx(vcpu));
  1586. if (enable_ept) {
  1587. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1588. return;
  1589. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1590. }
  1591. }
  1592. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1593. {
  1594. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1595. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1596. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1597. }
  1598. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  1599. {
  1600. if (enable_ept && is_paging(vcpu))
  1601. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  1602. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  1603. }
  1604. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1605. {
  1606. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1607. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1608. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1609. }
  1610. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1611. {
  1612. if (!test_bit(VCPU_EXREG_PDPTR,
  1613. (unsigned long *)&vcpu->arch.regs_dirty))
  1614. return;
  1615. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1616. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  1617. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  1618. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  1619. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  1620. }
  1621. }
  1622. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1623. {
  1624. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1625. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1626. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1627. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1628. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1629. }
  1630. __set_bit(VCPU_EXREG_PDPTR,
  1631. (unsigned long *)&vcpu->arch.regs_avail);
  1632. __set_bit(VCPU_EXREG_PDPTR,
  1633. (unsigned long *)&vcpu->arch.regs_dirty);
  1634. }
  1635. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1636. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1637. unsigned long cr0,
  1638. struct kvm_vcpu *vcpu)
  1639. {
  1640. vmx_decache_cr3(vcpu);
  1641. if (!(cr0 & X86_CR0_PG)) {
  1642. /* From paging/starting to nonpaging */
  1643. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1644. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1645. (CPU_BASED_CR3_LOAD_EXITING |
  1646. CPU_BASED_CR3_STORE_EXITING));
  1647. vcpu->arch.cr0 = cr0;
  1648. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1649. } else if (!is_paging(vcpu)) {
  1650. /* From nonpaging to paging */
  1651. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1652. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1653. ~(CPU_BASED_CR3_LOAD_EXITING |
  1654. CPU_BASED_CR3_STORE_EXITING));
  1655. vcpu->arch.cr0 = cr0;
  1656. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1657. }
  1658. if (!(cr0 & X86_CR0_WP))
  1659. *hw_cr0 &= ~X86_CR0_WP;
  1660. }
  1661. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1662. {
  1663. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1664. unsigned long hw_cr0;
  1665. if (enable_unrestricted_guest)
  1666. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1667. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1668. else
  1669. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1670. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1671. enter_pmode(vcpu);
  1672. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1673. enter_rmode(vcpu);
  1674. #ifdef CONFIG_X86_64
  1675. if (vcpu->arch.efer & EFER_LME) {
  1676. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1677. enter_lmode(vcpu);
  1678. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1679. exit_lmode(vcpu);
  1680. }
  1681. #endif
  1682. if (enable_ept)
  1683. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1684. if (!vcpu->fpu_active)
  1685. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1686. vmcs_writel(CR0_READ_SHADOW, cr0);
  1687. vmcs_writel(GUEST_CR0, hw_cr0);
  1688. vcpu->arch.cr0 = cr0;
  1689. }
  1690. static u64 construct_eptp(unsigned long root_hpa)
  1691. {
  1692. u64 eptp;
  1693. /* TODO write the value reading from MSR */
  1694. eptp = VMX_EPT_DEFAULT_MT |
  1695. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1696. eptp |= (root_hpa & PAGE_MASK);
  1697. return eptp;
  1698. }
  1699. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1700. {
  1701. unsigned long guest_cr3;
  1702. u64 eptp;
  1703. guest_cr3 = cr3;
  1704. if (enable_ept) {
  1705. eptp = construct_eptp(cr3);
  1706. vmcs_write64(EPT_POINTER, eptp);
  1707. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  1708. vcpu->kvm->arch.ept_identity_map_addr;
  1709. ept_load_pdptrs(vcpu);
  1710. }
  1711. vmx_flush_tlb(vcpu);
  1712. vmcs_writel(GUEST_CR3, guest_cr3);
  1713. }
  1714. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1715. {
  1716. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1717. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1718. vcpu->arch.cr4 = cr4;
  1719. if (enable_ept) {
  1720. if (!is_paging(vcpu)) {
  1721. hw_cr4 &= ~X86_CR4_PAE;
  1722. hw_cr4 |= X86_CR4_PSE;
  1723. } else if (!(cr4 & X86_CR4_PAE)) {
  1724. hw_cr4 &= ~X86_CR4_PAE;
  1725. }
  1726. }
  1727. vmcs_writel(CR4_READ_SHADOW, cr4);
  1728. vmcs_writel(GUEST_CR4, hw_cr4);
  1729. }
  1730. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1731. struct kvm_segment *var, int seg)
  1732. {
  1733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1734. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1735. struct kvm_save_segment *save;
  1736. u32 ar;
  1737. if (vmx->rmode.vm86_active
  1738. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  1739. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  1740. || seg == VCPU_SREG_GS)
  1741. && !emulate_invalid_guest_state) {
  1742. switch (seg) {
  1743. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  1744. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  1745. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  1746. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  1747. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  1748. default: BUG();
  1749. }
  1750. var->selector = save->selector;
  1751. var->base = save->base;
  1752. var->limit = save->limit;
  1753. ar = save->ar;
  1754. if (seg == VCPU_SREG_TR
  1755. || var->selector == vmcs_read16(sf->selector))
  1756. goto use_saved_rmode_seg;
  1757. }
  1758. var->base = vmcs_readl(sf->base);
  1759. var->limit = vmcs_read32(sf->limit);
  1760. var->selector = vmcs_read16(sf->selector);
  1761. ar = vmcs_read32(sf->ar_bytes);
  1762. use_saved_rmode_seg:
  1763. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1764. ar = 0;
  1765. var->type = ar & 15;
  1766. var->s = (ar >> 4) & 1;
  1767. var->dpl = (ar >> 5) & 3;
  1768. var->present = (ar >> 7) & 1;
  1769. var->avl = (ar >> 12) & 1;
  1770. var->l = (ar >> 13) & 1;
  1771. var->db = (ar >> 14) & 1;
  1772. var->g = (ar >> 15) & 1;
  1773. var->unusable = (ar >> 16) & 1;
  1774. }
  1775. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1776. {
  1777. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1778. struct kvm_segment s;
  1779. if (to_vmx(vcpu)->rmode.vm86_active) {
  1780. vmx_get_segment(vcpu, &s, seg);
  1781. return s.base;
  1782. }
  1783. return vmcs_readl(sf->base);
  1784. }
  1785. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1786. {
  1787. if (!is_protmode(vcpu))
  1788. return 0;
  1789. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1790. return 3;
  1791. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1792. }
  1793. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1794. {
  1795. u32 ar;
  1796. if (var->unusable)
  1797. ar = 1 << 16;
  1798. else {
  1799. ar = var->type & 15;
  1800. ar |= (var->s & 1) << 4;
  1801. ar |= (var->dpl & 3) << 5;
  1802. ar |= (var->present & 1) << 7;
  1803. ar |= (var->avl & 1) << 12;
  1804. ar |= (var->l & 1) << 13;
  1805. ar |= (var->db & 1) << 14;
  1806. ar |= (var->g & 1) << 15;
  1807. }
  1808. if (ar == 0) /* a 0 value means unusable */
  1809. ar = AR_UNUSABLE_MASK;
  1810. return ar;
  1811. }
  1812. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1813. struct kvm_segment *var, int seg)
  1814. {
  1815. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1816. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1817. u32 ar;
  1818. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1819. vmcs_write16(sf->selector, var->selector);
  1820. vmx->rmode.tr.selector = var->selector;
  1821. vmx->rmode.tr.base = var->base;
  1822. vmx->rmode.tr.limit = var->limit;
  1823. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1824. return;
  1825. }
  1826. vmcs_writel(sf->base, var->base);
  1827. vmcs_write32(sf->limit, var->limit);
  1828. vmcs_write16(sf->selector, var->selector);
  1829. if (vmx->rmode.vm86_active && var->s) {
  1830. /*
  1831. * Hack real-mode segments into vm86 compatibility.
  1832. */
  1833. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1834. vmcs_writel(sf->base, 0xf0000);
  1835. ar = 0xf3;
  1836. } else
  1837. ar = vmx_segment_access_rights(var);
  1838. /*
  1839. * Fix the "Accessed" bit in AR field of segment registers for older
  1840. * qemu binaries.
  1841. * IA32 arch specifies that at the time of processor reset the
  1842. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1843. * is setting it to 0 in the usedland code. This causes invalid guest
  1844. * state vmexit when "unrestricted guest" mode is turned on.
  1845. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1846. * tree. Newer qemu binaries with that qemu fix would not need this
  1847. * kvm hack.
