perf_event.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. static struct platform_device *pmu_device;
  26. /*
  27. * Hardware lock to serialize accesses to PMU registers. Needed for the
  28. * read/modify/write sequences.
  29. */
  30. static DEFINE_RAW_SPINLOCK(pmu_lock);
  31. /*
  32. * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
  33. * another platform that supports more, we need to increase this to be the
  34. * largest of all platforms.
  35. *
  36. * ARMv7 supports up to 32 events:
  37. * cycle counter CCNT + 31 events counters CNT0..30.
  38. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  39. */
  40. #define ARMPMU_MAX_HWEVENTS 33
  41. /* The events for a given CPU. */
  42. struct cpu_hw_events {
  43. /*
  44. * The events that are active on the CPU for the given index. Index 0
  45. * is reserved.
  46. */
  47. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  48. /*
  49. * A 1 bit for an index indicates that the counter is being used for
  50. * an event. A 0 means that the counter can be used.
  51. */
  52. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  53. /*
  54. * A 1 bit for an index indicates that the counter is actively being
  55. * used.
  56. */
  57. unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  58. };
  59. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  60. struct arm_pmu {
  61. enum arm_perf_pmu_ids id;
  62. const char *name;
  63. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  64. void (*enable)(struct hw_perf_event *evt, int idx);
  65. void (*disable)(struct hw_perf_event *evt, int idx);
  66. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  67. struct hw_perf_event *hwc);
  68. u32 (*read_counter)(int idx);
  69. void (*write_counter)(int idx, u32 val);
  70. void (*start)(void);
  71. void (*stop)(void);
  72. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  73. [PERF_COUNT_HW_CACHE_OP_MAX]
  74. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  75. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  76. u32 raw_event_mask;
  77. int num_events;
  78. u64 max_period;
  79. };
  80. /* Set at runtime when we know what CPU type we are. */
  81. static const struct arm_pmu *armpmu;
  82. enum arm_perf_pmu_ids
  83. armpmu_get_pmu_id(void)
  84. {
  85. int id = -ENODEV;
  86. if (armpmu != NULL)
  87. id = armpmu->id;
  88. return id;
  89. }
  90. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  91. int
  92. armpmu_get_max_events(void)
  93. {
  94. int max_events = 0;
  95. if (armpmu != NULL)
  96. max_events = armpmu->num_events;
  97. return max_events;
  98. }
  99. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  100. int perf_num_counters(void)
  101. {
  102. return armpmu_get_max_events();
  103. }
  104. EXPORT_SYMBOL_GPL(perf_num_counters);
  105. #define HW_OP_UNSUPPORTED 0xFFFF
  106. #define C(_x) \
  107. PERF_COUNT_HW_CACHE_##_x
  108. #define CACHE_OP_UNSUPPORTED 0xFFFF
  109. static int
  110. armpmu_map_cache_event(u64 config)
  111. {
  112. unsigned int cache_type, cache_op, cache_result, ret;
  113. cache_type = (config >> 0) & 0xff;
  114. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  115. return -EINVAL;
  116. cache_op = (config >> 8) & 0xff;
  117. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  118. return -EINVAL;
  119. cache_result = (config >> 16) & 0xff;
  120. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  121. return -EINVAL;
  122. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  123. if (ret == CACHE_OP_UNSUPPORTED)
  124. return -ENOENT;
  125. return ret;
  126. }
  127. static int
  128. armpmu_map_event(u64 config)
  129. {
  130. int mapping = (*armpmu->event_map)[config];
  131. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  132. }
  133. static int
  134. armpmu_map_raw_event(u64 config)
  135. {
  136. return (int)(config & armpmu->raw_event_mask);
  137. }
  138. static int
  139. armpmu_event_set_period(struct perf_event *event,
  140. struct hw_perf_event *hwc,
  141. int idx)
