keys-trusted-encrypted.txt 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. Trusted and Encrypted Keys
  2. Trusted and Encrypted Keys are two new key types added to the existing kernel
  3. key ring service. Both of these new types are variable length symmetic keys,
  4. and in both cases all keys are created in the kernel, and user space sees,
  5. stores, and loads only encrypted blobs. Trusted Keys require the availability
  6. of a Trusted Platform Module (TPM) chip for greater security, while Encrypted
  7. Keys can be used on any system. All user level blobs, are displayed and loaded
  8. in hex ascii for convenience, and are integrity verified.
  9. Trusted Keys use a TPM both to generate and to seal the keys. Keys are sealed
  10. under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR
  11. (integrity measurement) values, and only unsealed by the TPM, if PCRs and blob
  12. integrity verifications match. A loaded Trusted Key can be updated with new
  13. (future) PCR values, so keys are easily migrated to new pcr values, such as
  14. when the kernel and initramfs are updated. The same key can have many saved
  15. blobs under different PCR values, so multiple boots are easily supported.
  16. By default, trusted keys are sealed under the SRK, which has the default
  17. authorization value (20 zeros). This can be set at takeownership time with the
  18. trouser's utility: "tpm_takeownership -u -z".
  19. Usage:
  20. keyctl add trusted name "new keylen [options]" ring
  21. keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
  22. keyctl update key "update [options]"
  23. keyctl print keyid
  24. options:
  25. keyhandle= ascii hex value of sealing key default 0x40000000 (SRK)
  26. keyauth= ascii hex auth for sealing key default 0x00...i
  27. (40 ascii zeros)
  28. blobauth= ascii hex auth for sealed data default 0x00...
  29. (40 ascii zeros)
  30. blobauth= ascii hex auth for sealed data default 0x00...
  31. (40 ascii zeros)
  32. pcrinfo= ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
  33. pcrlock= pcr number to be extended to "lock" blob
  34. migratable= 0|1 indicating permission to reseal to new PCR values,
  35. default 1 (resealing allowed)
  36. "keyctl print" returns an ascii hex copy of the sealed key, which is in standard
  37. TPM_STORED_DATA format. The key length for new keys are always in bytes.
  38. Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit
  39. within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.
  40. Encrypted keys do not depend on a TPM, and are faster, as they use AES for
  41. encryption/decryption. New keys are created from kernel generated random
  42. numbers, and are encrypted/decrypted using a specified 'master' key. The
  43. 'master' key can either be a trusted-key or user-key type. The main
  44. disadvantage of encrypted keys is that if they are not rooted in a trusted key,
  45. they are only as secure as the user key encrypting them. The master user key
  46. should therefore be loaded in as secure a way as possible, preferably early in
  47. boot.
  48. Usage:
  49. keyctl add encrypted name "new key-type:master-key-name keylen" ring
  50. keyctl add encrypted name "load hex_blob" ring
  51. keyctl update keyid "update key-type:master-key-name"
  52. where 'key-type' is either 'trusted' or 'user'.
  53. Examples of trusted and encrypted key usage:
  54. Create and save a trusted key named "kmk" of length 32 bytes:
  55. $ keyctl add trusted kmk "new 32" @u
  56. 440502848
  57. $ keyctl show
  58. Session Keyring
  59. -3 --alswrv 500 500 keyring: _ses
  60. 97833714 --alswrv 500 -1 \_ keyring: _uid.500
  61. 440502848 --alswrv 500 500 \_ trusted: kmk
  62. $ keyctl print 440502848
  63. 0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
  64. 3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
  65. 27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
  66. a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
  67. d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
  68. dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
  69. f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
  70. e4a8aea2b607ec96931e6f4d4fe563ba
  71. $ keyctl pipe 440502848 > kmk.blob
  72. Load a trusted key from the saved blob:
  73. $ keyctl add trusted kmk "load `cat kmk.blob`" @u
  74. 268728824
  75. $ keyctl print 268728824
  76. 0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
  77. 3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
  78. 27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
  79. a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
  80. d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
  81. dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
  82. f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
  83. e4a8aea2b607ec96931e6f4d4fe563ba
  84. Reseal a trusted key under new pcr values:
  85. $ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
  86. $ keyctl print 268728824
  87. 010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
  88. 77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
  89. d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
  90. df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
  91. 9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
  92. e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
  93. 94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
  94. 7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
  95. df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
  96. Create and save an encrypted key "evm" using the above trusted key "kmk":
  97. $ keyctl add encrypted evm "new trusted:kmk 32" @u
  98. 159771175
  99. $ keyctl print 159771175
  100. trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
  101. be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
  102. 5972dcb82ab2dde83376d82b2e3c09ffc
  103. $ keyctl pipe 159771175 > evm.blob
  104. Load an encrypted key "evm" from saved blob:
  105. $ keyctl add encrypted evm "load `cat evm.blob`" @u
  106. 831684262
  107. $ keyctl print 831684262
  108. trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
  109. be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
  110. 5972dcb82ab2dde83376d82b2e3c09ffc
  111. The initial consumer of trusted keys is EVM, which at boot time needs a high
  112. quality symmetric key for HMAC protection of file metadata. The use of a
  113. trusted key provides strong guarantees that the EVM key has not been
  114. compromised by a user level problem, and when sealed to specific boot PCR
  115. values, protects against boot and offline attacks. Other uses for trusted and
  116. encrypted keys, such as for disk and file encryption are anticipated.