  1848. */
  1849. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1850. ar |= 0x1; /* Accessed */
  1851. vmcs_write32(sf->ar_bytes, ar);
  1852. }
  1853. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1854. {
  1855. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1856. *db = (ar >> 14) & 1;
  1857. *l = (ar >> 13) & 1;
  1858. }
  1859. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1860. {
  1861. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1862. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1863. }
  1864. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1865. {
  1866. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1867. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1868. }
  1869. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1870. {
  1871. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1872. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1873. }
  1874. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1875. {
  1876. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1877. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1878. }
  1879. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1880. {
  1881. struct kvm_segment var;
  1882. u32 ar;
  1883. vmx_get_segment(vcpu, &var, seg);
  1884. ar = vmx_segment_access_rights(&var);
  1885. if (var.base != (var.selector << 4))
  1886. return false;
  1887. if (var.limit != 0xffff)
  1888. return false;
  1889. if (ar != 0xf3)
  1890. return false;
  1891. return true;
  1892. }
  1893. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1894. {
  1895. struct kvm_segment cs;
  1896. unsigned int cs_rpl;
  1897. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1898. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1899. if (cs.unusable)
  1900. return false;
  1901. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1902. return false;
  1903. if (!cs.s)
  1904. return false;
  1905. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1906. if (cs.dpl > cs_rpl)
  1907. return false;
  1908. } else {
  1909. if (cs.dpl != cs_rpl)
  1910. return false;
  1911. }
  1912. if (!cs.present)
  1913. return false;
  1914. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1915. return true;
  1916. }
  1917. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1918. {
  1919. struct kvm_segment ss;
  1920. unsigned int ss_rpl;
  1921. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1922. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1923. if (ss.unusable)
  1924. return true;
  1925. if (ss.type != 3 && ss.type != 7)
  1926. return false;
  1927. if (!ss.s)
  1928. return false;
  1929. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1930. return false;
  1931. if (!ss.present)
  1932. return false;
  1933. return true;
  1934. }
  1935. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1936. {
  1937. struct kvm_segment var;
  1938. unsigned int rpl;
  1939. vmx_get_segment(vcpu, &var, seg);
  1940. rpl = var.selector & SELECTOR_RPL_MASK;
  1941. if (var.unusable)
  1942. return true;
  1943. if (!var.s)
  1944. return false;
  1945. if (!var.present)
  1946. return false;
  1947. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1948. if (var.dpl < rpl) /* DPL < RPL */
  1949. return false;
  1950. }
  1951. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1952. * rights flags
  1953. */
  1954. return true;
  1955. }
  1956. static bool tr_valid(struct kvm_vcpu *vcpu)
  1957. {
  1958. struct kvm_segment tr;
  1959. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1960. if (tr.unusable)
  1961. return false;
  1962. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1963. return false;
  1964. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1965. return false;
  1966. if (!tr.present)
  1967. return false;
  1968. return true;
  1969. }
  1970. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1971. {
  1972. struct kvm_segment ldtr;
  1973. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1974. if (ldtr.unusable)
  1975. return true;
  1976. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1977. return false;
  1978. if (ldtr.type != 2)
  1979. return false;
  1980. if (!ldtr.present)
  1981. return false;
  1982. return true;
  1983. }
  1984. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1985. {
  1986. struct kvm_segment cs, ss;
  1987. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1988. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1989. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1990. (ss.selector & SELECTOR_RPL_MASK));
  1991. }
  1992. /*
  1993. * Check if guest state is valid. Returns true if valid, false if
  1994. * not.
  1995. * We assume that registers are always usable
  1996. */
  1997. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1998. {
  1999. /* real mode guest state checks */
  2000. if (!is_protmode(vcpu)) {
  2001. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2002. return false;
  2003. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2004. return false;
  2005. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2006. return false;
  2007. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2008. return false;
  2009. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2010. return false;
  2011. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2012. return false;
  2013. } else {
  2014. /* protected mode guest state checks */
  2015. if (!cs_ss_rpl_check(vcpu))
  2016. return false;
  2017. if (!code_segment_valid(vcpu))
  2018. return false;
  2019. if (!stack_segment_valid(vcpu))
  2020. return false;
  2021. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2022. return false;
  2023. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2024. return false;
  2025. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2026. return false;
  2027. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2028. return false;
  2029. if (!tr_valid(vcpu))
  2030. return false;
  2031. if (!ldtr_valid(vcpu))
  2032. return false;
  2033. }
  2034. /* TODO:
  2035. * - Add checks on RIP
  2036. * - Add checks on RFLAGS
  2037. */
  2038. return true;
  2039. }
  2040. static int init_rmode_tss(struct kvm *kvm)
  2041. {
  2042. gfn_t fn;
  2043. u16 data = 0;
  2044. int r, idx, ret = 0;
  2045. idx = srcu_read_lock(&kvm->srcu);
  2046. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2047. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2048. if (r < 0)
  2049. goto out;
  2050. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2051. r = kvm_write_guest_page(kvm, fn++, &data,
  2052. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2053. if (r < 0)
  2054. goto out;
  2055. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2056. if (r < 0)
  2057. goto out;
  2058. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2059. if (r < 0)
  2060. goto out;
  2061. data = ~0;
  2062. r = kvm_write_guest_page(kvm, fn, &data,
  2063. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2064. sizeof(u8));
  2065. if (r < 0)
  2066. goto out;
  2067. ret = 1;
  2068. out:
  2069. srcu_read_unlock(&kvm->srcu, idx);
  2070. return ret;
  2071. }
  2072. static int init_rmode_identity_map(struct kvm *kvm)
  2073. {
  2074. int i, idx, r, ret;
  2075. pfn_t identity_map_pfn;
  2076. u32 tmp;
  2077. if (!enable_ept)
  2078. return 1;
  2079. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2080. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2081. "haven't been allocated!\n");
  2082. return 0;
  2083. }
  2084. if (likely(kvm->arch.ept_identity_pagetable_done))
  2085. return 1;
  2086. ret = 0;
  2087. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2088. idx = srcu_read_lock(&kvm->srcu);
  2089. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2090. if (r < 0)
  2091. goto out;
  2092. /* Set up identity-mapping pagetable for EPT in real mode */
  2093. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2094. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2095. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2096. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2097. &tmp, i * sizeof(tmp), sizeof(tmp));
  2098. if (r < 0)
  2099. goto out;
  2100. }
  2101. kvm->arch.ept_identity_pagetable_done = true;
  2102. ret = 1;
  2103. out:
  2104. srcu_read_unlock(&kvm->srcu, idx);
  2105. return ret;
  2106. }
  2107. static void seg_setup(int seg)
  2108. {
  2109. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2110. unsigned int ar;
  2111. vmcs_write16(sf->selector, 0);
  2112. vmcs_writel(sf->base, 0);
  2113. vmcs_write32(sf->limit, 0xffff);
  2114. if (enable_unrestricted_guest) {
  2115. ar = 0x93;
  2116. if (seg == VCPU_SREG_CS)
  2117. ar |= 0x08; /* code segment */
  2118. } else
  2119. ar = 0xf3;
  2120. vmcs_write32(sf->ar_bytes, ar);
  2121. }
  2122. static int alloc_apic_access_page(struct kvm *kvm)
  2123. {
  2124. struct kvm_userspace_memory_region kvm_userspace_mem;
  2125. int r = 0;
  2126. mutex_lock(&kvm->slots_lock);
  2127. if (kvm->arch.apic_access_page)
  2128. goto out;
  2129. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2130. kvm_userspace_mem.flags = 0;
  2131. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2132. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2133. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2134. if (r)
  2135. goto out;
  2136. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2137. out:
  2138. mutex_unlock(&kvm->slots_lock);
  2139. return r;
  2140. }
  2141. static int alloc_identity_pagetable(struct kvm *kvm)
  2142. {
  2143. struct kvm_userspace_memory_region kvm_userspace_mem;
  2144. int r = 0;
  2145. mutex_lock(&kvm->slots_lock);
  2146. if (kvm->arch.ept_identity_pagetable)
  2147. goto out;
  2148. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2149. kvm_userspace_mem.flags = 0;
  2150. kvm_userspace_mem.guest_phys_addr =
  2151. kvm->arch.ept_identity_map_addr;
  2152. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2153. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2154. if (r)
  2155. goto out;
  2156. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2157. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2158. out:
  2159. mutex_unlock(&kvm->slots_lock);
  2160. return r;
  2161. }
  2162. static void allocate_vpid(struct vcpu_vmx *vmx)
  2163. {
  2164. int vpid;
  2165. vmx->vpid = 0;
  2166. if (!enable_vpid)
  2167. return;
  2168. spin_lock(&vmx_vpid_lock);
  2169. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2170. if (vpid < VMX_NR_VPIDS) {
  2171. vmx->vpid = vpid;
  2172. __set_bit(vpid, vmx_vpid_bitmap);
  2173. }
  2174. spin_unlock(&vmx_vpid_lock);
  2175. }
  2176. static void free_vpid(struct vcpu_vmx *vmx)
  2177. {
  2178. if (!enable_vpid)
  2179. return;
  2180. spin_lock(&vmx_vpid_lock);
  2181. if (vmx->vpid != 0)
  2182. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2183. spin_unlock(&vmx_vpid_lock);
  2184. }
  2185. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2186. {
  2187. int f = sizeof(unsigned long);
  2188. if (!cpu_has_vmx_msr_bitmap())
  2189. return;
  2190. /*
  2191. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2192. * have the write-low and read-high bitmap offsets the wrong way round.
