ioport.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. /*
  2. * ioport.c: Simple io mapping allocator.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  6. *
  7. * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
  8. *
  9. * 2000/01/29
  10. * <rth> zait: as long as pci_alloc_consistent produces something addressable,
  11. * things are ok.
  12. * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
  13. * pointer into the big page mapping
  14. * <rth> zait: so what?
  15. * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
  16. * <zaitcev> Hmm
  17. * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
  18. * So far so good.
  19. * <zaitcev> Now, driver calls pci_free_consistent(with result of
  20. * remap_it_my_way()).
  21. * <zaitcev> How do you find the address to pass to free_pages()?
  22. * <rth> zait: walk the page tables? It's only two or three level after all.
  23. * <rth> zait: you have to walk them anyway to remove the mapping.
  24. * <zaitcev> Hmm
  25. * <zaitcev> Sounds reasonable
  26. */
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/kernel.h>
  30. #include <linux/errno.h>
  31. #include <linux/types.h>
  32. #include <linux/ioport.h>
  33. #include <linux/mm.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h> /* struct pci_dev */
  36. #include <linux/proc_fs.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/scatterlist.h>
  39. #include <linux/of_device.h>
  40. #include <asm/io.h>
  41. #include <asm/vaddrs.h>
  42. #include <asm/oplib.h>
  43. #include <asm/prom.h>
  44. #include <asm/page.h>
  45. #include <asm/pgalloc.h>
  46. #include <asm/dma.h>
  47. #include <asm/iommu.h>
  48. #include <asm/io-unit.h>
  49. #include <asm/leon.h>
  50. #ifndef CONFIG_SPARC_LEON
  51. #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */
  52. #else
  53. static inline void mmu_inval_dma_area(void *va, unsigned long len)
  54. {
  55. if (!sparc_leon3_snooping_enabled())
  56. leon_flush_dcache_all();
  57. }
  58. #endif
  59. static struct resource *_sparc_find_resource(struct resource *r,
  60. unsigned long);
  61. static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
  62. static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
  63. unsigned long size, char *name);
  64. static void _sparc_free_io(struct resource *res);
  65. static void register_proc_sparc_ioport(void);
  66. /* This points to the next to use virtual memory for DVMA mappings */
  67. static struct resource _sparc_dvma = {
  68. .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
  69. };
  70. /* This points to the start of I/O mappings, cluable from outside. */
  71. /*ext*/ struct resource sparc_iomap = {
  72. .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
  73. };
  74. /*
  75. * Our mini-allocator...
  76. * Boy this is gross! We need it because we must map I/O for
  77. * timers and interrupt controller before the kmalloc is available.
  78. */
  79. #define XNMLN 15
  80. #define XNRES 10 /* SS-10 uses 8 */
  81. struct xresource {
  82. struct resource xres; /* Must be first */
  83. int xflag; /* 1 == used */
  84. char xname[XNMLN+1];
  85. };
  86. static struct xresource xresv[XNRES];
  87. static struct xresource *xres_alloc(void) {
  88. struct xresource *xrp;
  89. int n;
  90. xrp = xresv;
  91. for (n = 0; n < XNRES; n++) {
  92. if (xrp->xflag == 0) {
  93. xrp->xflag = 1;
  94. return xrp;
  95. }
  96. xrp++;
  97. }
  98. return NULL;
  99. }
  100. static void xres_free(struct xresource *xrp) {
  101. xrp->xflag = 0;
  102. }
  103. /*
  104. * These are typically used in PCI drivers
  105. * which are trying to be cross-platform.
  106. *
  107. * Bus type is always zero on IIep.
  108. */
  109. void __iomem *ioremap(unsigned long offset, unsigned long size)
  110. {
  111. char name[14];
  112. sprintf(name, "phys_%08x", (u32)offset);
  113. return _sparc_alloc_io(0, offset, size, name);
  114. }
  115. EXPORT_SYMBOL(ioremap);
  116. /*
  117. * Comlimentary to ioremap().
