init.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2006 Atmark Techno, Inc.
  4. *
  5. * This file is subject to the terms and conditions of the GNU General Public
  6. * License. See the file "COPYING" in the main directory of this archive
  7. * for more details.
  8. */
  9. #include <linux/bootmem.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel.h>
  12. #include <linux/memblock.h>
  13. #include <linux/mm.h> /* mem_init */
  14. #include <linux/initrd.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/pfn.h>
  17. #include <linux/slab.h>
  18. #include <linux/swap.h>
  19. #include <asm/page.h>
  20. #include <asm/mmu_context.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/sections.h>
  23. #include <asm/tlb.h>
  24. /* Use for MMU and noMMU because of PCI generic code */
  25. int mem_init_done;
  26. #ifndef CONFIG_MMU
  27. unsigned int __page_offset;
  28. EXPORT_SYMBOL(__page_offset);
  29. #else
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. static int init_bootmem_done;
  32. #endif /* CONFIG_MMU */
  33. char *klimit = _end;
  34. /*
  35. * Initialize the bootmem system and give it all the memory we
  36. * have available.
  37. */
  38. unsigned long memory_start;
  39. EXPORT_SYMBOL(memory_start);
  40. unsigned long memory_end; /* due to mm/nommu.c */
  41. unsigned long memory_size;
  42. EXPORT_SYMBOL(memory_size);
  43. /*
  44. * paging_init() sets up the page tables - in fact we've already done this.
  45. */
  46. static void __init paging_init(void)
  47. {
  48. unsigned long zones_size[MAX_NR_ZONES];
  49. /* Clean every zones */
  50. memset(zones_size, 0, sizeof(zones_size));
  51. /*
  52. * old: we can DMA to/from any address.put all page into ZONE_DMA
  53. * We use only ZONE_NORMAL
  54. */
  55. zones_size[ZONE_NORMAL] = max_mapnr;
  56. free_area_init(zones_size);
  57. }
  58. void __init setup_memory(void)
  59. {
  60. unsigned long map_size;
  61. struct memblock_region *reg;
  62. #ifndef CONFIG_MMU
  63. u32 kernel_align_start, kernel_align_size;
  64. /* Find main memory where is the kernel */
  65. for_each_memblock(memory, reg) {
  66. memory_start = (u32)reg->base;
  67. memory_end = (u32) reg->base + reg->size;
  68. if ((memory_start <= (u32)_text) &&
  69. ((u32)_text <= memory_end)) {
  70. memory_size = memory_end - memory_start;
  71. PAGE_OFFSET = memory_start;
  72. printk(KERN_INFO "%s: Main mem: 0x%x-0x%x, "
  73. "size 0x%08x\n", __func__, (u32) memory_start,
  74. (u32) memory_end, (u32) memory_size);
  75. break;
  76. }
  77. }
  78. if (!memory_start || !memory_end) {
  79. panic("%s: Missing memory setting 0x%08x-0x%08x\n",
  80. __func__, (u32) memory_start, (u32) memory_end);
  81. }
  82. /* reservation of region where is the kernel */
  83. kernel_align_start = PAGE_DOWN((u32)_text);
  84. /* ALIGN can be remove because _end in vmlinux.lds.S is align */
  85. kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
  86. memblock_reserve(kernel_align_start, kernel_align_size);
  87. printk(KERN_INFO "%s: kernel addr=0x%08x-0x%08x size=0x%08x\n",
  88. __func__, kernel_align_start, kernel_align_start
  89. + kernel_align_size, kernel_align_size);
  90. #endif
  91. /*
  92. * Kernel:
  93. * start: base phys address of kernel - page align
  94. * end: base phys address of kernel - page align
  95. *
  96. * min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
  97. * max_low_pfn
  98. * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
  99. * num_physpages - number of all pages
  100. */
  101. /* memory start is from the kernel end (aligned) to higher addr */
  102. min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
  103. /* RAM is assumed contiguous */
  104. num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
  105. max_pfn = max_low_pfn = memory_end >> PAGE_SHIFT;
  106. printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
  107. printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
  108. printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
  109. /*
  110. * Find an area to use for the bootmem bitmap.
  111. * We look for the first area which is at least
  112. * 128kB in length (128kB is enough for a bitmap
  113. * for 4GB of memory, using 4kB pages), plus 1 page
  114. * (in case the address isn't page-aligned).
  115. */
  116. map_size = init_bootmem_node(NODE_DATA(0),
  117. PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
  118. memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
  119. /* free bootmem is whole main memory */
  120. free_bootmem(memory_start, memory_size);
  121. /* reserve allocate blocks */
  122. for_each_memblock(reserved, reg) {
  123. pr_debug("reserved - 0x%08x-0x%08x\n",
  124. (u32) reg->base, (u32) reg->size);
  125. reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
  126. }
  127. #ifdef CONFIG_MMU
  128. init_bootmem_done = 1;
  129. #endif
  130. paging_init();
  131. }
  132. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  133. {
  134. unsigned long addr;
  135. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  136. ClearPageReserved(virt_to_page(addr));
  137. init_page_count(virt_to_page(addr));
  138. free_page(addr);
  139. totalram_pages++;
  140. }
  141. printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  142. }
  143. #ifdef CONFIG_BLK_DEV_INITRD
  144. void free_initrd_mem(unsigned long start, unsigned long end)
  145. {
  146. int pages = 0;
  147. for (; start < end; start += PAGE_SIZE) {
  148. ClearPageReserved(virt_to_page(start));
  149. init_page_count(virt_to_page(start));
  150. free_page(start);
  151. totalram_pages++;
  152. pages++;
  153. }
  154. printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
  155. (int)(pages * (PAGE_SIZE / 1024)));
  156. }
  157. #endif
  158. void free_initmem(void)
  159. {
  160. free_init_pages("unused kernel memory",
  161. (unsigned long)(&__init_begin),
  162. (unsigned long)(&__init_end));
  163. }
  164. void __init mem_init(void)
  165. {
  166. high_memory = (void *)__va(memory_end);
  167. /* this will put all memory onto the freelists */
  168. totalram_pages += free_all_bootmem();
  169. printk(KERN_INFO "Memory: %luk/%luk available\n",
  170. nr_free_pages() << (PAGE_SHIFT-10),
  171. num_physpages << (PAGE_SHIFT-10));
  172. mem_init_done = 1;
  173. }
  174. #ifndef CONFIG_MMU
  175. int page_is_ram(unsigned long pfn)
  176. {
  177. return __range_ok(pfn, 0);
  178. }
  179. #else
  180. int page_is_ram(unsigned long pfn)
  181. {
  182. return pfn < max_low_pfn;
  183. }
  184. /*
  185. * Check for command-line options that affect what MMU_init will do.
