smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/ftrace.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/cpu.h>
  23. #include <linux/smp.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/irq.h>
  26. #include <linux/percpu.h>
  27. #include <linux/clockchips.h>
  28. #include <linux/completion.h>
  29. #include <asm/atomic.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/processor.h>
  37. #include <asm/sections.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/ptrace.h>
  40. #include <asm/localtimer.h>
  41. /*
  42. * as from 2.5, kernels no longer have an init_tasks structure
  43. * so we need some other way of telling a new secondary core
  44. * where to place its SVC stack
  45. */
  46. struct secondary_data secondary_data;
  47. enum ipi_msg_type {
  48. IPI_TIMER = 2,
  49. IPI_RESCHEDULE,
  50. IPI_CALL_FUNC,
  51. IPI_CALL_FUNC_SINGLE,
  52. IPI_CPU_STOP,
  53. };
  54. int __cpuinit __cpu_up(unsigned int cpu)
  55. {
  56. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  57. struct task_struct *idle = ci->idle;
  58. pgd_t *pgd;
  59. int ret;
  60. /*
  61. * Spawn a new process manually, if not already done.
  62. * Grab a pointer to its task struct so we can mess with it
  63. */
  64. if (!idle) {
  65. idle = fork_idle(cpu);
  66. if (IS_ERR(idle)) {
  67. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  68. return PTR_ERR(idle);
  69. }
  70. ci->idle = idle;
  71. } else {
  72. /*
  73. * Since this idle thread is being re-used, call
  74. * init_idle() to reinitialize the thread structure.
  75. */
  76. init_idle(idle, cpu);
  77. }
  78. /*
  79. * Allocate initial page tables to allow the new CPU to
  80. * enable the MMU safely. This essentially means a set
  81. * of our "standard" page tables, with the addition of
  82. * a 1:1 mapping for the physical address of the kernel.
  83. */
  84. pgd = pgd_alloc(&init_mm);
  85. if (!pgd)
  86. return -ENOMEM;
  87. if (PHYS_OFFSET != PAGE_OFFSET) {
  88. #ifndef CONFIG_HOTPLUG_CPU
  89. identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
  90. #endif
  91. identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
  92. identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
  93. }
  94. /*
  95. * We need to tell the secondary core where to find
  96. * its stack and the page tables.
  97. */
  98. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  99. secondary_data.pgdir = virt_to_phys(pgd);
  100. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  101. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  102. /*
  103. * Now bring the CPU into our world.
  104. */
  105. ret = boot_secondary(cpu, idle);
  106. if (ret == 0) {
  107. unsigned long timeout;
  108. /*
  109. * CPU was successfully started, wait for it
  110. * to come online or time out.
  111. */
  112. timeout = jiffies + HZ;
  113. while (time_before(jiffies, timeout)) {
  114. if (cpu_online(cpu))
  115. break;
  116. udelay(10);
  117. barrier();
  118. }
  119. if (!cpu_online(cpu)) {
  120. pr_crit("CPU%u: failed to come online\n", cpu);
  121. ret = -EIO;
  122. }
  123. } else {
  124. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  125. }
  126. secondary_data.stack = NULL;
  127. secondary_data.pgdir = 0;
  128. if (PHYS_OFFSET != PAGE_OFFSET) {
  129. #ifndef CONFIG_HOTPLUG_CPU
  130. identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
  131. #endif
  132. identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
  133. identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
  134. }
  135. pgd_free(&init_mm, pgd);
  136. return ret;
  137. }
  138. #ifdef CONFIG_HOTPLUG_CPU
  139. static void percpu_timer_stop(void);
  140. /*
  141. * __cpu_disable runs on the processor to be shutdown.
  142. */
  143. int __cpu_disable(void)
  144. {
  145. unsigned int cpu = smp_processor_id();
  146. struct task_struct *p;
  147. int ret;
  148. ret = platform_cpu_disable(cpu);
  149. if (ret)
  150. return ret;
  151. /*
  152. * Take this CPU offline. Once we clear this, we can't return,
  153. * and we must not schedule until we're ready to give up the cpu.