  142. {
  143. s64 left = local64_read(&hwc->period_left);
  144. s64 period = hwc->sample_period;
  145. int ret = 0;
  146. if (unlikely(left <= -period)) {
  147. left = period;
  148. local64_set(&hwc->period_left, left);
  149. hwc->last_period = period;
  150. ret = 1;
  151. }
  152. if (unlikely(left <= 0)) {
  153. left += period;
  154. local64_set(&hwc->period_left, left);
  155. hwc->last_period = period;
  156. ret = 1;
  157. }
  158. if (left > (s64)armpmu->max_period)
  159. left = armpmu->max_period;
  160. local64_set(&hwc->prev_count, (u64)-left);
  161. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  162. perf_event_update_userpage(event);
  163. return ret;
  164. }
  165. static u64
  166. armpmu_event_update(struct perf_event *event,
  167. struct hw_perf_event *hwc,
  168. int idx)
  169. {
  170. int shift = 64 - 32;
  171. s64 prev_raw_count, new_raw_count;
  172. u64 delta;
  173. again:
  174. prev_raw_count = local64_read(&hwc->prev_count);
  175. new_raw_count = armpmu->read_counter(idx);
  176. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  177. new_raw_count) != prev_raw_count)
  178. goto again;
  179. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  180. delta >>= shift;
  181. local64_add(delta, &event->count);
  182. local64_sub(delta, &hwc->period_left);
  183. return new_raw_count;
  184. }
  185. static void
  186. armpmu_read(struct perf_event *event)
  187. {
  188. struct hw_perf_event *hwc = &event->hw;
  189. /* Don't read disabled counters! */
  190. if (hwc->idx < 0)
  191. return;
  192. armpmu_event_update(event, hwc, hwc->idx);
  193. }
  194. static void
  195. armpmu_stop(struct perf_event *event, int flags)
  196. {
  197. struct hw_perf_event *hwc = &event->hw;
  198. if (!armpmu)
  199. return;
  200. /*
  201. * ARM pmu always has to update the counter, so ignore
  202. * PERF_EF_UPDATE, see comments in armpmu_start().
  203. */
  204. if (!(hwc->state & PERF_HES_STOPPED)) {
  205. armpmu->disable(hwc, hwc->idx);
  206. barrier(); /* why? */
  207. armpmu_event_update(event, hwc, hwc->idx);
  208. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  209. }
  210. }
  211. static void
  212. armpmu_start(struct perf_event *event, int flags)
  213. {
  214. struct hw_perf_event *hwc = &event->hw;
  215. if (!armpmu)
  216. return;
  217. /*
  218. * ARM pmu always has to reprogram the period, so ignore
  219. * PERF_EF_RELOAD, see the comment below.
  220. */
  221. if (flags & PERF_EF_RELOAD)
  222. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  223. hwc->state = 0;
  224. /*
  225. * Set the period again. Some counters can't be stopped, so when we
  226. * were stopped we simply disabled the IRQ source and the counter
  227. * may have been left counting. If we don't do this step then we may
  228. * get an interrupt too soon or *way* too late if the overflow has
  229. * happened since disabling.
  230. */
  231. armpmu_event_set_period(event, hwc, hwc->idx);
  232. armpmu->enable(hwc, hwc->idx);
  233. }
  234. static void
  235. armpmu_del(struct perf_event *event, int flags)
  236. {
  237. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  238. struct hw_perf_event *hwc = &event->hw;
  239. int idx = hwc->idx;
  240. WARN_ON(idx < 0);
  241. clear_bit(idx, cpuc->active_mask);
  242. armpmu_stop(event, PERF_EF_UPDATE);
  243. cpuc->events[idx] = NULL;
  244. clear_bit(idx, cpuc->used_mask);
  245. perf_event_update_userpage(event);
  246. }
  247. static int
  248. armpmu_add(struct perf_event *event, int flags)
  249. {
  250. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  251. struct hw_perf_event *hwc = &event->hw;
  252. int idx;
  253. int err = 0;
  254. perf_pmu_disable(event->pmu);
  255. /* If we don't have a space for the counter then finish early. */
  256. idx = armpmu->get_event_idx(cpuc, hwc);
  257. if (idx < 0) {
  258. err = idx;
  259. goto out;
  260. }
  261. /*
  262. * If there is an event in the counter we are going to use then make
  263. * sure it is disabled.
