fault.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /*
  2. * arch/microblaze/mm/fault.c
  3. *
  4. * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
  5. *
  6. * Derived from "arch/ppc/mm/fault.c"
  7. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8. *
  9. * Derived from "arch/i386/mm/fault.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Modified by Cort Dougan and Paul Mackerras.
  13. *
  14. * This file is subject to the terms and conditions of the GNU General
  15. * Public License. See the file COPYING in the main directory of this
  16. * archive for more details.
  17. *
  18. */
  19. #include <linux/module.h>
  20. #include <linux/signal.h>
  21. #include <linux/sched.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/types.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/mman.h>
  28. #include <linux/mm.h>
  29. #include <linux/interrupt.h>
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/mmu.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/system.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/exceptions.h>
  37. static unsigned long pte_misses; /* updated by do_page_fault() */
  38. static unsigned long pte_errors; /* updated by do_page_fault() */
  39. /*
  40. * Check whether the instruction at regs->pc is a store using
  41. * an update addressing form which will update r1.
  42. */
  43. static int store_updates_sp(struct pt_regs *regs)
  44. {
  45. unsigned int inst;
  46. if (get_user(inst, (unsigned int __user *)regs->pc))
  47. return 0;
  48. /* check for 1 in the rD field */
  49. if (((inst >> 21) & 0x1f) != 1)
  50. return 0;
  51. /* check for store opcodes */
  52. if ((inst & 0xd0000000) == 0xd0000000)
  53. return 1;
  54. return 0;
  55. }
  56. /*
  57. * bad_page_fault is called when we have a bad access from the kernel.
  58. * It is called from do_page_fault above and from some of the procedures
  59. * in traps.c.
  60. */
  61. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  62. {
  63. const struct exception_table_entry *fixup;
  64. /* MS: no context */
  65. /* Are we prepared to handle this fault? */
  66. fixup = search_exception_tables(regs->pc);
  67. if (fixup) {
  68. regs->pc = fixup->fixup;
  69. return;
  70. }
  71. /* kernel has accessed a bad area */
  72. die("kernel access of bad area", regs, sig);
  73. }
  74. /*
  75. * The error_code parameter is ESR for a data fault,
  76. * 0 for an instruction fault.
  77. */
  78. void do_page_fault(struct pt_regs *regs, unsigned long address,
  79. unsigned long error_code)
  80. {
  81. struct vm_area_struct *vma;
  82. struct mm_struct *mm = current->mm;
  83. siginfo_t info;
  84. int code = SEGV_MAPERR;
  85. int is_write = error_code & ESR_S;
  86. int fault;
  87. regs->ear = address;
  88. regs->esr = error_code;
  89. /* On a kernel SLB miss we can only check for a valid exception entry */
  90. if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) {
  91. printk(KERN_WARNING "kernel task_size exceed");
  92. _exception(SIGSEGV, regs, code, address);
  93. }
  94. /* for instr TLB miss and instr storage exception ESR_S is undefined */
  95. if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
  96. is_write = 0;
  97. if (unlikely(in_atomic() || !mm)) {
  98. if (kernel_mode(regs))
  99. goto bad_area_nosemaphore;
  100. /* in_atomic() in user mode is really bad,
  101. as is current->mm == NULL. */
  102. printk(KERN_EMERG "Page fault in user mode with "
  103. "in_atomic(), mm = %p\n", mm);
  104. printk(KERN_EMERG "r15 = %lx MSR = %lx\n",
  105. regs->r15, regs->msr);
  106. die("Weird page fault", regs, SIGSEGV);
  107. }
  108. /* When running in the kernel we expect faults to occur only to
  109. * addresses in user space. All other faults represent errors in the
  110. * kernel and should generate an OOPS. Unfortunately, in the case of an
  111. * erroneous fault occurring in a code path which already holds mmap_sem
  112. * we will deadlock attempting to validate the fault against the
  113. * address space. Luckily the kernel only validly references user
  114. * space from well defined areas of code, which are listed in the
  115. * exceptions table.
  116. *
  117. * As the vast majority of faults will be valid we will only perform
  118. * the source reference check when there is a possibility of a deadlock.
  119. * Attempt to lock the address space, if we cannot we then validate the
  120. * source. If this is invalid we can skip the address space check,
  121. * thus avoiding the deadlock.