  2193. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2194. */
  2195. if (msr <= 0x1fff) {
  2196. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2197. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2198. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2199. msr &= 0x1fff;
  2200. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2201. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2202. }
  2203. }
  2204. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2205. {
  2206. if (!longmode_only)
  2207. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2208. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2209. }
  2210. /*
  2211. * Sets up the vmcs for emulated real mode.
  2212. */
  2213. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2214. {
  2215. u32 host_sysenter_cs, msr_low, msr_high;
  2216. u32 junk;
  2217. u64 host_pat;
  2218. unsigned long a;
  2219. struct desc_ptr dt;
  2220. int i;
  2221. unsigned long kvm_vmx_return;
  2222. u32 exec_control;
  2223. /* I/O */
  2224. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2225. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2226. if (cpu_has_vmx_msr_bitmap())
  2227. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2228. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2229. /* Control */
  2230. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2231. vmcs_config.pin_based_exec_ctrl);
  2232. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2233. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2234. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2235. #ifdef CONFIG_X86_64
  2236. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2237. CPU_BASED_CR8_LOAD_EXITING;
  2238. #endif
  2239. }
  2240. if (!enable_ept)
  2241. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2242. CPU_BASED_CR3_LOAD_EXITING |
  2243. CPU_BASED_INVLPG_EXITING;
  2244. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2245. if (cpu_has_secondary_exec_ctrls()) {
  2246. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2247. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2248. exec_control &=
  2249. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2250. if (vmx->vpid == 0)
  2251. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2252. if (!enable_ept) {
  2253. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2254. enable_unrestricted_guest = 0;
  2255. }
  2256. if (!enable_unrestricted_guest)
  2257. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2258. if (!ple_gap)
  2259. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2260. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2261. }
  2262. if (ple_gap) {
  2263. vmcs_write32(PLE_GAP, ple_gap);
  2264. vmcs_write32(PLE_WINDOW, ple_window);
  2265. }
  2266. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2267. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2268. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2269. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2270. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2271. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2272. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2273. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2274. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2275. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  2276. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  2277. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2278. #ifdef CONFIG_X86_64
  2279. rdmsrl(MSR_FS_BASE, a);
  2280. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2281. rdmsrl(MSR_GS_BASE, a);
  2282. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2283. #else
  2284. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2285. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2286. #endif
  2287. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2288. native_store_idt(&dt);
  2289. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2290. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2291. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2292. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2293. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2294. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2295. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2296. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2297. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2298. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2299. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2300. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2301. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2302. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2303. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2304. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2305. host_pat = msr_low | ((u64) msr_high << 32);
  2306. vmcs_write64(HOST_IA32_PAT, host_pat);
  2307. }
  2308. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2309. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2310. host_pat = msr_low | ((u64) msr_high << 32);
  2311. /* Write the default value follow host pat */
  2312. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2313. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2314. vmx->vcpu.arch.pat = host_pat;
  2315. }
  2316. for (i = 0; i < NR_VMX_MSR; ++i) {
  2317. u32 index = vmx_msr_index[i];
  2318. u32 data_low, data_high;
  2319. int j = vmx->nmsrs;
  2320. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2321. continue;
  2322. if (wrmsr_safe(index, data_low, data_high) < 0)
  2323. continue;
  2324. vmx->guest_msrs[j].index = i;
  2325. vmx->guest_msrs[j].data = 0;
  2326. vmx->guest_msrs[j].mask = -1ull;
  2327. ++vmx->nmsrs;
  2328. }
  2329. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2330. /* 22.2.1, 20.8.1 */
  2331. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2332. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2333. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2334. if (enable_ept)
  2335. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2336. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2337. kvm_write_tsc(&vmx->vcpu, 0);
  2338. return 0;
  2339. }
  2340. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2341. {
  2342. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2343. u64 msr;
  2344. int ret;
  2345. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2346. vmx->rmode.vm86_active = 0;
  2347. vmx->soft_vnmi_blocked = 0;
  2348. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2349. kvm_set_cr8(&vmx->vcpu, 0);
  2350. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2351. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2352. msr |= MSR_IA32_APICBASE_BSP;
  2353. kvm_set_apic_base(&vmx->vcpu, msr);
  2354. ret = fx_init(&vmx->vcpu);
  2355. if (ret != 0)
  2356. goto out;
  2357. seg_setup(VCPU_SREG_CS);
  2358. /*
  2359. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2360. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2361. */
  2362. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2363. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2364. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2365. } else {
  2366. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2367. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2368. }
  2369. seg_setup(VCPU_SREG_DS);
  2370. seg_setup(VCPU_SREG_ES);
  2371. seg_setup(VCPU_SREG_FS);
  2372. seg_setup(VCPU_SREG_GS);
  2373. seg_setup(VCPU_SREG_SS);
  2374. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2375. vmcs_writel(GUEST_TR_BASE, 0);
  2376. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2377. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2378. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2379. vmcs_writel(GUEST_LDTR_BASE, 0);
  2380. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2381. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2382. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2383. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2384. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2385. vmcs_writel(GUEST_RFLAGS, 0x02);
  2386. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2387. kvm_rip_write(vcpu, 0xfff0);
  2388. else
  2389. kvm_rip_write(vcpu, 0);
  2390. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2391. vmcs_writel(GUEST_DR7, 0x400);
  2392. vmcs_writel(GUEST_GDTR_BASE, 0);
  2393. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2394. vmcs_writel(GUEST_IDTR_BASE, 0);
  2395. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2396. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  2397. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2398. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2399. /* Special registers */
  2400. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2401. setup_msrs(vmx);
  2402. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2403. if (cpu_has_vmx_tpr_shadow()) {
  2404. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2405. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2406. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2407. __pa(vmx->vcpu.arch.apic->regs));
  2408. vmcs_write32(TPR_THRESHOLD, 0);
  2409. }
  2410. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2411. vmcs_write64(APIC_ACCESS_ADDR,
  2412. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2413. if (vmx->vpid != 0)
  2414. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2415. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2416. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2417. vmx_set_cr4(&vmx->vcpu, 0);
  2418. vmx_set_efer(&vmx->vcpu, 0);
  2419. vmx_fpu_activate(&vmx->vcpu);
  2420. update_exception_bitmap(&vmx->vcpu);
  2421. vpid_sync_context(vmx);
  2422. ret = 0;
  2423. /* HACK: Don't enable emulation on guest boot/reset */
  2424. vmx->emulation_required = 0;
  2425. out:
  2426. return ret;
  2427. }
  2428. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2429. {
  2430. u32 cpu_based_vm_exec_control;
  2431. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2432. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2433. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2434. }
  2435. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2436. {
  2437. u32 cpu_based_vm_exec_control;
  2438. if (!cpu_has_virtual_nmis()) {
  2439. enable_irq_window(vcpu);
  2440. return;
  2441. }
  2442. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  2443. enable_irq_window(vcpu);
  2444. return;
  2445. }
  2446. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2447. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2448. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2449. }
  2450. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2451. {
  2452. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2453. uint32_t intr;
  2454. int irq = vcpu->arch.interrupt.nr;
  2455. trace_kvm_inj_virq(irq);
  2456. ++vcpu->stat.irq_injections;
  2457. if (vmx->rmode.vm86_active) {
  2458. if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
  2459. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2460. return;
  2461. }
  2462. intr = irq | INTR_INFO_VALID_MASK;
  2463. if (vcpu->arch.interrupt.soft) {
  2464. intr |= INTR_TYPE_SOFT_INTR;
  2465. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2466. vmx->vcpu.arch.event_exit_inst_len);
  2467. } else
  2468. intr |= INTR_TYPE_EXT_INTR;
  2469. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2470. vmx_clear_hlt(vcpu);
  2471. }
  2472. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2473. {
  2474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2475. if (!cpu_has_virtual_nmis()) {
  2476. /*
  2477. * Tracking the NMI-blocked state in software is built upon
  2478. * finding the next open IRQ window. This, in turn, depends on
  2479. * well-behaving guests: They have to keep IRQs disabled at
  2480. * least as long as the NMI handler runs. Otherwise we may
  2481. * cause NMI nesting, maybe breaking the guest. But as this is
  2482. * highly unlikely, we can live with the residual risk.
  2483. */
  2484. vmx->soft_vnmi_blocked = 1;
  2485. vmx->vnmi_blocked_time = 0;
  2486. }
  2487. ++vcpu->stat.nmi_injections;
  2488. if (vmx->rmode.vm86_active) {
  2489. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
  2490. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2491. return;
  2492. }
  2493. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2494. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2495. vmx_clear_hlt(vcpu);
  2496. }
  2497. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2498. {
  2499. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2500. return 0;
  2501. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2502. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  2503. | GUEST_INTR_STATE_NMI));
  2504. }
  2505. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2506. {
  2507. if (!cpu_has_virtual_nmis())
  2508. return to_vmx(vcpu)->soft_vnmi_blocked;
  2509. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2510. }
  2511. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2512. {
  2513. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2514. if (!cpu_has_virtual_nmis()) {
  2515. if (vmx->soft_vnmi_blocked != masked) {
  2516. vmx->soft_vnmi_blocked = masked;
  2517. vmx->vnmi_blocked_time = 0;
  2518. }
  2519. } else {
  2520. if (masked)
  2521. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2522. GUEST_INTR_STATE_NMI);
  2523. else
  2524. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2525. GUEST_INTR_STATE_NMI);
  2526. }
  2527. }
  2528. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2529. {
  2530. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2531. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2532. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2533. }
  2534. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2535. {
  2536. int ret;
  2537. struct kvm_userspace_memory_region tss_mem = {
  2538. .slot = TSS_PRIVATE_MEMSLOT,
  2539. .guest_phys_addr = addr,
  2540. .memory_size = PAGE_SIZE * 3,
  2541. .flags = 0,
  2542. };
  2543. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2544. if (ret)
  2545. return ret;
  2546. kvm->arch.tss_addr = addr;
  2547. if (!init_rmode_tss(kvm))
  2548. return -ENOMEM;
  2549. return 0;
  2550. }
  2551. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2552. int vec, u32 err_code)
  2553. {
  2554. /*
  2555. * Instruction with address size override prefix opcode 0x67
  2556. * Cause the #SS fault with 0 error code in VM86 mode.
