irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <linux/rculist.h>
  14. #include <linux/slab.h>
  15. #include <asm/sn/addrs.h>
  16. #include <asm/sn/arch.h>
  17. #include <asm/sn/intr.h>
  18. #include <asm/sn/pcibr_provider.h>
  19. #include <asm/sn/pcibus_provider_defs.h>
  20. #include <asm/sn/pcidev.h>
  21. #include <asm/sn/shub_mmr.h>
  22. #include <asm/sn/sn_sal.h>
  23. #include <asm/sn/sn_feature_sets.h>
  24. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  25. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  26. extern int sn_ioif_inited;
  27. struct list_head **sn_irq_lh;
  28. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  29. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  30. struct sn_irq_info *sn_irq_info,
  31. int req_irq, nasid_t req_nasid,
  32. int req_slice)
  33. {
  34. struct ia64_sal_retval ret_stuff;
  35. ret_stuff.status = 0;
  36. ret_stuff.v0 = 0;
  37. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  38. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  39. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  40. (u64) req_nasid, (u64) req_slice);
  41. return ret_stuff.status;
  42. }
  43. void sn_intr_free(nasid_t local_nasid, int local_widget,
  44. struct sn_irq_info *sn_irq_info)
  45. {
  46. struct ia64_sal_retval ret_stuff;
  47. ret_stuff.status = 0;
  48. ret_stuff.v0 = 0;
  49. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  50. (u64) SAL_INTR_FREE, (u64) local_nasid,
  51. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  52. (u64) sn_irq_info->irq_cookie, 0, 0);
  53. }
  54. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  55. struct sn_irq_info *sn_irq_info,
  56. nasid_t req_nasid, int req_slice)
  57. {
  58. struct ia64_sal_retval ret_stuff;
  59. ret_stuff.status = 0;
  60. ret_stuff.v0 = 0;
  61. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  62. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  63. (u64) local_widget, __pa(sn_irq_info),
  64. (u64) req_nasid, (u64) req_slice, 0);
  65. return ret_stuff.status;
  66. }
  67. static unsigned int sn_startup_irq(struct irq_data *data)
  68. {
  69. return 0;
  70. }
  71. static void sn_shutdown_irq(struct irq_data *data)
  72. {
  73. }
  74. extern void ia64_mca_register_cpev(int);
  75. static void sn_disable_irq(struct irq_data *data)
  76. {
  77. if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
  78. ia64_mca_register_cpev(0);
  79. }
  80. static void sn_enable_irq(struct irq_data *data)
  81. {
  82. if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
  83. ia64_mca_register_cpev(data->irq);
  84. }
  85. static void sn_ack_irq(struct irq_data *data)
  86. {
  87. u64 event_occurred, mask;
  88. unsigned int irq = data->irq & 0xff;
  89. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  90. mask = event_occurred & SH_ALL_INT_MASK;
  91. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  92. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  93. irq_move_irq(data);
  94. }
  95. static void sn_irq_info_free(struct rcu_head *head);
  96. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  97. nasid_t nasid, int slice)
  98. {
  99. int vector;
  100. int cpuid;
  101. #ifdef CONFIG_SMP
  102. int cpuphys;
  103. #endif
  104. int64_t bridge;
  105. int local_widget, status;
  106. nasid_t local_nasid;
  107. struct sn_irq_info *new_irq_info;
  108. struct sn_pcibus_provider *pci_provider;
  109. bridge = (u64) sn_irq_info->irq_bridge;
  110. if (!bridge) {
  111. return NULL; /* irq is not a device interrupt */
  112. }
  113. local_nasid = NASID_GET(bridge);
  114. if (local_nasid & 1)
  115. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  116. else
  117. local_widget = SWIN_WIDGETNUM(bridge);
  118. vector = sn_irq_info->irq_irq;
  119. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  120. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  121. if (!status) {
  122. new_irq_info = sn_irq_info;
  123. goto finish_up;
  124. }
  125. /*
  126. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  127. * Revert to old method.
  128. */
  129. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  130. if (new_irq_info == NULL)
  131. return NULL;
  132. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  133. /* Free the old PROM new_irq_info structure */
  134. sn_intr_free(local_nasid, local_widget, new_irq_info);
  135. unregister_intr_pda(new_irq_info);
  136. /* allocate a new PROM new_irq_info struct */
  137. status = sn_intr_alloc(local_nasid, local_widget,
  138. new_irq_info, vector,
  139. nasid, slice);
  140. /* SAL call failed */
  141. if (status) {
  142. kfree(new_irq_info);
  143. return NULL;
  144. }
  145. register_intr_pda(new_irq_info);
  146. spin_lock(&sn_irq_info_lock);
  147. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  148. spin_unlock(&sn_irq_info_lock);
  149. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  150. finish_up:
  151. /* Update kernels new_irq_info with new target info */
  152. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  153. new_irq_info->irq_slice);
  154. new_irq_info->irq_cpuid = cpuid;
  155. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  156. /*
  157. * If this represents a line interrupt, target it. If it's
  158. * an msi (irq_int_bit < 0), it's already targeted.
