pci.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/pci.h>
  16. #include <linux/delay.h>
  17. #include <linux/string.h>
  18. #include <linux/init.h>
  19. #include <linux/capability.h>
  20. #include <linux/sched.h>
  21. #include <linux/errno.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/irq.h>
  24. #include <linux/io.h>
  25. #include <linux/uaccess.h>
  26. #include <asm/processor.h>
  27. #include <asm/sections.h>
  28. #include <asm/byteorder.h>
  29. #include <asm/hv_driver.h>
  30. #include <hv/drv_pcie_rc_intf.h>
  31. /*
  32. * Initialization flow and process
  33. * -------------------------------
  34. *
  35. * This files containes the routines to search for PCI buses,
  36. * enumerate the buses, and configure any attached devices.
  37. *
  38. * There are two entry points here:
  39. * 1) tile_pci_init
  40. * This sets up the pci_controller structs, and opens the
  41. * FDs to the hypervisor. This is called from setup_arch() early
  42. * in the boot process.
  43. * 2) pcibios_init
  44. * This probes the PCI bus(es) for any attached hardware. It's
  45. * called by subsys_initcall. All of the real work is done by the
  46. * generic Linux PCI layer.
  47. *
  48. */
  49. /*
  50. * This flag tells if the platform is TILEmpower that needs
  51. * special configuration for the PLX switch chip.
  52. */
  53. int __write_once tile_plx_gen1;
  54. static struct pci_controller controllers[TILE_NUM_PCIE];
  55. static int num_controllers;
  56. static struct pci_ops tile_cfg_ops;
  57. /*
  58. * We don't need to worry about the alignment of resources.
  59. */
  60. resource_size_t pcibios_align_resource(void *data, const struct resource *res,
  61. resource_size_t size, resource_size_t align)
  62. {
  63. return res->start;
  64. }
  65. EXPORT_SYMBOL(pcibios_align_resource);
  66. /*
  67. * Open a FD to the hypervisor PCI device.
  68. *
  69. * controller_id is the controller number, config type is 0 or 1 for
  70. * config0 or config1 operations.
  71. */
  72. static int __init tile_pcie_open(int controller_id, int config_type)
  73. {
  74. char filename[32];
  75. int fd;
  76. sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
  77. fd = hv_dev_open((HV_VirtAddr)filename, 0);
  78. return fd;
  79. }
  80. /*
  81. * Get the IRQ numbers from the HV and set up the handlers for them.
  82. */
  83. static int __init tile_init_irqs(int controller_id,
  84. struct pci_controller *controller)
  85. {
  86. char filename[32];
  87. int fd;
  88. int ret;
  89. int x;
  90. struct pcie_rc_config rc_config;
  91. sprintf(filename, "pcie/%d/ctl", controller_id);
  92. fd = hv_dev_open((HV_VirtAddr)filename, 0);
  93. if (fd < 0) {
  94. pr_err("PCI: hv_dev_open(%s) failed\n", filename);
  95. return -1;
  96. }
  97. ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
  98. sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
  99. hv_dev_close(fd);
  100. if (ret != sizeof(rc_config)) {
  101. pr_err("PCI: wanted %zd bytes, got %d\n",
  102. sizeof(rc_config), ret);
  103. return -1;
  104. }
  105. /* Record irq_base so that we can map INTx to IRQ # later. */
  106. controller->irq_base = rc_config.intr;
  107. for (x = 0; x < 4; x++)
  108. tile_irq_activate(rc_config.intr + x,
  109. TILE_IRQ_HW_CLEAR);
  110. if (rc_config.plx_gen1)
  111. controller->plx_gen1 = 1;
  112. return 0;
  113. }
  114. /*
  115. * First initialization entry point, called from setup_arch().
  116. *
  117. * Find valid controllers and fill in pci_controller structs for each
  118. * of them.
  119. *
  120. * Returns the number of controllers discovered.
  121. */
  122. int __init tile_pci_init(void)
  123. {
  124. int i;
  125. pr_info("PCI: Searching for controllers...\n");
  126. /* Do any configuration we need before using the PCIe */
  127. for (i = 0; i < TILE_NUM_PCIE; i++) {
  128. int hv_cfg_fd0 = -1;
  129. int hv_cfg_fd1 = -1;
  130. int hv_mem_fd = -1;
  131. char name[32];
  132. struct pci_controller *controller;
  133. /*
  134. * Open the fd to the HV. If it fails then this
  135. * device doesn't exist.