  154. */
  155. set_cpu_online(cpu, false);
  156. /*
  157. * OK - migrate IRQs away from this CPU
  158. */
  159. migrate_irqs();
  160. /*
  161. * Stop the local timer for this CPU.
  162. */
  163. percpu_timer_stop();
  164. /*
  165. * Flush user cache and TLB mappings, and then remove this CPU
  166. * from the vm mask set of all processes.
  167. */
  168. flush_cache_all();
  169. local_flush_tlb_all();
  170. read_lock(&tasklist_lock);
  171. for_each_process(p) {
  172. if (p->mm)
  173. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  174. }
  175. read_unlock(&tasklist_lock);
  176. return 0;
  177. }
  178. static DECLARE_COMPLETION(cpu_died);
  179. /*
  180. * called on the thread which is asking for a CPU to be shutdown -
  181. * waits until shutdown has completed, or it is timed out.
  182. */
  183. void __cpu_die(unsigned int cpu)
  184. {
  185. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  186. pr_err("CPU%u: cpu didn't die\n", cpu);
  187. return;
  188. }
  189. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  190. if (!platform_cpu_kill(cpu))
  191. printk("CPU%u: unable to kill\n", cpu);
  192. }
  193. /*
  194. * Called from the idle thread for the CPU which has been shutdown.
  195. *
  196. * Note that we disable IRQs here, but do not re-enable them
  197. * before returning to the caller. This is also the behaviour
  198. * of the other hotplug-cpu capable cores, so presumably coming
  199. * out of idle fixes this.
  200. */
  201. void __ref cpu_die(void)
  202. {
  203. unsigned int cpu = smp_processor_id();
  204. idle_task_exit();
  205. local_irq_disable();
  206. mb();
  207. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  208. complete(&cpu_died);
  209. /*
  210. * actual CPU shutdown procedure is at least platform (if not
  211. * CPU) specific.
  212. */
  213. platform_cpu_die(cpu);
  214. /*
  215. * Do not return to the idle loop - jump back to the secondary
  216. * cpu initialisation. There's some initialisation which needs
  217. * to be repeated to undo the effects of taking the CPU offline.
  218. */
  219. __asm__("mov sp, %0\n"
  220. " mov fp, #0\n"
  221. " b secondary_start_kernel"
  222. :
  223. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  224. }
  225. #endif /* CONFIG_HOTPLUG_CPU */
  226. /*
  227. * Called by both boot and secondaries to move global data into
  228. * per-processor storage.
  229. */
  230. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  231. {
  232. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  233. cpu_info->loops_per_jiffy = loops_per_jiffy;
  234. }
  235. /*
  236. * This is the secondary CPU boot entry. We're using this CPUs
  237. * idle thread stack, but a set of temporary page tables.
  238. */
  239. asmlinkage void __cpuinit secondary_start_kernel(void)
  240. {
  241. struct mm_struct *mm = &init_mm;
  242. unsigned int cpu = smp_processor_id();
  243. printk("CPU%u: Booted secondary processor\n", cpu);
  244. /*
  245. * All kernel threads share the same mm context; grab a
  246. * reference and switch to it.
  247. */
  248. atomic_inc(&mm->mm_count);
  249. current->active_mm = mm;
  250. cpumask_set_cpu(cpu, mm_cpumask(mm));
  251. cpu_switch_mm(mm->pgd, mm);
  252. enter_lazy_tlb(mm, current);
  253. local_flush_tlb_all();
  254. cpu_init();
  255. preempt_disable();
  256. trace_hardirqs_off();
  257. /*
  258. * Give the platform a chance to do its own initialisation.
  259. */
  260. platform_secondary_init(cpu);
  261. /*
  262. * Enable local interrupts.
  263. */
  264. notify_cpu_starting(cpu);
  265. local_irq_enable();
  266. local_fiq_enable();
  267. /*
  268. * Setup the percpu timer for this CPU.
