process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <asm/cacheflush.h>
  33. #include <asm/leds.h>
  34. #include <asm/processor.h>
  35. #include <asm/system.h>
  36. #include <asm/thread_notify.h>
  37. #include <asm/stacktrace.h>
  38. #include <asm/mach/time.h>
  39. #ifdef CONFIG_CC_STACKPROTECTOR
  40. #include <linux/stackprotector.h>
  41. unsigned long __stack_chk_guard __read_mostly;
  42. EXPORT_SYMBOL(__stack_chk_guard);
  43. #endif
  44. static const char *processor_modes[] = {
  45. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  46. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  47. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  48. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  49. };
  50. static const char *isa_modes[] = {
  51. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  52. };
  53. extern void setup_mm_for_reboot(char mode);
  54. static volatile int hlt_counter;
  55. #include <mach/system.h>
  56. void disable_hlt(void)
  57. {
  58. hlt_counter++;
  59. }
  60. EXPORT_SYMBOL(disable_hlt);
  61. void enable_hlt(void)
  62. {
  63. hlt_counter--;
  64. }
  65. EXPORT_SYMBOL(enable_hlt);
  66. static int __init nohlt_setup(char *__unused)
  67. {
  68. hlt_counter = 1;
  69. return 1;
  70. }
  71. static int __init hlt_setup(char *__unused)
  72. {
  73. hlt_counter = 0;
  74. return 1;
  75. }
  76. __setup("nohlt", nohlt_setup);
  77. __setup("hlt", hlt_setup);
  78. void arm_machine_restart(char mode, const char *cmd)
  79. {
  80. /* Disable interrupts first */
  81. local_irq_disable();
  82. local_fiq_disable();
  83. /*
  84. * Tell the mm system that we are going to reboot -
  85. * we may need it to insert some 1:1 mappings so that
  86. * soft boot works.
  87. */
  88. setup_mm_for_reboot(mode);
  89. /* Clean and invalidate caches */
  90. flush_cache_all();
  91. /* Turn off caching */
  92. cpu_proc_fin();
  93. /* Push out any further dirty data, and ensure cache is empty */
  94. flush_cache_all();
  95. /*
  96. * Now call the architecture specific reboot code.
  97. */
  98. arch_reset(mode, cmd);
  99. /*
  100. * Whoops - the architecture was unable to reboot.
  101. * Tell the user!
  102. */
  103. mdelay(1000);
  104. printk("Reboot failed -- System halted\n");
  105. while (1);
  106. }
  107. /*
  108. * Function pointers to optional machine specific functions
  109. */
  110. void (*pm_power_off)(void);
  111. EXPORT_SYMBOL(pm_power_off);
  112. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  113. EXPORT_SYMBOL_GPL(arm_pm_restart);
  114. static void do_nothing(void *unused)
  115. {
  116. }
  117. /*
  118. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  119. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  120. * handler on SMP systems.
  121. *
  122. * Caller must have changed pm_idle to the new value before the call. Old
  123. * pm_idle value will not be used by any CPU after the return of this function.
  124. */
  125. void cpu_idle_wait(void)
  126. {
  127. smp_mb();
  128. /* kick all the CPUs so that they exit out of pm_idle */
  129. smp_call_function(do_nothing, NULL, 1);
  130. }
  131. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  132. /*
  133. * This is our default idle handler. We need to disable
  134. * interrupts here to ensure we don't miss a wakeup call.
  135. */
  136. static void default_idle(void)
  137. {
  138. if (!need_resched())
  139. arch_idle();
  140. local_irq_enable();
  141. }
  142. void (*pm_idle)(void) = default_idle;
  143. EXPORT_SYMBOL(pm_idle);
  144. /*
  145. * The idle thread, has rather strange semantics for calling pm_idle,
  146. * but this is what x86 does and we need to do the same, so that
  147. * things like cpuidle get called in the same way. The only difference
  148. * is that we always respect 'hlt_counter' to prevent low power idle.
  149. */
  150. void cpu_idle(void)
  151. {
  152. local_fiq_enable();
  153. /* endless idle loop with no priority at all */
  154. while (1) {
  155. tick_nohz_stop_sched_tick(1);
  156. leds_event(led_idle_start);
  157. while (!need_resched()) {
  158. #ifdef CONFIG_HOTPLUG_CPU
  159. if (cpu_is_offline(smp_processor_id()))
  160. cpu_die();
  161. #endif
  162. local_irq_disable();
  163. if (hlt_counter) {
  164. local_irq_enable();
  165. cpu_relax();
  166. } else {
  167. stop_critical_timings();
  168. pm_idle();
  169. start_critical_timings();
  170. /*
  171. * This will eventually be removed - pm_idle
  172. * functions should always return with IRQs
  173. * enabled.