  136. */
  137. hv_cfg_fd0 = tile_pcie_open(i, 0);
  138. if (hv_cfg_fd0 < 0)
  139. continue;
  140. hv_cfg_fd1 = tile_pcie_open(i, 1);
  141. if (hv_cfg_fd1 < 0) {
  142. pr_err("PCI: Couldn't open config fd to HV "
  143. "for controller %d\n", i);
  144. goto err_cont;
  145. }
  146. sprintf(name, "pcie/%d/mem", i);
  147. hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
  148. if (hv_mem_fd < 0) {
  149. pr_err("PCI: Could not open mem fd to HV!\n");
  150. goto err_cont;
  151. }
  152. pr_info("PCI: Found PCI controller #%d\n", i);
  153. controller = &controllers[num_controllers];
  154. if (tile_init_irqs(i, controller)) {
  155. pr_err("PCI: Could not initialize "
  156. "IRQs, aborting.\n");
  157. goto err_cont;
  158. }
  159. controller->index = num_controllers;
  160. controller->hv_cfg_fd[0] = hv_cfg_fd0;
  161. controller->hv_cfg_fd[1] = hv_cfg_fd1;
  162. controller->hv_mem_fd = hv_mem_fd;
  163. controller->first_busno = 0;
  164. controller->last_busno = 0xff;
  165. controller->ops = &tile_cfg_ops;
  166. num_controllers++;
  167. continue;
  168. err_cont:
  169. if (hv_cfg_fd0 >= 0)
  170. hv_dev_close(hv_cfg_fd0);
  171. if (hv_cfg_fd1 >= 0)
  172. hv_dev_close(hv_cfg_fd1);
  173. if (hv_mem_fd >= 0)
  174. hv_dev_close(hv_mem_fd);
  175. continue;
  176. }
  177. /*
  178. * Before using the PCIe, see if we need to do any platform-specific
  179. * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
  180. */
  181. for (i = 0; i < num_controllers; i++) {
  182. struct pci_controller *controller = &controllers[i];
  183. if (controller->plx_gen1)
  184. tile_plx_gen1 = 1;
  185. }
  186. return num_controllers;
  187. }
  188. /*
  189. * (pin - 1) converts from the PCI standard's [1:4] convention to
  190. * a normal [0:3] range.
  191. */
  192. static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
  193. {
  194. struct pci_controller *controller =
  195. (struct pci_controller *)dev->sysdata;
  196. return (pin - 1) + controller->irq_base;
  197. }
  198. static void __init fixup_read_and_payload_sizes(void)
  199. {
  200. struct pci_dev *dev = NULL;
  201. int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
  202. int max_read_size = 0x2; /* Limit to 512 byte reads. */
  203. u16 new_values;
  204. /* Scan for the smallest maximum payload size. */
  205. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  206. int pcie_caps_offset;
  207. u32 devcap;
  208. int max_payload;
  209. pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
  210. if (pcie_caps_offset == 0)
  211. continue;
  212. pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
  213. &devcap);
  214. max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
  215. if (max_payload < smallest_max_payload)
  216. smallest_max_payload = max_payload;
  217. }
  218. /* Now, set the max_payload_size for all devices to that value. */
  219. new_values = (max_read_size << 12) | (smallest_max_payload << 5);
  220. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  221. int pcie_caps_offset;
  222. u16 devctl;
  223. pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
  224. if (pcie_caps_offset == 0)
  225. continue;
  226. pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
  227. &devctl);
  228. devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
  229. devctl |= new_values;
  230. pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
  231. devctl);
  232. }
  233. }
  234. /*
  235. * Second PCI initialization entry point, called by subsys_initcall.
  236. *
  237. * The controllers have been set up by the time we get here, by a call to
  238. * tile_pci_init.
  239. */
  240. static int __init pcibios_init(void)
  241. {
  242. int i;
  243. pr_info("PCI: Probing PCI hardware\n");
  244. /*
  245. * Delay a bit in case devices aren't ready. Some devices are
  246. * known to require at least 20ms here, but we use a more
  247. * conservative value.
  248. */
  249. mdelay(250);
  250. /* Scan all of the recorded PCI controllers. */
  251. for (i = 0; i < num_controllers; i++) {
  252. struct pci_controller *controller = &controllers[i];
  253. struct pci_bus *bus;
  254. pr_info("PCI: initializing controller #%d\n", i);
  255. /*
  256. * This comes from the generic Linux PCI driver.
  257. *
  258. * It reads the PCI tree for this bus into the Linux
  259. * data structures.
  260. *
  261. * This is inlined in linux/pci.h and calls into
  262. * pci_scan_bus_parented() in probe.c.
  263. */
  264. bus = pci_scan_bus(0, controller->ops, controller);
  265. controller->root_bus = bus;
  266. controller->last_busno = bus->subordinate;
  267. }
  268. /* Do machine dependent PCI interrupt routing */
  269. pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
  270. /*
  271. * This comes from the generic Linux PCI driver.