  264. */
  265. event->hw.idx = idx;
  266. armpmu->disable(hwc, idx);
  267. cpuc->events[idx] = event;
  268. set_bit(idx, cpuc->active_mask);
  269. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  270. if (flags & PERF_EF_START)
  271. armpmu_start(event, PERF_EF_RELOAD);
  272. /* Propagate our changes to the userspace mapping. */
  273. perf_event_update_userpage(event);
  274. out:
  275. perf_pmu_enable(event->pmu);
  276. return err;
  277. }
  278. static struct pmu pmu;
  279. static int
  280. validate_event(struct cpu_hw_events *cpuc,
  281. struct perf_event *event)
  282. {
  283. struct hw_perf_event fake_event = event->hw;
  284. if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
  285. return 1;
  286. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  287. }
  288. static int
  289. validate_group(struct perf_event *event)
  290. {
  291. struct perf_event *sibling, *leader = event->group_leader;
  292. struct cpu_hw_events fake_pmu;
  293. memset(&fake_pmu, 0, sizeof(fake_pmu));
  294. if (!validate_event(&fake_pmu, leader))
  295. return -ENOSPC;
  296. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  297. if (!validate_event(&fake_pmu, sibling))
  298. return -ENOSPC;
  299. }
  300. if (!validate_event(&fake_pmu, event))
  301. return -ENOSPC;
  302. return 0;
  303. }
  304. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  305. {
  306. struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
  307. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  308. }
  309. static int
  310. armpmu_reserve_hardware(void)
  311. {
  312. struct arm_pmu_platdata *plat;
  313. irq_handler_t handle_irq;
  314. int i, err = -ENODEV, irq;
  315. pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
  316. if (IS_ERR(pmu_device)) {
  317. pr_warning("unable to reserve pmu\n");
  318. return PTR_ERR(pmu_device);
  319. }
  320. init_pmu(ARM_PMU_DEVICE_CPU);
  321. plat = dev_get_platdata(&pmu_device->dev);
  322. if (plat && plat->handle_irq)
  323. handle_irq = armpmu_platform_irq;
  324. else
  325. handle_irq = armpmu->handle_irq;
  326. if (pmu_device->num_resources < 1) {
  327. pr_err("no irqs for PMUs defined\n");
  328. return -ENODEV;
  329. }
  330. for (i = 0; i < pmu_device->num_resources; ++i) {
  331. irq = platform_get_irq(pmu_device, i);
  332. if (irq < 0)
  333. continue;
  334. err = request_irq(irq, handle_irq,
  335. IRQF_DISABLED | IRQF_NOBALANCING,
  336. "armpmu", NULL);
  337. if (err) {
  338. pr_warning("unable to request IRQ%d for ARM perf "
  339. "counters\n", irq);
  340. break;
  341. }
  342. }
  343. if (err) {
  344. for (i = i - 1; i >= 0; --i) {
  345. irq = platform_get_irq(pmu_device, i);
  346. if (irq >= 0)
  347. free_irq(irq, NULL);
  348. }
  349. release_pmu(pmu_device);
  350. pmu_device = NULL;
  351. }
  352. return err;
  353. }
  354. static void
  355. armpmu_release_hardware(void)
  356. {
  357. int i, irq;
  358. for (i = pmu_device->num_resources - 1; i >= 0; --i) {
  359. irq = platform_get_irq(pmu_device, i);
  360. if (irq >= 0)
  361. free_irq(irq, NULL);
  362. }
  363. armpmu->stop();
  364. release_pmu(pmu_device);
  365. pmu_device = NULL;
  366. }
  367. static atomic_t active_events = ATOMIC_INIT(0);
  368. static DEFINE_MUTEX(pmu_reserve_mutex);
  369. static void
  370. hw_perf_event_destroy(struct perf_event *event)
  371. {
  372. if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
  373. armpmu_release_hardware();
  374. mutex_unlock(&pmu_reserve_mutex);
  375. }
  376. }
  377. static int
  378. __hw_perf_event_init(struct perf_event *event)
  379. {
  380. struct hw_perf_event *hwc = &event->hw;
  381. int mapping, err;
  382. /* Decode the generic type into an ARM event identifier. */
  383. if (PERF_TYPE_HARDWARE == event->attr.type) {
  384. mapping = armpmu_map_event(event->attr.config);
  385. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  386. mapping = armpmu_map_cache_event(event->attr.config);
  387. } else if (PERF_TYPE_RAW == event->attr.type) {
  388. mapping = armpmu_map_raw_event(event->attr.config);
  389. } else {
  390. pr_debug("event type %x not supported\n", event->attr.type);
  391. return -EOPNOTSUPP;
  392. }
  393. if (mapping < 0) {
  394. pr_debug("event %x:%llx not supported\n", event->attr.type,
  395. event->attr.config);
  396. return mapping;
  397. }
  398. /*
  399. * Check whether we need to exclude the counter from certain modes.
