prcmu.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/errno.h>
  16. #include <linux/err.h>
  17. #include <linux/io.h>
  18. #include <linux/mutex.h>
  19. #include <linux/completion.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/bitops.h>
  22. #include <linux/interrupt.h>
  23. #include <mach/hardware.h>
  24. #include <mach/prcmu-regs.h>
  25. #include <mach/prcmu-defs.h>
  26. /* Global var to runtime determine TCDM base for v2 or v1 */
  27. static __iomem void *tcdm_base;
  28. #define _MBOX_HEADER (tcdm_base + 0xFE8)
  29. #define MBOX_HEADER_REQ_MB0 (_MBOX_HEADER + 0x0)
  30. #define REQ_MB1 (tcdm_base + 0xFD0)
  31. #define REQ_MB5 (tcdm_base + 0xE44)
  32. #define REQ_MB1_ARMOPP (REQ_MB1 + 0x0)
  33. #define REQ_MB1_APEOPP (REQ_MB1 + 0x1)
  34. #define REQ_MB1_BOOSTOPP (REQ_MB1 + 0x2)
  35. #define ACK_MB1 (tcdm_base + 0xE04)
  36. #define ACK_MB5 (tcdm_base + 0xDF4)
  37. #define ACK_MB1_CURR_ARMOPP (ACK_MB1 + 0x0)
  38. #define ACK_MB1_CURR_APEOPP (ACK_MB1 + 0x1)
  39. #define REQ_MB5_I2C_SLAVE_OP (REQ_MB5)
  40. #define REQ_MB5_I2C_HW_BITS (REQ_MB5 + 1)
  41. #define REQ_MB5_I2C_REG (REQ_MB5 + 2)
  42. #define REQ_MB5_I2C_VAL (REQ_MB5 + 3)
  43. #define ACK_MB5_I2C_STATUS (ACK_MB5 + 1)
  44. #define ACK_MB5_I2C_VAL (ACK_MB5 + 3)
  45. #define PRCM_AVS_VARM_MAX_OPP (tcdm_base + 0x2E4)
  46. #define PRCM_AVS_ISMODEENABLE 7
  47. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  48. #define I2C_WRITE(slave) \
  49. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  50. #define I2C_READ(slave) \
  51. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0) | BIT(0))
  52. #define I2C_STOP_EN BIT(3)
  53. enum mb1_h {
  54. MB1H_ARM_OPP = 1,
  55. MB1H_APE_OPP,
  56. MB1H_ARM_APE_OPP,
  57. };
  58. static struct {
  59. struct mutex lock;
  60. struct completion work;
  61. struct {
  62. u8 arm_opp;
  63. u8 ape_opp;
  64. u8 arm_status;
  65. u8 ape_status;
  66. } ack;
  67. } mb1_transfer;
  68. enum ack_mb5_status {
  69. I2C_WR_OK = 0x01,
  70. I2C_RD_OK = 0x02,
  71. };
  72. #define MBOX_BIT BIT
  73. #define NUM_MBOX 8
  74. static struct {
  75. struct mutex lock;
  76. struct completion work;
  77. bool failed;
  78. struct {
  79. u8 status;
  80. u8 value;
  81. } ack;
  82. } mb5_transfer;
  83. /**
  84. * prcmu_abb_read() - Read register value(s) from the ABB.
  85. * @slave: The I2C slave address.
  86. * @reg: The (start) register address.
  87. * @value: The read out value(s).
  88. * @size: The number of registers to read.
  89. *
  90. * Reads register value(s) from the ABB.
  91. * @size has to be 1 for the current firmware version.
  92. */
  93. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  94. {
  95. int r;
  96. if (size != 1)
  97. return -EINVAL;
  98. r = mutex_lock_interruptible(&mb5_transfer.lock);
  99. if (r)
  100. return r;
  101. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  102. cpu_relax();
  103. writeb(I2C_READ(slave), REQ_MB5_I2C_SLAVE_OP);
  104. writeb(I2C_STOP_EN, REQ_MB5_I2C_HW_BITS);
  105. writeb(reg, REQ_MB5_I2C_REG);
  106. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  107. if (!wait_for_completion_timeout(&mb5_transfer.work,
  108. msecs_to_jiffies(500))) {
  109. pr_err("prcmu: prcmu_abb_read timed out.\n");
  110. r = -EIO;
  111. goto unlock_and_return;
  112. }
  113. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  114. if (!r)
  115. *value = mb5_transfer.ack.value;
  116. unlock_and_return:
  117. mutex_unlock(&mb5_transfer.lock);
  118. return r;
  119. }
  120. EXPORT_SYMBOL(prcmu_abb_read);
  121. /**
  122. * prcmu_abb_write() - Write register value(s) to the ABB.
