intel_cacheinfo.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
  8. */
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/device.h>
  12. #include <linux/compiler.h>
  13. #include <linux/cpu.h>
  14. #include <linux/sched.h>
  15. #include <linux/pci.h>
  16. #include <asm/processor.h>
  17. #include <linux/smp.h>
  18. #include <asm/amd_nb.h>
  19. #include <asm/smp.h>
  20. #define LVL_1_INST 1
  21. #define LVL_1_DATA 2
  22. #define LVL_2 3
  23. #define LVL_3 4
  24. #define LVL_TRACE 5
  25. struct _cache_table {
  26. unsigned char descriptor;
  27. char cache_type;
  28. short size;
  29. };
  30. #define MB(x) ((x) * 1024)
  31. /* All the cache descriptor types we care about (no TLB or
  32. trace cache entries) */
  33. static const struct _cache_table __cpuinitconst cache_table[] =
  34. {
  35. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  36. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  37. { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
  38. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  39. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  40. { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
  41. { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
  42. { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
  43. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  44. { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  45. { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  46. { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  47. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  48. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  49. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  51. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  52. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  53. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  54. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  55. { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
  56. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  57. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  58. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  59. { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
  60. { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
  61. { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
  62. { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
  63. { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
  64. { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
  65. { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
  66. { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
  67. { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
  68. { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
  69. { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
  70. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  71. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  72. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  73. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  74. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  75. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  76. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  77. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  78. { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
  79. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  80. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  81. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  82. { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
  83. { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
  84. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  85. { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
  86. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  87. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  88. { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
  89. { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
  90. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  91. { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
  92. { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
  93. { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
  94. { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
  95. { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
  96. { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
  97. { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
  98. { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
  99. { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
  100. { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
  101. { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
  102. { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
  103. { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
  104. { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
  105. { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
  106. { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
  107. { 0x00, 0, 0}
  108. };
  109. enum _cache_type {
  110. CACHE_TYPE_NULL = 0,
  111. CACHE_TYPE_DATA = 1,
  112. CACHE_TYPE_INST = 2,
  113. CACHE_TYPE_UNIFIED = 3
  114. };
  115. union _cpuid4_leaf_eax {
  116. struct {
  117. enum _cache_type type:5;
  118. unsigned int level:3;
  119. unsigned int is_self_initializing:1;
  120. unsigned int is_fully_associative:1;
  121. unsigned int reserved:4;
  122. unsigned int num_threads_sharing:12;
  123. unsigned int num_cores_on_die:6;
  124. } split;
  125. u32 full;
  126. };
  127. union _cpuid4_leaf_ebx {
  128. struct {
  129. unsigned int coherency_line_size:12;
  130. unsigned int physical_line_partition:10;
  131. unsigned int ways_of_associativity:10;
  132. } split;
  133. u32 full;
  134. };
  135. union _cpuid4_leaf_ecx {
  136. struct {
  137. unsigned int number_of_sets:32;
  138. } split;
  139. u32 full;
  140. };
  141. struct amd_l3_cache {
  142. struct amd_northbridge *nb;
  143. unsigned indices;
  144. u8 subcaches[4];
  145. };
  146. struct _cpuid4_info {
  147. union _cpuid4_leaf_eax eax;
  148. union _cpuid4_leaf_ebx ebx;
  149. union _cpuid4_leaf_ecx ecx;
  150. unsigned long size;
  151. struct amd_l3_cache *l3;
  152. DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
  153. };
  154. /* subset of above _cpuid4_info w/o shared_cpu_map */
  155. struct _cpuid4_info_regs {
  156. union _cpuid4_leaf_eax eax;
  157. union _cpuid4_leaf_ebx ebx;
  158. union _cpuid4_leaf_ecx ecx;
  159. unsigned long size;
  160. struct amd_l3_cache *l3;
  161. };
  162. unsigned short num_cache_leaves;
  163. /* AMD doesn't have CPUID4. Emulate it here to report the same
  164. information to the user. This makes some assumptions about the machine:
  165. L2 not shared, no SMT etc. that is currently true on AMD CPUs.
  166. In theory the TLBs could be reported as fake type (they are in "dummy").
  167. Maybe later */
  168. union l1_cache {
  169. struct {
  170. unsigned line_size:8;
  171. unsigned lines_per_tag:8;
  172. unsigned assoc:8;
  173. unsigned size_in_kb:8;
  174. };
  175. unsigned val;
  176. };
  177. union l2_cache {
  178. struct {
  179. unsigned line_size:8;
  180. unsigned lines_per_tag:4;
  181. unsigned assoc:4;
  182. unsigned size_in_kb:16;
  183. };
  184. unsigned val;
  185. };
  186. union l3_cache {
  187. struct {
  188. unsigned line_size:8;
  189. unsigned lines_per_tag:4;
  190. unsigned assoc:4;
  191. unsigned res:2;
  192. unsigned size_encoded:14;
  193. };
  194. unsigned val;
  195. };
  196. static const unsigned short __cpuinitconst assocs[] = {
  197. [1] = 1,
  198. [2] = 2,
  199. [4] = 4,
  200. [6] = 8,
  201. [8] = 16,
  202. [0xa] = 32,
  203. [0xb] = 48,
  204. [0xc] = 64,
  205. [0xd] = 96,
  206. [0xe] = 128,
  207. [0xf] = 0xffff /* fully associative - no way to show this currently */
  208. };
  209. static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 };
  210. static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 };
  211. static void __cpuinit
  212. amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
  213. union _cpuid4_leaf_ebx *ebx,
  214. union _cpuid4_leaf_ecx *ecx)
  215. {
  216. unsigned dummy;
  217. unsigned line_size, lines_per_tag, assoc, size_in_kb;
  218. union l1_cache l1i, l1d;
  219. union l2_cache l2;
  220. union l3_cache l3;
  221. union l1_cache *l1 = &l1d;
  222. eax->full = 0;
  223. ebx->full = 0;
  224. ecx->full = 0;
  225. cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
  226. cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
  227. switch (leaf) {
  228. case 1:
  229. l1 = &l1i;
  230. case 0:
  231. if (!l1->val)
  232. return;
  233. assoc = assocs[l1->assoc];
  234. line_size = l1->line_size;
  235. lines_per_tag = l1->lines_per_tag;
  236. size_in_kb = l1->size_in_kb;
  237. break;
  238. case 2:
  239. if (!l2.val)
  240. return;
  241. assoc = assocs[l2.assoc];
  242. line_size = l2.line_size;
  243. lines_per_tag = l2.lines_per_tag;
  244. /* cpu_data has errata corrections for K7 applied */
  245. size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
  246. break;
  247. case 3:
  248. if (!l3.val)
  249. return;
  250. assoc = assocs[l3.assoc];
  251. line_size = l3.line_size;
  252. lines_per_tag = l3.lines_per_tag;
  253. size_in_kb = l3.size_encoded * 512;
  254. if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
  255. size_in_kb = size_in_kb >> 1;
  256. assoc = assoc >> 1;
  257. }
  258. break;
  259. default:
  260. return;
  261. }
  262. eax->split.is_self_initializing = 1;
  263. eax->split.type = types[leaf];
  264. eax->split.level = levels[leaf];
  265. eax->split.num_threads_sharing = 0;
  266. eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
  267. if (assoc == 0xffff)
  268. eax->split.is_fully_associative = 1;
  269. ebx->split.coherency_line_size = line_size - 1;
  270. ebx->split.ways_of_associativity = assoc - 1;
  271. ebx->split.physical_line_partition = lines_per_tag - 1;
  272. ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
  273. (ebx->split.ways_of_associativity + 1) - 1;
  274. }
  275. struct _cache_attr {
  276. struct attribute attr;
  277. ssize_t (*show)(struct _cpuid4_info *, char *, unsigned int);
  278. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count,
  279. unsigned int);
  280. };
  281. #ifdef CONFIG_AMD_NB
  282. /*
  283. * L3 cache descriptors
  284. */
  285. static void __cpuinit amd_calc_l3_indices(struct amd_l3_cache *l3)
  286. {
  287. unsigned int sc0, sc1, sc2, sc3;
  288. u32 val = 0;
  289. pci_read_config_dword(l3->nb->misc, 0x1C4, &val);
  290. /* calculate subcache sizes */
  291. l3->subcaches[0] = sc0 = !(val & BIT(0));
  292. l3->subcaches[1] = sc1 = !(val & BIT(4));
  293. l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
  294. l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
  295. l3->indices = (max(max(max(sc0, sc1), sc2), sc3) << 10) - 1;
  296. l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
  297. }
  298. static void __cpuinit amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf,
  299. int index)
  300. {
  301. static struct amd_l3_cache *__cpuinitdata l3_caches;
  302. int node;
  303. /* only for L3, and not in virtualized environments */
  304. if (index < 3 || amd_nb_num() == 0)
  305. return;
  306. /*
  307. * Strictly speaking, the amount in @size below is leaked since it is
  308. * never freed but this is done only on shutdown so it doesn't matter.