  400. * The ARM performance counters are on all of the time so if someone
  401. * has asked us for some excludes then we have to fail.
  402. */
  403. if (event->attr.exclude_kernel || event->attr.exclude_user ||
  404. event->attr.exclude_hv || event->attr.exclude_idle) {
  405. pr_debug("ARM performance counters do not support "
  406. "mode exclusion\n");
  407. return -EPERM;
  408. }
  409. /*
  410. * We don't assign an index until we actually place the event onto
  411. * hardware. Use -1 to signify that we haven't decided where to put it
  412. * yet. For SMP systems, each core has it's own PMU so we can't do any
  413. * clever allocation or constraints checking at this point.
  414. */
  415. hwc->idx = -1;
  416. /*
  417. * Store the event encoding into the config_base field. config and
  418. * event_base are unused as the only 2 things we need to know are
  419. * the event mapping and the counter to use. The counter to use is
  420. * also the indx and the config_base is the event type.
  421. */
  422. hwc->config_base = (unsigned long)mapping;
  423. hwc->config = 0;
  424. hwc->event_base = 0;
  425. if (!hwc->sample_period) {
  426. hwc->sample_period = armpmu->max_period;
  427. hwc->last_period = hwc->sample_period;
  428. local64_set(&hwc->period_left, hwc->sample_period);
  429. }
  430. err = 0;
  431. if (event->group_leader != event) {
  432. err = validate_group(event);
  433. if (err)
  434. return -EINVAL;
  435. }
  436. return err;
  437. }
  438. static int armpmu_event_init(struct perf_event *event)
  439. {
  440. int err = 0;
  441. switch (event->attr.type) {
  442. case PERF_TYPE_RAW:
  443. case PERF_TYPE_HARDWARE:
  444. case PERF_TYPE_HW_CACHE:
  445. break;
  446. default:
  447. return -ENOENT;
  448. }
  449. if (!armpmu)
  450. return -ENODEV;
  451. event->destroy = hw_perf_event_destroy;
  452. if (!atomic_inc_not_zero(&active_events)) {
  453. if (atomic_read(&active_events) > armpmu->num_events) {
  454. atomic_dec(&active_events);
  455. return -ENOSPC;
  456. }
  457. mutex_lock(&pmu_reserve_mutex);
  458. if (atomic_read(&active_events) == 0) {
  459. err = armpmu_reserve_hardware();
  460. }
  461. if (!err)
  462. atomic_inc(&active_events);
  463. mutex_unlock(&pmu_reserve_mutex);
  464. }
  465. if (err)
  466. return err;
  467. err = __hw_perf_event_init(event);
  468. if (err)
  469. hw_perf_event_destroy(event);
  470. return err;
  471. }
  472. static void armpmu_enable(struct pmu *pmu)
  473. {
  474. /* Enable all of the perf events on hardware. */
  475. int idx;
  476. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  477. if (!armpmu)
  478. return;
  479. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  480. struct perf_event *event = cpuc->events[idx];
  481. if (!event)
  482. continue;
  483. armpmu->enable(&event->hw, idx);
  484. }
  485. armpmu->start();
  486. }
  487. static void armpmu_disable(struct pmu *pmu)
  488. {
  489. if (armpmu)
  490. armpmu->stop();
  491. }
  492. static struct pmu pmu = {
  493. .pmu_enable = armpmu_enable,
  494. .pmu_disable = armpmu_disable,
  495. .event_init = armpmu_event_init,
  496. .add = armpmu_add,
  497. .del = armpmu_del,
  498. .start = armpmu_start,
  499. .stop = armpmu_stop,
  500. .read = armpmu_read,
  501. };
  502. /* Include the PMU-specific implementations. */
  503. #include "perf_event_xscale.c"
  504. #include "perf_event_v6.c"
  505. #include "perf_event_v7.c"
  506. static int __init
  507. init_hw_perf_events(void)
  508. {
  509. unsigned long cpuid = read_cpuid_id();
