time.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. DEFINE_SPINLOCK(rtc_lock);
  137. EXPORT_SYMBOL_GPL(rtc_lock);
  138. static u64 tb_to_ns_scale __read_mostly;
  139. static unsigned tb_to_ns_shift __read_mostly;
  140. static u64 boot_tb __read_mostly;
  141. extern struct timezone sys_tz;
  142. static long timezone_offset;
  143. unsigned long ppc_proc_freq;
  144. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  145. unsigned long ppc_tb_freq;
  146. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  147. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  148. /*
  149. * Factors for converting from cputime_t (timebase ticks) to
  150. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  151. * These are all stored as 0.64 fixed-point binary fractions.
  152. */
  153. u64 __cputime_jiffies_factor;
  154. EXPORT_SYMBOL(__cputime_jiffies_factor);
  155. u64 __cputime_msec_factor;
  156. EXPORT_SYMBOL(__cputime_msec_factor);
  157. u64 __cputime_sec_factor;
  158. EXPORT_SYMBOL(__cputime_sec_factor);
  159. u64 __cputime_clockt_factor;
  160. EXPORT_SYMBOL(__cputime_clockt_factor);
  161. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  162. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  163. cputime_t cputime_one_jiffy;
  164. void (*dtl_consumer)(struct dtl_entry *, u64);
  165. static void calc_cputime_factors(void)
  166. {
  167. struct div_result res;
  168. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  169. __cputime_jiffies_factor = res.result_low;
  170. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  171. __cputime_msec_factor = res.result_low;
  172. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  173. __cputime_sec_factor = res.result_low;
  174. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  175. __cputime_clockt_factor = res.result_low;
  176. }
  177. /*
  178. * Read the SPURR on systems that have it, otherwise the PURR,
  179. * or if that doesn't exist return the timebase value passed in.
  180. */
  181. static u64 read_spurr(u64 tb)
  182. {
  183. if (cpu_has_feature(CPU_FTR_SPURR))
  184. return mfspr(SPRN_SPURR);
  185. if (cpu_has_feature(CPU_FTR_PURR))
  186. return mfspr(SPRN_PURR);
  187. return tb;
  188. }
  189. #ifdef CONFIG_PPC_SPLPAR
  190. /*
  191. * Scan the dispatch trace log and count up the stolen time.
  192. * Should be called with interrupts disabled.
  193. */
  194. static u64 scan_dispatch_log(u64 stop_tb)
  195. {
  196. u64 i = local_paca->dtl_ridx;
  197. struct dtl_entry *dtl = local_paca->dtl_curr;
  198. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  199. struct lppaca *vpa = local_paca->lppaca_ptr;
  200. u64 tb_delta;
  201. u64 stolen = 0;
  202. u64 dtb;
  203. if (i == vpa->dtl_idx)
  204. return 0;
  205. while (i < vpa->dtl_idx) {
  206. if (dtl_consumer)
  207. dtl_consumer(dtl, i);
  208. dtb = dtl->timebase;
  209. tb_delta = dtl->enqueue_to_dispatch_time +
  210. dtl->ready_to_enqueue_time;
  211. barrier();
  212. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  213. /* buffer has overflowed */
  214. i = vpa->dtl_idx - N_DISPATCH_LOG;
  215. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  216. continue;
  217. }
  218. if (dtb > stop_tb)
  219. break;
  220. stolen += tb_delta;
  221. ++i;
  222. ++dtl;
  223. if (dtl == dtl_end)
  224. dtl = local_paca->dispatch_log;
  225. }
  226. local_paca->dtl_ridx = i;
  227. local_paca->dtl_curr = dtl;
  228. return stolen;
  229. }
  230. /*
  231. * Accumulate stolen time by scanning the dispatch trace log.
  232. * Called on entry from user mode.
