fault.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * arch/cris/mm/fault.c
  3. *
  4. * Copyright (C) 2000-2010 Axis Communications AB
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/module.h>
  9. #include <linux/wait.h>
  10. #include <asm/uaccess.h>
  11. extern int find_fixup_code(struct pt_regs *);
  12. extern void die_if_kernel(const char *, struct pt_regs *, long);
  13. extern void show_registers(struct pt_regs *regs);
  14. /* debug of low-level TLB reload */
  15. #undef DEBUG
  16. #ifdef DEBUG
  17. #define D(x) x
  18. #else
  19. #define D(x)
  20. #endif
  21. /* debug of higher-level faults */
  22. #define DPG(x)
  23. /* current active page directory */
  24. DEFINE_PER_CPU(pgd_t *, current_pgd);
  25. unsigned long cris_signal_return_page;
  26. /*
  27. * This routine handles page faults. It determines the address,
  28. * and the problem, and then passes it off to one of the appropriate
  29. * routines.
  30. *
  31. * Notice that the address we're given is aligned to the page the fault
  32. * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
  33. * address.
  34. *
  35. * error_code:
  36. * bit 0 == 0 means no page found, 1 means protection fault
  37. * bit 1 == 0 means read, 1 means write
  38. *
  39. * If this routine detects a bad access, it returns 1, otherwise it
  40. * returns 0.
  41. */
  42. asmlinkage void
  43. do_page_fault(unsigned long address, struct pt_regs *regs,
  44. int protection, int writeaccess)
  45. {
  46. struct task_struct *tsk;
  47. struct mm_struct *mm;
  48. struct vm_area_struct * vma;
  49. siginfo_t info;
  50. int fault;
  51. D(printk(KERN_DEBUG
  52. "Page fault for %lX on %X at %lX, prot %d write %d\n",
  53. address, smp_processor_id(), instruction_pointer(regs),
  54. protection, writeaccess));
  55. tsk = current;
  56. /*
  57. * We fault-in kernel-space virtual memory on-demand. The
  58. * 'reference' page table is init_mm.pgd.
  59. *
  60. * NOTE! We MUST NOT take any locks for this case. We may
  61. * be in an interrupt or a critical region, and should
  62. * only copy the information from the master page table,
  63. * nothing more.
  64. *
  65. * NOTE2: This is done so that, when updating the vmalloc
  66. * mappings we don't have to walk all processes pgdirs and
  67. * add the high mappings all at once. Instead we do it as they
  68. * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
  69. * bit set so sometimes the TLB can use a lingering entry.
  70. *
  71. * This verifies that the fault happens in kernel space
  72. * and that the fault was not a protection error (error_code & 1).
  73. */
  74. if (address >= VMALLOC_START &&
  75. !protection &&
  76. !user_mode(regs))
  77. goto vmalloc_fault;
  78. /* When stack execution is not allowed we store the signal
  79. * trampolines in the reserved cris_signal_return_page.
  80. * Handle this in the exact same way as vmalloc (we know
  81. * that the mapping is there and is valid so no need to
  82. * call handle_mm_fault).
  83. */
  84. if (cris_signal_return_page &&
  85. address == cris_signal_return_page &&
  86. !protection && user_mode(regs))
  87. goto vmalloc_fault;
  88. /* we can and should enable interrupts at this point */
  89. local_irq_enable();
  90. mm = tsk->mm;
  91. info.si_code = SEGV_MAPERR;
  92. /*
  93. * If we're in an interrupt or "atomic" operation or have no
  94. * user context, we must not take the fault.
  95. */
  96. if (in_atomic() || !mm)
  97. goto no_context;
  98. down_read(&mm->mmap_sem);
  99. vma = find_vma(mm, address);
  100. if (!vma)
  101. goto bad_area;
  102. if (vma->vm_start <= address)
  103. goto good_area;
  104. if (!(vma->vm_flags & VM_GROWSDOWN))
  105. goto bad_area;
  106. if (user_mode(regs)) {
  107. /*
  108. * accessing the stack below usp is always a bug.
  109. * we get page-aligned addresses so we can only check
  110. * if we're within a page from usp, but that might be
  111. * enough to catch brutal errors at least.
  112. */
  113. if (address + PAGE_SIZE < rdusp())
  114. goto bad_area;
  115. }
  116. if (expand_stack(vma, address))
  117. goto bad_area;
  118. /*
  119. * Ok, we have a good vm_area for this memory access, so
  120. * we can handle it..
  121. */
  122. good_area:
  123. info.si_code = SEGV_ACCERR;
  124. /* first do some preliminary protection checks */
  125. if (writeaccess == 2){
  126. if (!(vma->vm_flags & VM_EXEC))
  127. goto bad_area;
  128. } else if (writeaccess == 1) {
  129. if (!(vma->vm_flags & VM_WRITE))
  130. goto bad_area;
  131. } else {
  132. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  133. goto bad_area;
  134. }
  135. /*
  136. * If for any reason at all we couldn't handle the fault,
  137. * make sure we exit gracefully rather than endlessly redo
  138. * the fault.
  139. */
  140. fault = handle_mm_fault(mm, vma, address, (writeaccess & 1) ? FAULT_FLAG_WRITE : 0);
  141. if (unlikely(fault & VM_FAULT_ERROR)) {
  142. if (fault & VM_FAULT_OOM)
  143. goto out_of_memory;
  144. else if (fault & VM_FAULT_SIGBUS)
  145. goto do_sigbus;
  146. BUG();
  147. }
  148. if (fault & VM_FAULT_MAJOR)
  149. tsk->maj_flt++;
  150. else
  151. tsk->min_flt++;
  152. up_read(&mm->mmap_sem);
  153. return;
  154. /*
  155. * Something tried to access memory that isn't in our memory map..
