mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/traps.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. unsigned int pmd;
  56. pteval_t pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_RDONLY,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_RDONLY,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  224. .prot_l1 = PMD_TYPE_TABLE,
  225. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  226. .domain = DOMAIN_KERNEL,
  227. },
  228. [MT_ROM] = {
  229. .prot_sect = PMD_TYPE_SECT,
  230. .domain = DOMAIN_KERNEL,
  231. },
  232. [MT_MEMORY_NONCACHED] = {
  233. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  234. L_PTE_MT_BUFFERABLE,
  235. .prot_l1 = PMD_TYPE_TABLE,
  236. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  237. .domain = DOMAIN_KERNEL,
  238. },
  239. [MT_MEMORY_DTCM] = {
  240. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  241. L_PTE_XN,
  242. .prot_l1 = PMD_TYPE_TABLE,
  243. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  244. .domain = DOMAIN_KERNEL,
  245. },
  246. [MT_MEMORY_ITCM] = {
  247. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  248. .prot_l1 = PMD_TYPE_TABLE,
  249. .domain = DOMAIN_KERNEL,
  250. },
  251. };
  252. const struct mem_type *get_mem_type(unsigned int type)
  253. {
  254. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  255. }
  256. EXPORT_SYMBOL(get_mem_type);
  257. /*
  258. * Adjust the PMD section entries according to the CPU in use.
  259. */
  260. static void __init build_mem_type_table(void)
  261. {
  262. struct cachepolicy *cp;
  263. unsigned int cr = get_cr();
  264. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  265. int cpu_arch = cpu_architecture();
  266. int i;
  267. if (cpu_arch < CPU_ARCH_ARMv6) {
  268. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  269. if (cachepolicy > CPOLICY_BUFFERED)
  270. cachepolicy = CPOLICY_BUFFERED;
  271. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  272. if (cachepolicy > CPOLICY_WRITETHROUGH)
  273. cachepolicy = CPOLICY_WRITETHROUGH;
  274. #endif
  275. }
  276. if (cpu_arch < CPU_ARCH_ARMv5) {
  277. if (cachepolicy >= CPOLICY_WRITEALLOC)
  278. cachepolicy = CPOLICY_WRITEBACK;
  279. ecc_mask = 0;
  280. }
  281. if (is_smp())
  282. cachepolicy = CPOLICY_WRITEALLOC;
  283. /*
  284. * Strip out features not present on earlier architectures.
  285. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  286. * without extended page tables don't have the 'Shared' bit.
  287. */
  288. if (cpu_arch < CPU_ARCH_ARMv5)
  289. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  290. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  291. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  292. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  293. mem_types[i].prot_sect &= ~PMD_SECT_S;
  294. /*
  295. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  296. * "update-able on write" bit on ARM610). However, Xscale and
  297. * Xscale3 require this bit to be cleared.
  298. */
  299. if (cpu_is_xscale() || cpu_is_xsc3()) {
  300. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  301. mem_types[i].prot_sect &= ~PMD_BIT4;
  302. mem_types[i].prot_l1 &= ~PMD_BIT4;
  303. }
  304. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  305. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  306. if (mem_types[i].prot_l1)
  307. mem_types[i].prot_l1 |= PMD_BIT4;
  308. if (mem_types[i].prot_sect)
  309. mem_types[i].prot_sect |= PMD_BIT4;
  310. }
  311. }
  312. /*
  313. * Mark the device areas according to the CPU/architecture.
  314. */
  315. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  316. if (!cpu_is_xsc3()) {
  317. /*
  318. * Mark device regions on ARMv6+ as execute-never
  319. * to prevent speculative instruction fetches.