  2557. */
  2558. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2559. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  2560. return 1;
  2561. /*
  2562. * Forward all other exceptions that are valid in real mode.
  2563. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2564. * the required debugging infrastructure rework.
  2565. */
  2566. switch (vec) {
  2567. case DB_VECTOR:
  2568. if (vcpu->guest_debug &
  2569. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2570. return 0;
  2571. kvm_queue_exception(vcpu, vec);
  2572. return 1;
  2573. case BP_VECTOR:
  2574. /*
  2575. * Update instruction length as we may reinject the exception
  2576. * from user space while in guest debugging mode.
  2577. */
  2578. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2579. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2580. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2581. return 0;
  2582. /* fall through */
  2583. case DE_VECTOR:
  2584. case OF_VECTOR:
  2585. case BR_VECTOR:
  2586. case UD_VECTOR:
  2587. case DF_VECTOR:
  2588. case SS_VECTOR:
  2589. case GP_VECTOR:
  2590. case MF_VECTOR:
  2591. kvm_queue_exception(vcpu, vec);
  2592. return 1;
  2593. }
  2594. return 0;
  2595. }
  2596. /*
  2597. * Trigger machine check on the host. We assume all the MSRs are already set up
  2598. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2599. * We pass a fake environment to the machine check handler because we want
  2600. * the guest to be always treated like user space, no matter what context
  2601. * it used internally.
  2602. */
  2603. static void kvm_machine_check(void)
  2604. {
  2605. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2606. struct pt_regs regs = {
  2607. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2608. .flags = X86_EFLAGS_IF,
  2609. };
  2610. do_machine_check(&regs, 0);
  2611. #endif
  2612. }
  2613. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2614. {
  2615. /* already handled by vcpu_run */
  2616. return 1;
  2617. }
  2618. static int handle_exception(struct kvm_vcpu *vcpu)
  2619. {
  2620. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2621. struct kvm_run *kvm_run = vcpu->run;
  2622. u32 intr_info, ex_no, error_code;
  2623. unsigned long cr2, rip, dr6;
  2624. u32 vect_info;
  2625. enum emulation_result er;
  2626. vect_info = vmx->idt_vectoring_info;
  2627. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2628. if (is_machine_check(intr_info))
  2629. return handle_machine_check(vcpu);
  2630. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2631. !is_page_fault(intr_info)) {
  2632. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2633. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2634. vcpu->run->internal.ndata = 2;
  2635. vcpu->run->internal.data[0] = vect_info;
  2636. vcpu->run->internal.data[1] = intr_info;
  2637. return 0;
  2638. }
  2639. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2640. return 1; /* already handled by vmx_vcpu_run() */
  2641. if (is_no_device(intr_info)) {
  2642. vmx_fpu_activate(vcpu);
  2643. return 1;
  2644. }
  2645. if (is_invalid_opcode(intr_info)) {
  2646. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  2647. if (er != EMULATE_DONE)
  2648. kvm_queue_exception(vcpu, UD_VECTOR);
  2649. return 1;
  2650. }
  2651. error_code = 0;
  2652. rip = kvm_rip_read(vcpu);
  2653. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2654. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2655. if (is_page_fault(intr_info)) {
  2656. /* EPT won't cause page fault directly */
  2657. if (enable_ept)
  2658. BUG();
  2659. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2660. trace_kvm_page_fault(cr2, error_code);
  2661. if (kvm_event_needs_reinjection(vcpu))
  2662. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2663. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  2664. }
  2665. if (vmx->rmode.vm86_active &&
  2666. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2667. error_code)) {
  2668. if (vcpu->arch.halt_request) {
  2669. vcpu->arch.halt_request = 0;
  2670. return kvm_emulate_halt(vcpu);
  2671. }
  2672. return 1;
  2673. }
  2674. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2675. switch (ex_no) {
  2676. case DB_VECTOR:
  2677. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2678. if (!(vcpu->guest_debug &
  2679. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2680. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2681. kvm_queue_exception(vcpu, DB_VECTOR);
  2682. return 1;
  2683. }
  2684. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2685. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2686. /* fall through */
  2687. case BP_VECTOR:
  2688. /*
  2689. * Update instruction length as we may reinject #BP from
  2690. * user space while in guest debugging mode. Reading it for
  2691. * #DB as well causes no harm, it is not used in that case.
  2692. */
  2693. vmx->vcpu.arch.event_exit_inst_len =
  2694. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2695. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2696. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2697. kvm_run->debug.arch.exception = ex_no;
  2698. break;
  2699. default:
  2700. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2701. kvm_run->ex.exception = ex_no;
  2702. kvm_run->ex.error_code = error_code;
  2703. break;
  2704. }
  2705. return 0;
  2706. }
  2707. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2708. {
  2709. ++vcpu->stat.irq_exits;
  2710. return 1;
  2711. }
  2712. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2713. {
  2714. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2715. return 0;
  2716. }
  2717. static int handle_io(struct kvm_vcpu *vcpu)
  2718. {
  2719. unsigned long exit_qualification;
  2720. int size, in, string;
  2721. unsigned port;
  2722. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2723. string = (exit_qualification & 16) != 0;
  2724. in = (exit_qualification & 8) != 0;
  2725. ++vcpu->stat.io_exits;
  2726. if (string || in)
  2727. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2728. port = exit_qualification >> 16;
  2729. size = (exit_qualification & 7) + 1;
  2730. skip_emulated_instruction(vcpu);
  2731. return kvm_fast_pio_out(vcpu, size, port);
  2732. }
  2733. static void
  2734. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2735. {
  2736. /*
  2737. * Patch in the VMCALL instruction:
  2738. */
  2739. hypercall[0] = 0x0f;
  2740. hypercall[1] = 0x01;
  2741. hypercall[2] = 0xc1;
  2742. }
  2743. static int handle_cr(struct kvm_vcpu *vcpu)
  2744. {
  2745. unsigned long exit_qualification, val;
  2746. int cr;
  2747. int reg;
  2748. int err;
  2749. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2750. cr = exit_qualification & 15;
  2751. reg = (exit_qualification >> 8) & 15;
  2752. switch ((exit_qualification >> 4) & 3) {
  2753. case 0: /* mov to cr */
  2754. val = kvm_register_read(vcpu, reg);
  2755. trace_kvm_cr_write(cr, val);
  2756. switch (cr) {
  2757. case 0:
  2758. err = kvm_set_cr0(vcpu, val);
  2759. kvm_complete_insn_gp(vcpu, err);
  2760. return 1;
  2761. case 3:
  2762. err = kvm_set_cr3(vcpu, val);
  2763. kvm_complete_insn_gp(vcpu, err);
  2764. return 1;
  2765. case 4:
  2766. err = kvm_set_cr4(vcpu, val);
  2767. kvm_complete_insn_gp(vcpu, err);
  2768. return 1;
  2769. case 8: {
  2770. u8 cr8_prev = kvm_get_cr8(vcpu);
  2771. u8 cr8 = kvm_register_read(vcpu, reg);
  2772. err = kvm_set_cr8(vcpu, cr8);
  2773. kvm_complete_insn_gp(vcpu, err);
  2774. if (irqchip_in_kernel(vcpu->kvm))
  2775. return 1;
  2776. if (cr8_prev <= cr8)
  2777. return 1;
  2778. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2779. return 0;
  2780. }
  2781. };
  2782. break;
  2783. case 2: /* clts */
  2784. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2785. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2786. skip_emulated_instruction(vcpu);
  2787. vmx_fpu_activate(vcpu);
  2788. return 1;
  2789. case 1: /*mov from cr*/
  2790. switch (cr) {
  2791. case 3:
  2792. val = kvm_read_cr3(vcpu);
  2793. kvm_register_write(vcpu, reg, val);
  2794. trace_kvm_cr_read(cr, val);
  2795. skip_emulated_instruction(vcpu);
  2796. return 1;
  2797. case 8:
  2798. val = kvm_get_cr8(vcpu);
  2799. kvm_register_write(vcpu, reg, val);
  2800. trace_kvm_cr_read(cr, val);
  2801. skip_emulated_instruction(vcpu);
  2802. return 1;
  2803. }
  2804. break;
  2805. case 3: /* lmsw */
  2806. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2807. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2808. kvm_lmsw(vcpu, val);
  2809. skip_emulated_instruction(vcpu);
  2810. return 1;
  2811. default:
  2812. break;
  2813. }
  2814. vcpu->run->exit_reason = 0;
  2815. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2816. (int)(exit_qualification >> 4) & 3, cr);
  2817. return 0;
  2818. }
  2819. static int handle_dr(struct kvm_vcpu *vcpu)
  2820. {
  2821. unsigned long exit_qualification;
  2822. int dr, reg;
  2823. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2824. if (!kvm_require_cpl(vcpu, 0))
  2825. return 1;
  2826. dr = vmcs_readl(GUEST_DR7);
  2827. if (dr & DR7_GD) {
  2828. /*
  2829. * As the vm-exit takes precedence over the debug trap, we
  2830. * need to emulate the latter, either for the host or the
  2831. * guest debugging itself.