  118. */
  119. void iounmap(volatile void __iomem *virtual)
  120. {
  121. unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
  122. struct resource *res;
  123. if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) {
  124. printk("free_io/iounmap: cannot free %lx\n", vaddr);
  125. return;
  126. }
  127. _sparc_free_io(res);
  128. if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
  129. xres_free((struct xresource *)res);
  130. } else {
  131. kfree(res);
  132. }
  133. }
  134. EXPORT_SYMBOL(iounmap);
  135. void __iomem *of_ioremap(struct resource *res, unsigned long offset,
  136. unsigned long size, char *name)
  137. {
  138. return _sparc_alloc_io(res->flags & 0xF,
  139. res->start + offset,
  140. size, name);
  141. }
  142. EXPORT_SYMBOL(of_ioremap);
  143. void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
  144. {
  145. iounmap(base);
  146. }
  147. EXPORT_SYMBOL(of_iounmap);
  148. /*
  149. * Meat of mapping
  150. */
  151. static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
  152. unsigned long size, char *name)
  153. {
  154. static int printed_full;
  155. struct xresource *xres;
  156. struct resource *res;
  157. char *tack;
  158. int tlen;
  159. void __iomem *va; /* P3 diag */
  160. if (name == NULL) name = "???";
  161. if ((xres = xres_alloc()) != 0) {
  162. tack = xres->xname;
  163. res = &xres->xres;
  164. } else {
  165. if (!printed_full) {
  166. printk("ioremap: done with statics, switching to malloc\n");
  167. printed_full = 1;
  168. }
  169. tlen = strlen(name);
  170. tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
  171. if (tack == NULL) return NULL;
  172. memset(tack, 0, sizeof(struct resource));
  173. res = (struct resource *) tack;
  174. tack += sizeof (struct resource);
  175. }
  176. strlcpy(tack, name, XNMLN+1);
  177. res->name = tack;
  178. va = _sparc_ioremap(res, busno, phys, size);
  179. /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
  180. return va;
  181. }
  182. /*
  183. */
  184. static void __iomem *
  185. _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
  186. {
  187. unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
  188. if (allocate_resource(&sparc_iomap, res,
  189. (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
  190. sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
  191. /* Usually we cannot see printks in this case. */
  192. prom_printf("alloc_io_res(%s): cannot occupy\n",
  193. (res->name != NULL)? res->name: "???");
  194. prom_halt();
  195. }
  196. pa &= PAGE_MASK;
  197. sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1);
  198. return (void __iomem *)(unsigned long)(res->start + offset);
  199. }
  200. /*
  201. * Comlimentary to _sparc_ioremap().
  202. */
  203. static void _sparc_free_io(struct resource *res)
  204. {
  205. unsigned long plen;
  206. plen = res->end - res->start + 1;
  207. BUG_ON((plen & (PAGE_SIZE-1)) != 0);
  208. sparc_unmapiorange(res->start, plen);
  209. release_resource(res);
  210. }
  211. #ifdef CONFIG_SBUS
  212. void sbus_set_sbus64(struct device *dev, int x)
  213. {
  214. printk("sbus_set_sbus64: unsupported\n");
  215. }
  216. EXPORT_SYMBOL(sbus_set_sbus64);
  217. /*
  218. * Allocate a chunk of memory suitable for DMA.
  219. * Typically devices use them for control blocks.
  220. * CPU may access them without any explicit flushing.