  320. */
  321. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  322. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  323. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  324. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  325. }
  326. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  327. /*
  328. * For ARMv7 with TEX remapping,
  329. * - shared device is SXCB=1100
  330. * - nonshared device is SXCB=0100
  331. * - write combine device mem is SXCB=0001
  332. * (Uncached Normal memory)
  333. */
  334. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  335. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  336. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  337. } else if (cpu_is_xsc3()) {
  338. /*
  339. * For Xscale3,
  340. * - shared device is TEXCB=00101
  341. * - nonshared device is TEXCB=01000
  342. * - write combine device mem is TEXCB=00100
  343. * (Inner/Outer Uncacheable in xsc3 parlance)
  344. */
  345. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  346. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  347. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  348. } else {
  349. /*
  350. * For ARMv6 and ARMv7 without TEX remapping,
  351. * - shared device is TEXCB=00001
  352. * - nonshared device is TEXCB=01000
  353. * - write combine device mem is TEXCB=00100
  354. * (Uncached Normal in ARMv6 parlance).
  355. */
  356. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  357. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  358. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  359. }
  360. } else {
  361. /*
  362. * On others, write combining is "Uncached/Buffered"
  363. */
  364. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  365. }
  366. /*
  367. * Now deal with the memory-type mappings
  368. */
  369. cp = &cache_policies[cachepolicy];
  370. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  371. /*
  372. * Only use write-through for non-SMP systems
  373. */
  374. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  375. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  376. /*
  377. * Enable CPU-specific coherency if supported.
  378. * (Only available on XSC3 at the moment.)
  379. */
  380. if (arch_is_coherent() && cpu_is_xsc3()) {
  381. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  382. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  383. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  384. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  385. }
  386. /*
  387. * ARMv6 and above have extended page tables.
  388. */
  389. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  390. /*
  391. * Mark cache clean areas and XIP ROM read only
  392. * from SVC mode and no access from userspace.
  393. */
  394. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  395. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  396. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  397. if (is_smp()) {
  398. /*
  399. * Mark memory with the "shared" attribute
  400. * for SMP systems
  401. */
  402. user_pgprot |= L_PTE_SHARED;
  403. kern_pgprot |= L_PTE_SHARED;
  404. vecs_pgprot |= L_PTE_SHARED;
  405. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  406. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  407. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  408. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  409. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  410. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  411. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  412. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  413. }
  414. }
  415. /*
  416. * Non-cacheable Normal - intended for memory areas that must
  417. * not cause dirty cache line writebacks when used
  418. */
  419. if (cpu_arch >= CPU_ARCH_ARMv6) {
  420. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  421. /* Non-cacheable Normal is XCB = 001 */
  422. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  423. PMD_SECT_BUFFERED;
  424. } else {
  425. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  426. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  427. PMD_SECT_TEX(1);
  428. }
  429. } else {
  430. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  431. }
  432. for (i = 0; i < 16; i++) {
  433. unsigned long v = pgprot_val(protection_map[i]);
  434. protection_map[i] = __pgprot(v | user_pgprot);
  435. }
  436. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  437. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  438. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  439. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  440. L_PTE_DIRTY | kern_pgprot);
  441. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  442. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  443. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  444. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  445. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  446. mem_types[MT_ROM].prot_sect |= cp->pmd;
  447. switch (cp->pmd) {
  448. case PMD_SECT_WT:
  449. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  450. break;
  451. case PMD_SECT_WB:
  452. case PMD_SECT_WBWA:
  453. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  454. break;
  455. }
  456. printk("Memory policy: ECC %sabled, Data cache %s\n",
  457. ecc_mask ? "en" : "dis", cp->policy);
  458. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  459. struct mem_type *t = &mem_types[i];
  460. if (t->prot_l1)
  461. t->prot_l1 |= PMD_DOMAIN(t->domain);
  462. if (t->prot_sect)
  463. t->prot_sect |= PMD_DOMAIN(t->domain);
  464. }
  465. }
  466. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  467. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  468. unsigned long size, pgprot_t vma_prot)
  469. {
  470. if (!pfn_valid(pfn))
  471. return pgprot_noncached(vma_prot);
  472. else if (file->f_flags & O_SYNC)
  473. return pgprot_writecombine(vma_prot);
  474. return vma_prot;
  475. }
  476. EXPORT_SYMBOL(phys_mem_access_prot);
  477. #endif
  478. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  479. static void __init *early_alloc(unsigned long sz)
  480. {
  481. void *ptr = __va(memblock_alloc(sz, sz));
  482. memset(ptr, 0, sz);
  483. return ptr;
  484. }
  485. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  486. {
  487. if (pmd_none(*pmd)) {
  488. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  489. __pmd_populate(pmd, __pa(pte), prot);
  490. }
  491. BUG_ON(pmd_bad(*pmd));
  492. return pte_offset_kernel(pmd, addr);
  493. }
  494. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  495. unsigned long end, unsigned long pfn,
  496. const struct mem_type *type)
  497. {
  498. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  499. do {
  500. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  501. pfn++;
  502. } while (pte++, addr += PAGE_SIZE, addr != end);
  503. }
  504. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  505. unsigned long end, phys_addr_t phys,
  506. const struct mem_type *type)
  507. {
  508. pmd_t *pmd = pmd_offset(pud, addr);
  509. /*
  510. * Try a section mapping - end, addr and phys must all be aligned
  511. * to a section boundary. Note that PMDs refer to the individual
  512. * L1 entries, whereas PGDs refer to a group of L1 entries making
  513. * up one logical pointer to an L2 table.
  514. */
  515. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  516. pmd_t *p = pmd;
  517. if (addr & SECTION_SIZE)
  518. pmd++;
  519. do {
  520. *pmd = __pmd(phys | type->prot_sect);
  521. phys += SECTION_SIZE;
  522. } while (pmd++, addr += SECTION_SIZE, addr != end);
  523. flush_pmd_entry(p);
  524. } else {
  525. /*
  526. * No need to loop; pte's aren't interested in the
  527. * individual L1 entries.
  528. */
  529. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  530. }
  531. }
  532. static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
  533. unsigned long phys, const struct mem_type *type)
  534. {
  535. pud_t *pud = pud_offset(pgd, addr);
  536. unsigned long next;
  537. do {
  538. next = pud_addr_end(addr, end);
  539. alloc_init_section(pud, addr, next, phys, type);
  540. phys += next - addr;
  541. } while (pud++, addr = next, addr != end);
  542. }
  543. static void __init create_36bit_mapping(struct map_desc *md,
  544. const struct mem_type *type)
  545. {
  546. unsigned long addr, length, end;
  547. phys_addr_t phys;
  548. pgd_t *pgd;
  549. addr = md->virtual;
  550. phys = __pfn_to_phys(md->pfn);
  551. length = PAGE_ALIGN(md->length);
  552. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  553. printk(KERN_ERR "MM: CPU does not support supersection "
  554. "mapping for 0x%08llx at 0x%08lx\n",
  555. (long long)__pfn_to_phys((u64)md->pfn), addr);
  556. return;
  557. }
  558. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  559. * Since domain assignments can in fact be arbitrary, the
  560. * 'domain == 0' check below is required to insure that ARMv6
  561. * supersections are only allocated for domain 0 regardless
  562. * of the actual domain assignments in use.
  563. */
  564. if (type->domain) {
  565. printk(KERN_ERR "MM: invalid domain in supersection "
  566. "mapping for 0x%08llx at 0x%08lx\n",
  567. (long long)__pfn_to_phys((u64)md->pfn), addr);
  568. return;
  569. }
  570. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  571. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  572. " at 0x%08lx invalid alignment\n",
  573. (long long)__pfn_to_phys((u64)md->pfn), addr);
  574. return;
  575. }
  576. /*
  577. * Shift bits [35:32] of address into bits [23:20] of PMD
  578. * (See ARMv6 spec).
  579. */
  580. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  581. pgd = pgd_offset_k(addr);
  582. end = addr + length;
  583. do {
  584. pud_t *pud = pud_offset(pgd, addr);
  585. pmd_t *pmd = pmd_offset(pud, addr);
  586. int i;
  587. for (i = 0; i < 16; i++)
  588. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  589. addr += SUPERSECTION_SIZE;
  590. phys += SUPERSECTION_SIZE;
  591. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  592. } while (addr != end);
  593. }
  594. /*
  595. * Create the page directory entries and any necessary
  596. * page tables for the mapping specified by `md'. We
  597. * are able to cope here with varying sizes and address
  598. * offsets, and we take full advantage of sections and
  599. * supersections.
