super.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/blkdev.h>
  19. #include <linux/module.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/highmem.h>
  24. #include <linux/time.h>
  25. #include <linux/init.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mount.h>
  30. #include <linux/mpage.h>
  31. #include <linux/swap.h>
  32. #include <linux/writeback.h>
  33. #include <linux/statfs.h>
  34. #include <linux/compat.h>
  35. #include <linux/parser.h>
  36. #include <linux/ctype.h>
  37. #include <linux/namei.h>
  38. #include <linux/miscdevice.h>
  39. #include <linux/magic.h>
  40. #include <linux/slab.h>
  41. #include <linux/cleancache.h>
  42. #include <linux/ratelimit.h>
  43. #include "compat.h"
  44. #include "delayed-inode.h"
  45. #include "ctree.h"
  46. #include "disk-io.h"
  47. #include "transaction.h"
  48. #include "btrfs_inode.h"
  49. #include "ioctl.h"
  50. #include "print-tree.h"
  51. #include "xattr.h"
  52. #include "volumes.h"
  53. #include "version.h"
  54. #include "export.h"
  55. #include "compression.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/btrfs.h>
  58. static const struct super_operations btrfs_super_ops;
  59. static struct file_system_type btrfs_fs_type;
  60. static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  61. char nbuf[16])
  62. {
  63. char *errstr = NULL;
  64. switch (errno) {
  65. case -EIO:
  66. errstr = "IO failure";
  67. break;
  68. case -ENOMEM:
  69. errstr = "Out of memory";
  70. break;
  71. case -EROFS:
  72. errstr = "Readonly filesystem";
  73. break;
  74. default:
  75. if (nbuf) {
  76. if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  77. errstr = nbuf;
  78. }
  79. break;
  80. }
  81. return errstr;
  82. }
  83. static void __save_error_info(struct btrfs_fs_info *fs_info)
  84. {
  85. /*
  86. * today we only save the error info into ram. Long term we'll
  87. * also send it down to the disk
  88. */
  89. fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
  90. }
  91. /* NOTE:
  92. * We move write_super stuff at umount in order to avoid deadlock
  93. * for umount hold all lock.
  94. */
  95. static void save_error_info(struct btrfs_fs_info *fs_info)
  96. {
  97. __save_error_info(fs_info);
  98. }
  99. /* btrfs handle error by forcing the filesystem readonly */
  100. static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
  101. {
  102. struct super_block *sb = fs_info->sb;
  103. if (sb->s_flags & MS_RDONLY)
  104. return;
  105. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  106. sb->s_flags |= MS_RDONLY;
  107. printk(KERN_INFO "btrfs is forced readonly\n");
  108. }
  109. }
  110. /*
  111. * __btrfs_std_error decodes expected errors from the caller and
  112. * invokes the approciate error response.
  113. */
  114. void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
  115. unsigned int line, int errno)
  116. {
  117. struct super_block *sb = fs_info->sb;
  118. char nbuf[16];
  119. const char *errstr;
  120. /*
  121. * Special case: if the error is EROFS, and we're already
  122. * under MS_RDONLY, then it is safe here.