  510. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  511. unsigned long part_number = (cpuid & 0xFFF0);
  512. /* ARM Ltd CPUs. */
  513. if (0x41 == implementor) {
  514. switch (part_number) {
  515. case 0xB360: /* ARM1136 */
  516. case 0xB560: /* ARM1156 */
  517. case 0xB760: /* ARM1176 */
  518. armpmu = armv6pmu_init();
  519. break;
  520. case 0xB020: /* ARM11mpcore */
  521. armpmu = armv6mpcore_pmu_init();
  522. break;
  523. case 0xC080: /* Cortex-A8 */
  524. armpmu = armv7_a8_pmu_init();
  525. break;
  526. case 0xC090: /* Cortex-A9 */
  527. armpmu = armv7_a9_pmu_init();
  528. break;
  529. }
  530. /* Intel CPUs [xscale]. */
  531. } else if (0x69 == implementor) {
  532. part_number = (cpuid >> 13) & 0x7;
  533. switch (part_number) {
  534. case 1:
  535. armpmu = xscale1pmu_init();
  536. break;
  537. case 2:
  538. armpmu = xscale2pmu_init();
  539. break;
  540. }
  541. }
  542. if (armpmu) {
  543. pr_info("enabled with %s PMU driver, %d counters available\n",
  544. armpmu->name, armpmu->num_events);
  545. } else {
  546. pr_info("no hardware support available\n");
  547. }
  548. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  549. return 0;
  550. }
  551. early_initcall(init_hw_perf_events);
  552. /*
  553. * Callchain handling code.
  554. */
  555. /*
  556. * The registers we're interested in are at the end of the variable
  557. * length saved register structure. The fp points at the end of this
  558. * structure so the address of this struct is:
  559. * (struct frame_tail *)(xxx->fp)-1
  560. *
  561. * This code has been adapted from the ARM OProfile support.
  562. */
  563. struct frame_tail {
  564. struct frame_tail __user *fp;
  565. unsigned long sp;
  566. unsigned long lr;
  567. } __attribute__((packed));
  568. /*
  569. * Get the return address for a single stackframe and return a pointer to the
  570. * next frame tail.
  571. */
  572. static struct frame_tail __user *
  573. user_backtrace(struct frame_tail __user *tail,
  574. struct perf_callchain_entry *entry)
  575. {
  576. struct frame_tail buftail;
  577. /* Also check accessibility of one struct frame_tail beyond */
  578. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  579. return NULL;
  580. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  581. return NULL;
  582. perf_callchain_store(entry, buftail.lr);
  583. /*
  584. * Frame pointers should strictly progress back up the stack
  585. * (towards higher addresses).
  586. */
  587. if (tail + 1 >= buftail.fp)
  588. return NULL;
  589. return buftail.fp - 1;
  590. }
  591. void
  592. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  593. {
  594. struct frame_tail __user *tail;
  595. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  596. while (tail && !((unsigned long)tail & 0x3))
  597. tail = user_backtrace(tail, entry);
  598. }
  599. /*
  600. * Gets called by walk_stackframe() for every stackframe. This will be called
  601. * whist unwinding the stackframe and is like a subroutine return so we use
  602. * the PC.
  603. */
  604. static int
  605. callchain_trace(struct stackframe *fr,
  606. void *data)
  607. {
  608. struct perf_callchain_entry *entry = data;
  609. perf_callchain_store(entry, fr->pc);
  610. return 0;
  611. }
  612. void
  613. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  614. {
  615. struct stackframe fr;
  616. fr.fp = regs->ARM_fp;
  617. fr.sp = regs->ARM_sp;
  618. fr.lr = regs->ARM_lr;
  619. fr.pc = regs->ARM_pc;
  620. walk_stackframe(&fr, callchain_trace, entry);
  621. }