  221. */
  222. static void *sbus_alloc_coherent(struct device *dev, size_t len,
  223. dma_addr_t *dma_addrp, gfp_t gfp)
  224. {
  225. struct platform_device *op = to_platform_device(dev);
  226. unsigned long len_total = PAGE_ALIGN(len);
  227. unsigned long va;
  228. struct resource *res;
  229. int order;
  230. /* XXX why are some lengths signed, others unsigned? */
  231. if (len <= 0) {
  232. return NULL;
  233. }
  234. /* XXX So what is maxphys for us and how do drivers know it? */
  235. if (len > 256*1024) { /* __get_free_pages() limit */
  236. return NULL;
  237. }
  238. order = get_order(len_total);
  239. if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
  240. goto err_nopages;
  241. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
  242. goto err_nomem;
  243. if (allocate_resource(&_sparc_dvma, res, len_total,
  244. _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
  245. printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
  246. goto err_nova;
  247. }
  248. mmu_inval_dma_area((void *)va, len_total);
  249. // XXX The mmu_map_dma_area does this for us below, see comments.
  250. // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
  251. /*
  252. * XXX That's where sdev would be used. Currently we load
  253. * all iommu tables with the same translations.
  254. */
  255. if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
  256. goto err_noiommu;
  257. res->name = op->dev.of_node->name;
  258. return (void *)(unsigned long)res->start;
  259. err_noiommu:
  260. release_resource(res);
  261. err_nova:
  262. kfree(res);
  263. err_nomem:
  264. free_pages(va, order);
  265. err_nopages:
  266. return NULL;
  267. }
  268. static void sbus_free_coherent(struct device *dev, size_t n, void *p,
  269. dma_addr_t ba)
  270. {
  271. struct resource *res;
  272. struct page *pgv;
  273. if ((res = _sparc_find_resource(&_sparc_dvma,
  274. (unsigned long)p)) == NULL) {
  275. printk("sbus_free_consistent: cannot free %p\n", p);
  276. return;
  277. }
  278. if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
  279. printk("sbus_free_consistent: unaligned va %p\n", p);
  280. return;
  281. }
  282. n = PAGE_ALIGN(n);
  283. if ((res->end-res->start)+1 != n) {
  284. printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
  285. (long)((res->end-res->start)+1), n);
  286. return;
  287. }
  288. release_resource(res);
  289. kfree(res);
  290. /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */
  291. pgv = virt_to_page(p);
  292. mmu_unmap_dma_area(dev, ba, n);
  293. __free_pages(pgv, get_order(n));
  294. }
  295. /*
  296. * Map a chunk of memory so that devices can see it.
  297. * CPU view of this memory may be inconsistent with
  298. * a device view and explicit flushing is necessary.
  299. */
  300. static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
  301. unsigned long offset, size_t len,
  302. enum dma_data_direction dir,
  303. struct dma_attrs *attrs)
  304. {
  305. void *va = page_address(page) + offset;
  306. /* XXX why are some lengths signed, others unsigned? */
  307. if (len <= 0) {
  308. return 0;
  309. }
  310. /* XXX So what is maxphys for us and how do drivers know it? */
  311. if (len > 256*1024) { /* __get_free_pages() limit */
  312. return 0;
  313. }
  314. return mmu_get_scsi_one(dev, va, len);
  315. }
  316. static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
  317. enum dma_data_direction dir, struct dma_attrs *attrs)
  318. {
  319. mmu_release_scsi_one(dev, ba, n);
  320. }
  321. static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
  322. enum dma_data_direction dir, struct dma_attrs *attrs)
  323. {
  324. mmu_get_scsi_sgl(dev, sg, n);
  325. /*
  326. * XXX sparc64 can return a partial length here. sun4c should do this
  327. * but it currently panics if it can't fulfill the request - Anton
  328. */
  329. return n;
  330. }
  331. static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
  332. enum dma_data_direction dir, struct dma_attrs *attrs)
  333. {
  334. mmu_release_scsi_sgl(dev, sg, n);
  335. }
  336. static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  337. int n, enum dma_data_direction dir)
  338. {
  339. BUG();
  340. }
  341. static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  342. int n, enum dma_data_direction dir)
  343. {
  344. BUG();
  345. }
  346. struct dma_map_ops sbus_dma_ops = {
  347. .alloc_coherent = sbus_alloc_coherent,
  348. .free_coherent = sbus_free_coherent,
  349. .map_page = sbus_map_page,
  350. .unmap_page = sbus_unmap_page,
  351. .map_sg = sbus_map_sg,
  352. .unmap_sg = sbus_unmap_sg,
  353. .sync_sg_for_cpu = sbus_sync_sg_for_cpu,
  354. .sync_sg_for_device = sbus_sync_sg_for_device,
  355. };
  356. static int __init sparc_register_ioport(void)
  357. {
  358. register_proc_sparc_ioport();
  359. return 0;
  360. }
  361. arch_initcall(sparc_register_ioport);
  362. #endif /* CONFIG_SBUS */
  363. /* LEON reuses PCI DMA ops */
  364. #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
  365. /* Allocate and map kernel buffer using consistent mode DMA for a device.