  159. */
  160. if (new_irq_info->irq_int_bit >= 0 &&
  161. pci_provider && pci_provider->target_interrupt)
  162. (pci_provider->target_interrupt)(new_irq_info);
  163. #ifdef CONFIG_SMP
  164. cpuphys = cpu_physical_id(cpuid);
  165. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  166. #endif
  167. return new_irq_info;
  168. }
  169. static int sn_set_affinity_irq(struct irq_data *data,
  170. const struct cpumask *mask, bool force)
  171. {
  172. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  173. unsigned int irq = data->irq;
  174. nasid_t nasid;
  175. int slice;
  176. nasid = cpuid_to_nasid(cpumask_first(mask));
  177. slice = cpuid_to_slice(cpumask_first(mask));
  178. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  179. sn_irq_lh[irq], list)
  180. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  181. return 0;
  182. }
  183. #ifdef CONFIG_SMP
  184. void sn_set_err_irq_affinity(unsigned int irq)
  185. {
  186. /*
  187. * On systems which support CPU disabling (SHub2), all error interrupts
  188. * are targetted at the boot CPU.
  189. */
  190. if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
  191. set_irq_affinity_info(irq, cpu_physical_id(0), 0);
  192. }
  193. #else
  194. void sn_set_err_irq_affinity(unsigned int irq) { }
  195. #endif
  196. static void
  197. sn_mask_irq(struct irq_data *data)
  198. {
  199. }
  200. static void
  201. sn_unmask_irq(struct irq_data *data)
  202. {
  203. }
  204. struct irq_chip irq_type_sn = {
  205. .name = "SN hub",
  206. .irq_startup = sn_startup_irq,
  207. .irq_shutdown = sn_shutdown_irq,
  208. .irq_enable = sn_enable_irq,
  209. .irq_disable = sn_disable_irq,
  210. .irq_ack = sn_ack_irq,
  211. .irq_mask = sn_mask_irq,
  212. .irq_unmask = sn_unmask_irq,
  213. .irq_set_affinity = sn_set_affinity_irq
  214. };
  215. ia64_vector sn_irq_to_vector(int irq)
  216. {
  217. if (irq >= IA64_NUM_VECTORS)
  218. return 0;
  219. return (ia64_vector)irq;
  220. }
  221. unsigned int sn_local_vector_to_irq(u8 vector)
  222. {
  223. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  224. }
  225. void sn_irq_init(void)
  226. {
  227. int i;
  228. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  229. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  230. for (i = 0; i < NR_IRQS; i++) {
  231. if (irq_get_chip(i) == &no_irq_chip)
  232. irq_set_chip(i, &irq_type_sn);
  233. }
  234. }
  235. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  236. {
  237. int irq = sn_irq_info->irq_irq;
  238. int cpu = sn_irq_info->irq_cpuid;
  239. if (pdacpu(cpu)->sn_last_irq < irq) {
  240. pdacpu(cpu)->sn_last_irq = irq;
  241. }
  242. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  243. pdacpu(cpu)->sn_first_irq = irq;
  244. }
  245. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  246. {
  247. int irq = sn_irq_info->irq_irq;
  248. int cpu = sn_irq_info->irq_cpuid;
  249. struct sn_irq_info *tmp_irq_info;
  250. int i, foundmatch;
  251. rcu_read_lock();
  252. if (pdacpu(cpu)->sn_last_irq == irq) {
  253. foundmatch = 0;
  254. for (i = pdacpu(cpu)->sn_last_irq - 1;
  255. i && !foundmatch; i--) {
  256. list_for_each_entry_rcu(tmp_irq_info,
  257. sn_irq_lh[i],
  258. list) {
  259. if (tmp_irq_info->irq_cpuid == cpu) {
  260. foundmatch = 1;
  261. break;
  262. }
  263. }
  264. }
  265. pdacpu(cpu)->sn_last_irq = i;
  266. }
  267. if (pdacpu(cpu)->sn_first_irq == irq) {
  268. foundmatch = 0;
  269. for (i = pdacpu(cpu)->sn_first_irq + 1;
  270. i < NR_IRQS && !foundmatch; i++) {
  271. list_for_each_entry_rcu(tmp_irq_info,
  272. sn_irq_lh[i],
  273. list) {
  274. if (tmp_irq_info->irq_cpuid == cpu) {
  275. foundmatch = 1;
  276. break;
  277. }
  278. }
  279. }
  280. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  281. }
  282. rcu_read_unlock();
  283. }
  284. static void sn_irq_info_free(struct rcu_head *head)
  285. {
  286. struct sn_irq_info *sn_irq_info;
  287. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  288. kfree(sn_irq_info);
  289. }
  290. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  291. {
  292. nasid_t nasid = sn_irq_info->irq_nasid;
  293. int slice = sn_irq_info->irq_slice;
  294. int cpu = nasid_slice_to_cpuid(nasid, slice);
  295. #ifdef CONFIG_SMP
  296. int cpuphys;
  297. #endif
  298. pci_dev_get(pci_dev);
  299. sn_irq_info->irq_cpuid = cpu;
  300. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  301. /* link it into the sn_irq[irq] list */
  302. spin_lock(&sn_irq_info_lock);
  303. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  304. reserve_irq_vector(sn_irq_info->irq_irq);
  305. spin_unlock(&sn_irq_info_lock);
  306. register_intr_pda(sn_irq_info);
  307. #ifdef CONFIG_SMP
  308. cpuphys = cpu_physical_id(cpu);
  309. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  310. /*
  311. * Affinity was set by the PROM, prevent it from
  312. * being reset by the request_irq() path.
