cpufreq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /* linux/arch/arm/mach-exynos4/cpufreq.c
  2. *
  3. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 - CPU frequency scaling support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/err.h>
  15. #include <linux/clk.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/regulator/consumer.h>
  19. #include <linux/cpufreq.h>
  20. #include <mach/map.h>
  21. #include <mach/regs-clock.h>
  22. #include <mach/regs-mem.h>
  23. #include <plat/clock.h>
  24. #include <plat/pm.h>
  25. static struct clk *cpu_clk;
  26. static struct clk *moutcore;
  27. static struct clk *mout_mpll;
  28. static struct clk *mout_apll;
  29. static struct regulator *arm_regulator;
  30. static struct regulator *int_regulator;
  31. static struct cpufreq_freqs freqs;
  32. static unsigned int memtype;
  33. enum exynos4_memory_type {
  34. DDR2 = 4,
  35. LPDDR2,
  36. DDR3,
  37. };
  38. enum cpufreq_level_index {
  39. L0, L1, L2, L3, CPUFREQ_LEVEL_END,
  40. };
  41. static struct cpufreq_frequency_table exynos4_freq_table[] = {
  42. {L0, 1000*1000},
  43. {L1, 800*1000},
  44. {L2, 400*1000},
  45. {L3, 100*1000},
  46. {0, CPUFREQ_TABLE_END},
  47. };
  48. static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = {
  49. /*
  50. * Clock divider value for following
  51. * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH,
  52. * DIVATB, DIVPCLK_DBG, DIVAPLL }
  53. */
  54. /* ARM L0: 1000MHz */
  55. { 0, 3, 7, 3, 3, 0, 1 },
  56. /* ARM L1: 800MHz */
  57. { 0, 3, 7, 3, 3, 0, 1 },
  58. /* ARM L2: 400MHz */
  59. { 0, 1, 3, 1, 3, 0, 1 },
  60. /* ARM L3: 100MHz */
  61. { 0, 0, 1, 0, 3, 1, 1 },
  62. };
  63. static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
  64. /*
  65. * Clock divider value for following
  66. * { DIVCOPY, DIVHPM }
  67. */
  68. /* ARM L0: 1000MHz */
  69. { 3, 0 },
  70. /* ARM L1: 800MHz */
  71. { 3, 0 },
  72. /* ARM L2: 400MHz */
  73. { 3, 0 },
  74. /* ARM L3: 100MHz */
  75. { 3, 0 },
  76. };
  77. static unsigned int clkdiv_dmc0[CPUFREQ_LEVEL_END][8] = {
  78. /*
  79. * Clock divider value for following
  80. * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
  81. * DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
  82. */
  83. /* DMC L0: 400MHz */
  84. { 3, 1, 1, 1, 1, 1, 3, 1 },
  85. /* DMC L1: 400MHz */
  86. { 3, 1, 1, 1, 1, 1, 3, 1 },
  87. /* DMC L2: 266.7MHz */
  88. { 7, 1, 1, 2, 1, 1, 3, 1 },
  89. /* DMC L3: 200MHz */
  90. { 7, 1, 1, 3, 1, 1, 3, 1 },
  91. };
  92. static unsigned int clkdiv_top[CPUFREQ_LEVEL_END][5] = {
  93. /*
  94. * Clock divider value for following
  95. * { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
  96. */
  97. /* ACLK200 L0: 200MHz */
  98. { 3, 7, 4, 5, 1 },
  99. /* ACLK200 L1: 200MHz */
  100. { 3, 7, 4, 5, 1 },
  101. /* ACLK200 L2: 160MHz */
  102. { 4, 7, 5, 7, 1 },
  103. /* ACLK200 L3: 133.3MHz */
  104. { 5, 7, 7, 7, 1 },
  105. };
  106. static unsigned int clkdiv_lr_bus[CPUFREQ_LEVEL_END][2] = {
  107. /*
  108. * Clock divider value for following
  109. * { DIVGDL/R, DIVGPL/R }
  110. */
  111. /* ACLK_GDL/R L0: 200MHz */
  112. { 3, 1 },
  113. /* ACLK_GDL/R L1: 200MHz */
  114. { 3, 1 },
  115. /* ACLK_GDL/R L2: 160MHz */
  116. { 4, 1 },
  117. /* ACLK_GDL/R L3: 133.3MHz */
  118. { 5, 1 },
  119. };