  2832. */
  2833. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2834. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2835. vcpu->run->debug.arch.dr7 = dr;
  2836. vcpu->run->debug.arch.pc =
  2837. vmcs_readl(GUEST_CS_BASE) +
  2838. vmcs_readl(GUEST_RIP);
  2839. vcpu->run->debug.arch.exception = DB_VECTOR;
  2840. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2841. return 0;
  2842. } else {
  2843. vcpu->arch.dr7 &= ~DR7_GD;
  2844. vcpu->arch.dr6 |= DR6_BD;
  2845. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2846. kvm_queue_exception(vcpu, DB_VECTOR);
  2847. return 1;
  2848. }
  2849. }
  2850. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2851. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2852. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2853. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2854. unsigned long val;
  2855. if (!kvm_get_dr(vcpu, dr, &val))
  2856. kvm_register_write(vcpu, reg, val);
  2857. } else
  2858. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2859. skip_emulated_instruction(vcpu);
  2860. return 1;
  2861. }
  2862. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2863. {
  2864. vmcs_writel(GUEST_DR7, val);
  2865. }
  2866. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2867. {
  2868. kvm_emulate_cpuid(vcpu);
  2869. return 1;
  2870. }
  2871. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2872. {
  2873. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2874. u64 data;
  2875. if (vmx_get_msr(vcpu, ecx, &data)) {
  2876. trace_kvm_msr_read_ex(ecx);
  2877. kvm_inject_gp(vcpu, 0);
  2878. return 1;
  2879. }
  2880. trace_kvm_msr_read(ecx, data);
  2881. /* FIXME: handling of bits 32:63 of rax, rdx */
  2882. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2883. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2884. skip_emulated_instruction(vcpu);
  2885. return 1;
  2886. }
  2887. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2888. {
  2889. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2890. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2891. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2892. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2893. trace_kvm_msr_write_ex(ecx, data);
  2894. kvm_inject_gp(vcpu, 0);
  2895. return 1;
  2896. }
  2897. trace_kvm_msr_write(ecx, data);
  2898. skip_emulated_instruction(vcpu);
  2899. return 1;
  2900. }
  2901. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2902. {
  2903. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2904. return 1;
  2905. }
  2906. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2907. {
  2908. u32 cpu_based_vm_exec_control;
  2909. /* clear pending irq */
  2910. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2911. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2912. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2913. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2914. ++vcpu->stat.irq_window_exits;
  2915. /*
  2916. * If the user space waits to inject interrupts, exit as soon as
  2917. * possible
  2918. */
  2919. if (!irqchip_in_kernel(vcpu->kvm) &&
  2920. vcpu->run->request_interrupt_window &&
  2921. !kvm_cpu_has_interrupt(vcpu)) {
  2922. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2923. return 0;
  2924. }
  2925. return 1;
  2926. }
  2927. static int handle_halt(struct kvm_vcpu *vcpu)
  2928. {
  2929. skip_emulated_instruction(vcpu);
  2930. return kvm_emulate_halt(vcpu);
  2931. }
  2932. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2933. {
  2934. skip_emulated_instruction(vcpu);
  2935. kvm_emulate_hypercall(vcpu);
  2936. return 1;
  2937. }
  2938. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2939. {
  2940. kvm_queue_exception(vcpu, UD_VECTOR);
  2941. return 1;
  2942. }
  2943. static int handle_invd(struct kvm_vcpu *vcpu)
  2944. {
  2945. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2946. }
  2947. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2948. {
  2949. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2950. kvm_mmu_invlpg(vcpu, exit_qualification);
  2951. skip_emulated_instruction(vcpu);
  2952. return 1;
  2953. }
  2954. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2955. {
  2956. skip_emulated_instruction(vcpu);
  2957. kvm_emulate_wbinvd(vcpu);
  2958. return 1;
  2959. }
  2960. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  2961. {
  2962. u64 new_bv = kvm_read_edx_eax(vcpu);
  2963. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2964. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  2965. skip_emulated_instruction(vcpu);
  2966. return 1;
  2967. }
  2968. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2969. {
  2970. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2971. }
  2972. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2973. {
  2974. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2975. unsigned long exit_qualification;
  2976. bool has_error_code = false;
  2977. u32 error_code = 0;
  2978. u16 tss_selector;
  2979. int reason, type, idt_v;
  2980. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2981. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2982. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2983. reason = (u32)exit_qualification >> 30;
  2984. if (reason == TASK_SWITCH_GATE && idt_v) {
  2985. switch (type) {
  2986. case INTR_TYPE_NMI_INTR:
  2987. vcpu->arch.nmi_injected = false;
  2988. if (cpu_has_virtual_nmis())
  2989. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2990. GUEST_INTR_STATE_NMI);
  2991. break;
  2992. case INTR_TYPE_EXT_INTR:
  2993. case INTR_TYPE_SOFT_INTR:
  2994. kvm_clear_interrupt_queue(vcpu);
  2995. break;
  2996. case INTR_TYPE_HARD_EXCEPTION:
  2997. if (vmx->idt_vectoring_info &
  2998. VECTORING_INFO_DELIVER_CODE_MASK) {
  2999. has_error_code = true;
  3000. error_code =
  3001. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3002. }
  3003. /* fall through */
  3004. case INTR_TYPE_SOFT_EXCEPTION:
  3005. kvm_clear_exception_queue(vcpu);
  3006. break;
  3007. default:
  3008. break;
  3009. }
  3010. }
  3011. tss_selector = exit_qualification;
  3012. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3013. type != INTR_TYPE_EXT_INTR &&
  3014. type != INTR_TYPE_NMI_INTR))
  3015. skip_emulated_instruction(vcpu);
  3016. if (kvm_task_switch(vcpu, tss_selector, reason,
  3017. has_error_code, error_code) == EMULATE_FAIL) {
  3018. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3019. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3020. vcpu->run->internal.ndata = 0;
  3021. return 0;
  3022. }
  3023. /* clear all local breakpoint enable flags */
  3024. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3025. /*
  3026. * TODO: What about debug traps on tss switch?
  3027. * Are we supposed to inject them and update dr6?