  366. * hwdev should be valid struct pci_dev pointer for PCI devices.
  367. */
  368. static void *pci32_alloc_coherent(struct device *dev, size_t len,
  369. dma_addr_t *pba, gfp_t gfp)
  370. {
  371. unsigned long len_total = PAGE_ALIGN(len);
  372. void *va;
  373. struct resource *res;
  374. int order;
  375. if (len == 0) {
  376. return NULL;
  377. }
  378. if (len > 256*1024) { /* __get_free_pages() limit */
  379. return NULL;
  380. }
  381. order = get_order(len_total);
  382. va = (void *) __get_free_pages(GFP_KERNEL, order);
  383. if (va == NULL) {
  384. printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
  385. goto err_nopages;
  386. }
  387. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  388. printk("pci_alloc_consistent: no core\n");
  389. goto err_nomem;
  390. }
  391. if (allocate_resource(&_sparc_dvma, res, len_total,
  392. _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
  393. printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
  394. goto err_nova;
  395. }
  396. mmu_inval_dma_area(va, len_total);
  397. sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
  398. *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
  399. return (void *) res->start;
  400. err_nova:
  401. kfree(res);
  402. err_nomem:
  403. free_pages((unsigned long)va, order);
  404. err_nopages:
  405. return NULL;
  406. }
  407. /* Free and unmap a consistent DMA buffer.
  408. * cpu_addr is what was returned from pci_alloc_consistent,
  409. * size must be the same as what as passed into pci_alloc_consistent,
  410. * and likewise dma_addr must be the same as what *dma_addrp was set to.
  411. *
  412. * References to the memory and mappings associated with cpu_addr/dma_addr
  413. * past this call are illegal.
  414. */
  415. static void pci32_free_coherent(struct device *dev, size_t n, void *p,
  416. dma_addr_t ba)
  417. {
  418. struct resource *res;
  419. void *pgp;
  420. if ((res = _sparc_find_resource(&_sparc_dvma,
  421. (unsigned long)p)) == NULL) {
  422. printk("pci_free_consistent: cannot free %p\n", p);
  423. return;
  424. }
  425. if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
  426. printk("pci_free_consistent: unaligned va %p\n", p);
  427. return;
  428. }
  429. n = PAGE_ALIGN(n);
  430. if ((res->end-res->start)+1 != n) {
  431. printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
  432. (long)((res->end-res->start)+1), (long)n);
  433. return;
  434. }
  435. pgp = phys_to_virt(ba); /* bus_to_virt actually */
  436. mmu_inval_dma_area(pgp, n);
  437. sparc_unmapiorange((unsigned long)p, n);
  438. release_resource(res);
  439. kfree(res);
  440. free_pages((unsigned long)pgp, get_order(n));
  441. }
  442. /*
  443. * Same as pci_map_single, but with pages.