  123. */
  124. if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
  125. return;
  126. errstr = btrfs_decode_error(fs_info, errno, nbuf);
  127. printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
  128. sb->s_id, function, line, errstr);
  129. save_error_info(fs_info);
  130. btrfs_handle_error(fs_info);
  131. }
  132. static void btrfs_put_super(struct super_block *sb)
  133. {
  134. struct btrfs_root *root = btrfs_sb(sb);
  135. int ret;
  136. ret = close_ctree(root);
  137. sb->s_fs_info = NULL;
  138. (void)ret; /* FIXME: need to fix VFS to return error? */
  139. }
  140. enum {
  141. Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
  142. Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
  143. Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
  144. Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
  145. Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
  146. Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
  147. Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
  148. Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
  149. };
  150. static match_table_t tokens = {
  151. {Opt_degraded, "degraded"},
  152. {Opt_subvol, "subvol=%s"},
  153. {Opt_subvolid, "subvolid=%d"},
  154. {Opt_device, "device=%s"},
  155. {Opt_nodatasum, "nodatasum"},
  156. {Opt_nodatacow, "nodatacow"},
  157. {Opt_nobarrier, "nobarrier"},
  158. {Opt_max_inline, "max_inline=%s"},
  159. {Opt_alloc_start, "alloc_start=%s"},
  160. {Opt_thread_pool, "thread_pool=%d"},
  161. {Opt_compress, "compress"},
  162. {Opt_compress_type, "compress=%s"},
  163. {Opt_compress_force, "compress-force"},
  164. {Opt_compress_force_type, "compress-force=%s"},
  165. {Opt_ssd, "ssd"},
  166. {Opt_ssd_spread, "ssd_spread"},
  167. {Opt_nossd, "nossd"},
  168. {Opt_noacl, "noacl"},
  169. {Opt_notreelog, "notreelog"},
  170. {Opt_flushoncommit, "flushoncommit"},
  171. {Opt_ratio, "metadata_ratio=%d"},
  172. {Opt_discard, "discard"},
  173. {Opt_space_cache, "space_cache"},
  174. {Opt_clear_cache, "clear_cache"},
  175. {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
  176. {Opt_enospc_debug, "enospc_debug"},
  177. {Opt_subvolrootid, "subvolrootid=%d"},
  178. {Opt_defrag, "autodefrag"},
  179. {Opt_inode_cache, "inode_cache"},
  180. {Opt_no_space_cache, "nospace_cache"},
  181. {Opt_recovery, "recovery"},
  182. {Opt_err, NULL},
  183. };
  184. /*
  185. * Regular mount options parser. Everything that is needed only when
  186. * reading in a new superblock is parsed here.
  187. */
  188. int btrfs_parse_options(struct btrfs_root *root, char *options)
  189. {
  190. struct btrfs_fs_info *info = root->fs_info;
  191. substring_t args[MAX_OPT_ARGS];
  192. char *p, *num, *orig = NULL;
  193. u64 cache_gen;
  194. int intarg;
  195. int ret = 0;
  196. char *compress_type;
  197. bool compress_force = false;
  198. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  199. if (cache_gen)
  200. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  201. if (!options)
  202. goto out;
  203. /*
  204. * strsep changes the string, duplicate it because parse_options
  205. * gets called twice
  206. */
  207. options = kstrdup(options, GFP_NOFS);
  208. if (!options)
  209. return -ENOMEM;
  210. orig = options;
  211. while ((p = strsep(&options, ",")) != NULL) {
  212. int token;
  213. if (!*p)
  214. continue;
  215. token = match_token(p, tokens, args);
  216. switch (token) {
  217. case Opt_degraded:
  218. printk(KERN_INFO "btrfs: allowing degraded mounts\n");
  219. btrfs_set_opt(info->mount_opt, DEGRADED);
  220. break;
  221. case Opt_subvol:
  222. case Opt_subvolid:
  223. case Opt_subvolrootid:
  224. case Opt_device:
  225. /*
  226. * These are parsed by btrfs_parse_early_options
  227. * and can be happily ignored here.