  174. */
  175. WARN_ON(irqs_disabled());
  176. local_irq_enable();
  177. }
  178. }
  179. leds_event(led_idle_end);
  180. tick_nohz_restart_sched_tick();
  181. preempt_enable_no_resched();
  182. schedule();
  183. preempt_disable();
  184. }
  185. }
  186. static char reboot_mode = 'h';
  187. int __init reboot_setup(char *str)
  188. {
  189. reboot_mode = str[0];
  190. return 1;
  191. }
  192. __setup("reboot=", reboot_setup);
  193. void machine_shutdown(void)
  194. {
  195. #ifdef CONFIG_SMP
  196. smp_send_stop();
  197. #endif
  198. }
  199. void machine_halt(void)
  200. {
  201. machine_shutdown();
  202. while (1);
  203. }
  204. void machine_power_off(void)
  205. {
  206. machine_shutdown();
  207. if (pm_power_off)
  208. pm_power_off();
  209. }
  210. void machine_restart(char *cmd)
  211. {
  212. machine_shutdown();
  213. arm_pm_restart(reboot_mode, cmd);
  214. }
  215. void __show_regs(struct pt_regs *regs)
  216. {
  217. unsigned long flags;
  218. char buf[64];
  219. printk("CPU: %d %s (%s %.*s)\n",
  220. raw_smp_processor_id(), print_tainted(),
  221. init_utsname()->release,
  222. (int)strcspn(init_utsname()->version, " "),
  223. init_utsname()->version);
  224. print_symbol("PC is at %s\n", instruction_pointer(regs));
  225. print_symbol("LR is at %s\n", regs->ARM_lr);
  226. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  227. "sp : %08lx ip : %08lx fp : %08lx\n",
  228. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  229. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  230. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  231. regs->ARM_r10, regs->ARM_r9,
  232. regs->ARM_r8);
  233. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  234. regs->ARM_r7, regs->ARM_r6,
  235. regs->ARM_r5, regs->ARM_r4);
  236. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  237. regs->ARM_r3, regs->ARM_r2,
  238. regs->ARM_r1, regs->ARM_r0);
  239. flags = regs->ARM_cpsr;
  240. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  241. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  242. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  243. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  244. buf[4] = '\0';
  245. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  246. buf, interrupts_enabled(regs) ? "n" : "ff",
  247. fast_interrupts_enabled(regs) ? "n" : "ff",
  248. processor_modes[processor_mode(regs)],
  249. isa_modes[isa_mode(regs)],
  250. get_fs() == get_ds() ? "kernel" : "user");
  251. #ifdef CONFIG_CPU_CP15
  252. {
  253. unsigned int ctrl;
  254. buf[0] = '\0';
  255. #ifdef CONFIG_CPU_CP15_MMU
  256. {
  257. unsigned int transbase, dac;
  258. asm("mrc p15, 0, %0, c2, c0\n\t"
  259. "mrc p15, 0, %1, c3, c0\n"
  260. : "=r" (transbase), "=r" (dac));
  261. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  262. transbase, dac);
  263. }
  264. #endif
  265. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  266. printk("Control: %08x%s\n", ctrl, buf);
  267. }
  268. #endif
  269. }
  270. void show_regs(struct pt_regs * regs)
  271. {
  272. printk("\n");
  273. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  274. __show_regs(regs);
  275. __backtrace();
  276. }
  277. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  278. EXPORT_SYMBOL_GPL(thread_notify_head);
  279. /*
  280. * Free current thread data structures etc..
  281. */
  282. void exit_thread(void)
  283. {
  284. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  285. }
  286. void flush_thread(void)
  287. {
  288. struct thread_info *thread = current_thread_info();
  289. struct task_struct *tsk = current;
  290. flush_ptrace_hw_breakpoint(tsk);
  291. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  292. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  293. memset(&thread->fpstate, 0, sizeof(union fp_state));
  294. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  295. }
  296. void release_thread(struct task_struct *dead_task)
  297. {
  298. }
  299. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  300. int
  301. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  302. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  303. {
  304. struct thread_info *thread = task_thread_info(p);
  305. struct pt_regs *childregs = task_pt_regs(p);
  306. *childregs = *regs;
  307. childregs->ARM_r0 = 0;
  308. childregs->ARM_sp = stack_start;
  309. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  310. thread->cpu_context.sp = (unsigned long)childregs;
  311. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  312. clear_ptrace_hw_breakpoint(p);
  313. if (clone_flags & CLONE_SETTLS)
  314. thread->tp_value = regs->ARM_r3;
  315. return 0;
  316. }
  317. /*
  318. * Fill in the task's elfregs structure for a core dump.