  233. */
  234. void accumulate_stolen_time(void)
  235. {
  236. u64 sst, ust;
  237. u8 save_soft_enabled = local_paca->soft_enabled;
  238. u8 save_hard_enabled = local_paca->hard_enabled;
  239. /* We are called early in the exception entry, before
  240. * soft/hard_enabled are sync'ed to the expected state
  241. * for the exception. We are hard disabled but the PACA
  242. * needs to reflect that so various debug stuff doesn't
  243. * complain
  244. */
  245. local_paca->soft_enabled = 0;
  246. local_paca->hard_enabled = 0;
  247. sst = scan_dispatch_log(local_paca->starttime_user);
  248. ust = scan_dispatch_log(local_paca->starttime);
  249. local_paca->system_time -= sst;
  250. local_paca->user_time -= ust;
  251. local_paca->stolen_time += ust + sst;
  252. local_paca->soft_enabled = save_soft_enabled;
  253. local_paca->hard_enabled = save_hard_enabled;
  254. }
  255. static inline u64 calculate_stolen_time(u64 stop_tb)
  256. {
  257. u64 stolen = 0;
  258. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  259. stolen = scan_dispatch_log(stop_tb);
  260. get_paca()->system_time -= stolen;
  261. }
  262. stolen += get_paca()->stolen_time;
  263. get_paca()->stolen_time = 0;
  264. return stolen;
  265. }
  266. #else /* CONFIG_PPC_SPLPAR */
  267. static inline u64 calculate_stolen_time(u64 stop_tb)
  268. {
  269. return 0;
  270. }
  271. #endif /* CONFIG_PPC_SPLPAR */
  272. /*
  273. * Account time for a transition between system, hard irq
  274. * or soft irq state.
  275. */
  276. void account_system_vtime(struct task_struct *tsk)
  277. {
  278. u64 now, nowscaled, delta, deltascaled;
  279. unsigned long flags;
  280. u64 stolen, udelta, sys_scaled, user_scaled;
  281. local_irq_save(flags);
  282. now = mftb();
  283. nowscaled = read_spurr(now);
  284. get_paca()->system_time += now - get_paca()->starttime;
  285. get_paca()->starttime = now;
  286. deltascaled = nowscaled - get_paca()->startspurr;
  287. get_paca()->startspurr = nowscaled;
  288. stolen = calculate_stolen_time(now);
  289. delta = get_paca()->system_time;
  290. get_paca()->system_time = 0;
  291. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  292. get_paca()->utime_sspurr = get_paca()->user_time;
  293. /*
  294. * Because we don't read the SPURR on every kernel entry/exit,
  295. * deltascaled includes both user and system SPURR ticks.
  296. * Apportion these ticks to system SPURR ticks and user
  297. * SPURR ticks in the same ratio as the system time (delta)
  298. * and user time (udelta) values obtained from the timebase
  299. * over the same interval. The system ticks get accounted here;
  300. * the user ticks get saved up in paca->user_time_scaled to be
  301. * used by account_process_tick.
  302. */
  303. sys_scaled = delta;
  304. user_scaled = udelta;
  305. if (deltascaled != delta + udelta) {
  306. if (udelta) {
  307. sys_scaled = deltascaled * delta / (delta + udelta);
  308. user_scaled = deltascaled - sys_scaled;
  309. } else {
  310. sys_scaled = deltascaled;
  311. }
  312. }
  313. get_paca()->user_time_scaled += user_scaled;
  314. if (in_irq() || idle_task(smp_processor_id()) != tsk) {
  315. account_system_time(tsk, 0, delta, sys_scaled);
  316. if (stolen)
  317. account_steal_time(stolen);
  318. } else {
  319. account_idle_time(delta + stolen);
  320. }
  321. local_irq_restore(flags);
  322. }
  323. EXPORT_SYMBOL_GPL(account_system_vtime);
  324. /*
  325. * Transfer the user and system times accumulated in the paca
  326. * by the exception entry and exit code to the generic process
  327. * user and system time records.
  328. * Must be called with interrupts disabled.
  329. * Assumes that account_system_vtime() has been called recently
  330. * (i.e. since the last entry from usermode) so that
  331. * get_paca()->user_time_scaled is up to date.