  309. */
  310. if (!l3_caches) {
  311. int size = amd_nb_num() * sizeof(struct amd_l3_cache);
  312. l3_caches = kzalloc(size, GFP_ATOMIC);
  313. if (!l3_caches)
  314. return;
  315. }
  316. node = amd_get_nb_id(smp_processor_id());
  317. if (!l3_caches[node].nb) {
  318. l3_caches[node].nb = node_to_amd_nb(node);
  319. amd_calc_l3_indices(&l3_caches[node]);
  320. }
  321. this_leaf->l3 = &l3_caches[node];
  322. }
  323. /*
  324. * check whether a slot used for disabling an L3 index is occupied.
  325. * @l3: L3 cache descriptor
  326. * @slot: slot number (0..1)
  327. *
  328. * @returns: the disabled index if used or negative value if slot free.
  329. */
  330. int amd_get_l3_disable_slot(struct amd_l3_cache *l3, unsigned slot)
  331. {
  332. unsigned int reg = 0;
  333. pci_read_config_dword(l3->nb->misc, 0x1BC + slot * 4, &reg);
  334. /* check whether this slot is activated already */
  335. if (reg & (3UL << 30))
  336. return reg & 0xfff;
  337. return -1;
  338. }
  339. static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
  340. unsigned int slot)
  341. {
  342. int index;
  343. if (!this_leaf->l3 ||
  344. !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  345. return -EINVAL;
  346. index = amd_get_l3_disable_slot(this_leaf->l3, slot);
  347. if (index >= 0)
  348. return sprintf(buf, "%d\n", index);
  349. return sprintf(buf, "FREE\n");
  350. }
  351. #define SHOW_CACHE_DISABLE(slot) \
  352. static ssize_t \
  353. show_cache_disable_##slot(struct _cpuid4_info *this_leaf, char *buf, \
  354. unsigned int cpu) \
  355. { \
  356. return show_cache_disable(this_leaf, buf, slot); \
  357. }
  358. SHOW_CACHE_DISABLE(0)
  359. SHOW_CACHE_DISABLE(1)
  360. static void amd_l3_disable_index(struct amd_l3_cache *l3, int cpu,
  361. unsigned slot, unsigned long idx)
  362. {
  363. int i;
  364. idx |= BIT(30);
  365. /*
  366. * disable index in all 4 subcaches
  367. */
  368. for (i = 0; i < 4; i++) {
  369. u32 reg = idx | (i << 20);
  370. if (!l3->subcaches[i])
  371. continue;
  372. pci_write_config_dword(l3->nb->misc, 0x1BC + slot * 4, reg);
  373. /*
  374. * We need to WBINVD on a core on the node containing the L3
  375. * cache which indices we disable therefore a simple wbinvd()
  376. * is not sufficient.
  377. */
  378. wbinvd_on_cpu(cpu);
  379. reg |= BIT(31);
  380. pci_write_config_dword(l3->nb->misc, 0x1BC + slot * 4, reg);
  381. }
  382. }
  383. /*
  384. * disable a L3 cache index by using a disable-slot
  385. *
  386. * @l3: L3 cache descriptor
  387. * @cpu: A CPU on the node containing the L3 cache
  388. * @slot: slot number (0..1)
  389. * @index: index to disable
  390. *
  391. * @return: 0 on success, error status on failure
  392. */
  393. int amd_set_l3_disable_slot(struct amd_l3_cache *l3, int cpu, unsigned slot,
  394. unsigned long index)
  395. {
  396. int ret = 0;
  397. #define SUBCACHE_MASK (3UL << 20)
  398. #define SUBCACHE_INDEX 0xfff
  399. /*
  400. * check whether this slot is already used or
  401. * the index is already disabled
  402. */
  403. ret = amd_get_l3_disable_slot(l3, slot);
  404. if (ret >= 0)
  405. return -EINVAL;
  406. /*
  407. * check whether the other slot has disabled the
  408. * same index already
  409. */
  410. if (index == amd_get_l3_disable_slot(l3, !slot))
  411. return -EINVAL;
  412. /* do not allow writes outside of allowed bits */
  413. if ((index & ~(SUBCACHE_MASK | SUBCACHE_INDEX)) ||
  414. ((index & SUBCACHE_INDEX) > l3->indices))
  415. return -EINVAL;
  416. amd_l3_disable_index(l3, cpu, slot, index);
  417. return 0;
  418. }
  419. static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
  420. const char *buf, size_t count,
  421. unsigned int slot)
  422. {
  423. unsigned long val = 0;
  424. int cpu, err = 0;
  425. if (!capable(CAP_SYS_ADMIN))
  426. return -EPERM;
  427. if (!this_leaf->l3 ||
  428. !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  429. return -EINVAL;
  430. cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  431. if (strict_strtoul(buf, 10, &val) < 0)
  432. return -EINVAL;