  3028. */
  3029. return 1;
  3030. }
  3031. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3032. {
  3033. unsigned long exit_qualification;
  3034. gpa_t gpa;
  3035. int gla_validity;
  3036. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3037. if (exit_qualification & (1 << 6)) {
  3038. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3039. return -EINVAL;
  3040. }
  3041. gla_validity = (exit_qualification >> 7) & 0x3;
  3042. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3043. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3044. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3045. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3046. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3047. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3048. (long unsigned int)exit_qualification);
  3049. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3050. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3051. return 0;
  3052. }
  3053. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3054. trace_kvm_page_fault(gpa, exit_qualification);
  3055. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3056. }
  3057. static u64 ept_rsvd_mask(u64 spte, int level)
  3058. {
  3059. int i;
  3060. u64 mask = 0;
  3061. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3062. mask |= (1ULL << i);
  3063. if (level > 2)
  3064. /* bits 7:3 reserved */
  3065. mask |= 0xf8;
  3066. else if (level == 2) {
  3067. if (spte & (1ULL << 7))
  3068. /* 2MB ref, bits 20:12 reserved */
  3069. mask |= 0x1ff000;
  3070. else
  3071. /* bits 6:3 reserved */
  3072. mask |= 0x78;
  3073. }
  3074. return mask;
  3075. }
  3076. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3077. int level)
  3078. {
  3079. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3080. /* 010b (write-only) */
  3081. WARN_ON((spte & 0x7) == 0x2);
  3082. /* 110b (write/execute) */
  3083. WARN_ON((spte & 0x7) == 0x6);
  3084. /* 100b (execute-only) and value not supported by logical processor */
  3085. if (!cpu_has_vmx_ept_execute_only())
  3086. WARN_ON((spte & 0x7) == 0x4);
  3087. /* not 000b */
  3088. if ((spte & 0x7)) {
  3089. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3090. if (rsvd_bits != 0) {
  3091. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3092. __func__, rsvd_bits);
  3093. WARN_ON(1);
  3094. }
  3095. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3096. u64 ept_mem_type = (spte & 0x38) >> 3;
  3097. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3098. ept_mem_type == 7) {
  3099. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3100. __func__, ept_mem_type);
  3101. WARN_ON(1);
  3102. }
  3103. }
  3104. }
  3105. }
  3106. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3107. {
  3108. u64 sptes[4];
  3109. int nr_sptes, i;
  3110. gpa_t gpa;
  3111. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3112. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3113. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3114. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3115. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3116. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3117. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3118. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3119. return 0;
  3120. }
  3121. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3122. {
  3123. u32 cpu_based_vm_exec_control;
  3124. /* clear pending NMI */
  3125. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3126. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3127. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3128. ++vcpu->stat.nmi_window_exits;
  3129. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3130. return 1;
  3131. }
  3132. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3133. {
  3134. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3135. enum emulation_result err = EMULATE_DONE;
  3136. int ret = 1;
  3137. u32 cpu_exec_ctrl;
  3138. bool intr_window_requested;
  3139. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3140. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3141. while (!guest_state_valid(vcpu)) {
  3142. if (intr_window_requested
  3143. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3144. return handle_interrupt_window(&vmx->vcpu);
  3145. err = emulate_instruction(vcpu, 0);
  3146. if (err == EMULATE_DO_MMIO) {
  3147. ret = 0;
  3148. goto out;
  3149. }
  3150. if (err != EMULATE_DONE)
  3151. return 0;
  3152. if (signal_pending(current))
  3153. goto out;
  3154. if (need_resched())
  3155. schedule();
  3156. }
  3157. vmx->emulation_required = 0;
  3158. out:
  3159. return ret;
  3160. }
  3161. /*
  3162. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3163. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3164. */
  3165. static int handle_pause(struct kvm_vcpu *vcpu)
  3166. {
  3167. skip_emulated_instruction(vcpu);
  3168. kvm_vcpu_on_spin(vcpu);
  3169. return 1;
  3170. }
  3171. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3172. {
  3173. kvm_queue_exception(vcpu, UD_VECTOR);
  3174. return 1;
  3175. }
  3176. /*
  3177. * The exit handlers return 1 if the exit was handled fully and guest execution
  3178. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3179. * to be done to userspace and return 0.
  3180. */
  3181. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3182. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3183. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3184. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3185. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3186. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3187. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3188. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3189. [EXIT_REASON_CPUID] = handle_cpuid,
  3190. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3191. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3192. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3193. [EXIT_REASON_HLT] = handle_halt,
  3194. [EXIT_REASON_INVD] = handle_invd,
  3195. [EXIT_REASON_INVLPG] = handle_invlpg,
  3196. [EXIT_REASON_VMCALL] = handle_vmcall,
  3197. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3198. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3199. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3200. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3201. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3202. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3203. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3204. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3205. [EXIT_REASON_VMON] = handle_vmx_insn,
  3206. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3207. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3208. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3209. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3210. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3211. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3212. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3213. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3214. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3215. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3216. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3217. };
  3218. static const int kvm_vmx_max_exit_handlers =
  3219. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3220. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  3221. {
  3222. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  3223. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  3224. }
  3225. /*
  3226. * The guest has exited. See if we can fix it or if we need userspace
  3227. * assistance.
  3228. */
  3229. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3230. {
  3231. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3232. u32 exit_reason = vmx->exit_reason;
  3233. u32 vectoring_info = vmx->idt_vectoring_info;
  3234. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  3235. /* If guest state is invalid, start emulating */
  3236. if (vmx->emulation_required && emulate_invalid_guest_state)
  3237. return handle_invalid_guest_state(vcpu);
  3238. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3239. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3240. vcpu->run->fail_entry.hardware_entry_failure_reason
  3241. = exit_reason;
  3242. return 0;
  3243. }
  3244. if (unlikely(vmx->fail)) {
  3245. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3246. vcpu->run->fail_entry.hardware_entry_failure_reason
  3247. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3248. return 0;
  3249. }
  3250. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3251. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3252. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3253. exit_reason != EXIT_REASON_TASK_SWITCH))
  3254. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3255. "(0x%x) and exit reason is 0x%x\n",
  3256. __func__, vectoring_info, exit_reason);
  3257. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3258. if (vmx_interrupt_allowed(vcpu)) {
  3259. vmx->soft_vnmi_blocked = 0;
  3260. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3261. vcpu->arch.nmi_pending) {
  3262. /*
  3263. * This CPU don't support us in finding the end of an
  3264. * NMI-blocked window if the guest runs with IRQs
  3265. * disabled. So we pull the trigger after 1 s of
  3266. * futile waiting, but inform the user about this.
  3267. */
  3268. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3269. "state on VCPU %d after 1 s timeout\n",
  3270. __func__, vcpu->vcpu_id);
  3271. vmx->soft_vnmi_blocked = 0;
  3272. }
  3273. }
  3274. if (exit_reason < kvm_vmx_max_exit_handlers
  3275. && kvm_vmx_exit_handlers[exit_reason])
  3276. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3277. else {
  3278. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3279. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3280. }
  3281. return 0;
  3282. }
  3283. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3284. {
  3285. if (irr == -1 || tpr < irr) {
  3286. vmcs_write32(TPR_THRESHOLD, 0);
  3287. return;
  3288. }
  3289. vmcs_write32(TPR_THRESHOLD, irr);
  3290. }
  3291. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  3292. {
  3293. u32 exit_intr_info = vmx->exit_intr_info;
  3294. /* Handle machine checks before interrupts are enabled */
  3295. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3296. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3297. && is_machine_check(exit_intr_info)))
  3298. kvm_machine_check();
  3299. /* We need to handle NMIs before interrupts are enabled */
  3300. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3301. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3302. kvm_before_handle_nmi(&vmx->vcpu);
  3303. asm("int $2");
  3304. kvm_after_handle_nmi(&vmx->vcpu);
  3305. }
  3306. }
  3307. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  3308. {
  3309. u32 exit_intr_info = vmx->exit_intr_info;
  3310. bool unblock_nmi;
  3311. u8 vector;
  3312. bool idtv_info_valid;
  3313. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3314. if (cpu_has_virtual_nmis()) {
  3315. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3316. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3317. /*
  3318. * SDM 3: 27.7.1.2 (September 2008)
  3319. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3320. * a guest IRET fault.
  3321. * SDM 3: 23.2.2 (September 2008)
  3322. * Bit 12 is undefined in any of the following cases:
  3323. * If the VM exit sets the valid bit in the IDT-vectoring
  3324. * information field.
  3325. * If the VM exit is due to a double fault.
  3326. */
  3327. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3328. vector != DF_VECTOR && !idtv_info_valid)
  3329. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3330. GUEST_INTR_STATE_NMI);
  3331. } else if (unlikely(vmx->soft_vnmi_blocked))
  3332. vmx->vnmi_blocked_time +=
  3333. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3334. }
  3335. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  3336. u32 idt_vectoring_info,
  3337. int instr_len_field,
  3338. int error_code_field)
  3339. {
  3340. u8 vector;
  3341. int type;
  3342. bool idtv_info_valid;
  3343. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3344. vmx->vcpu.arch.nmi_injected = false;
  3345. kvm_clear_exception_queue(&vmx->vcpu);
  3346. kvm_clear_interrupt_queue(&vmx->vcpu);
  3347. if (!idtv_info_valid)
  3348. return;
  3349. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  3350. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3351. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3352. switch (type) {
  3353. case INTR_TYPE_NMI_INTR:
  3354. vmx->vcpu.arch.nmi_injected = true;
  3355. /*
  3356. * SDM 3: 27.7.1.2 (September 2008)
  3357. * Clear bit "block by NMI" before VM entry if a NMI
  3358. * delivery faulted.