  332. */
  333. void account_process_tick(struct task_struct *tsk, int user_tick)
  334. {
  335. cputime_t utime, utimescaled;
  336. utime = get_paca()->user_time;
  337. utimescaled = get_paca()->user_time_scaled;
  338. get_paca()->user_time = 0;
  339. get_paca()->user_time_scaled = 0;
  340. get_paca()->utime_sspurr = 0;
  341. account_user_time(tsk, utime, utimescaled);
  342. }
  343. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  344. #define calc_cputime_factors()
  345. #endif
  346. void __delay(unsigned long loops)
  347. {
  348. unsigned long start;
  349. int diff;
  350. if (__USE_RTC()) {
  351. start = get_rtcl();
  352. do {
  353. /* the RTCL register wraps at 1000000000 */
  354. diff = get_rtcl() - start;
  355. if (diff < 0)
  356. diff += 1000000000;
  357. } while (diff < loops);
  358. } else {
  359. start = get_tbl();
  360. while (get_tbl() - start < loops)
  361. HMT_low();
  362. HMT_medium();
  363. }
  364. }
  365. EXPORT_SYMBOL(__delay);
  366. void udelay(unsigned long usecs)
  367. {
  368. __delay(tb_ticks_per_usec * usecs);
  369. }
  370. EXPORT_SYMBOL(udelay);
  371. #ifdef CONFIG_SMP
  372. unsigned long profile_pc(struct pt_regs *regs)
  373. {
  374. unsigned long pc = instruction_pointer(regs);
  375. if (in_lock_functions(pc))
  376. return regs->link;
  377. return pc;
  378. }
  379. EXPORT_SYMBOL(profile_pc);
  380. #endif
  381. #ifdef CONFIG_PPC_ISERIES
  382. /*
  383. * This function recalibrates the timebase based on the 49-bit time-of-day
  384. * value in the Titan chip. The Titan is much more accurate than the value
  385. * returned by the service processor for the timebase frequency.
  386. */
  387. static int __init iSeries_tb_recal(void)
  388. {
  389. unsigned long titan, tb;
  390. /* Make sure we only run on iSeries */
  391. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  392. return -ENODEV;
  393. tb = get_tb();
  394. titan = HvCallXm_loadTod();
  395. if ( iSeries_recal_titan ) {
  396. unsigned long tb_ticks = tb - iSeries_recal_tb;
  397. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  398. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  399. unsigned long new_tb_ticks_per_jiffy =
  400. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  401. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  402. char sign = '+';
  403. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  404. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  405. if ( tick_diff < 0 ) {
  406. tick_diff = -tick_diff;
  407. sign = '-';
  408. }
  409. if ( tick_diff ) {
  410. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  411. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  412. new_tb_ticks_per_jiffy, sign, tick_diff );
  413. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  414. tb_ticks_per_sec = new_tb_ticks_per_sec;
  415. calc_cputime_factors();
  416. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  417. setup_cputime_one_jiffy();
  418. }
  419. else {
  420. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  421. " new tb_ticks_per_jiffy = %lu\n"
  422. " old tb_ticks_per_jiffy = %lu\n",
  423. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  424. }
  425. }
  426. }
  427. iSeries_recal_titan = titan;
  428. iSeries_recal_tb = tb;
  429. /* Called here as now we know accurate values for the timebase */
  430. clocksource_init();
  431. return 0;
  432. }
  433. late_initcall(iSeries_tb_recal);
  434. /* Called from platform early init */
  435. void __init iSeries_time_init_early(void)
  436. {
  437. iSeries_recal_tb = get_tb();
  438. iSeries_recal_titan = HvCallXm_loadTod();
  439. }
  440. #endif /* CONFIG_PPC_ISERIES */
  441. #ifdef CONFIG_IRQ_WORK
  442. /*
  443. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  444. */
  445. #ifdef CONFIG_PPC64
  446. static inline unsigned long test_irq_work_pending(void)
  447. {
  448. unsigned long x;
  449. asm volatile("lbz %0,%1(13)"
  450. : "=r" (x)
  451. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  452. return x;
  453. }
  454. static inline void set_irq_work_pending_flag(void)
  455. {
  456. asm volatile("stb %0,%1(13)" : :
  457. "r" (1),
  458. "i" (offsetof(struct paca_struct, irq_work_pending)));
  459. }
  460. static inline void clear_irq_work_pending(void)
  461. {
  462. asm volatile("stb %0,%1(13)" : :
  463. "r" (0),
  464. "i" (offsetof(struct paca_struct, irq_work_pending)));
  465. }
  466. #else /* 32-bit */
  467. DEFINE_PER_CPU(u8, irq_work_pending);
  468. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  469. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  470. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  471. #endif /* 32 vs 64 bit */
  472. void set_irq_work_pending(void)
  473. {
  474. preempt_disable();
  475. set_irq_work_pending_flag();
  476. set_dec(1);
  477. preempt_enable();
  478. }
  479. #else /* CONFIG_IRQ_WORK */
  480. #define test_irq_work_pending() 0
  481. #define clear_irq_work_pending()
  482. #endif /* CONFIG_IRQ_WORK */
  483. /*
  484. * For iSeries shared processors, we have to let the hypervisor
  485. * set the hardware decrementer. We set a virtual decrementer
  486. * in the lppaca and call the hypervisor if the virtual
  487. * decrementer is less than the current value in the hardware
  488. * decrementer. (almost always the new decrementer value will
  489. * be greater than the current hardware decementer so the hypervisor
  490. * call will not be needed)
  491. */
  492. /*
  493. * timer_interrupt - gets called when the decrementer overflows,
  494. * with interrupts disabled.