  433. err = amd_set_l3_disable_slot(this_leaf->l3, cpu, slot, val);
  434. if (err) {
  435. if (err == -EEXIST)
  436. printk(KERN_WARNING "L3 disable slot %d in use!\n",
  437. slot);
  438. return err;
  439. }
  440. return count;
  441. }
  442. #define STORE_CACHE_DISABLE(slot) \
  443. static ssize_t \
  444. store_cache_disable_##slot(struct _cpuid4_info *this_leaf, \
  445. const char *buf, size_t count, \
  446. unsigned int cpu) \
  447. { \
  448. return store_cache_disable(this_leaf, buf, count, slot); \
  449. }
  450. STORE_CACHE_DISABLE(0)
  451. STORE_CACHE_DISABLE(1)
  452. static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644,
  453. show_cache_disable_0, store_cache_disable_0);
  454. static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
  455. show_cache_disable_1, store_cache_disable_1);
  456. static ssize_t
  457. show_subcaches(struct _cpuid4_info *this_leaf, char *buf, unsigned int cpu)
  458. {
  459. if (!this_leaf->l3 || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  460. return -EINVAL;
  461. return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
  462. }
  463. static ssize_t
  464. store_subcaches(struct _cpuid4_info *this_leaf, const char *buf, size_t count,
  465. unsigned int cpu)
  466. {
  467. unsigned long val;
  468. if (!capable(CAP_SYS_ADMIN))
  469. return -EPERM;
  470. if (!this_leaf->l3 || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  471. return -EINVAL;
  472. if (strict_strtoul(buf, 16, &val) < 0)
  473. return -EINVAL;
  474. if (amd_set_subcaches(cpu, val))
  475. return -EINVAL;
  476. return count;
  477. }
  478. static struct _cache_attr subcaches =
  479. __ATTR(subcaches, 0644, show_subcaches, store_subcaches);
  480. #else /* CONFIG_AMD_NB */
  481. #define amd_init_l3_cache(x, y)
  482. #endif /* CONFIG_AMD_NB */
  483. static int
  484. __cpuinit cpuid4_cache_lookup_regs(int index,
  485. struct _cpuid4_info_regs *this_leaf)
  486. {
  487. union _cpuid4_leaf_eax eax;
  488. union _cpuid4_leaf_ebx ebx;
  489. union _cpuid4_leaf_ecx ecx;
  490. unsigned edx;
  491. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  492. amd_cpuid4(index, &eax, &ebx, &ecx);
  493. amd_init_l3_cache(this_leaf, index);
  494. } else {
  495. cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
  496. }
  497. if (eax.split.type == CACHE_TYPE_NULL)
  498. return -EIO; /* better error ? */
  499. this_leaf->eax = eax;
  500. this_leaf->ebx = ebx;
  501. this_leaf->ecx = ecx;
  502. this_leaf->size = (ecx.split.number_of_sets + 1) *
  503. (ebx.split.coherency_line_size + 1) *
  504. (ebx.split.physical_line_partition + 1) *
  505. (ebx.split.ways_of_associativity + 1);
  506. return 0;
  507. }
  508. static int __cpuinit find_num_cache_leaves(void)
  509. {
  510. unsigned int eax, ebx, ecx, edx;
  511. union _cpuid4_leaf_eax cache_eax;
  512. int i = -1;
  513. do {
  514. ++i;
  515. /* Do cpuid(4) loop to find out num_cache_leaves */
  516. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  517. cache_eax.full = eax;
  518. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  519. return i;
  520. }
  521. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  522. {
  523. /* Cache sizes */
  524. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
  525. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  526. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  527. unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
  528. #ifdef CONFIG_X86_HT
  529. unsigned int cpu = c->cpu_index;
  530. #endif
  531. if (c->cpuid_level > 3) {
  532. static int is_initialized;
  533. if (is_initialized == 0) {
  534. /* Init num_cache_leaves from boot CPU */
  535. num_cache_leaves = find_num_cache_leaves();
  536. is_initialized++;
  537. }
  538. /*
  539. * Whenever possible use cpuid(4), deterministic cache
  540. * parameters cpuid leaf to find the cache details
  541. */
  542. for (i = 0; i < num_cache_leaves; i++) {
  543. struct _cpuid4_info_regs this_leaf;
  544. int retval;
  545. retval = cpuid4_cache_lookup_regs(i, &this_leaf);
  546. if (retval >= 0) {