  228. */
  229. break;
  230. case Opt_nodatasum:
  231. printk(KERN_INFO "btrfs: setting nodatasum\n");
  232. btrfs_set_opt(info->mount_opt, NODATASUM);
  233. break;
  234. case Opt_nodatacow:
  235. printk(KERN_INFO "btrfs: setting nodatacow\n");
  236. btrfs_set_opt(info->mount_opt, NODATACOW);
  237. btrfs_set_opt(info->mount_opt, NODATASUM);
  238. break;
  239. case Opt_compress_force:
  240. case Opt_compress_force_type:
  241. compress_force = true;
  242. case Opt_compress:
  243. case Opt_compress_type:
  244. if (token == Opt_compress ||
  245. token == Opt_compress_force ||
  246. strcmp(args[0].from, "zlib") == 0) {
  247. compress_type = "zlib";
  248. info->compress_type = BTRFS_COMPRESS_ZLIB;
  249. } else if (strcmp(args[0].from, "lzo") == 0) {
  250. compress_type = "lzo";
  251. info->compress_type = BTRFS_COMPRESS_LZO;
  252. } else {
  253. ret = -EINVAL;
  254. goto out;
  255. }
  256. btrfs_set_opt(info->mount_opt, COMPRESS);
  257. if (compress_force) {
  258. btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
  259. pr_info("btrfs: force %s compression\n",
  260. compress_type);
  261. } else
  262. pr_info("btrfs: use %s compression\n",
  263. compress_type);
  264. break;
  265. case Opt_ssd:
  266. printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
  267. btrfs_set_opt(info->mount_opt, SSD);
  268. break;
  269. case Opt_ssd_spread:
  270. printk(KERN_INFO "btrfs: use spread ssd "
  271. "allocation scheme\n");
  272. btrfs_set_opt(info->mount_opt, SSD);
  273. btrfs_set_opt(info->mount_opt, SSD_SPREAD);
  274. break;
  275. case Opt_nossd:
  276. printk(KERN_INFO "btrfs: not using ssd allocation "
  277. "scheme\n");
  278. btrfs_set_opt(info->mount_opt, NOSSD);
  279. btrfs_clear_opt(info->mount_opt, SSD);
  280. btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
  281. break;
  282. case Opt_nobarrier:
  283. printk(KERN_INFO "btrfs: turning off barriers\n");
  284. btrfs_set_opt(info->mount_opt, NOBARRIER);
  285. break;
  286. case Opt_thread_pool:
  287. intarg = 0;
  288. match_int(&args[0], &intarg);
  289. if (intarg) {
  290. info->thread_pool_size = intarg;
  291. printk(KERN_INFO "btrfs: thread pool %d\n",
  292. info->thread_pool_size);
  293. }
  294. break;
  295. case Opt_max_inline:
  296. num = match_strdup(&args[0]);
  297. if (num) {
  298. info->max_inline = memparse(num, NULL);
  299. kfree(num);
  300. if (info->max_inline) {
  301. info->max_inline = max_t(u64,
  302. info->max_inline,
  303. root->sectorsize);
  304. }
  305. printk(KERN_INFO "btrfs: max_inline at %llu\n",
  306. (unsigned long long)info->max_inline);
  307. }
  308. break;
  309. case Opt_alloc_start:
  310. num = match_strdup(&args[0]);
  311. if (num) {
  312. info->alloc_start = memparse(num, NULL);
  313. kfree(num);
  314. printk(KERN_INFO
  315. "btrfs: allocations start at %llu\n",
  316. (unsigned long long)info->alloc_start);
  317. }
  318. break;
  319. case Opt_noacl:
  320. root->fs_info->sb->s_flags &= ~MS_POSIXACL;
  321. break;
  322. case Opt_notreelog:
  323. printk(KERN_INFO "btrfs: disabling tree log\n");
  324. btrfs_set_opt(info->mount_opt, NOTREELOG);
  325. break;
  326. case Opt_flushoncommit:
  327. printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
  328. btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
  329. break;
  330. case Opt_ratio:
  331. intarg = 0;
  332. match_int(&args[0], &intarg);
  333. if (intarg) {
  334. info->metadata_ratio = intarg;
  335. printk(KERN_INFO "btrfs: metadata ratio %d\n",
  336. info->metadata_ratio);
  337. }
  338. break;
  339. case Opt_discard:
  340. btrfs_set_opt(info->mount_opt, DISCARD);
  341. break;
  342. case Opt_space_cache:
  343. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  344. break;
  345. case Opt_no_space_cache:
  346. printk(KERN_INFO "btrfs: disabling disk space caching\n");
  347. btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
  348. break;
  349. case Opt_inode_cache:
  350. printk(KERN_INFO "btrfs: enabling inode map caching\n");
  351. btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
  352. break;
  353. case Opt_clear_cache:
  354. printk(KERN_INFO "btrfs: force clearing of disk cache\n");
  355. btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
  356. break;
  357. case Opt_user_subvol_rm_allowed:
  358. btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
  359. break;
  360. case Opt_enospc_debug:
  361. btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
  362. break;
  363. case Opt_defrag:
  364. printk(KERN_INFO "btrfs: enabling auto defrag");
  365. btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
  366. break;
  367. case Opt_recovery:
  368. printk(KERN_INFO "btrfs: enabling auto recovery");
  369. btrfs_set_opt(info->mount_opt, RECOVERY);
  370. break;
  371. case Opt_err:
  372. printk(KERN_INFO "btrfs: unrecognized mount option "
  373. "'%s'\n", p);
  374. ret = -EINVAL;
  375. goto out;
  376. default:
  377. break;
  378. }
  379. }
  380. out:
  381. if (!ret && btrfs_test_opt(root, SPACE_CACHE))
  382. printk(KERN_INFO "btrfs: disk space caching is enabled\n");
  383. kfree(orig);
  384. return ret;
  385. }
  386. /*
  387. * Parse mount options that are required early in the mount process.