  495. */
  496. void timer_interrupt(struct pt_regs * regs)
  497. {
  498. struct pt_regs *old_regs;
  499. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  500. struct clock_event_device *evt = &decrementer->event;
  501. u64 now;
  502. trace_timer_interrupt_entry(regs);
  503. __get_cpu_var(irq_stat).timer_irqs++;
  504. /* Ensure a positive value is written to the decrementer, or else
  505. * some CPUs will continuue to take decrementer exceptions */
  506. set_dec(DECREMENTER_MAX);
  507. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  508. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  509. do_IRQ(regs);
  510. #endif
  511. old_regs = set_irq_regs(regs);
  512. irq_enter();
  513. if (test_irq_work_pending()) {
  514. clear_irq_work_pending();
  515. irq_work_run();
  516. }
  517. #ifdef CONFIG_PPC_ISERIES
  518. if (firmware_has_feature(FW_FEATURE_ISERIES))
  519. get_lppaca()->int_dword.fields.decr_int = 0;
  520. #endif
  521. now = get_tb_or_rtc();
  522. if (now >= decrementer->next_tb) {
  523. decrementer->next_tb = ~(u64)0;
  524. if (evt->event_handler)
  525. evt->event_handler(evt);
  526. } else {
  527. now = decrementer->next_tb - now;
  528. if (now <= DECREMENTER_MAX)
  529. set_dec((int)now);
  530. }
  531. #ifdef CONFIG_PPC_ISERIES
  532. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  533. process_hvlpevents();
  534. #endif
  535. #ifdef CONFIG_PPC64
  536. /* collect purr register values often, for accurate calculations */
  537. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  538. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  539. cu->current_tb = mfspr(SPRN_PURR);
  540. }
  541. #endif
  542. irq_exit();
  543. set_irq_regs(old_regs);
  544. trace_timer_interrupt_exit(regs);
  545. }
  546. #ifdef CONFIG_SUSPEND
  547. static void generic_suspend_disable_irqs(void)
  548. {
  549. /* Disable the decrementer, so that it doesn't interfere
  550. * with suspending.
  551. */
  552. set_dec(0x7fffffff);
  553. local_irq_disable();
  554. set_dec(0x7fffffff);
  555. }
  556. static void generic_suspend_enable_irqs(void)
  557. {
  558. local_irq_enable();
  559. }
  560. /* Overrides the weak version in kernel/power/main.c */
  561. void arch_suspend_disable_irqs(void)
  562. {
  563. if (ppc_md.suspend_disable_irqs)
  564. ppc_md.suspend_disable_irqs();
  565. generic_suspend_disable_irqs();
  566. }
  567. /* Overrides the weak version in kernel/power/main.c */
  568. void arch_suspend_enable_irqs(void)
  569. {
  570. generic_suspend_enable_irqs();
  571. if (ppc_md.suspend_enable_irqs)
  572. ppc_md.suspend_enable_irqs();
  573. }
  574. #endif
  575. /*
  576. * Scheduler clock - returns current time in nanosec units.
  577. *
  578. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  579. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  580. * are 64-bit unsigned numbers.