  120. struct cpufreq_voltage_table {
  121. unsigned int index; /* any */
  122. unsigned int arm_volt; /* uV */
  123. unsigned int int_volt;
  124. };
  125. static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
  126. {
  127. .index = L0,
  128. .arm_volt = 1200000,
  129. .int_volt = 1100000,
  130. }, {
  131. .index = L1,
  132. .arm_volt = 1100000,
  133. .int_volt = 1100000,
  134. }, {
  135. .index = L2,
  136. .arm_volt = 1000000,
  137. .int_volt = 1000000,
  138. }, {
  139. .index = L3,
  140. .arm_volt = 900000,
  141. .int_volt = 1000000,
  142. },
  143. };
  144. static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
  145. /* APLL FOUT L0: 1000MHz */
  146. ((250 << 16) | (6 << 8) | 1),
  147. /* APLL FOUT L1: 800MHz */
  148. ((200 << 16) | (6 << 8) | 1),
  149. /* APLL FOUT L2 : 400MHz */
  150. ((200 << 16) | (6 << 8) | 2),
  151. /* APLL FOUT L3: 100MHz */
  152. ((200 << 16) | (6 << 8) | 4),
  153. };
  154. int exynos4_verify_speed(struct cpufreq_policy *policy)
  155. {
  156. return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
  157. }
  158. unsigned int exynos4_getspeed(unsigned int cpu)
  159. {
  160. return clk_get_rate(cpu_clk) / 1000;
  161. }
  162. void exynos4_set_clkdiv(unsigned int div_index)
  163. {
  164. unsigned int tmp;
  165. /* Change Divider - CPU0 */
  166. tmp = __raw_readl(S5P_CLKDIV_CPU);
  167. tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
  168. S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
  169. S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
  170. S5P_CLKDIV_CPU0_APLL_MASK);
  171. tmp |= ((clkdiv_cpu0[div_index][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
  172. (clkdiv_cpu0[div_index][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
  173. (clkdiv_cpu0[div_index][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) |
  174. (clkdiv_cpu0[div_index][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) |
  175. (clkdiv_cpu0[div_index][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) |
  176. (clkdiv_cpu0[div_index][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
  177. (clkdiv_cpu0[div_index][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
  178. __raw_writel(tmp, S5P_CLKDIV_CPU);
  179. do {
  180. tmp = __raw_readl(S5P_CLKDIV_STATCPU);
  181. } while (tmp & 0x1111111);
  182. /* Change Divider - CPU1 */
  183. tmp = __raw_readl(S5P_CLKDIV_CPU1);
  184. tmp &= ~((0x7 << 4) | 0x7);
  185. tmp |= ((clkdiv_cpu1[div_index][0] << 4) |
  186. (clkdiv_cpu1[div_index][1] << 0));
  187. __raw_writel(tmp, S5P_CLKDIV_CPU1);
  188. do {
  189. tmp = __raw_readl(S5P_CLKDIV_STATCPU1);
  190. } while (tmp & 0x11);
  191. /* Change Divider - DMC0 */
  192. tmp = __raw_readl(S5P_CLKDIV_DMC0);
  193. tmp &= ~(S5P_CLKDIV_DMC0_ACP_MASK | S5P_CLKDIV_DMC0_ACPPCLK_MASK |
  194. S5P_CLKDIV_DMC0_DPHY_MASK | S5P_CLKDIV_DMC0_DMC_MASK |
  195. S5P_CLKDIV_DMC0_DMCD_MASK | S5P_CLKDIV_DMC0_DMCP_MASK |
  196. S5P_CLKDIV_DMC0_COPY2_MASK | S5P_CLKDIV_DMC0_CORETI_MASK);
  197. tmp |= ((clkdiv_dmc0[div_index][0] << S5P_CLKDIV_DMC0_ACP_SHIFT) |
  198. (clkdiv_dmc0[div_index][1] << S5P_CLKDIV_DMC0_ACPPCLK_SHIFT) |
  199. (clkdiv_dmc0[div_index][2] << S5P_CLKDIV_DMC0_DPHY_SHIFT) |
  200. (clkdiv_dmc0[div_index][3] << S5P_CLKDIV_DMC0_DMC_SHIFT) |
  201. (clkdiv_dmc0[div_index][4] << S5P_CLKDIV_DMC0_DMCD_SHIFT) |