  123. * @slave: The I2C slave address.
  124. * @reg: The (start) register address.
  125. * @value: The value(s) to write.
  126. * @size: The number of registers to write.
  127. *
  128. * Reads register value(s) from the ABB.
  129. * @size has to be 1 for the current firmware version.
  130. */
  131. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  132. {
  133. int r;
  134. if (size != 1)
  135. return -EINVAL;
  136. r = mutex_lock_interruptible(&mb5_transfer.lock);
  137. if (r)
  138. return r;
  139. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  140. cpu_relax();
  141. writeb(I2C_WRITE(slave), REQ_MB5_I2C_SLAVE_OP);
  142. writeb(I2C_STOP_EN, REQ_MB5_I2C_HW_BITS);
  143. writeb(reg, REQ_MB5_I2C_REG);
  144. writeb(*value, REQ_MB5_I2C_VAL);
  145. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  146. if (!wait_for_completion_timeout(&mb5_transfer.work,
  147. msecs_to_jiffies(500))) {
  148. pr_err("prcmu: prcmu_abb_write timed out.\n");
  149. r = -EIO;
  150. goto unlock_and_return;
  151. }
  152. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  153. unlock_and_return:
  154. mutex_unlock(&mb5_transfer.lock);
  155. return r;
  156. }
  157. EXPORT_SYMBOL(prcmu_abb_write);
  158. static int set_ape_cpu_opps(u8 header, enum prcmu_ape_opp ape_opp,
  159. enum prcmu_cpu_opp cpu_opp)
  160. {
  161. bool do_ape;
  162. bool do_arm;
  163. int err = 0;
  164. do_ape = ((header == MB1H_APE_OPP) || (header == MB1H_ARM_APE_OPP));
  165. do_arm = ((header == MB1H_ARM_OPP) || (header == MB1H_ARM_APE_OPP));
  166. mutex_lock(&mb1_transfer.lock);
  167. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  168. cpu_relax();
  169. writeb(0, MBOX_HEADER_REQ_MB0);
  170. writeb(cpu_opp, REQ_MB1_ARMOPP);
  171. writeb(ape_opp, REQ_MB1_APEOPP);
  172. writeb(0, REQ_MB1_BOOSTOPP);
  173. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  174. wait_for_completion(&mb1_transfer.work);
  175. if ((do_ape) && (mb1_transfer.ack.ape_status != 0))
  176. err = -EIO;
  177. if ((do_arm) && (mb1_transfer.ack.arm_status != 0))
  178. err = -EIO;
  179. mutex_unlock(&mb1_transfer.lock);
  180. return err;
  181. }
  182. /**
  183. * prcmu_set_ape_opp() - Set the OPP of the APE.
  184. * @opp: The OPP to set.
  185. *
  186. * This function sets the OPP of the APE.
  187. */
  188. int prcmu_set_ape_opp(enum prcmu_ape_opp opp)
  189. {
  190. return set_ape_cpu_opps(MB1H_APE_OPP, opp, APE_OPP_NO_CHANGE);
  191. }
  192. EXPORT_SYMBOL(prcmu_set_ape_opp);
  193. /**
  194. * prcmu_set_cpu_opp() - Set the OPP of the CPU.
  195. * @opp: The OPP to set.
  196. *
  197. * This function sets the OPP of the CPU.
  198. */
  199. int prcmu_set_cpu_opp(enum prcmu_cpu_opp opp)
  200. {
  201. return set_ape_cpu_opps(MB1H_ARM_OPP, CPU_OPP_NO_CHANGE, opp);
  202. }
  203. EXPORT_SYMBOL(prcmu_set_cpu_opp);
  204. /**
  205. * prcmu_set_ape_cpu_opps() - Set the OPPs of the APE and the CPU.
  206. * @ape_opp: The APE OPP to set.
  207. * @cpu_opp: The CPU OPP to set.
  208. *
  209. * This function sets the OPPs of the APE and the CPU.
  210. */
  211. int prcmu_set_ape_cpu_opps(enum prcmu_ape_opp ape_opp,
  212. enum prcmu_cpu_opp cpu_opp)
  213. {
  214. return set_ape_cpu_opps(MB1H_ARM_APE_OPP, ape_opp, cpu_opp);
  215. }
  216. EXPORT_SYMBOL(prcmu_set_ape_cpu_opps);
  217. /**
  218. * prcmu_get_ape_opp() - Get the OPP of the APE.