  269. */
  270. percpu_timer_setup();
  271. calibrate_delay();
  272. smp_store_cpu_info(cpu);
  273. /*
  274. * OK, now it's safe to let the boot CPU continue
  275. */
  276. set_cpu_online(cpu, true);
  277. /*
  278. * OK, it's off to the idle thread for us
  279. */
  280. cpu_idle();
  281. }
  282. void __init smp_cpus_done(unsigned int max_cpus)
  283. {
  284. int cpu;
  285. unsigned long bogosum = 0;
  286. for_each_online_cpu(cpu)
  287. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  288. printk(KERN_INFO "SMP: Total of %d processors activated "
  289. "(%lu.%02lu BogoMIPS).\n",
  290. num_online_cpus(),
  291. bogosum / (500000/HZ),
  292. (bogosum / (5000/HZ)) % 100);
  293. }
  294. void __init smp_prepare_boot_cpu(void)
  295. {
  296. unsigned int cpu = smp_processor_id();
  297. per_cpu(cpu_data, cpu).idle = current;
  298. }
  299. void __init smp_prepare_cpus(unsigned int max_cpus)
  300. {
  301. unsigned int ncores = num_possible_cpus();
  302. smp_store_cpu_info(smp_processor_id());
  303. /*
  304. * are we trying to boot more cores than exist?
  305. */
  306. if (max_cpus > ncores)
  307. max_cpus = ncores;
  308. if (max_cpus > 1) {
  309. /*
  310. * Enable the local timer or broadcast device for the
  311. * boot CPU, but only if we have more than one CPU.
  312. */
  313. percpu_timer_setup();
  314. /*
  315. * Initialise the SCU if there are more than one CPU
  316. * and let them know where to start.
  317. */
  318. platform_smp_prepare_cpus(max_cpus);
  319. }
  320. }
  321. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  322. {
  323. smp_cross_call(mask, IPI_CALL_FUNC);
  324. }
  325. void arch_send_call_function_single_ipi(int cpu)
  326. {
  327. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  328. }
  329. static const char *ipi_types[NR_IPI] = {
  330. #define S(x,s) [x - IPI_TIMER] = s
  331. S(IPI_TIMER, "Timer broadcast interrupts"),
  332. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  333. S(IPI_CALL_FUNC, "Function call interrupts"),
  334. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  335. S(IPI_CPU_STOP, "CPU stop interrupts"),
  336. };
  337. void show_ipi_list(struct seq_file *p, int prec)
  338. {
  339. unsigned int cpu, i;
  340. for (i = 0; i < NR_IPI; i++) {
  341. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  342. for_each_present_cpu(cpu)
  343. seq_printf(p, "%10u ",
  344. __get_irq_stat(cpu, ipi_irqs[i]));
  345. seq_printf(p, " %s\n", ipi_types[i]);
  346. }
  347. }
  348. u64 smp_irq_stat_cpu(unsigned int cpu)
  349. {
  350. u64 sum = 0;
  351. int i;
  352. for (i = 0; i < NR_IPI; i++)
  353. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  354. #ifdef CONFIG_LOCAL_TIMERS
  355. sum += __get_irq_stat(cpu, local_timer_irqs);
  356. #endif
  357. return sum;
  358. }
  359. /*
  360. * Timer (local or broadcast) support
  361. */
  362. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  363. static void ipi_timer(void)
  364. {
  365. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  366. irq_enter();
  367. evt->event_handler(evt);
  368. irq_exit();
  369. }
  370. #ifdef CONFIG_LOCAL_TIMERS
  371. asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
  372. {
  373. struct pt_regs *old_regs = set_irq_regs(regs);
  374. int cpu = smp_processor_id();
  375. if (local_timer_ack()) {
  376. __inc_irq_stat(cpu, local_timer_irqs);
  377. ipi_timer();
  378. }
  379. set_irq_regs(old_regs);
  380. }
  381. void show_local_irqs(struct seq_file *p, int prec)
  382. {
  383. unsigned int cpu;
  384. seq_printf(p, "%*s: ", prec, "LOC");
  385. for_each_present_cpu(cpu)
  386. seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
  387. seq_printf(p, " Local timer interrupts\n");
  388. }
  389. #endif