  319. */
  320. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  321. {
  322. elf_core_copy_regs(elfregs, task_pt_regs(t));
  323. return 1;
  324. }
  325. /*
  326. * fill in the fpe structure for a core dump...
  327. */
  328. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  329. {
  330. struct thread_info *thread = current_thread_info();
  331. int used_math = thread->used_cp[1] | thread->used_cp[2];
  332. if (used_math)
  333. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  334. return used_math != 0;
  335. }
  336. EXPORT_SYMBOL(dump_fpu);
  337. /*
  338. * Shuffle the argument into the correct register before calling the
  339. * thread function. r4 is the thread argument, r5 is the pointer to
  340. * the thread function, and r6 points to the exit function.
  341. */
  342. extern void kernel_thread_helper(void);
  343. asm( ".pushsection .text\n"
  344. " .align\n"
  345. " .type kernel_thread_helper, #function\n"
  346. "kernel_thread_helper:\n"
  347. #ifdef CONFIG_TRACE_IRQFLAGS
  348. " bl trace_hardirqs_on\n"
  349. #endif
  350. " msr cpsr_c, r7\n"
  351. " mov r0, r4\n"
  352. " mov lr, r6\n"
  353. " mov pc, r5\n"
  354. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  355. " .popsection");
  356. #ifdef CONFIG_ARM_UNWIND
  357. extern void kernel_thread_exit(long code);
  358. asm( ".pushsection .text\n"
  359. " .align\n"
  360. " .type kernel_thread_exit, #function\n"
  361. "kernel_thread_exit:\n"
  362. " .fnstart\n"
  363. " .cantunwind\n"
  364. " bl do_exit\n"
  365. " nop\n"
  366. " .fnend\n"
  367. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  368. " .popsection");
  369. #else
  370. #define kernel_thread_exit do_exit
  371. #endif
  372. /*
  373. * Create a kernel thread.
  374. */
  375. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  376. {
  377. struct pt_regs regs;
  378. memset(&regs, 0, sizeof(regs));
  379. regs.ARM_r4 = (unsigned long)arg;
  380. regs.ARM_r5 = (unsigned long)fn;
  381. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  382. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  383. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  384. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  385. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  386. }
  387. EXPORT_SYMBOL(kernel_thread);
  388. unsigned long get_wchan(struct task_struct *p)
  389. {
  390. struct stackframe frame;
  391. int count = 0;
  392. if (!p || p == current || p->state == TASK_RUNNING)
  393. return 0;
  394. frame.fp = thread_saved_fp(p);
  395. frame.sp = thread_saved_sp(p);
  396. frame.lr = 0; /* recovered from the stack */
  397. frame.pc = thread_saved_pc(p);
  398. do {
  399. int ret = unwind_frame(&frame);
  400. if (ret < 0)
  401. return 0;
  402. if (!in_sched_functions(frame.pc))
  403. return frame.pc;
  404. } while (count ++ < 16);
  405. return 0;
  406. }
  407. unsigned long arch_randomize_brk(struct mm_struct *mm)
  408. {
  409. unsigned long range_end = mm->brk + 0x02000000;
  410. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  411. }
  412. #ifdef CONFIG_MMU
  413. /*
  414. * The vectors page is always readable from user space for the
  415. * atomic helpers and the signal restart code. Let's declare a mapping
  416. * for it so it is visible through ptrace and /proc/<pid>/mem.
  417. */
  418. int vectors_user_mapping(void)
  419. {
  420. struct mm_struct *mm = current->mm;
  421. return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
  422. VM_READ | VM_EXEC |
  423. VM_MAYREAD | VM_MAYEXEC |
  424. VM_ALWAYSDUMP | VM_RESERVED,
  425. NULL);
  426. }
  427. const char *arch_vma_name(struct vm_area_struct *vma)
  428. {
  429. return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
  430. }
  431. #endif