  219. *
  220. * This function gets the OPP of the APE.
  221. */
  222. enum prcmu_ape_opp prcmu_get_ape_opp(void)
  223. {
  224. return readb(ACK_MB1_CURR_APEOPP);
  225. }
  226. EXPORT_SYMBOL(prcmu_get_ape_opp);
  227. /**
  228. * prcmu_get_cpu_opp() - Get the OPP of the CPU.
  229. *
  230. * This function gets the OPP of the CPU. The OPP is specified in %%.
  231. * PRCMU_OPP_EXT is a special OPP value, not specified in %%.
  232. */
  233. int prcmu_get_cpu_opp(void)
  234. {
  235. return readb(ACK_MB1_CURR_ARMOPP);
  236. }
  237. EXPORT_SYMBOL(prcmu_get_cpu_opp);
  238. bool prcmu_has_arm_maxopp(void)
  239. {
  240. return (readb(PRCM_AVS_VARM_MAX_OPP) & PRCM_AVS_ISMODEENABLE_MASK)
  241. == PRCM_AVS_ISMODEENABLE_MASK;
  242. }
  243. static void read_mailbox_0(void)
  244. {
  245. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLEAR);
  246. }
  247. static void read_mailbox_1(void)
  248. {
  249. mb1_transfer.ack.arm_opp = readb(ACK_MB1_CURR_ARMOPP);
  250. mb1_transfer.ack.ape_opp = readb(ACK_MB1_CURR_APEOPP);
  251. complete(&mb1_transfer.work);
  252. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLEAR);
  253. }
  254. static void read_mailbox_2(void)
  255. {
  256. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLEAR);
  257. }
  258. static void read_mailbox_3(void)
  259. {
  260. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLEAR);
  261. }
  262. static void read_mailbox_4(void)
  263. {
  264. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLEAR);
  265. }
  266. static void read_mailbox_5(void)
  267. {
  268. mb5_transfer.ack.status = readb(ACK_MB5_I2C_STATUS);
  269. mb5_transfer.ack.value = readb(ACK_MB5_I2C_VAL);
  270. complete(&mb5_transfer.work);
  271. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLEAR);
  272. }
  273. static void read_mailbox_6(void)
  274. {
  275. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLEAR);
  276. }
  277. static void read_mailbox_7(void)
  278. {
  279. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLEAR);
  280. }
  281. static void (* const read_mailbox[NUM_MBOX])(void) = {
  282. read_mailbox_0,
  283. read_mailbox_1,
  284. read_mailbox_2,
  285. read_mailbox_3,
  286. read_mailbox_4,
  287. read_mailbox_5,
  288. read_mailbox_6,
  289. read_mailbox_7
  290. };
  291. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  292. {
  293. u32 bits;
  294. u8 n;
  295. bits = (readl(PRCM_ARM_IT1_VAL) & (MBOX_BIT(NUM_MBOX) - 1));
  296. if (unlikely(!bits))
  297. return IRQ_NONE;
  298. for (n = 0; bits; n++) {
  299. if (bits & MBOX_BIT(n)) {
  300. bits -= MBOX_BIT(n);
  301. read_mailbox[n]();
  302. }
  303. }
  304. return IRQ_HANDLED;
  305. }
  306. void __init prcmu_early_init(void)
  307. {
  308. if (cpu_is_u8500v11() || cpu_is_u8500ed()) {
  309. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
  310. } else if (cpu_is_u8500v2()) {
  311. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  312. } else {
  313. pr_err("prcmu: Unsupported chip version\n");
  314. BUG();
  315. }
  316. }
  317. static int __init prcmu_init(void)
  318. {
  319. if (cpu_is_u8500ed()) {
  320. pr_err("prcmu: Unsupported chip version\n");
  321. return 0;
  322. }
  323. mutex_init(&mb1_transfer.lock);
  324. init_completion(&mb1_transfer.work);
  325. mutex_init(&mb5_transfer.lock);
  326. init_completion(&mb5_transfer.work);
  327. /* Clean up the mailbox interrupts after pre-kernel code. */
  328. writel((MBOX_BIT(NUM_MBOX) - 1), PRCM_ARM_IT1_CLEAR);
  329. return request_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler, 0,
  330. "prcmu", NULL);
  331. }
  332. arch_initcall(prcmu_init);