  202. (clkdiv_dmc0[div_index][5] << S5P_CLKDIV_DMC0_DMCP_SHIFT) |
  203. (clkdiv_dmc0[div_index][6] << S5P_CLKDIV_DMC0_COPY2_SHIFT) |
  204. (clkdiv_dmc0[div_index][7] << S5P_CLKDIV_DMC0_CORETI_SHIFT));
  205. __raw_writel(tmp, S5P_CLKDIV_DMC0);
  206. do {
  207. tmp = __raw_readl(S5P_CLKDIV_STAT_DMC0);
  208. } while (tmp & 0x11111111);
  209. /* Change Divider - TOP */
  210. tmp = __raw_readl(S5P_CLKDIV_TOP);
  211. tmp &= ~(S5P_CLKDIV_TOP_ACLK200_MASK | S5P_CLKDIV_TOP_ACLK100_MASK |
  212. S5P_CLKDIV_TOP_ACLK160_MASK | S5P_CLKDIV_TOP_ACLK133_MASK |
  213. S5P_CLKDIV_TOP_ONENAND_MASK);
  214. tmp |= ((clkdiv_top[div_index][0] << S5P_CLKDIV_TOP_ACLK200_SHIFT) |
  215. (clkdiv_top[div_index][1] << S5P_CLKDIV_TOP_ACLK100_SHIFT) |
  216. (clkdiv_top[div_index][2] << S5P_CLKDIV_TOP_ACLK160_SHIFT) |
  217. (clkdiv_top[div_index][3] << S5P_CLKDIV_TOP_ACLK133_SHIFT) |
  218. (clkdiv_top[div_index][4] << S5P_CLKDIV_TOP_ONENAND_SHIFT));
  219. __raw_writel(tmp, S5P_CLKDIV_TOP);
  220. do {
  221. tmp = __raw_readl(S5P_CLKDIV_STAT_TOP);
  222. } while (tmp & 0x11111);
  223. /* Change Divider - LEFTBUS */
  224. tmp = __raw_readl(S5P_CLKDIV_LEFTBUS);
  225. tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
  226. tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
  227. (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
  228. __raw_writel(tmp, S5P_CLKDIV_LEFTBUS);
  229. do {
  230. tmp = __raw_readl(S5P_CLKDIV_STAT_LEFTBUS);
  231. } while (tmp & 0x11);
  232. /* Change Divider - RIGHTBUS */
  233. tmp = __raw_readl(S5P_CLKDIV_RIGHTBUS);
  234. tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
  235. tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
  236. (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
  237. __raw_writel(tmp, S5P_CLKDIV_RIGHTBUS);
  238. do {
  239. tmp = __raw_readl(S5P_CLKDIV_STAT_RIGHTBUS);
  240. } while (tmp & 0x11);
  241. }
  242. static void exynos4_set_apll(unsigned int index)
  243. {
  244. unsigned int tmp;
  245. /* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
  246. clk_set_parent(moutcore, mout_mpll);
  247. do {
  248. tmp = (__raw_readl(S5P_CLKMUX_STATCPU)
  249. >> S5P_CLKSRC_CPU_MUXCORE_SHIFT);
  250. tmp &= 0x7;
  251. } while (tmp != 0x2);
  252. /* 2. Set APLL Lock time */
  253. __raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK);
  254. /* 3. Change PLL PMS values */
  255. tmp = __raw_readl(S5P_APLL_CON0);
  256. tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
  257. tmp |= exynos4_apll_pms_table[index];
  258. __raw_writel(tmp, S5P_APLL_CON0);
  259. /* 4. wait_lock_time */
  260. do {
  261. tmp = __raw_readl(S5P_APLL_CON0);
  262. } while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT)));
  263. /* 5. MUX_CORE_SEL = APLL */
  264. clk_set_parent(moutcore, mout_apll);
  265. do {
  266. tmp = __raw_readl(S5P_CLKMUX_STATCPU);
  267. tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK;
  268. } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
  269. }
  270. static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index)
  271. {
  272. unsigned int tmp;
  273. if (old_index > new_index) {
  274. /* The frequency changing to L0 needs to change apll */
  275. if (freqs.new == exynos4_freq_table[L0].frequency) {
  276. /* 1. Change the system clock divider values */