  3359. */
  3360. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3361. GUEST_INTR_STATE_NMI);
  3362. break;
  3363. case INTR_TYPE_SOFT_EXCEPTION:
  3364. vmx->vcpu.arch.event_exit_inst_len =
  3365. vmcs_read32(instr_len_field);
  3366. /* fall through */
  3367. case INTR_TYPE_HARD_EXCEPTION:
  3368. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3369. u32 err = vmcs_read32(error_code_field);
  3370. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3371. } else
  3372. kvm_queue_exception(&vmx->vcpu, vector);
  3373. break;
  3374. case INTR_TYPE_SOFT_INTR:
  3375. vmx->vcpu.arch.event_exit_inst_len =
  3376. vmcs_read32(instr_len_field);
  3377. /* fall through */
  3378. case INTR_TYPE_EXT_INTR:
  3379. kvm_queue_interrupt(&vmx->vcpu, vector,
  3380. type == INTR_TYPE_SOFT_INTR);
  3381. break;
  3382. default:
  3383. break;
  3384. }
  3385. }
  3386. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3387. {
  3388. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  3389. VM_EXIT_INSTRUCTION_LEN,
  3390. IDT_VECTORING_ERROR_CODE);
  3391. }
  3392. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  3393. {
  3394. __vmx_complete_interrupts(to_vmx(vcpu),
  3395. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  3396. VM_ENTRY_INSTRUCTION_LEN,
  3397. VM_ENTRY_EXCEPTION_ERROR_CODE);
  3398. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  3399. }
  3400. #ifdef CONFIG_X86_64
  3401. #define R "r"
  3402. #define Q "q"
  3403. #else
  3404. #define R "e"
  3405. #define Q "l"
  3406. #endif
  3407. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3408. {
  3409. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3410. /* Record the guest's net vcpu time for enforced NMI injections. */
  3411. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3412. vmx->entry_time = ktime_get();
  3413. /* Don't enter VMX if guest state is invalid, let the exit handler
  3414. start emulation until we arrive back to a valid state */
  3415. if (vmx->emulation_required && emulate_invalid_guest_state)
  3416. return;
  3417. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3418. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3419. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3420. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3421. /* When single-stepping over STI and MOV SS, we must clear the
  3422. * corresponding interruptibility bits in the guest state. Otherwise
  3423. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3424. * exceptions being set, but that's not correct for the guest debugging
  3425. * case. */
  3426. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3427. vmx_set_interrupt_shadow(vcpu, 0);
  3428. asm(
  3429. /* Store host registers */
  3430. "push %%"R"dx; push %%"R"bp;"
  3431. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  3432. "push %%"R"cx \n\t"
  3433. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3434. "je 1f \n\t"
  3435. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3436. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3437. "1: \n\t"
  3438. /* Reload cr2 if changed */
  3439. "mov %c[cr2](%0), %%"R"ax \n\t"
  3440. "mov %%cr2, %%"R"dx \n\t"
  3441. "cmp %%"R"ax, %%"R"dx \n\t"
  3442. "je 2f \n\t"
  3443. "mov %%"R"ax, %%cr2 \n\t"
  3444. "2: \n\t"
  3445. /* Check if vmlaunch of vmresume is needed */
  3446. "cmpl $0, %c[launched](%0) \n\t"
  3447. /* Load guest registers. Don't clobber flags. */
  3448. "mov %c[rax](%0), %%"R"ax \n\t"
  3449. "mov %c[rbx](%0), %%"R"bx \n\t"
  3450. "mov %c[rdx](%0), %%"R"dx \n\t"
  3451. "mov %c[rsi](%0), %%"R"si \n\t"
  3452. "mov %c[rdi](%0), %%"R"di \n\t"
  3453. "mov %c[rbp](%0), %%"R"bp \n\t"
  3454. #ifdef CONFIG_X86_64
  3455. "mov %c[r8](%0), %%r8 \n\t"
  3456. "mov %c[r9](%0), %%r9 \n\t"
  3457. "mov %c[r10](%0), %%r10 \n\t"
  3458. "mov %c[r11](%0), %%r11 \n\t"
  3459. "mov %c[r12](%0), %%r12 \n\t"
  3460. "mov %c[r13](%0), %%r13 \n\t"
  3461. "mov %c[r14](%0), %%r14 \n\t"
  3462. "mov %c[r15](%0), %%r15 \n\t"
  3463. #endif
  3464. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3465. /* Enter guest mode */
  3466. "jne .Llaunched \n\t"
  3467. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3468. "jmp .Lkvm_vmx_return \n\t"
  3469. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3470. ".Lkvm_vmx_return: "
  3471. /* Save guest registers, load host registers, keep flags */
  3472. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  3473. "pop %0 \n\t"
  3474. "mov %%"R"ax, %c[rax](%0) \n\t"
  3475. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3476. "pop"Q" %c[rcx](%0) \n\t"
  3477. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3478. "mov %%"R"si, %c[rsi](%0) \n\t"
  3479. "mov %%"R"di, %c[rdi](%0) \n\t"
  3480. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3481. #ifdef CONFIG_X86_64
  3482. "mov %%r8, %c[r8](%0) \n\t"
  3483. "mov %%r9, %c[r9](%0) \n\t"
  3484. "mov %%r10, %c[r10](%0) \n\t"
  3485. "mov %%r11, %c[r11](%0) \n\t"
  3486. "mov %%r12, %c[r12](%0) \n\t"
  3487. "mov %%r13, %c[r13](%0) \n\t"
  3488. "mov %%r14, %c[r14](%0) \n\t"
  3489. "mov %%r15, %c[r15](%0) \n\t"
  3490. #endif
  3491. "mov %%cr2, %%"R"ax \n\t"
  3492. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3493. "pop %%"R"bp; pop %%"R"dx \n\t"
  3494. "setbe %c[fail](%0) \n\t"
  3495. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3496. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3497. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3498. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3499. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3500. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3501. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3502. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3503. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3504. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3505. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3506. #ifdef CONFIG_X86_64
  3507. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3508. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3509. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3510. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3511. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3512. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3513. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3514. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3515. #endif
  3516. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  3517. [wordsize]"i"(sizeof(ulong))
  3518. : "cc", "memory"
  3519. , R"ax", R"bx", R"di", R"si"
  3520. #ifdef CONFIG_X86_64
  3521. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3522. #endif
  3523. );
  3524. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3525. | (1 << VCPU_EXREG_PDPTR)
  3526. | (1 << VCPU_EXREG_CR3));
  3527. vcpu->arch.regs_dirty = 0;
  3528. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3529. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3530. vmx->launched = 1;
  3531. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3532. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3533. vmx_complete_atomic_exit(vmx);
  3534. vmx_recover_nmi_blocking(vmx);
  3535. vmx_complete_interrupts(vmx);
  3536. }
  3537. #undef R
  3538. #undef Q
  3539. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3540. {
  3541. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3542. if (vmx->vmcs) {
  3543. vcpu_clear(vmx);
  3544. free_vmcs(vmx->vmcs);
  3545. vmx->vmcs = NULL;
  3546. }
  3547. }
  3548. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3549. {
  3550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3551. free_vpid(vmx);
  3552. vmx_free_vmcs(vcpu);
  3553. kfree(vmx->guest_msrs);
  3554. kvm_vcpu_uninit(vcpu);
  3555. kmem_cache_free(kvm_vcpu_cache, vmx);
  3556. }
  3557. static inline void vmcs_init(struct vmcs *vmcs)
  3558. {
  3559. u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
  3560. if (!vmm_exclusive)
  3561. kvm_cpu_vmxon(phys_addr);
  3562. vmcs_clear(vmcs);
  3563. if (!vmm_exclusive)
  3564. kvm_cpu_vmxoff();
  3565. }
  3566. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3567. {
  3568. int err;
  3569. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3570. int cpu;
  3571. if (!vmx)
  3572. return ERR_PTR(-ENOMEM);
  3573. allocate_vpid(vmx);
  3574. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3575. if (err)
  3576. goto free_vcpu;
  3577. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3578. if (!vmx->guest_msrs) {
  3579. err = -ENOMEM;
  3580. goto uninit_vcpu;
  3581. }
  3582. vmx->vmcs = alloc_vmcs();
  3583. if (!vmx->vmcs)
  3584. goto free_msrs;
  3585. vmcs_init(vmx->vmcs);
  3586. cpu = get_cpu();
  3587. vmx_vcpu_load(&vmx->vcpu, cpu);
  3588. vmx->vcpu.cpu = cpu;
  3589. err = vmx_vcpu_setup(vmx);
  3590. vmx_vcpu_put(&vmx->vcpu);
  3591. put_cpu();
  3592. if (err)
  3593. goto free_vmcs;
  3594. if (vm_need_virtualize_apic_accesses(kvm))
  3595. if (alloc_apic_access_page(kvm) != 0)
  3596. goto free_vmcs;
  3597. if (enable_ept) {
  3598. if (!kvm->arch.ept_identity_map_addr)
  3599. kvm->arch.ept_identity_map_addr =
  3600. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3601. err = -ENOMEM;
  3602. if (alloc_identity_pagetable(kvm) != 0)
  3603. goto free_vmcs;
  3604. if (!init_rmode_identity_map(kvm))
  3605. goto free_vmcs;
  3606. }
  3607. return &vmx->vcpu;
  3608. free_vmcs:
  3609. free_vmcs(vmx->vmcs);
  3610. free_msrs:
  3611. kfree(vmx->guest_msrs);
  3612. uninit_vcpu:
  3613. kvm_vcpu_uninit(&vmx->vcpu);
  3614. free_vcpu:
  3615. free_vpid(vmx);
  3616. kmem_cache_free(kvm_vcpu_cache, vmx);
  3617. return ERR_PTR(err);
  3618. }
  3619. static void __init vmx_check_processor_compat(void *rtn)
  3620. {
  3621. struct vmcs_config vmcs_conf;
  3622. *(int *)rtn = 0;
  3623. if (setup_vmcs_config(&vmcs_conf) < 0)
  3624. *(int *)rtn = -EIO;
  3625. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3626. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3627. smp_processor_id());
  3628. *(int *)rtn = -EIO;
  3629. }
  3630. }
  3631. static int get_ept_level(void)
  3632. {
  3633. return VMX_EPT_DEFAULT_GAW + 1;
  3634. }
  3635. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3636. {
  3637. u64 ret;
  3638. /* For VT-d and EPT combination
  3639. * 1. MMIO: always map as UC
  3640. * 2. EPT with VT-d:
  3641. * a. VT-d without snooping control feature: can't guarantee the
  3642. * result, try to trust guest.