  600. */
  601. static void __init create_mapping(struct map_desc *md)
  602. {
  603. unsigned long addr, length, end;
  604. phys_addr_t phys;
  605. const struct mem_type *type;
  606. pgd_t *pgd;
  607. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  608. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  609. " at 0x%08lx in user region\n",
  610. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  611. return;
  612. }
  613. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  614. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  615. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  616. " at 0x%08lx overlaps vmalloc space\n",
  617. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  618. }
  619. type = &mem_types[md->type];
  620. /*
  621. * Catch 36-bit addresses
  622. */
  623. if (md->pfn >= 0x100000) {
  624. create_36bit_mapping(md, type);
  625. return;
  626. }
  627. addr = md->virtual & PAGE_MASK;
  628. phys = __pfn_to_phys(md->pfn);
  629. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  630. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  631. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  632. "be mapped using pages, ignoring.\n",
  633. (long long)__pfn_to_phys(md->pfn), addr);
  634. return;
  635. }
  636. pgd = pgd_offset_k(addr);
  637. end = addr + length;
  638. do {
  639. unsigned long next = pgd_addr_end(addr, end);
  640. alloc_init_pud(pgd, addr, next, phys, type);
  641. phys += next - addr;
  642. addr = next;
  643. } while (pgd++, addr != end);
  644. }
  645. /*
  646. * Create the architecture specific mappings
  647. */
  648. void __init iotable_init(struct map_desc *io_desc, int nr)
  649. {
  650. int i;
  651. for (i = 0; i < nr; i++)
  652. create_mapping(io_desc + i);
  653. }
  654. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  655. /*
  656. * vmalloc=size forces the vmalloc area to be exactly 'size'
  657. * bytes. This can be used to increase (or decrease) the vmalloc
  658. * area - the default is 128m.
  659. */
  660. static int __init early_vmalloc(char *arg)
  661. {
  662. unsigned long vmalloc_reserve = memparse(arg, NULL);
  663. if (vmalloc_reserve < SZ_16M) {
  664. vmalloc_reserve = SZ_16M;
  665. printk(KERN_WARNING
  666. "vmalloc area too small, limiting to %luMB\n",
  667. vmalloc_reserve >> 20);
  668. }
  669. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  670. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  671. printk(KERN_WARNING
  672. "vmalloc area is too big, limiting to %luMB\n",
  673. vmalloc_reserve >> 20);
  674. }
  675. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  676. return 0;
  677. }
  678. early_param("vmalloc", early_vmalloc);
  679. static phys_addr_t lowmem_limit __initdata = 0;
  680. static void __init sanity_check_meminfo(void)
  681. {
  682. int i, j, highmem = 0;
  683. lowmem_limit = __pa(vmalloc_min - 1) + 1;
  684. memblock_set_current_limit(lowmem_limit);
  685. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  686. struct membank *bank = &meminfo.bank[j];
  687. *bank = meminfo.bank[i];
  688. #ifdef CONFIG_HIGHMEM
  689. if (__va(bank->start) > vmalloc_min ||
  690. __va(bank->start) < (void *)PAGE_OFFSET)
  691. highmem = 1;
  692. bank->highmem = highmem;
  693. /*
  694. * Split those memory banks which are partially overlapping
  695. * the vmalloc area greatly simplifying things later.