  277. exynos4_set_clkdiv(new_index);
  278. /* 2. Change the apll m,p,s value */
  279. exynos4_set_apll(new_index);
  280. } else {
  281. /* 1. Change the system clock divider values */
  282. exynos4_set_clkdiv(new_index);
  283. /* 2. Change just s value in apll m,p,s value */
  284. tmp = __raw_readl(S5P_APLL_CON0);
  285. tmp &= ~(0x7 << 0);
  286. tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
  287. __raw_writel(tmp, S5P_APLL_CON0);
  288. }
  289. }
  290. else if (old_index < new_index) {
  291. /* The frequency changing from L0 needs to change apll */
  292. if (freqs.old == exynos4_freq_table[L0].frequency) {
  293. /* 1. Change the apll m,p,s value */
  294. exynos4_set_apll(new_index);
  295. /* 2. Change the system clock divider values */
  296. exynos4_set_clkdiv(new_index);
  297. } else {
  298. /* 1. Change just s value in apll m,p,s value */
  299. tmp = __raw_readl(S5P_APLL_CON0);
  300. tmp &= ~(0x7 << 0);
  301. tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
  302. __raw_writel(tmp, S5P_APLL_CON0);
  303. /* 2. Change the system clock divider values */
  304. exynos4_set_clkdiv(new_index);
  305. }
  306. }
  307. }
  308. static int exynos4_target(struct cpufreq_policy *policy,
  309. unsigned int target_freq,
  310. unsigned int relation)
  311. {
  312. unsigned int index, old_index;
  313. unsigned int arm_volt, int_volt;
  314. freqs.old = exynos4_getspeed(policy->cpu);
  315. if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
  316. freqs.old, relation, &old_index))
  317. return -EINVAL;
  318. if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
  319. target_freq, relation, &index))
  320. return -EINVAL;
  321. freqs.new = exynos4_freq_table[index].frequency;
  322. freqs.cpu = policy->cpu;
  323. if (freqs.new == freqs.old)
  324. return 0;
  325. /* get the voltage value */
  326. arm_volt = exynos4_volt_table[index].arm_volt;
  327. int_volt = exynos4_volt_table[index].int_volt;
  328. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  329. /* control regulator */
  330. if (freqs.new > freqs.old) {
  331. /* Voltage up */
  332. regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
  333. regulator_set_voltage(int_regulator, int_volt, int_volt);
  334. }
  335. /* Clock Configuration Procedure */
  336. exynos4_set_frequency(old_index, index);
  337. /* control regulator */
  338. if (freqs.new < freqs.old) {
  339. /* Voltage down */
  340. regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
  341. regulator_set_voltage(int_regulator, int_volt, int_volt);
  342. }
  343. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  344. return 0;
  345. }
  346. #ifdef CONFIG_PM
  347. static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
  348. {
  349. return 0;
  350. }
  351. static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
  352. {
  353. return 0;
  354. }
  355. #endif
  356. static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
  357. {
  358. policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
  359. cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
  360. /* set the transition latency value */
  361. policy->cpuinfo.transition_latency = 100000;
  362. /*
  363. * EXYNOS4 multi-core processors has 2 cores
  364. * that the frequency cannot be set independently.