  444. */
  445. static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
  446. unsigned long offset, size_t size,
  447. enum dma_data_direction dir,
  448. struct dma_attrs *attrs)
  449. {
  450. /* IIep is write-through, not flushing. */
  451. return page_to_phys(page) + offset;
  452. }
  453. static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
  454. enum dma_data_direction dir, struct dma_attrs *attrs)
  455. {
  456. if (dir != PCI_DMA_TODEVICE)
  457. mmu_inval_dma_area(phys_to_virt(ba), PAGE_ALIGN(size));
  458. }
  459. /* Map a set of buffers described by scatterlist in streaming
  460. * mode for DMA. This is the scather-gather version of the
  461. * above pci_map_single interface. Here the scatter gather list
  462. * elements are each tagged with the appropriate dma address
  463. * and length. They are obtained via sg_dma_{address,length}(SG).
  464. *
  465. * NOTE: An implementation may be able to use a smaller number of
  466. * DMA address/length pairs than there are SG table elements.
  467. * (for example via virtual mapping capabilities)
  468. * The routine returns the number of addr/length pairs actually
  469. * used, at most nents.
  470. *
  471. * Device ownership issues as mentioned above for pci_map_single are
  472. * the same here.
  473. */
  474. static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
  475. int nents, enum dma_data_direction dir,
  476. struct dma_attrs *attrs)
  477. {
  478. struct scatterlist *sg;
  479. int n;
  480. /* IIep is write-through, not flushing. */
  481. for_each_sg(sgl, sg, nents, n) {
  482. BUG_ON(page_address(sg_page(sg)) == NULL);
  483. sg->dma_address = virt_to_phys(sg_virt(sg));
  484. sg->dma_length = sg->length;
  485. }
  486. return nents;
  487. }
  488. /* Unmap a set of streaming mode DMA translations.
  489. * Again, cpu read rules concerning calls here are the same as for
  490. * pci_unmap_single() above.
  491. */
  492. static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
  493. int nents, enum dma_data_direction dir,
  494. struct dma_attrs *attrs)
  495. {
  496. struct scatterlist *sg;
  497. int n;
  498. if (dir != PCI_DMA_TODEVICE) {
  499. for_each_sg(sgl, sg, nents, n) {
  500. BUG_ON(page_address(sg_page(sg)) == NULL);
  501. mmu_inval_dma_area(page_address(sg_page(sg)),
  502. PAGE_ALIGN(sg->length));
  503. }
  504. }
  505. }
  506. /* Make physical memory consistent for a single
  507. * streaming mode DMA translation before or after a transfer.
  508. *
  509. * If you perform a pci_map_single() but wish to interrogate the
  510. * buffer using the cpu, yet do not wish to teardown the PCI dma
  511. * mapping, you must call this function before doing so. At the
  512. * next point you give the PCI dma address back to the card, you
  513. * must first perform a pci_dma_sync_for_device, and then the
  514. * device again owns the buffer.
  515. */
  516. static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
  517. size_t size, enum dma_data_direction dir)
  518. {
  519. if (dir != PCI_DMA_TODEVICE) {
  520. mmu_inval_dma_area(phys_to_virt(ba),
  521. PAGE_ALIGN(size));
  522. }
  523. }
  524. static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
  525. size_t size, enum dma_data_direction dir)
  526. {
  527. if (dir != PCI_DMA_TODEVICE) {
  528. mmu_inval_dma_area(phys_to_virt(ba),
  529. PAGE_ALIGN(size));
  530. }
  531. }
  532. /* Make physical memory consistent for a set of streaming
  533. * mode DMA translations after a transfer.
  534. *
  535. * The same as pci_dma_sync_single_* but for a scatter-gather list,
  536. * same rules and usage.