  581. */
  582. unsigned long long sched_clock(void)
  583. {
  584. if (__USE_RTC())
  585. return get_rtc();
  586. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  587. }
  588. static int __init get_freq(char *name, int cells, unsigned long *val)
  589. {
  590. struct device_node *cpu;
  591. const unsigned int *fp;
  592. int found = 0;
  593. /* The cpu node should have timebase and clock frequency properties */
  594. cpu = of_find_node_by_type(NULL, "cpu");
  595. if (cpu) {
  596. fp = of_get_property(cpu, name, NULL);
  597. if (fp) {
  598. found = 1;
  599. *val = of_read_ulong(fp, cells);
  600. }
  601. of_node_put(cpu);
  602. }
  603. return found;
  604. }
  605. /* should become __cpuinit when secondary_cpu_time_init also is */
  606. void start_cpu_decrementer(void)
  607. {
  608. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  609. /* Clear any pending timer interrupts */
  610. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  611. /* Enable decrementer interrupt */
  612. mtspr(SPRN_TCR, TCR_DIE);
  613. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  614. }
  615. void __init generic_calibrate_decr(void)
  616. {
  617. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  618. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  619. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  620. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  621. "(not found)\n");
  622. }
  623. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  624. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  625. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  626. printk(KERN_ERR "WARNING: Estimating processor frequency "
  627. "(not found)\n");
  628. }
  629. }
  630. int update_persistent_clock(struct timespec now)
  631. {
  632. struct rtc_time tm;
  633. if (!ppc_md.set_rtc_time)
  634. return 0;
  635. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  636. tm.tm_year -= 1900;
  637. tm.tm_mon -= 1;
  638. return ppc_md.set_rtc_time(&tm);
  639. }
  640. static void __read_persistent_clock(struct timespec *ts)
  641. {
  642. struct rtc_time tm;
  643. static int first = 1;
  644. ts->tv_nsec = 0;
  645. /* XXX this is a litle fragile but will work okay in the short term */
  646. if (first) {
  647. first = 0;
  648. if (ppc_md.time_init)
  649. timezone_offset = ppc_md.time_init();
  650. /* get_boot_time() isn't guaranteed to be safe to call late */
  651. if (ppc_md.get_boot_time) {
  652. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  653. return;
  654. }
  655. }
  656. if (!ppc_md.get_rtc_time) {
  657. ts->tv_sec = 0;
  658. return;
  659. }
  660. ppc_md.get_rtc_time(&tm);
  661. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  662. tm.tm_hour, tm.tm_min, tm.tm_sec);
  663. }
  664. void read_persistent_clock(struct timespec *ts)
  665. {
  666. __read_persistent_clock(ts);
  667. /* Sanitize it in case real time clock is set below EPOCH */
  668. if (ts->tv_sec < 0) {
  669. ts->tv_sec = 0;
  670. ts->tv_nsec = 0;
  671. }
  672. }
  673. /* clocksource code */
  674. static cycle_t rtc_read(struct clocksource *cs)
  675. {
  676. return (cycle_t)get_rtc();
  677. }
  678. static cycle_t timebase_read(struct clocksource *cs)
  679. {
  680. return (cycle_t)get_tb();
  681. }
  682. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  683. struct clocksource *clock, u32 mult)
  684. {
  685. u64 new_tb_to_xs, new_stamp_xsec;
  686. u32 frac_sec;
  687. if (clock != &clocksource_timebase)
  688. return;
  689. /* Make userspace gettimeofday spin until we're done. */
  690. ++vdso_data->tb_update_count;
  691. smp_mb();
  692. /* XXX this assumes clock->shift == 22 */
  693. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  694. new_tb_to_xs = (u64) mult * 4611686018ULL;
  695. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  696. do_div(new_stamp_xsec, 1000000000);
  697. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  698. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  699. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  700. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  701. /*
  702. * tb_update_count is used to allow the userspace gettimeofday code
  703. * to assure itself that it sees a consistent view of the tb_to_xs and
  704. * stamp_xsec variables. It reads the tb_update_count, then reads
  705. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  706. * the two values of tb_update_count match and are even then the
  707. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  708. * loops back and reads them again until this criteria is met.
  709. * We expect the caller to have done the first increment of
  710. * vdso_data->tb_update_count already.