  388. *
  389. * All other options will be parsed on much later in the mount process and
  390. * only when we need to allocate a new super block.
  391. */
  392. static int btrfs_parse_early_options(const char *options, fmode_t flags,
  393. void *holder, char **subvol_name, u64 *subvol_objectid,
  394. u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
  395. {
  396. substring_t args[MAX_OPT_ARGS];
  397. char *device_name, *opts, *orig, *p;
  398. int error = 0;
  399. int intarg;
  400. if (!options)
  401. return 0;
  402. /*
  403. * strsep changes the string, duplicate it because parse_options
  404. * gets called twice
  405. */
  406. opts = kstrdup(options, GFP_KERNEL);
  407. if (!opts)
  408. return -ENOMEM;
  409. orig = opts;
  410. while ((p = strsep(&opts, ",")) != NULL) {
  411. int token;
  412. if (!*p)
  413. continue;
  414. token = match_token(p, tokens, args);
  415. switch (token) {
  416. case Opt_subvol:
  417. kfree(*subvol_name);
  418. *subvol_name = match_strdup(&args[0]);
  419. break;
  420. case Opt_subvolid:
  421. intarg = 0;
  422. error = match_int(&args[0], &intarg);
  423. if (!error) {
  424. /* we want the original fs_tree */
  425. if (!intarg)
  426. *subvol_objectid =
  427. BTRFS_FS_TREE_OBJECTID;
  428. else
  429. *subvol_objectid = intarg;
  430. }
  431. break;
  432. case Opt_subvolrootid:
  433. intarg = 0;
  434. error = match_int(&args[0], &intarg);
  435. if (!error) {
  436. /* we want the original fs_tree */
  437. if (!intarg)
  438. *subvol_rootid =
  439. BTRFS_FS_TREE_OBJECTID;
  440. else
  441. *subvol_rootid = intarg;
  442. }
  443. break;
  444. case Opt_device:
  445. device_name = match_strdup(&args[0]);
  446. if (!device_name) {
  447. error = -ENOMEM;
  448. goto out;
  449. }
  450. error = btrfs_scan_one_device(device_name,
  451. flags, holder, fs_devices);
  452. kfree(device_name);
  453. if (error)
  454. goto out;
  455. break;
  456. default:
  457. break;
  458. }
  459. }
  460. out:
  461. kfree(orig);
  462. return error;
  463. }
  464. static struct dentry *get_default_root(struct super_block *sb,
  465. u64 subvol_objectid)
  466. {
  467. struct btrfs_root *root = sb->s_fs_info;
  468. struct btrfs_root *new_root;
  469. struct btrfs_dir_item *di;
  470. struct btrfs_path *path;
  471. struct btrfs_key location;
  472. struct inode *inode;
  473. u64 dir_id;
  474. int new = 0;
  475. /*
  476. * We have a specific subvol we want to mount, just setup location and
  477. * go look up the root.
