time.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * Support the cycle counter clocksource and tile timer clock event device.
  15. */
  16. #include <linux/time.h>
  17. #include <linux/timex.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/clockchips.h>
  20. #include <linux/hardirq.h>
  21. #include <linux/sched.h>
  22. #include <linux/smp.h>
  23. #include <linux/delay.h>
  24. #include <asm/irq_regs.h>
  25. #include <asm/traps.h>
  26. #include <hv/hypervisor.h>
  27. #include <arch/interrupts.h>
  28. #include <arch/spr_def.h>
  29. /*
  30. * Define the cycle counter clock source.
  31. */
  32. /* How many cycles per second we are running at. */
  33. static cycles_t cycles_per_sec __write_once;
  34. cycles_t get_clock_rate(void)
  35. {
  36. return cycles_per_sec;
  37. }
  38. #if CHIP_HAS_SPLIT_CYCLE()
  39. cycles_t get_cycles(void)
  40. {
  41. unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
  42. unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
  43. unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  44. while (unlikely(high != high2)) {
  45. low = __insn_mfspr(SPR_CYCLE_LOW);
  46. high = high2;
  47. high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  48. }
  49. return (((cycles_t)high) << 32) | low;
  50. }
  51. #endif
  52. /*
  53. * We use a relatively small shift value so that sched_clock()
  54. * won't wrap around very often.
  55. */
  56. #define SCHED_CLOCK_SHIFT 10
  57. static unsigned long sched_clock_mult __write_once;
  58. static cycles_t clocksource_get_cycles(struct clocksource *cs)
  59. {
  60. return get_cycles();
  61. }
  62. static struct clocksource cycle_counter_cs = {
  63. .name = "cycle counter",
  64. .rating = 300,
  65. .read = clocksource_get_cycles,
  66. .mask = CLOCKSOURCE_MASK(64),
  67. .shift = 22, /* typical value, e.g. x86 tsc uses this */
  68. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  69. };
  70. /*
  71. * Called very early from setup_arch() to set cycles_per_sec.
  72. * We initialize it early so we can use it to set up loops_per_jiffy.
  73. */
  74. void __init setup_clock(void)
  75. {
  76. cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
  77. sched_clock_mult =
  78. clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
  79. cycle_counter_cs.mult =
  80. clocksource_hz2mult(cycles_per_sec, cycle_counter_cs.shift);
  81. }
  82. void __init calibrate_delay(void)
  83. {
  84. loops_per_jiffy = get_clock_rate() / HZ;
  85. pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
  86. loops_per_jiffy/(500000/HZ),
  87. (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
  88. }
  89. /* Called fairly late in init/main.c, but before we go smp. */
  90. void __init time_init(void)
  91. {
  92. /* Initialize and register the clock source. */
  93. clocksource_register(&cycle_counter_cs);
  94. /* Start up the tile-timer interrupt source on the boot cpu. */
  95. setup_tile_timer();
  96. }
  97. /*
  98. * Define the tile timer clock event device. The timer is driven by
  99. * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
  100. * counter, plus bit 31, which signifies that the counter has wrapped
  101. * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
  102. * raised as long as bit 31 is set.
  103. *
  104. * The TILE_MINSEC value represents the largest range of real-time
  105. * we can possibly cover with the timer, based on MAX_TICK combined
  106. * with the slowest reasonable clock rate we might run at.
  107. */
  108. #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
  109. #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
  110. static int tile_timer_set_next_event(unsigned long ticks,
  111. struct clock_event_device *evt)
  112. {
  113. BUG_ON(ticks > MAX_TICK);
  114. __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
  115. arch_local_irq_unmask_now(INT_TILE_TIMER);
  116. return 0;
  117. }
  118. /*
  119. * Whenever anyone tries to change modes, we just mask interrupts
  120. * and wait for the next event to get set.
  121. */
  122. static void tile_timer_set_mode(enum clock_event_mode mode,
  123. struct clock_event_device *evt)
  124. {
  125. arch_local_irq_mask_now(INT_TILE_TIMER);
  126. }
  127. /*
  128. * Set min_delta_ns to 1 microsecond, since it takes about
  129. * that long to fire the interrupt.
  130. */
  131. static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
  132. .name = "tile timer",
  133. .features = CLOCK_EVT_FEAT_ONESHOT,
  134. .min_delta_ns = 1000,
  135. .rating = 100,
  136. .irq = -1,
  137. .set_next_event = tile_timer_set_next_event,
  138. .set_mode = tile_timer_set_mode,
  139. };
  140. void __cpuinit setup_tile_timer(void)
  141. {
  142. struct clock_event_device *evt = &__get_cpu_var(tile_timer);
  143. /* Fill in fields that are speed-specific. */
  144. clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
  145. evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
  146. /* Mark as being for this cpu only. */
  147. evt->cpumask = cpumask_of(smp_processor_id());
  148. /* Start out with timer not firing. */
  149. arch_local_irq_mask_now(INT_TILE_TIMER);
  150. /* Register tile timer. */
  151. clockevents_register_device(evt);
  152. }
  153. /* Called from the interrupt vector. */
  154. void do_timer_interrupt(struct pt_regs *regs, int fault_num)
  155. {
  156. struct pt_regs *old_regs = set_irq_regs(regs);
  157. struct clock_event_device *evt = &__get_cpu_var(tile_timer);
  158. /*
  159. * Mask the timer interrupt here, since we are a oneshot timer
  160. * and there are now by definition no events pending.
  161. */
  162. arch_local_irq_mask(INT_TILE_TIMER);
  163. /* Track time spent here in an interrupt context */
  164. irq_enter();
  165. /* Track interrupt count. */
  166. __get_cpu_var(irq_stat).irq_timer_count++;
  167. /* Call the generic timer handler */
  168. evt->event_handler(evt);
  169. /*
  170. * Track time spent against the current process again and
  171. * process any softirqs if they are waiting.
  172. */
  173. irq_exit();
  174. set_irq_regs(old_regs);
  175. }
  176. /*
  177. * Scheduler clock - returns current time in nanosec units.
  178. * Note that with LOCKDEP, this is called during lockdep_init(), and
  179. * we will claim that sched_clock() is zero for a little while, until
  180. * we run setup_clock(), above.
  181. */
  182. unsigned long long sched_clock(void)
  183. {
  184. return clocksource_cyc2ns(get_cycles(),
  185. sched_clock_mult, SCHED_CLOCK_SHIFT);
  186. }
  187. int setup_profiling_timer(unsigned int multiplier)
  188. {
  189. return -EINVAL;
  190. }
  191. /*
  192. * Use the tile timer to convert nsecs to core clock cycles, relying
  193. * on it having the same frequency as SPR_CYCLE.
  194. */
  195. cycles_t ns2cycles(unsigned long nsecs)
  196. {
  197. struct clock_event_device *dev = &__get_cpu_var(tile_timer);
  198. return ((u64)nsecs * dev->mult) >> dev->shift;
  199. }