  711. */
  712. vdso_data->tb_orig_stamp = clock->cycle_last;
  713. vdso_data->stamp_xsec = new_stamp_xsec;
  714. vdso_data->tb_to_xs = new_tb_to_xs;
  715. vdso_data->wtom_clock_sec = wtm->tv_sec;
  716. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  717. vdso_data->stamp_xtime = *wall_time;
  718. vdso_data->stamp_sec_fraction = frac_sec;
  719. smp_wmb();
  720. ++(vdso_data->tb_update_count);
  721. }
  722. void update_vsyscall_tz(void)
  723. {
  724. /* Make userspace gettimeofday spin until we're done. */
  725. ++vdso_data->tb_update_count;
  726. smp_mb();
  727. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  728. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  729. smp_mb();
  730. ++vdso_data->tb_update_count;
  731. }
  732. static void __init clocksource_init(void)
  733. {
  734. struct clocksource *clock;
  735. if (__USE_RTC())
  736. clock = &clocksource_rtc;
  737. else
  738. clock = &clocksource_timebase;
  739. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  740. if (clocksource_register(clock)) {
  741. printk(KERN_ERR "clocksource: %s is already registered\n",
  742. clock->name);
  743. return;
  744. }
  745. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  746. clock->name, clock->mult, clock->shift);
  747. }
  748. static int decrementer_set_next_event(unsigned long evt,
  749. struct clock_event_device *dev)
  750. {
  751. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  752. set_dec(evt);
  753. return 0;
  754. }
  755. static void decrementer_set_mode(enum clock_event_mode mode,
  756. struct clock_event_device *dev)
  757. {
  758. if (mode != CLOCK_EVT_MODE_ONESHOT)
  759. decrementer_set_next_event(DECREMENTER_MAX, dev);
  760. }
  761. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  762. int shift)
  763. {
  764. uint64_t tmp = ((uint64_t)ticks) << shift;
  765. do_div(tmp, nsec);
  766. return tmp;
  767. }
  768. static void __init setup_clockevent_multiplier(unsigned long hz)
  769. {
  770. u64 mult, shift = 32;
  771. while (1) {
  772. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  773. if (mult && (mult >> 32UL) == 0UL)
  774. break;
  775. shift--;
  776. }
  777. decrementer_clockevent.shift = shift;
  778. decrementer_clockevent.mult = mult;
  779. }
  780. static void register_decrementer_clockevent(int cpu)
  781. {
  782. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  783. *dec = decrementer_clockevent;
  784. dec->cpumask = cpumask_of(cpu);
  785. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  786. dec->name, dec->mult, dec->shift, cpu);
  787. clockevents_register_device(dec);
  788. }
  789. static void __init init_decrementer_clockevent(void)
  790. {
  791. int cpu = smp_processor_id();
  792. setup_clockevent_multiplier(ppc_tb_freq);
  793. decrementer_clockevent.max_delta_ns =
  794. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  795. decrementer_clockevent.min_delta_ns =
  796. clockevent_delta2ns(2, &decrementer_clockevent);
  797. register_decrementer_clockevent(cpu);
  798. }
  799. void secondary_cpu_time_init(void)
  800. {
  801. /* Start the decrementer on CPUs that have manual control
  802. * such as BookE
  803. */
  804. start_cpu_decrementer();
  805. /* FIME: Should make unrelatred change to move snapshot_timebase
  806. * call here ! */
  807. register_decrementer_clockevent(smp_processor_id());
  808. }
  809. /* This function is only called on the boot processor */
  810. void __init time_init(void)
  811. {
  812. struct div_result res;
  813. u64 scale;
  814. unsigned shift;
  815. if (__USE_RTC()) {
  816. /* 601 processor: dec counts down by 128 every 128ns */
  817. ppc_tb_freq = 1000000000;
  818. } else {
  819. /* Normal PowerPC with timebase register */
  820. ppc_md.calibrate_decr();
  821. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  822. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  823. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  824. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  825. }
  826. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  827. tb_ticks_per_sec = ppc_tb_freq;
  828. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  829. calc_cputime_factors();
  830. setup_cputime_one_jiffy();
  831. /*
  832. * Compute scale factor for sched_clock.
  833. * The calibrate_decr() function has set tb_ticks_per_sec,
  834. * which is the timebase frequency.
  835. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  836. * the 128-bit result as a 64.64 fixed-point number.
  837. * We then shift that number right until it is less than 1.0,
  838. * giving us the scale factor and shift count to use in
  839. * sched_clock().