  390. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  391. static void smp_timer_broadcast(const struct cpumask *mask)
  392. {
  393. smp_cross_call(mask, IPI_TIMER);
  394. }
  395. #else
  396. #define smp_timer_broadcast NULL
  397. #endif
  398. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  399. struct clock_event_device *evt)
  400. {
  401. }
  402. static void broadcast_timer_setup(struct clock_event_device *evt)
  403. {
  404. evt->name = "dummy_timer";
  405. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  406. CLOCK_EVT_FEAT_PERIODIC |
  407. CLOCK_EVT_FEAT_DUMMY;
  408. evt->rating = 400;
  409. evt->mult = 1;
  410. evt->set_mode = broadcast_timer_set_mode;
  411. clockevents_register_device(evt);
  412. }
  413. void __cpuinit percpu_timer_setup(void)
  414. {
  415. unsigned int cpu = smp_processor_id();
  416. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  417. evt->cpumask = cpumask_of(cpu);
  418. evt->broadcast = smp_timer_broadcast;
  419. if (local_timer_setup(evt))
  420. broadcast_timer_setup(evt);
  421. }
  422. #ifdef CONFIG_HOTPLUG_CPU
  423. /*
  424. * The generic clock events code purposely does not stop the local timer
  425. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  426. * manually here.
  427. */
  428. static void percpu_timer_stop(void)
  429. {
  430. unsigned int cpu = smp_processor_id();
  431. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  432. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  433. }
  434. #endif
  435. static DEFINE_SPINLOCK(stop_lock);
  436. /*
  437. * ipi_cpu_stop - handle IPI from smp_send_stop()
  438. */
  439. static void ipi_cpu_stop(unsigned int cpu)
  440. {
  441. if (system_state == SYSTEM_BOOTING ||
  442. system_state == SYSTEM_RUNNING) {
  443. spin_lock(&stop_lock);
  444. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  445. dump_stack();
  446. spin_unlock(&stop_lock);
  447. }
  448. set_cpu_online(cpu, false);
  449. local_fiq_disable();
  450. local_irq_disable();
  451. while (1)
  452. cpu_relax();
  453. }
  454. /*
  455. * Main handler for inter-processor interrupts
  456. */
  457. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  458. {
  459. unsigned int cpu = smp_processor_id();
  460. struct pt_regs *old_regs = set_irq_regs(regs);
  461. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  462. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  463. switch (ipinr) {
  464. case IPI_TIMER:
  465. ipi_timer();
  466. break;
  467. case IPI_RESCHEDULE:
  468. /*
  469. * nothing more to do - eveything is
  470. * done on the interrupt return path
  471. */
  472. break;
  473. case IPI_CALL_FUNC:
  474. generic_smp_call_function_interrupt();
  475. break;
  476. case IPI_CALL_FUNC_SINGLE:
  477. generic_smp_call_function_single_interrupt();
  478. break;
  479. case IPI_CPU_STOP:
  480. ipi_cpu_stop(cpu);
  481. break;
  482. default:
  483. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  484. cpu, ipinr);
  485. break;
  486. }
  487. set_irq_regs(old_regs);
  488. }
  489. void smp_send_reschedule(int cpu)
  490. {
  491. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  492. }
  493. void smp_send_stop(void)
  494. {
  495. unsigned long timeout;
  496. if (num_online_cpus() > 1) {
  497. cpumask_t mask = cpu_online_map;
  498. cpu_clear(smp_processor_id(), mask);
  499. smp_cross_call(&mask, IPI_CPU_STOP);
  500. }
  501. /* Wait up to one second for other CPUs to stop */
  502. timeout = USEC_PER_SEC;
  503. while (num_online_cpus() > 1 && timeout--)
  504. udelay(1);
  505. if (num_online_cpus() > 1)
  506. pr_warning("SMP: failed to stop secondary CPUs\n");
  507. }
  508. /*
  509. * not supported here
  510. */
  511. int setup_profiling_timer(unsigned int multiplier)
  512. {
  513. return -EINVAL;
  514. }