  186. */
  187. static void mm_cmdline_setup(void)
  188. {
  189. unsigned long maxmem = 0;
  190. char *p = cmd_line;
  191. /* Look for mem= option on command line */
  192. p = strstr(cmd_line, "mem=");
  193. if (p) {
  194. p += 4;
  195. maxmem = memparse(p, &p);
  196. if (maxmem && memory_size > maxmem) {
  197. memory_size = maxmem;
  198. memory_end = memory_start + memory_size;
  199. memblock.memory.regions[0].size = memory_size;
  200. }
  201. }
  202. }
  203. /*
  204. * MMU_init_hw does the chip-specific initialization of the MMU hardware.
  205. */
  206. static void __init mmu_init_hw(void)
  207. {
  208. /*
  209. * The Zone Protection Register (ZPR) defines how protection will
  210. * be applied to every page which is a member of a given zone. At
  211. * present, we utilize only two of the zones.
  212. * The zone index bits (of ZSEL) in the PTE are used for software
  213. * indicators, except the LSB. For user access, zone 1 is used,
  214. * for kernel access, zone 0 is used. We set all but zone 1
  215. * to zero, allowing only kernel access as indicated in the PTE.
  216. * For zone 1, we set a 01 binary (a value of 10 will not work)
  217. * to allow user access as indicated in the PTE. This also allows
  218. * kernel access as indicated in the PTE.
  219. */
  220. __asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
  221. "mts rzpr, r11;"
  222. : : : "r11");
  223. }
  224. /*
  225. * MMU_init sets up the basic memory mappings for the kernel,
  226. * including both RAM and possibly some I/O regions,
  227. * and sets up the page tables and the MMU hardware ready to go.
  228. */
  229. /* called from head.S */
  230. asmlinkage void __init mmu_init(void)
  231. {
  232. unsigned int kstart, ksize;
  233. if (!memblock.reserved.cnt) {
  234. printk(KERN_EMERG "Error memory count\n");
  235. machine_restart(NULL);
  236. }
  237. if ((u32) memblock.memory.regions[0].size < 0x1000000) {
  238. printk(KERN_EMERG "Memory must be greater than 16MB\n");
  239. machine_restart(NULL);
  240. }
  241. /* Find main memory where the kernel is */
  242. memory_start = (u32) memblock.memory.regions[0].base;
  243. memory_end = (u32) memblock.memory.regions[0].base +
  244. (u32) memblock.memory.regions[0].size;
  245. memory_size = memory_end - memory_start;
  246. mm_cmdline_setup(); /* FIXME parse args from command line - not used */
  247. /*
  248. * Map out the kernel text/data/bss from the available physical
  249. * memory.
  250. */
  251. kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
  252. /* kernel size */
  253. ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
  254. memblock_reserve(kstart, ksize);
  255. #if defined(CONFIG_BLK_DEV_INITRD)
  256. /* Remove the init RAM disk from the available memory. */
  257. /* if (initrd_start) {
  258. mem_pieces_remove(&phys_avail, __pa(initrd_start),
  259. initrd_end - initrd_start, 1);
  260. }*/
  261. #endif /* CONFIG_BLK_DEV_INITRD */
  262. /* Initialize the MMU hardware */
  263. mmu_init_hw();
  264. /* Map in all of RAM starting at CONFIG_KERNEL_START */
  265. mapin_ram();
  266. #ifdef HIGHMEM_START_BOOL
  267. ioremap_base = HIGHMEM_START;
  268. #else
  269. ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
  270. #endif /* CONFIG_HIGHMEM */
  271. ioremap_bot = ioremap_base;
  272. /* Initialize the context management stuff */
  273. mmu_context_init();
  274. }
  275. /* This is only called until mem_init is done. */
  276. void __init *early_get_page(void)
  277. {
  278. void *p;
  279. if (init_bootmem_done) {
  280. p = alloc_bootmem_pages(PAGE_SIZE);
  281. } else {
  282. /*
  283. * Mem start + 32MB -> here is limit
  284. * because of mem mapping from head.S
  285. */
  286. p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE,
  287. memory_start + 0x2000000));
  288. }
  289. return p;
  290. }
  291. #endif /* CONFIG_MMU */
  292. void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
  293. {
  294. if (mem_init_done)
  295. return kmalloc(size, mask);
  296. else
  297. return alloc_bootmem(size);
  298. }
  299. void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
  300. {
  301. void *p;
  302. if (mem_init_done)
  303. p = kzalloc(size, mask);
  304. else {
  305. p = alloc_bootmem(size);
  306. if (p)
  307. memset(p, 0, size);
  308. }
  309. return p;
  310. }