  3643. * b. VT-d with snooping control feature: snooping control feature of
  3644. * VT-d engine can guarantee the cache correctness. Just set it
  3645. * to WB to keep consistent with host. So the same as item 3.
  3646. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3647. * consistent with host MTRR
  3648. */
  3649. if (is_mmio)
  3650. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3651. else if (vcpu->kvm->arch.iommu_domain &&
  3652. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3653. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3654. VMX_EPT_MT_EPTE_SHIFT;
  3655. else
  3656. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3657. | VMX_EPT_IPAT_BIT;
  3658. return ret;
  3659. }
  3660. #define _ER(x) { EXIT_REASON_##x, #x }
  3661. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3662. _ER(EXCEPTION_NMI),
  3663. _ER(EXTERNAL_INTERRUPT),
  3664. _ER(TRIPLE_FAULT),
  3665. _ER(PENDING_INTERRUPT),
  3666. _ER(NMI_WINDOW),
  3667. _ER(TASK_SWITCH),
  3668. _ER(CPUID),
  3669. _ER(HLT),
  3670. _ER(INVLPG),
  3671. _ER(RDPMC),
  3672. _ER(RDTSC),
  3673. _ER(VMCALL),
  3674. _ER(VMCLEAR),
  3675. _ER(VMLAUNCH),
  3676. _ER(VMPTRLD),
  3677. _ER(VMPTRST),
  3678. _ER(VMREAD),
  3679. _ER(VMRESUME),
  3680. _ER(VMWRITE),
  3681. _ER(VMOFF),
  3682. _ER(VMON),
  3683. _ER(CR_ACCESS),
  3684. _ER(DR_ACCESS),
  3685. _ER(IO_INSTRUCTION),
  3686. _ER(MSR_READ),
  3687. _ER(MSR_WRITE),
  3688. _ER(MWAIT_INSTRUCTION),
  3689. _ER(MONITOR_INSTRUCTION),
  3690. _ER(PAUSE_INSTRUCTION),
  3691. _ER(MCE_DURING_VMENTRY),
  3692. _ER(TPR_BELOW_THRESHOLD),
  3693. _ER(APIC_ACCESS),
  3694. _ER(EPT_VIOLATION),
  3695. _ER(EPT_MISCONFIG),
  3696. _ER(WBINVD),
  3697. { -1, NULL }
  3698. };
  3699. #undef _ER
  3700. static int vmx_get_lpage_level(void)
  3701. {
  3702. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3703. return PT_DIRECTORY_LEVEL;
  3704. else
  3705. /* For shadow and EPT supported 1GB page */
  3706. return PT_PDPE_LEVEL;
  3707. }
  3708. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3709. {
  3710. struct kvm_cpuid_entry2 *best;
  3711. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3712. u32 exec_control;
  3713. vmx->rdtscp_enabled = false;
  3714. if (vmx_rdtscp_supported()) {
  3715. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3716. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3717. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3718. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3719. vmx->rdtscp_enabled = true;
  3720. else {
  3721. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3722. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3723. exec_control);
  3724. }
  3725. }
  3726. }
  3727. }
  3728. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3729. {
  3730. }
  3731. static struct kvm_x86_ops vmx_x86_ops = {
  3732. .cpu_has_kvm_support = cpu_has_kvm_support,
  3733. .disabled_by_bios = vmx_disabled_by_bios,
  3734. .hardware_setup = hardware_setup,
  3735. .hardware_unsetup = hardware_unsetup,
  3736. .check_processor_compatibility = vmx_check_processor_compat,
  3737. .hardware_enable = hardware_enable,
  3738. .hardware_disable = hardware_disable,
  3739. .cpu_has_accelerated_tpr = report_flexpriority,
  3740. .vcpu_create = vmx_create_vcpu,
  3741. .vcpu_free = vmx_free_vcpu,
  3742. .vcpu_reset = vmx_vcpu_reset,
  3743. .prepare_guest_switch = vmx_save_host_state,
  3744. .vcpu_load = vmx_vcpu_load,
  3745. .vcpu_put = vmx_vcpu_put,
  3746. .set_guest_debug = set_guest_debug,
  3747. .get_msr = vmx_get_msr,
  3748. .set_msr = vmx_set_msr,
  3749. .get_segment_base = vmx_get_segment_base,
  3750. .get_segment = vmx_get_segment,
  3751. .set_segment = vmx_set_segment,
  3752. .get_cpl = vmx_get_cpl,
  3753. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3754. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3755. .decache_cr3 = vmx_decache_cr3,
  3756. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3757. .set_cr0 = vmx_set_cr0,
  3758. .set_cr3 = vmx_set_cr3,
  3759. .set_cr4 = vmx_set_cr4,
  3760. .set_efer = vmx_set_efer,
  3761. .get_idt = vmx_get_idt,
  3762. .set_idt = vmx_set_idt,
  3763. .get_gdt = vmx_get_gdt,
  3764. .set_gdt = vmx_set_gdt,
  3765. .set_dr7 = vmx_set_dr7,
  3766. .cache_reg = vmx_cache_reg,
  3767. .get_rflags = vmx_get_rflags,
  3768. .set_rflags = vmx_set_rflags,
  3769. .fpu_activate = vmx_fpu_activate,
  3770. .fpu_deactivate = vmx_fpu_deactivate,
  3771. .tlb_flush = vmx_flush_tlb,
  3772. .run = vmx_vcpu_run,
  3773. .handle_exit = vmx_handle_exit,
  3774. .skip_emulated_instruction = skip_emulated_instruction,
  3775. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3776. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3777. .patch_hypercall = vmx_patch_hypercall,
  3778. .set_irq = vmx_inject_irq,
  3779. .set_nmi = vmx_inject_nmi,
  3780. .queue_exception = vmx_queue_exception,
  3781. .cancel_injection = vmx_cancel_injection,
  3782. .interrupt_allowed = vmx_interrupt_allowed,
  3783. .nmi_allowed = vmx_nmi_allowed,
  3784. .get_nmi_mask = vmx_get_nmi_mask,
  3785. .set_nmi_mask = vmx_set_nmi_mask,
  3786. .enable_nmi_window = enable_nmi_window,
  3787. .enable_irq_window = enable_irq_window,
  3788. .update_cr8_intercept = update_cr8_intercept,
  3789. .set_tss_addr = vmx_set_tss_addr,
  3790. .get_tdp_level = get_ept_level,
  3791. .get_mt_mask = vmx_get_mt_mask,
  3792. .get_exit_info = vmx_get_exit_info,
  3793. .exit_reasons_str = vmx_exit_reasons_str,
  3794. .get_lpage_level = vmx_get_lpage_level,
  3795. .cpuid_update = vmx_cpuid_update,
  3796. .rdtscp_supported = vmx_rdtscp_supported,
  3797. .set_supported_cpuid = vmx_set_supported_cpuid,
  3798. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  3799. .write_tsc_offset = vmx_write_tsc_offset,
  3800. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  3801. .set_tdp_cr3 = vmx_set_cr3,
  3802. };
  3803. static int __init vmx_init(void)
  3804. {
  3805. int r, i;
  3806. rdmsrl_safe(MSR_EFER, &host_efer);
  3807. for (i = 0; i < NR_VMX_MSR; ++i)
  3808. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3809. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3810. if (!vmx_io_bitmap_a)
  3811. return -ENOMEM;
  3812. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3813. if (!vmx_io_bitmap_b) {
  3814. r = -ENOMEM;
  3815. goto out;
  3816. }
  3817. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3818. if (!vmx_msr_bitmap_legacy) {
  3819. r = -ENOMEM;
  3820. goto out1;
  3821. }
  3822. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3823. if (!vmx_msr_bitmap_longmode) {
  3824. r = -ENOMEM;
  3825. goto out2;
  3826. }
  3827. /*
  3828. * Allow direct access to the PC debug port (it is often used for I/O
  3829. * delays, but the vmexits simply slow things down).
  3830. */
  3831. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3832. clear_bit(0x80, vmx_io_bitmap_a);
  3833. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3834. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3835. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3836. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3837. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3838. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3839. if (r)
  3840. goto out3;
  3841. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3842. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3843. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3844. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3845. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3846. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3847. if (enable_ept) {
  3848. bypass_guest_pf = 0;
  3849. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3850. VMX_EPT_EXECUTABLE_MASK);
  3851. kvm_enable_tdp();
  3852. } else
  3853. kvm_disable_tdp();
  3854. if (bypass_guest_pf)
  3855. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3856. return 0;
  3857. out3:
  3858. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3859. out2:
  3860. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3861. out1:
  3862. free_page((unsigned long)vmx_io_bitmap_b);
  3863. out:
  3864. free_page((unsigned long)vmx_io_bitmap_a);
  3865. return r;
  3866. }
  3867. static void __exit vmx_exit(void)
  3868. {
  3869. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3870. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3871. free_page((unsigned long)vmx_io_bitmap_b);
  3872. free_page((unsigned long)vmx_io_bitmap_a);
  3873. kvm_exit();
  3874. }
  3875. module_init(vmx_init)
  3876. module_exit(vmx_exit)