  365. * Each cpu is bound to the same speed.
  366. * So the affected cpu is all of the cpus.
  367. */
  368. cpumask_setall(policy->cpus);
  369. return cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
  370. }
  371. static struct cpufreq_driver exynos4_driver = {
  372. .flags = CPUFREQ_STICKY,
  373. .verify = exynos4_verify_speed,
  374. .target = exynos4_target,
  375. .get = exynos4_getspeed,
  376. .init = exynos4_cpufreq_cpu_init,
  377. .name = "exynos4_cpufreq",
  378. #ifdef CONFIG_PM
  379. .suspend = exynos4_cpufreq_suspend,
  380. .resume = exynos4_cpufreq_resume,
  381. #endif
  382. };
  383. static int __init exynos4_cpufreq_init(void)
  384. {
  385. cpu_clk = clk_get(NULL, "armclk");
  386. if (IS_ERR(cpu_clk))
  387. return PTR_ERR(cpu_clk);
  388. moutcore = clk_get(NULL, "moutcore");
  389. if (IS_ERR(moutcore))
  390. goto out;
  391. mout_mpll = clk_get(NULL, "mout_mpll");
  392. if (IS_ERR(mout_mpll))
  393. goto out;
  394. mout_apll = clk_get(NULL, "mout_apll");
  395. if (IS_ERR(mout_apll))
  396. goto out;
  397. arm_regulator = regulator_get(NULL, "vdd_arm");
  398. if (IS_ERR(arm_regulator)) {
  399. printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
  400. goto out;
  401. }
  402. int_regulator = regulator_get(NULL, "vdd_int");
  403. if (IS_ERR(int_regulator)) {
  404. printk(KERN_ERR "failed to get resource %s\n", "vdd_int");
  405. goto out;
  406. }
  407. /*
  408. * Check DRAM type.
  409. * Because DVFS level is different according to DRAM type.
  410. */
  411. memtype = __raw_readl(S5P_VA_DMC0 + S5P_DMC0_MEMCON_OFFSET);
  412. memtype = (memtype >> S5P_DMC0_MEMTYPE_SHIFT);
  413. memtype &= S5P_DMC0_MEMTYPE_MASK;
  414. if ((memtype < DDR2) && (memtype > DDR3)) {
  415. printk(KERN_ERR "%s: wrong memtype= 0x%x\n", __func__, memtype);
  416. goto out;
  417. } else {
  418. printk(KERN_DEBUG "%s: memtype= 0x%x\n", __func__, memtype);
  419. }
  420. return cpufreq_register_driver(&exynos4_driver);
  421. out:
  422. if (!IS_ERR(cpu_clk))
  423. clk_put(cpu_clk);
  424. if (!IS_ERR(moutcore))
  425. clk_put(moutcore);
  426. if (!IS_ERR(mout_mpll))
  427. clk_put(mout_mpll);
  428. if (!IS_ERR(mout_apll))
  429. clk_put(mout_apll);
  430. if (!IS_ERR(arm_regulator))
  431. regulator_put(arm_regulator);
  432. if (!IS_ERR(int_regulator))
  433. regulator_put(int_regulator);
  434. printk(KERN_ERR "%s: failed initialization\n", __func__);
  435. return -EINVAL;
  436. }
  437. late_initcall(exynos4_cpufreq_init);