  272. *
  273. * It allocates all of the resources (I/O memory, etc)
  274. * associated with the devices read in above.
  275. */
  276. pci_assign_unassigned_resources();
  277. /* Configure the max_read_size and max_payload_size values. */
  278. fixup_read_and_payload_sizes();
  279. /* Record the I/O resources in the PCI controller structure. */
  280. for (i = 0; i < num_controllers; i++) {
  281. struct pci_bus *root_bus = controllers[i].root_bus;
  282. struct pci_bus *next_bus;
  283. struct pci_dev *dev;
  284. list_for_each_entry(dev, &root_bus->devices, bus_list) {
  285. /* Find the PCI host controller, ie. the 1st bridge. */
  286. if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
  287. (PCI_SLOT(dev->devfn) == 0)) {
  288. next_bus = dev->subordinate;
  289. controllers[i].mem_resources[0] =
  290. *next_bus->resource[0];
  291. controllers[i].mem_resources[1] =
  292. *next_bus->resource[1];
  293. controllers[i].mem_resources[2] =
  294. *next_bus->resource[2];
  295. break;
  296. }
  297. }
  298. }
  299. return 0;
  300. }
  301. subsys_initcall(pcibios_init);
  302. /*
  303. * No bus fixups needed.
  304. */
  305. void __devinit pcibios_fixup_bus(struct pci_bus *bus)
  306. {
  307. /* Nothing needs to be done. */
  308. }
  309. /*
  310. * This can be called from the generic PCI layer, but doesn't need to
  311. * do anything.
  312. */
  313. char __devinit *pcibios_setup(char *str)
  314. {
  315. /* Nothing needs to be done. */
  316. return str;
  317. }
  318. /*
  319. * This is called from the generic Linux layer.
  320. */
  321. void __init pcibios_update_irq(struct pci_dev *dev, int irq)
  322. {
  323. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  324. }
  325. /*
  326. * Enable memory and/or address decoding, as appropriate, for the
  327. * device described by the 'dev' struct.
  328. *
  329. * This is called from the generic PCI layer, and can be called
  330. * for bridges or endpoints.
  331. */
  332. int pcibios_enable_device(struct pci_dev *dev, int mask)
  333. {
  334. u16 cmd, old_cmd;
  335. u8 header_type;
  336. int i;
  337. struct resource *r;
  338. pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
  339. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  340. old_cmd = cmd;
  341. if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
  342. /*
  343. * For bridges, we enable both memory and I/O decoding
  344. * in call cases.
  345. */
  346. cmd |= PCI_COMMAND_IO;
  347. cmd |= PCI_COMMAND_MEMORY;
  348. } else {
  349. /*
  350. * For endpoints, we enable memory and/or I/O decoding
  351. * only if they have a memory resource of that type.
  352. */
  353. for (i = 0; i < 6; i++) {
  354. r = &dev->resource[i];
  355. if (r->flags & IORESOURCE_UNSET) {
  356. pr_err("PCI: Device %s not available "
  357. "because of resource collisions\n",
  358. pci_name(dev));
  359. return -EINVAL;
  360. }
  361. if (r->flags & IORESOURCE_IO)
  362. cmd |= PCI_COMMAND_IO;
  363. if (r->flags & IORESOURCE_MEM)
  364. cmd |= PCI_COMMAND_MEMORY;
  365. }
  366. }
  367. /*
  368. * We only write the command if it changed.
  369. */
  370. if (cmd != old_cmd)
  371. pci_write_config_word(dev, PCI_COMMAND, cmd);
  372. return 0;
  373. }
  374. void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
  375. {
  376. unsigned long start = pci_resource_start(dev, bar);
  377. unsigned long len = pci_resource_len(dev, bar);
  378. unsigned long flags = pci_resource_flags(dev, bar);
  379. if (!len)
  380. return NULL;
  381. if (max && len > max)
  382. len = max;
  383. if (!(flags & IORESOURCE_MEM)) {
  384. pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
  385. start = 0;
  386. }
  387. return (void __iomem *)start;
  388. }
  389. EXPORT_SYMBOL(pci_iomap);
  390. /****************************************************************
  391. *
  392. * Tile PCI config space read/write routines
  393. *
  394. ****************************************************************/
  395. /*
  396. * These are the normal read and write ops
  397. * These are expanded with macros from pci_bus_read_config_byte() etc.
  398. *
  399. * devfn is the combined PCI slot & function.
  400. *
  401. * offset is in bytes, from the start of config space for the
  402. * specified bus & slot.