  313. */
  314. irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
  315. #endif
  316. }
  317. void sn_irq_unfixup(struct pci_dev *pci_dev)
  318. {
  319. struct sn_irq_info *sn_irq_info;
  320. /* Only cleanup IRQ stuff if this device has a host bus context */
  321. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  322. return;
  323. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  324. if (!sn_irq_info)
  325. return;
  326. if (!sn_irq_info->irq_irq) {
  327. kfree(sn_irq_info);
  328. return;
  329. }
  330. unregister_intr_pda(sn_irq_info);
  331. spin_lock(&sn_irq_info_lock);
  332. list_del_rcu(&sn_irq_info->list);
  333. spin_unlock(&sn_irq_info_lock);
  334. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  335. free_irq_vector(sn_irq_info->irq_irq);
  336. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  337. pci_dev_put(pci_dev);
  338. }
  339. static inline void
  340. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  341. {
  342. struct sn_pcibus_provider *pci_provider;
  343. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  344. /* Don't force an interrupt if the irq has been disabled */
  345. if (!irqd_irq_disabled(sn_irq_info->irq_irq) &&
  346. pci_provider && pci_provider->force_interrupt)
  347. (*pci_provider->force_interrupt)(sn_irq_info);
  348. }
  349. /*
  350. * Check for lost interrupts. If the PIC int_status reg. says that
  351. * an interrupt has been sent, but not handled, and the interrupt
  352. * is not pending in either the cpu irr regs or in the soft irr regs,
  353. * and the interrupt is not in service, then the interrupt may have
  354. * been lost. Force an interrupt on that pin. It is possible that
  355. * the interrupt is in flight, so we may generate a spurious interrupt,
  356. * but we should never miss a real lost interrupt.
  357. */
  358. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  359. {
  360. u64 regval;
  361. struct pcidev_info *pcidev_info;
  362. struct pcibus_info *pcibus_info;
  363. /*
  364. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  365. * since they do not target Shub II interrupt registers. If that
  366. * ever changes, this check needs to accomodate.
  367. */
  368. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  369. return;
  370. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  371. if (!pcidev_info)
  372. return;
  373. pcibus_info =
  374. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  375. pdi_pcibus_info;
  376. regval = pcireg_intr_status_get(pcibus_info);
  377. if (!ia64_get_irr(irq_to_vector(irq))) {
  378. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  379. regval &= 0xff;
  380. if (sn_irq_info->irq_int_bit & regval &
  381. sn_irq_info->irq_last_intr) {
  382. regval &= ~(sn_irq_info->irq_int_bit & regval);
  383. sn_call_force_intr_provider(sn_irq_info);
  384. }
  385. }
  386. }
  387. sn_irq_info->irq_last_intr = regval;
  388. }
  389. void sn_lb_int_war_check(void)
  390. {
  391. struct sn_irq_info *sn_irq_info;
  392. int i;
  393. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  394. return;
  395. rcu_read_lock();
  396. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  397. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  398. sn_check_intr(i, sn_irq_info);
  399. }
  400. }
  401. rcu_read_unlock();
  402. }
  403. void __init sn_irq_lh_init(void)
  404. {
  405. int i;
  406. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  407. if (!sn_irq_lh)
  408. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  409. for (i = 0; i < NR_IRQS; i++) {
  410. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  411. if (!sn_irq_lh[i])
  412. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  413. INIT_LIST_HEAD(sn_irq_lh[i]);
  414. }
  415. }