  547. switch (this_leaf.eax.split.level) {
  548. case 1:
  549. if (this_leaf.eax.split.type ==
  550. CACHE_TYPE_DATA)
  551. new_l1d = this_leaf.size/1024;
  552. else if (this_leaf.eax.split.type ==
  553. CACHE_TYPE_INST)
  554. new_l1i = this_leaf.size/1024;
  555. break;
  556. case 2:
  557. new_l2 = this_leaf.size/1024;
  558. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  559. index_msb = get_count_order(num_threads_sharing);
  560. l2_id = c->apicid >> index_msb;
  561. break;
  562. case 3:
  563. new_l3 = this_leaf.size/1024;
  564. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  565. index_msb = get_count_order(
  566. num_threads_sharing);
  567. l3_id = c->apicid >> index_msb;
  568. break;
  569. default:
  570. break;
  571. }
  572. }
  573. }
  574. }
  575. /*
  576. * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
  577. * trace cache
  578. */
  579. if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
  580. /* supports eax=2 call */
  581. int j, n;
  582. unsigned int regs[4];
  583. unsigned char *dp = (unsigned char *)regs;
  584. int only_trace = 0;
  585. if (num_cache_leaves != 0 && c->x86 == 15)
  586. only_trace = 1;
  587. /* Number of times to iterate */
  588. n = cpuid_eax(2) & 0xFF;
  589. for (i = 0 ; i < n ; i++) {
  590. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  591. /* If bit 31 is set, this is an unknown format */
  592. for (j = 0 ; j < 3 ; j++)
  593. if (regs[j] & (1 << 31))
  594. regs[j] = 0;
  595. /* Byte 0 is level count, not a descriptor */
  596. for (j = 1 ; j < 16 ; j++) {
  597. unsigned char des = dp[j];
  598. unsigned char k = 0;
  599. /* look up this descriptor in the table */
  600. while (cache_table[k].descriptor != 0) {
  601. if (cache_table[k].descriptor == des) {
  602. if (only_trace && cache_table[k].cache_type != LVL_TRACE)
  603. break;
  604. switch (cache_table[k].cache_type) {
  605. case LVL_1_INST:
  606. l1i += cache_table[k].size;
  607. break;
  608. case LVL_1_DATA:
  609. l1d += cache_table[k].size;
  610. break;
  611. case LVL_2:
  612. l2 += cache_table[k].size;
  613. break;
  614. case LVL_3:
  615. l3 += cache_table[k].size;
  616. break;
  617. case LVL_TRACE:
  618. trace += cache_table[k].size;
  619. break;
  620. }
  621. break;
  622. }
  623. k++;
  624. }
  625. }
  626. }
  627. }
  628. if (new_l1d)
  629. l1d = new_l1d;
  630. if (new_l1i)
  631. l1i = new_l1i;
  632. if (new_l2) {
  633. l2 = new_l2;
  634. #ifdef CONFIG_X86_HT
  635. per_cpu(cpu_llc_id, cpu) = l2_id;
  636. #endif
  637. }
  638. if (new_l3) {
  639. l3 = new_l3;
  640. #ifdef CONFIG_X86_HT
  641. per_cpu(cpu_llc_id, cpu) = l3_id;
  642. #endif
  643. }
  644. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  645. return l2;
  646. }
  647. #ifdef CONFIG_SYSFS
  648. /* pointer to _cpuid4_info array (for each cache leaf) */
  649. static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
  650. #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
  651. #ifdef CONFIG_SMP
  652. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  653. {
  654. struct _cpuid4_info *this_leaf, *sibling_leaf;
  655. unsigned long num_threads_sharing;
  656. int index_msb, i, sibling;
  657. struct cpuinfo_x86 *c = &cpu_data(cpu);
  658. if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
  659. for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
  660. if (!per_cpu(ici_cpuid4_info, i))
  661. continue;
  662. this_leaf = CPUID4_INFO_IDX(i, index);
  663. for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
  664. if (!cpu_online(sibling))
  665. continue;
  666. set_bit(sibling, this_leaf->shared_cpu_map);
  667. }
  668. }
  669. return;
  670. }
  671. this_leaf = CPUID4_INFO_IDX(cpu, index);
  672. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  673. if (num_threads_sharing == 1)
  674. cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
  675. else {
  676. index_msb = get_count_order(num_threads_sharing);
  677. for_each_online_cpu(i) {
  678. if (cpu_data(i).apicid >> index_msb ==
  679. c->apicid >> index_msb) {
  680. cpumask_set_cpu(i,