  696. */
  697. if (__va(bank->start) < vmalloc_min &&
  698. bank->size > vmalloc_min - __va(bank->start)) {
  699. if (meminfo.nr_banks >= NR_BANKS) {
  700. printk(KERN_CRIT "NR_BANKS too low, "
  701. "ignoring high memory\n");
  702. } else {
  703. memmove(bank + 1, bank,
  704. (meminfo.nr_banks - i) * sizeof(*bank));
  705. meminfo.nr_banks++;
  706. i++;
  707. bank[1].size -= vmalloc_min - __va(bank->start);
  708. bank[1].start = __pa(vmalloc_min - 1) + 1;
  709. bank[1].highmem = highmem = 1;
  710. j++;
  711. }
  712. bank->size = vmalloc_min - __va(bank->start);
  713. }
  714. #else
  715. bank->highmem = highmem;
  716. /*
  717. * Check whether this memory bank would entirely overlap
  718. * the vmalloc area.
  719. */
  720. if (__va(bank->start) >= vmalloc_min ||
  721. __va(bank->start) < (void *)PAGE_OFFSET) {
  722. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  723. "(vmalloc region overlap).\n",
  724. (unsigned long long)bank->start,
  725. (unsigned long long)bank->start + bank->size - 1);
  726. continue;
  727. }
  728. /*
  729. * Check whether this memory bank would partially overlap
  730. * the vmalloc area.
  731. */
  732. if (__va(bank->start + bank->size) > vmalloc_min ||
  733. __va(bank->start + bank->size) < __va(bank->start)) {
  734. unsigned long newsize = vmalloc_min - __va(bank->start);
  735. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  736. "to -%.8llx (vmalloc region overlap).\n",
  737. (unsigned long long)bank->start,
  738. (unsigned long long)bank->start + bank->size - 1,
  739. (unsigned long long)bank->start + newsize - 1);
  740. bank->size = newsize;
  741. }
  742. #endif
  743. j++;
  744. }
  745. #ifdef CONFIG_HIGHMEM
  746. if (highmem) {
  747. const char *reason = NULL;
  748. if (cache_is_vipt_aliasing()) {
  749. /*
  750. * Interactions between kmap and other mappings
  751. * make highmem support with aliasing VIPT caches
  752. * rather difficult.
  753. */
  754. reason = "with VIPT aliasing cache";
  755. }
  756. if (reason) {
  757. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  758. reason);
  759. while (j > 0 && meminfo.bank[j - 1].highmem)
  760. j--;
  761. }
  762. }
  763. #endif
  764. meminfo.nr_banks = j;
  765. }
  766. static inline void prepare_page_table(void)
  767. {
  768. unsigned long addr;
  769. phys_addr_t end;
  770. /*
  771. * Clear out all the mappings below the kernel image.
  772. */
  773. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  774. pmd_clear(pmd_off_k(addr));
  775. #ifdef CONFIG_XIP_KERNEL
  776. /* The XIP kernel is mapped in the module area -- skip over it */
  777. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  778. #endif
  779. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  780. pmd_clear(pmd_off_k(addr));
  781. /*
  782. * Find the end of the first block of lowmem.
  783. */
  784. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  785. if (end >= lowmem_limit)
  786. end = lowmem_limit;
  787. /*
  788. * Clear out all the kernel space mappings, except for the first
  789. * memory bank, up to the end of the vmalloc region.
  790. */
  791. for (addr = __phys_to_virt(end);
  792. addr < VMALLOC_END; addr += PGDIR_SIZE)
  793. pmd_clear(pmd_off_k(addr));
  794. }
  795. /*
  796. * Reserve the special regions of memory
  797. */
  798. void __init arm_mm_memblock_reserve(void)
  799. {
  800. /*
  801. * Reserve the page tables. These are already in use,
  802. * and can only be in node 0.
  803. */
  804. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  805. #ifdef CONFIG_SA1111
  806. /*
  807. * Because of the SA1111 DMA bug, we want to preserve our
  808. * precious DMA-able memory...
  809. */
  810. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  811. #endif
  812. }
  813. /*
  814. * Set up device the mappings. Since we clear out the page tables for all
  815. * mappings above VMALLOC_END, we will remove any debug device mappings.
  816. * This means you have to be careful how you debug this function, or any
  817. * called function. This means you can't use any function or debugging
  818. * method which may touch any device, otherwise the kernel _will_ crash.