  537. */
  538. static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
  539. int nents, enum dma_data_direction dir)
  540. {
  541. struct scatterlist *sg;
  542. int n;
  543. if (dir != PCI_DMA_TODEVICE) {
  544. for_each_sg(sgl, sg, nents, n) {
  545. BUG_ON(page_address(sg_page(sg)) == NULL);
  546. mmu_inval_dma_area(page_address(sg_page(sg)),
  547. PAGE_ALIGN(sg->length));
  548. }
  549. }
  550. }
  551. static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
  552. int nents, enum dma_data_direction dir)
  553. {
  554. struct scatterlist *sg;
  555. int n;
  556. if (dir != PCI_DMA_TODEVICE) {
  557. for_each_sg(sgl, sg, nents, n) {
  558. BUG_ON(page_address(sg_page(sg)) == NULL);
  559. mmu_inval_dma_area(page_address(sg_page(sg)),
  560. PAGE_ALIGN(sg->length));
  561. }
  562. }
  563. }
  564. struct dma_map_ops pci32_dma_ops = {
  565. .alloc_coherent = pci32_alloc_coherent,
  566. .free_coherent = pci32_free_coherent,
  567. .map_page = pci32_map_page,
  568. .unmap_page = pci32_unmap_page,
  569. .map_sg = pci32_map_sg,
  570. .unmap_sg = pci32_unmap_sg,
  571. .sync_single_for_cpu = pci32_sync_single_for_cpu,
  572. .sync_single_for_device = pci32_sync_single_for_device,
  573. .sync_sg_for_cpu = pci32_sync_sg_for_cpu,
  574. .sync_sg_for_device = pci32_sync_sg_for_device,
  575. };
  576. EXPORT_SYMBOL(pci32_dma_ops);
  577. #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
  578. #ifdef CONFIG_SPARC_LEON
  579. struct dma_map_ops *dma_ops = &pci32_dma_ops;
  580. #elif defined(CONFIG_SBUS)
  581. struct dma_map_ops *dma_ops = &sbus_dma_ops;
  582. #endif
  583. EXPORT_SYMBOL(dma_ops);
  584. /*
  585. * Return whether the given PCI device DMA address mask can be
  586. * supported properly. For example, if your device can only drive the
  587. * low 24-bits during PCI bus mastering, then you would pass
  588. * 0x00ffffff as the mask to this function.
  589. */
  590. int dma_supported(struct device *dev, u64 mask)
  591. {
  592. #ifdef CONFIG_PCI
  593. if (dev->bus == &pci_bus_type)
  594. return 1;
  595. #endif
  596. return 0;
  597. }
  598. EXPORT_SYMBOL(dma_supported);
  599. #ifdef CONFIG_PROC_FS
  600. static int sparc_io_proc_show(struct seq_file *m, void *v)
  601. {
  602. struct resource *root = m->private, *r;
  603. const char *nm;
  604. for (r = root->child; r != NULL; r = r->sibling) {
  605. if ((nm = r->name) == 0) nm = "???";
  606. seq_printf(m, "%016llx-%016llx: %s\n",
  607. (unsigned long long)r->start,
  608. (unsigned long long)r->end, nm);
  609. }
  610. return 0;
  611. }
  612. static int sparc_io_proc_open(struct inode *inode, struct file *file)
  613. {
  614. return single_open(file, sparc_io_proc_show, PDE(inode)->data);
  615. }
  616. static const struct file_operations sparc_io_proc_fops = {
  617. .owner = THIS_MODULE,
  618. .open = sparc_io_proc_open,
  619. .read = seq_read,
  620. .llseek = seq_lseek,
  621. .release = single_release,
  622. };
  623. #endif /* CONFIG_PROC_FS */
  624. /*
  625. * This is a version of find_resource and it belongs to kernel/resource.c.
  626. * Until we have agreement with Linus and Martin, it lingers here.
  627. *
  628. * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
  629. * This probably warrants some sort of hashing.
  630. */
  631. static struct resource *_sparc_find_resource(struct resource *root,
  632. unsigned long hit)
  633. {
  634. struct resource *tmp;
  635. for (tmp = root->child; tmp != 0; tmp = tmp->sibling) {
  636. if (tmp->start <= hit && tmp->end >= hit)
  637. return tmp;
  638. }
  639. return NULL;
  640. }
  641. static void register_proc_sparc_ioport(void)
  642. {
  643. #ifdef CONFIG_PROC_FS
  644. proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
  645. proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
  646. #endif
  647. }