  122. */
  123. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  124. if (kernel_mode(regs) && !search_exception_tables(regs->pc))
  125. goto bad_area_nosemaphore;
  126. down_read(&mm->mmap_sem);
  127. }
  128. vma = find_vma(mm, address);
  129. if (unlikely(!vma))
  130. goto bad_area;
  131. if (vma->vm_start <= address)
  132. goto good_area;
  133. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
  134. goto bad_area;
  135. if (unlikely(!is_write))
  136. goto bad_area;
  137. /*
  138. * N.B. The ABI allows programs to access up to
  139. * a few hundred bytes below the stack pointer (TBD).
  140. * The kernel signal delivery code writes up to about 1.5kB
  141. * below the stack pointer (r1) before decrementing it.
  142. * The exec code can write slightly over 640kB to the stack
  143. * before setting the user r1. Thus we allow the stack to
  144. * expand to 1MB without further checks.
  145. */
  146. if (unlikely(address + 0x100000 < vma->vm_end)) {
  147. /* get user regs even if this fault is in kernel mode */
  148. struct pt_regs *uregs = current->thread.regs;
  149. if (uregs == NULL)
  150. goto bad_area;
  151. /*
  152. * A user-mode access to an address a long way below
  153. * the stack pointer is only valid if the instruction
  154. * is one which would update the stack pointer to the
  155. * address accessed if the instruction completed,
  156. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  157. * (or the byte, halfword, float or double forms).
  158. *
  159. * If we don't check this then any write to the area
  160. * between the last mapped region and the stack will
  161. * expand the stack rather than segfaulting.
  162. */
  163. if (address + 2048 < uregs->r1
  164. && (kernel_mode(regs) || !store_updates_sp(regs)))
  165. goto bad_area;
  166. }
  167. if (expand_stack(vma, address))
  168. goto bad_area;
  169. good_area:
  170. code = SEGV_ACCERR;
  171. /* a write */
  172. if (unlikely(is_write)) {
  173. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  174. goto bad_area;
  175. /* a read */
  176. } else {
  177. /* protection fault */
  178. if (unlikely(error_code & 0x08000000))
  179. goto bad_area;
  180. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC))))
  181. goto bad_area;
  182. }
  183. /*
  184. * If for any reason at all we couldn't handle the fault,
  185. * make sure we exit gracefully rather than endlessly redo
  186. * the fault.
  187. */
  188. fault = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
  189. if (unlikely(fault & VM_FAULT_ERROR)) {
  190. if (fault & VM_FAULT_OOM)
  191. goto out_of_memory;
  192. else if (fault & VM_FAULT_SIGBUS)
  193. goto do_sigbus;
  194. BUG();
  195. }
  196. if (unlikely(fault & VM_FAULT_MAJOR))
  197. current->maj_flt++;
  198. else
  199. current->min_flt++;
  200. up_read(&mm->mmap_sem);
  201. /*
  202. * keep track of tlb+htab misses that are good addrs but
  203. * just need pte's created via handle_mm_fault()
  204. * -- Cort
  205. */
  206. pte_misses++;
  207. return;
  208. bad_area:
  209. up_read(&mm->mmap_sem);
  210. bad_area_nosemaphore:
  211. pte_errors++;
  212. /* User mode accesses cause a SIGSEGV */
  213. if (user_mode(regs)) {
  214. _exception(SIGSEGV, regs, code, address);
  215. /* info.si_signo = SIGSEGV;
  216. info.si_errno = 0;
  217. info.si_code = code;
  218. info.si_addr = (void *) address;
  219. force_sig_info(SIGSEGV, &info, current);*/
  220. return;
  221. }
  222. bad_page_fault(regs, address, SIGSEGV);
  223. return;
  224. /*
  225. * We ran out of memory, or some other thing happened to us that made
  226. * us unable to handle the page fault gracefully.
  227. */
  228. out_of_memory:
  229. up_read(&mm->mmap_sem);
  230. if (!user_mode(regs))
  231. bad_page_fault(regs, address, SIGKILL);
  232. else
  233. pagefault_out_of_memory();
  234. return;
  235. do_sigbus:
  236. up_read(&mm->mmap_sem);
  237. if (user_mode(regs)) {
  238. info.si_signo = SIGBUS;
  239. info.si_errno = 0;
  240. info.si_code = BUS_ADRERR;
  241. info.si_addr = (void __user *)address;
  242. force_sig_info(SIGBUS, &info, current);
  243. return;
  244. }
  245. bad_page_fault(regs, address, SIGBUS);
  246. }