  819. */
  820. static void __init devicemaps_init(struct machine_desc *mdesc)
  821. {
  822. struct map_desc map;
  823. unsigned long addr;
  824. /*
  825. * Allocate the vector page early.
  826. */
  827. vectors_page = early_alloc(PAGE_SIZE);
  828. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  829. pmd_clear(pmd_off_k(addr));
  830. /*
  831. * Map the kernel if it is XIP.
  832. * It is always first in the modulearea.
  833. */
  834. #ifdef CONFIG_XIP_KERNEL
  835. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  836. map.virtual = MODULES_VADDR;
  837. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  838. map.type = MT_ROM;
  839. create_mapping(&map);
  840. #endif
  841. /*
  842. * Map the cache flushing regions.
  843. */
  844. #ifdef FLUSH_BASE
  845. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  846. map.virtual = FLUSH_BASE;
  847. map.length = SZ_1M;
  848. map.type = MT_CACHECLEAN;
  849. create_mapping(&map);
  850. #endif
  851. #ifdef FLUSH_BASE_MINICACHE
  852. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  853. map.virtual = FLUSH_BASE_MINICACHE;
  854. map.length = SZ_1M;
  855. map.type = MT_MINICLEAN;
  856. create_mapping(&map);
  857. #endif
  858. /*
  859. * Create a mapping for the machine vectors at the high-vectors
  860. * location (0xffff0000). If we aren't using high-vectors, also
  861. * create a mapping at the low-vectors virtual address.
  862. */
  863. map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
  864. map.virtual = 0xffff0000;
  865. map.length = PAGE_SIZE;
  866. map.type = MT_HIGH_VECTORS;
  867. create_mapping(&map);
  868. if (!vectors_high()) {
  869. map.virtual = 0;
  870. map.type = MT_LOW_VECTORS;
  871. create_mapping(&map);
  872. }
  873. /*
  874. * Ask the machine support to map in the statically mapped devices.
  875. */
  876. if (mdesc->map_io)
  877. mdesc->map_io();
  878. /*
  879. * Finally flush the caches and tlb to ensure that we're in a
  880. * consistent state wrt the writebuffer. This also ensures that
  881. * any write-allocated cache lines in the vector page are written
  882. * back. After this point, we can start to touch devices again.
  883. */
  884. local_flush_tlb_all();
  885. flush_cache_all();
  886. }
  887. static void __init kmap_init(void)
  888. {
  889. #ifdef CONFIG_HIGHMEM
  890. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  891. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  892. #endif
  893. }
  894. static void __init map_lowmem(void)
  895. {
  896. struct memblock_region *reg;
  897. /* Map all the lowmem memory banks. */
  898. for_each_memblock(memory, reg) {
  899. phys_addr_t start = reg->base;
  900. phys_addr_t end = start + reg->size;
  901. struct map_desc map;
  902. if (end > lowmem_limit)
  903. end = lowmem_limit;
  904. if (start >= end)
  905. break;
  906. map.pfn = __phys_to_pfn(start);
  907. map.virtual = __phys_to_virt(start);
  908. map.length = end - start;
  909. map.type = MT_MEMORY;
  910. create_mapping(&map);
  911. }
  912. }
  913. /*
  914. * paging_init() sets up the page tables, initialises the zone memory
  915. * maps, and sets up the zero page, bad page and bad page tables.
  916. */
  917. void __init paging_init(struct machine_desc *mdesc)
  918. {
  919. void *zero_page;
  920. build_mem_type_table();
  921. sanity_check_meminfo();
  922. prepare_page_table();
  923. map_lowmem();
  924. devicemaps_init(mdesc);
  925. kmap_init();
  926. top_pmd = pmd_off_k(0xffff0000);
  927. /* allocate the zero page. */
  928. zero_page = early_alloc(PAGE_SIZE);
  929. bootmem_init();
  930. empty_zero_page = virt_to_page(zero_page);
  931. __flush_dcache_page(NULL, empty_zero_page);
  932. }