  681. to_cpumask(this_leaf->shared_cpu_map));
  682. if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
  683. sibling_leaf =
  684. CPUID4_INFO_IDX(i, index);
  685. cpumask_set_cpu(cpu, to_cpumask(
  686. sibling_leaf->shared_cpu_map));
  687. }
  688. }
  689. }
  690. }
  691. }
  692. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  693. {
  694. struct _cpuid4_info *this_leaf, *sibling_leaf;
  695. int sibling;
  696. this_leaf = CPUID4_INFO_IDX(cpu, index);
  697. for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
  698. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  699. cpumask_clear_cpu(cpu,
  700. to_cpumask(sibling_leaf->shared_cpu_map));
  701. }
  702. }
  703. #else
  704. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  705. {
  706. }
  707. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  708. {
  709. }
  710. #endif
  711. static void __cpuinit free_cache_attributes(unsigned int cpu)
  712. {
  713. int i;
  714. for (i = 0; i < num_cache_leaves; i++)
  715. cache_remove_shared_cpu_map(cpu, i);
  716. kfree(per_cpu(ici_cpuid4_info, cpu)->l3);
  717. kfree(per_cpu(ici_cpuid4_info, cpu));
  718. per_cpu(ici_cpuid4_info, cpu) = NULL;
  719. }
  720. static int
  721. __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  722. {
  723. struct _cpuid4_info_regs *leaf_regs =
  724. (struct _cpuid4_info_regs *)this_leaf;
  725. return cpuid4_cache_lookup_regs(index, leaf_regs);
  726. }
  727. static void __cpuinit get_cpu_leaves(void *_retval)
  728. {
  729. int j, *retval = _retval, cpu = smp_processor_id();
  730. /* Do cpuid and store the results */
  731. for (j = 0; j < num_cache_leaves; j++) {
  732. struct _cpuid4_info *this_leaf;
  733. this_leaf = CPUID4_INFO_IDX(cpu, j);
  734. *retval = cpuid4_cache_lookup(j, this_leaf);
  735. if (unlikely(*retval < 0)) {
  736. int i;
  737. for (i = 0; i < j; i++)
  738. cache_remove_shared_cpu_map(cpu, i);
  739. break;
  740. }
  741. cache_shared_cpu_map_setup(cpu, j);
  742. }
  743. }
  744. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  745. {
  746. int retval;
  747. if (num_cache_leaves == 0)
  748. return -ENOENT;
  749. per_cpu(ici_cpuid4_info, cpu) = kzalloc(
  750. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  751. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  752. return -ENOMEM;
  753. smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
  754. if (retval) {
  755. kfree(per_cpu(ici_cpuid4_info, cpu));
  756. per_cpu(ici_cpuid4_info, cpu) = NULL;
  757. }
  758. return retval;
  759. }
  760. #include <linux/kobject.h>
  761. #include <linux/sysfs.h>
  762. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  763. /* pointer to kobject for cpuX/cache */
  764. static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
  765. struct _index_kobject {
  766. struct kobject kobj;
  767. unsigned int cpu;
  768. unsigned short index;
  769. };
  770. /* pointer to array of kobjects for cpuX/cache/indexY */
  771. static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
  772. #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
  773. #define show_one_plus(file_name, object, val) \
  774. static ssize_t show_##file_name(struct _cpuid4_info *this_leaf, char *buf, \
  775. unsigned int cpu) \
  776. { \
  777. return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  778. }
  779. show_one_plus(level, eax.split.level, 0);
  780. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  781. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  782. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  783. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  784. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf,
  785. unsigned int cpu)
  786. {
  787. return sprintf(buf, "%luK\n", this_leaf->size / 1024);
  788. }
  789. static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
  790. int type, char *buf)
  791. {
  792. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
  793. int n = 0;
  794. if (len > 1) {
  795. const struct cpumask *mask;
  796. mask = to_cpumask(this_leaf->shared_cpu_map);
  797. n = type ?