  403. */
  404. static int __devinit tile_cfg_read(struct pci_bus *bus,
  405. unsigned int devfn,
  406. int offset,
  407. int size,
  408. u32 *val)
  409. {
  410. struct pci_controller *controller = bus->sysdata;
  411. int busnum = bus->number & 0xff;
  412. int slot = (devfn >> 3) & 0x1f;
  413. int function = devfn & 0x7;
  414. u32 addr;
  415. int config_mode = 1;
  416. /*
  417. * There is no bridge between the Tile and bus 0, so we
  418. * use config0 to talk to bus 0.
  419. *
  420. * If we're talking to a bus other than zero then we
  421. * must have found a bridge.
  422. */
  423. if (busnum == 0) {
  424. /*
  425. * We fake an empty slot for (busnum == 0) && (slot > 0),
  426. * since there is only one slot on bus 0.
  427. */
  428. if (slot) {
  429. *val = 0xFFFFFFFF;
  430. return 0;
  431. }
  432. config_mode = 0;
  433. }
  434. addr = busnum << 20; /* Bus in 27:20 */
  435. addr |= slot << 15; /* Slot (device) in 19:15 */
  436. addr |= function << 12; /* Function is in 14:12 */
  437. addr |= (offset & 0xFFF); /* byte address in 0:11 */
  438. return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
  439. (HV_VirtAddr)(val), size, addr);
  440. }
  441. /*
  442. * See tile_cfg_read() for relevent comments.
  443. * Note that "val" is the value to write, not a pointer to that value.
  444. */
  445. static int __devinit tile_cfg_write(struct pci_bus *bus,
  446. unsigned int devfn,
  447. int offset,
  448. int size,
  449. u32 val)
  450. {
  451. struct pci_controller *controller = bus->sysdata;
  452. int busnum = bus->number & 0xff;
  453. int slot = (devfn >> 3) & 0x1f;
  454. int function = devfn & 0x7;
  455. u32 addr;
  456. int config_mode = 1;
  457. HV_VirtAddr valp = (HV_VirtAddr)&val;
  458. /*
  459. * For bus 0 slot 0 we use config 0 accesses.
  460. */
  461. if (busnum == 0) {
  462. /*
  463. * We fake an empty slot for (busnum == 0) && (slot > 0),
  464. * since there is only one slot on bus 0.
  465. */
  466. if (slot)
  467. return 0;
  468. config_mode = 0;
  469. }
  470. addr = busnum << 20; /* Bus in 27:20 */
  471. addr |= slot << 15; /* Slot (device) in 19:15 */
  472. addr |= function << 12; /* Function is in 14:12 */
  473. addr |= (offset & 0xFFF); /* byte address in 0:11 */
  474. #ifdef __BIG_ENDIAN
  475. /* Point to the correct part of the 32-bit "val". */
  476. valp += 4 - size;
  477. #endif
  478. return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
  479. valp, size, addr);
  480. }
  481. static struct pci_ops tile_cfg_ops = {
  482. .read = tile_cfg_read,
  483. .write = tile_cfg_write,
  484. };
  485. /*
  486. * In the following, each PCI controller's mem_resources[1]
  487. * represents its (non-prefetchable) PCI memory resource.
  488. * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
  489. * prefetchable PCI memory resources, respectively.
  490. * For more details, see pci_setup_bridge() in setup-bus.c.
  491. * By comparing the target PCI memory address against the
  492. * end address of controller 0, we can determine the controller
  493. * that should accept the PCI memory access.
  494. */
  495. #define TILE_READ(size, type) \
  496. type _tile_read##size(unsigned long addr) \
  497. { \
  498. type val; \
  499. int idx = 0; \
  500. if (addr > controllers[0].mem_resources[1].end && \
  501. addr > controllers[0].mem_resources[2].end) \
  502. idx = 1; \
  503. if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
  504. (HV_VirtAddr)(&val), sizeof(type), addr)) \
  505. pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
  506. sizeof(type), addr); \
  507. return val; \
  508. } \
  509. EXPORT_SYMBOL(_tile_read##size)
  510. TILE_READ(b, u8);
  511. TILE_READ(w, u16);
  512. TILE_READ(l, u32);
  513. TILE_READ(q, u64);
  514. #define TILE_WRITE(size, type) \
  515. void _tile_write##size(type val, unsigned long addr) \
  516. { \
  517. int idx = 0; \
  518. if (addr > controllers[0].mem_resources[1].end && \
  519. addr > controllers[0].mem_resources[2].end) \
  520. idx = 1; \
  521. if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
  522. (HV_VirtAddr)(&val), sizeof(type), addr)) \
  523. pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
  524. sizeof(type), addr); \
  525. } \
  526. EXPORT_SYMBOL(_tile_write##size)
  527. TILE_WRITE(b, u8);
  528. TILE_WRITE(w, u16);
  529. TILE_WRITE(l, u32);
  530. TILE_WRITE(q, u64);