  478. */
  479. if (subvol_objectid) {
  480. location.objectid = subvol_objectid;
  481. location.type = BTRFS_ROOT_ITEM_KEY;
  482. location.offset = (u64)-1;
  483. goto find_root;
  484. }
  485. path = btrfs_alloc_path();
  486. if (!path)
  487. return ERR_PTR(-ENOMEM);
  488. path->leave_spinning = 1;
  489. /*
  490. * Find the "default" dir item which points to the root item that we
  491. * will mount by default if we haven't been given a specific subvolume
  492. * to mount.
  493. */
  494. dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
  495. di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
  496. if (IS_ERR(di)) {
  497. btrfs_free_path(path);
  498. return ERR_CAST(di);
  499. }
  500. if (!di) {
  501. /*
  502. * Ok the default dir item isn't there. This is weird since
  503. * it's always been there, but don't freak out, just try and
  504. * mount to root most subvolume.
  505. */
  506. btrfs_free_path(path);
  507. dir_id = BTRFS_FIRST_FREE_OBJECTID;
  508. new_root = root->fs_info->fs_root;
  509. goto setup_root;
  510. }
  511. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  512. btrfs_free_path(path);
  513. find_root:
  514. new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
  515. if (IS_ERR(new_root))
  516. return ERR_CAST(new_root);
  517. if (btrfs_root_refs(&new_root->root_item) == 0)
  518. return ERR_PTR(-ENOENT);
  519. dir_id = btrfs_root_dirid(&new_root->root_item);
  520. setup_root:
  521. location.objectid = dir_id;
  522. location.type = BTRFS_INODE_ITEM_KEY;
  523. location.offset = 0;
  524. inode = btrfs_iget(sb, &location, new_root, &new);
  525. if (IS_ERR(inode))
  526. return ERR_CAST(inode);
  527. /*
  528. * If we're just mounting the root most subvol put the inode and return
  529. * a reference to the dentry. We will have already gotten a reference
  530. * to the inode in btrfs_fill_super so we're good to go.
  531. */
  532. if (!new && sb->s_root->d_inode == inode) {
  533. iput(inode);
  534. return dget(sb->s_root);
  535. }
  536. return d_obtain_alias(inode);
  537. }
  538. static int btrfs_fill_super(struct super_block *sb,
  539. struct btrfs_fs_devices *fs_devices,
  540. void *data, int silent)
  541. {
  542. struct inode *inode;
  543. struct dentry *root_dentry;
  544. struct btrfs_root *tree_root;
  545. struct btrfs_key key;
  546. int err;
  547. sb->s_maxbytes = MAX_LFS_FILESIZE;
  548. sb->s_magic = BTRFS_SUPER_MAGIC;
  549. sb->s_op = &btrfs_super_ops;
  550. sb->s_d_op = &btrfs_dentry_operations;
  551. sb->s_export_op = &btrfs_export_ops;
  552. sb->s_xattr = btrfs_xattr_handlers;
  553. sb->s_time_gran = 1;
  554. #ifdef CONFIG_BTRFS_FS_POSIX_ACL
  555. sb->s_flags |= MS_POSIXACL;
  556. #endif
  557. tree_root = open_ctree(sb, fs_devices, (char *)data);
  558. if (IS_ERR(tree_root)) {
  559. printk("btrfs: open_ctree failed\n");
  560. return PTR_ERR(tree_root);
  561. }
  562. sb->s_fs_info = tree_root;
  563. key.objectid = BTRFS_FIRST_FREE_OBJECTID;
  564. key.type = BTRFS_INODE_ITEM_KEY;
  565. key.offset = 0;
  566. inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
  567. if (IS_ERR(inode)) {
  568. err = PTR_ERR(inode);
  569. goto fail_close;
  570. }
  571. root_dentry = d_alloc_root(inode);
  572. if (!root_dentry) {
  573. iput(inode);
  574. err = -ENOMEM;
  575. goto fail_close;
  576. }