  840. */
  841. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  842. scale = res.result_low;
  843. for (shift = 0; res.result_high != 0; ++shift) {
  844. scale = (scale >> 1) | (res.result_high << 63);
  845. res.result_high >>= 1;
  846. }
  847. tb_to_ns_scale = scale;
  848. tb_to_ns_shift = shift;
  849. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  850. boot_tb = get_tb_or_rtc();
  851. /* If platform provided a timezone (pmac), we correct the time */
  852. if (timezone_offset) {
  853. sys_tz.tz_minuteswest = -timezone_offset / 60;
  854. sys_tz.tz_dsttime = 0;
  855. }
  856. vdso_data->tb_update_count = 0;
  857. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  858. /* Start the decrementer on CPUs that have manual control
  859. * such as BookE
  860. */
  861. start_cpu_decrementer();
  862. /* Register the clocksource, if we're not running on iSeries */
  863. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  864. clocksource_init();
  865. init_decrementer_clockevent();
  866. }
  867. #define FEBRUARY 2
  868. #define STARTOFTIME 1970
  869. #define SECDAY 86400L
  870. #define SECYR (SECDAY * 365)
  871. #define leapyear(year) ((year) % 4 == 0 && \
  872. ((year) % 100 != 0 || (year) % 400 == 0))
  873. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  874. #define days_in_month(a) (month_days[(a) - 1])
  875. static int month_days[12] = {
  876. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  877. };
  878. /*
  879. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  880. */
  881. void GregorianDay(struct rtc_time * tm)
  882. {
  883. int leapsToDate;
  884. int lastYear;
  885. int day;
  886. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  887. lastYear = tm->tm_year - 1;
  888. /*
  889. * Number of leap corrections to apply up to end of last year
  890. */
  891. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  892. /*
  893. * This year is a leap year if it is divisible by 4 except when it is
  894. * divisible by 100 unless it is divisible by 400
  895. *
  896. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  897. */
  898. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  899. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  900. tm->tm_mday;
  901. tm->tm_wday = day % 7;
  902. }
  903. void to_tm(int tim, struct rtc_time * tm)
  904. {
  905. register int i;
  906. register long hms, day;
  907. day = tim / SECDAY;
  908. hms = tim % SECDAY;
  909. /* Hours, minutes, seconds are easy */
  910. tm->tm_hour = hms / 3600;
  911. tm->tm_min = (hms % 3600) / 60;
  912. tm->tm_sec = (hms % 3600) % 60;
  913. /* Number of years in days */
  914. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  915. day -= days_in_year(i);
  916. tm->tm_year = i;
  917. /* Number of months in days left */
  918. if (leapyear(tm->tm_year))
  919. days_in_month(FEBRUARY) = 29;
  920. for (i = 1; day >= days_in_month(i); i++)
  921. day -= days_in_month(i);
  922. days_in_month(FEBRUARY) = 28;
  923. tm->tm_mon = i;
  924. /* Days are what is left over (+1) from all that. */
  925. tm->tm_mday = day + 1;
  926. /*
  927. * Determine the day of week
  928. */
  929. GregorianDay(tm);
  930. }
  931. /*
  932. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  933. * result.
  934. */
  935. void div128_by_32(u64 dividend_high, u64 dividend_low,
  936. unsigned divisor, struct div_result *dr)
  937. {
  938. unsigned long a, b, c, d;
  939. unsigned long w, x, y, z;
  940. u64 ra, rb, rc;
  941. a = dividend_high >> 32;
  942. b = dividend_high & 0xffffffff;
  943. c = dividend_low >> 32;
  944. d = dividend_low & 0xffffffff;
  945. w = a / divisor;
  946. ra = ((u64)(a - (w * divisor)) << 32) + b;
  947. rb = ((u64) do_div(ra, divisor) << 32) + c;
  948. x = ra;
  949. rc = ((u64) do_div(rb, divisor) << 32) + d;
  950. y = rb;
  951. do_div(rc, divisor);
  952. z = rc;
  953. dr->result_high = ((u64)w << 32) + x;
  954. dr->result_low = ((u64)y << 32) + z;
  955. }
  956. /* We don't need to calibrate delay, we use the CPU timebase for that */
  957. void calibrate_delay(void)
  958. {
  959. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  960. * as the number of __delay(1) in a jiffy, so make it so
  961. */
  962. loops_per_jiffy = tb_ticks_per_jiffy;
  963. }
  964. static int __init rtc_init(void)
  965. {
  966. struct platform_device *pdev;
  967. if (!ppc_md.get_rtc_time)
  968. return -ENODEV;
  969. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  970. if (IS_ERR(pdev))
  971. return PTR_ERR(pdev);
  972. return 0;
  973. }
  974. module_init(rtc_init);