  798. cpulist_scnprintf(buf, len-2, mask) :
  799. cpumask_scnprintf(buf, len-2, mask);
  800. buf[n++] = '\n';
  801. buf[n] = '\0';
  802. }
  803. return n;
  804. }
  805. static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf,
  806. unsigned int cpu)
  807. {
  808. return show_shared_cpu_map_func(leaf, 0, buf);
  809. }
  810. static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf,
  811. unsigned int cpu)
  812. {
  813. return show_shared_cpu_map_func(leaf, 1, buf);
  814. }
  815. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf,
  816. unsigned int cpu)
  817. {
  818. switch (this_leaf->eax.split.type) {
  819. case CACHE_TYPE_DATA:
  820. return sprintf(buf, "Data\n");
  821. case CACHE_TYPE_INST:
  822. return sprintf(buf, "Instruction\n");
  823. case CACHE_TYPE_UNIFIED:
  824. return sprintf(buf, "Unified\n");
  825. default:
  826. return sprintf(buf, "Unknown\n");
  827. }
  828. }
  829. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  830. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  831. #define define_one_ro(_name) \
  832. static struct _cache_attr _name = \
  833. __ATTR(_name, 0444, show_##_name, NULL)
  834. define_one_ro(level);
  835. define_one_ro(type);
  836. define_one_ro(coherency_line_size);
  837. define_one_ro(physical_line_partition);
  838. define_one_ro(ways_of_associativity);
  839. define_one_ro(number_of_sets);
  840. define_one_ro(size);
  841. define_one_ro(shared_cpu_map);
  842. define_one_ro(shared_cpu_list);
  843. static struct attribute *default_attrs[] = {
  844. &type.attr,
  845. &level.attr,
  846. &coherency_line_size.attr,
  847. &physical_line_partition.attr,
  848. &ways_of_associativity.attr,
  849. &number_of_sets.attr,
  850. &size.attr,
  851. &shared_cpu_map.attr,
  852. &shared_cpu_list.attr,
  853. NULL
  854. };
  855. #ifdef CONFIG_AMD_NB
  856. static struct attribute ** __cpuinit amd_l3_attrs(void)
  857. {
  858. static struct attribute **attrs;
  859. int n;
  860. if (attrs)
  861. return attrs;
  862. n = sizeof (default_attrs) / sizeof (struct attribute *);
  863. if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
  864. n += 2;
  865. if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  866. n += 1;
  867. attrs = kzalloc(n * sizeof (struct attribute *), GFP_KERNEL);
  868. if (attrs == NULL)
  869. return attrs = default_attrs;
  870. for (n = 0; default_attrs[n]; n++)
  871. attrs[n] = default_attrs[n];
  872. if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
  873. attrs[n++] = &cache_disable_0.attr;
  874. attrs[n++] = &cache_disable_1.attr;
  875. }
  876. if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
  877. attrs[n++] = &subcaches.attr;
  878. return attrs;
  879. }
  880. #endif
  881. static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
  882. {
  883. struct _cache_attr *fattr = to_attr(attr);
  884. struct _index_kobject *this_leaf = to_object(kobj);
  885. ssize_t ret;
  886. ret = fattr->show ?
  887. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  888. buf, this_leaf->cpu) :
  889. 0;
  890. return ret;
  891. }
  892. static ssize_t store(struct kobject *kobj, struct attribute *attr,
  893. const char *buf, size_t count)
  894. {
  895. struct _cache_attr *fattr = to_attr(attr);
  896. struct _index_kobject *this_leaf = to_object(kobj);
  897. ssize_t ret;
  898. ret = fattr->store ?