  156. * Fix it, but check if it's kernel or user first..
  157. */
  158. bad_area:
  159. up_read(&mm->mmap_sem);
  160. bad_area_nosemaphore:
  161. DPG(show_registers(regs));
  162. /* User mode accesses just cause a SIGSEGV */
  163. if (user_mode(regs)) {
  164. printk(KERN_NOTICE "%s (pid %d) segfaults for page "
  165. "address %08lx at pc %08lx\n",
  166. tsk->comm, tsk->pid,
  167. address, instruction_pointer(regs));
  168. /* With DPG on, we've already dumped registers above. */
  169. DPG(if (0))
  170. show_registers(regs);
  171. #ifdef CONFIG_NO_SEGFAULT_TERMINATION
  172. DECLARE_WAIT_QUEUE_HEAD(wq);
  173. wait_event_interruptible(wq, 0 == 1);
  174. #else
  175. info.si_signo = SIGSEGV;
  176. info.si_errno = 0;
  177. /* info.si_code has been set above */
  178. info.si_addr = (void *)address;
  179. force_sig_info(SIGSEGV, &info, tsk);
  180. #endif
  181. return;
  182. }
  183. no_context:
  184. /* Are we prepared to handle this kernel fault?
  185. *
  186. * (The kernel has valid exception-points in the source
  187. * when it accesses user-memory. When it fails in one
  188. * of those points, we find it in a table and do a jump
  189. * to some fixup code that loads an appropriate error
  190. * code)
  191. */
  192. if (find_fixup_code(regs))
  193. return;
  194. /*
  195. * Oops. The kernel tried to access some bad page. We'll have to
  196. * terminate things with extreme prejudice.
  197. */
  198. if (!oops_in_progress) {
  199. oops_in_progress = 1;
  200. if ((unsigned long) (address) < PAGE_SIZE)
  201. printk(KERN_ALERT "Unable to handle kernel NULL "
  202. "pointer dereference");
  203. else
  204. printk(KERN_ALERT "Unable to handle kernel access"
  205. " at virtual address %08lx\n", address);
  206. die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
  207. oops_in_progress = 0;
  208. }
  209. do_exit(SIGKILL);
  210. /*
  211. * We ran out of memory, or some other thing happened to us that made
  212. * us unable to handle the page fault gracefully.
  213. */
  214. out_of_memory:
  215. up_read(&mm->mmap_sem);
  216. if (!user_mode(regs))
  217. goto no_context;
  218. pagefault_out_of_memory();
  219. return;
  220. do_sigbus:
  221. up_read(&mm->mmap_sem);
  222. /*
  223. * Send a sigbus, regardless of whether we were in kernel
  224. * or user mode.
  225. */
  226. info.si_signo = SIGBUS;
  227. info.si_errno = 0;
  228. info.si_code = BUS_ADRERR;
  229. info.si_addr = (void *)address;
  230. force_sig_info(SIGBUS, &info, tsk);
  231. /* Kernel mode? Handle exceptions or die */
  232. if (!user_mode(regs))
  233. goto no_context;
  234. return;
  235. vmalloc_fault:
  236. {
  237. /*
  238. * Synchronize this task's top level page-table
  239. * with the 'reference' page table.
  240. *
  241. * Use current_pgd instead of tsk->active_mm->pgd
  242. * since the latter might be unavailable if this
  243. * code is executed in a misfortunately run irq
  244. * (like inside schedule() between switch_mm and
  245. * switch_to...).
  246. */
  247. int offset = pgd_index(address);
  248. pgd_t *pgd, *pgd_k;
  249. pud_t *pud, *pud_k;
  250. pmd_t *pmd, *pmd_k;
  251. pte_t *pte_k;
  252. pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
  253. pgd_k = init_mm.pgd + offset;
  254. /* Since we're two-level, we don't need to do both
  255. * set_pgd and set_pmd (they do the same thing). If
  256. * we go three-level at some point, do the right thing
  257. * with pgd_present and set_pgd here.
  258. *
  259. * Also, since the vmalloc area is global, we don't
  260. * need to copy individual PTE's, it is enough to
  261. * copy the pgd pointer into the pte page of the
  262. * root task. If that is there, we'll find our pte if
  263. * it exists.
  264. */
  265. pud = pud_offset(pgd, address);
  266. pud_k = pud_offset(pgd_k, address);
  267. if (!pud_present(*pud_k))
  268. goto no_context;
  269. pmd = pmd_offset(pud, address);
  270. pmd_k = pmd_offset(pud_k, address);
  271. if (!pmd_present(*pmd_k))
  272. goto bad_area_nosemaphore;
  273. set_pmd(pmd, *pmd_k);
  274. /* Make sure the actual PTE exists as well to
  275. * catch kernel vmalloc-area accesses to non-mapped
  276. * addresses. If we don't do this, this will just
  277. * silently loop forever.
  278. */
  279. pte_k = pte_offset_kernel(pmd_k, address);
  280. if (!pte_present(*pte_k))
  281. goto no_context;
  282. return;
  283. }
  284. }
  285. /* Find fixup code. */
  286. int
  287. find_fixup_code(struct pt_regs *regs)
  288. {
  289. const struct exception_table_entry *fixup;
  290. /* in case of delay slot fault (v32) */
  291. unsigned long ip = (instruction_pointer(regs) & ~0x1);
  292. fixup = search_exception_tables(ip);
  293. if (fixup != 0) {
  294. /* Adjust the instruction pointer in the stackframe. */
  295. instruction_pointer(regs) = fixup->fixup;
  296. arch_fixup(regs);
  297. return 1;
  298. }
  299. return 0;
  300. }