  899. fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  900. buf, count, this_leaf->cpu) :
  901. 0;
  902. return ret;
  903. }
  904. static const struct sysfs_ops sysfs_ops = {
  905. .show = show,
  906. .store = store,
  907. };
  908. static struct kobj_type ktype_cache = {
  909. .sysfs_ops = &sysfs_ops,
  910. .default_attrs = default_attrs,
  911. };
  912. static struct kobj_type ktype_percpu_entry = {
  913. .sysfs_ops = &sysfs_ops,
  914. };
  915. static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
  916. {
  917. kfree(per_cpu(ici_cache_kobject, cpu));
  918. kfree(per_cpu(ici_index_kobject, cpu));
  919. per_cpu(ici_cache_kobject, cpu) = NULL;
  920. per_cpu(ici_index_kobject, cpu) = NULL;
  921. free_cache_attributes(cpu);
  922. }
  923. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  924. {
  925. int err;
  926. if (num_cache_leaves == 0)
  927. return -ENOENT;
  928. err = detect_cache_attributes(cpu);
  929. if (err)
  930. return err;
  931. /* Allocate all required memory */
  932. per_cpu(ici_cache_kobject, cpu) =
  933. kzalloc(sizeof(struct kobject), GFP_KERNEL);
  934. if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
  935. goto err_out;
  936. per_cpu(ici_index_kobject, cpu) = kzalloc(
  937. sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
  938. if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
  939. goto err_out;
  940. return 0;
  941. err_out:
  942. cpuid4_cache_sysfs_exit(cpu);
  943. return -ENOMEM;
  944. }
  945. static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
  946. /* Add/Remove cache interface for CPU device */
  947. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  948. {
  949. unsigned int cpu = sys_dev->id;
  950. unsigned long i, j;
  951. struct _index_kobject *this_object;
  952. struct _cpuid4_info *this_leaf;
  953. int retval;
  954. retval = cpuid4_cache_sysfs_init(cpu);
  955. if (unlikely(retval < 0))
  956. return retval;
  957. retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
  958. &ktype_percpu_entry,
  959. &sys_dev->kobj, "%s", "cache");
  960. if (retval < 0) {
  961. cpuid4_cache_sysfs_exit(cpu);
  962. return retval;
  963. }
  964. for (i = 0; i < num_cache_leaves; i++) {
  965. this_object = INDEX_KOBJECT_PTR(cpu, i);
  966. this_object->cpu = cpu;
  967. this_object->index = i;
  968. this_leaf = CPUID4_INFO_IDX(cpu, i);
  969. ktype_cache.default_attrs = default_attrs;
  970. #ifdef CONFIG_AMD_NB
  971. if (this_leaf->l3)
  972. ktype_cache.default_attrs = amd_l3_attrs();
  973. #endif
  974. retval = kobject_init_and_add(&(this_object->kobj),
  975. &ktype_cache,
  976. per_cpu(ici_cache_kobject, cpu),
  977. "index%1lu", i);
  978. if (unlikely(retval)) {
  979. for (j = 0; j < i; j++)
  980. kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
  981. kobject_put(per_cpu(ici_cache_kobject, cpu));
  982. cpuid4_cache_sysfs_exit(cpu);
  983. return retval;
  984. }
  985. kobject_uevent(&(this_object->kobj), KOBJ_ADD);
  986. }
  987. cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
  988. kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
  989. return 0;
  990. }
  991. static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
  992. {
  993. unsigned int cpu = sys_dev->id;
  994. unsigned long i;
  995. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  996. return;
  997. if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
  998. return;
  999. cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
  1000. for (i = 0; i < num_cache_leaves; i++)
  1001. kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
  1002. kobject_put(per_cpu(ici_cache_kobject, cpu));
  1003. cpuid4_cache_sysfs_exit(cpu);
  1004. }
  1005. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  1006. unsigned long action, void *hcpu)
  1007. {
  1008. unsigned int cpu = (unsigned long)hcpu;
  1009. struct sys_device *sys_dev;
  1010. sys_dev = get_cpu_sysdev(cpu);
  1011. switch (action) {
  1012. case CPU_ONLINE:
  1013. case CPU_ONLINE_FROZEN:
  1014. cache_add_dev(sys_dev);
  1015. break;
  1016. case CPU_DEAD:
  1017. case CPU_DEAD_FROZEN:
  1018. cache_remove_dev(sys_dev);
  1019. break;
  1020. }
  1021. return NOTIFY_OK;
  1022. }
  1023. static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = {
  1024. .notifier_call = cacheinfo_cpu_callback,
  1025. };
  1026. static int __cpuinit cache_sysfs_init(void)
  1027. {
  1028. int i;
  1029. if (num_cache_leaves == 0)
  1030. return 0;
  1031. for_each_online_cpu(i) {
  1032. int err;
  1033. struct sys_device *sys_dev = get_cpu_sysdev(i);
  1034. err = cache_add_dev(sys_dev);
  1035. if (err)
  1036. return err;
  1037. }
  1038. register_hotcpu_notifier(&cacheinfo_cpu_notifier);
  1039. return 0;
  1040. }
  1041. device_initcall(cache_sysfs_init);
  1042. #endif