  577. sb->s_root = root_dentry;
  578. save_mount_options(sb, data);
  579. cleancache_init_fs(sb);
  580. return 0;
  581. fail_close:
  582. close_ctree(tree_root);
  583. return err;
  584. }
  585. int btrfs_sync_fs(struct super_block *sb, int wait)
  586. {
  587. struct btrfs_trans_handle *trans;
  588. struct btrfs_root *root = btrfs_sb(sb);
  589. int ret;
  590. trace_btrfs_sync_fs(wait);
  591. if (!wait) {
  592. filemap_flush(root->fs_info->btree_inode->i_mapping);
  593. return 0;
  594. }
  595. btrfs_start_delalloc_inodes(root, 0);
  596. btrfs_wait_ordered_extents(root, 0, 0);
  597. trans = btrfs_start_transaction(root, 0);
  598. if (IS_ERR(trans))
  599. return PTR_ERR(trans);
  600. ret = btrfs_commit_transaction(trans, root);
  601. return ret;
  602. }
  603. static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
  604. {
  605. struct btrfs_root *root = btrfs_sb(dentry->d_sb);
  606. struct btrfs_fs_info *info = root->fs_info;
  607. char *compress_type;
  608. if (btrfs_test_opt(root, DEGRADED))
  609. seq_puts(seq, ",degraded");
  610. if (btrfs_test_opt(root, NODATASUM))
  611. seq_puts(seq, ",nodatasum");
  612. if (btrfs_test_opt(root, NODATACOW))
  613. seq_puts(seq, ",nodatacow");
  614. if (btrfs_test_opt(root, NOBARRIER))
  615. seq_puts(seq, ",nobarrier");
  616. if (info->max_inline != 8192 * 1024)
  617. seq_printf(seq, ",max_inline=%llu",
  618. (unsigned long long)info->max_inline);
  619. if (info->alloc_start != 0)
  620. seq_printf(seq, ",alloc_start=%llu",
  621. (unsigned long long)info->alloc_start);
  622. if (info->thread_pool_size != min_t(unsigned long,
  623. num_online_cpus() + 2, 8))
  624. seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
  625. if (btrfs_test_opt(root, COMPRESS)) {
  626. if (info->compress_type == BTRFS_COMPRESS_ZLIB)
  627. compress_type = "zlib";
  628. else
  629. compress_type = "lzo";
  630. if (btrfs_test_opt(root, FORCE_COMPRESS))
  631. seq_printf(seq, ",compress-force=%s", compress_type);
  632. else
  633. seq_printf(seq, ",compress=%s", compress_type);
  634. }
  635. if (btrfs_test_opt(root, NOSSD))
  636. seq_puts(seq, ",nossd");
  637. if (btrfs_test_opt(root, SSD_SPREAD))
  638. seq_puts(seq, ",ssd_spread");
  639. else if (btrfs_test_opt(root, SSD))
  640. seq_puts(seq, ",ssd");
  641. if (btrfs_test_opt(root, NOTREELOG))
  642. seq_puts(seq, ",notreelog");
  643. if (btrfs_test_opt(root, FLUSHONCOMMIT))
  644. seq_puts(seq, ",flushoncommit");
  645. if (btrfs_test_opt(root, DISCARD))
  646. seq_puts(seq, ",discard");
  647. if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
  648. seq_puts(seq, ",noacl");
  649. if (btrfs_test_opt(root, SPACE_CACHE))
  650. seq_puts(seq, ",space_cache");
  651. else
  652. seq_puts(seq, ",nospace_cache");
  653. if (btrfs_test_opt(root, CLEAR_CACHE))
  654. seq_puts(seq, ",clear_cache");
  655. if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
  656. seq_puts(seq, ",user_subvol_rm_allowed");
  657. if (btrfs_test_opt(root, ENOSPC_DEBUG))
  658. seq_puts(seq, ",enospc_debug");
  659. if (btrfs_test_opt(root, AUTO_DEFRAG))
  660. seq_puts(seq, ",autodefrag");
  661. if (btrfs_test_opt(root, INODE_MAP_CACHE))
  662. seq_puts(seq, ",inode_cache");
  663. return 0;
  664. }
  665. static int btrfs_test_super(struct super_block *s, void *data)
  666. {
  667. struct btrfs_root *test_root = data;
  668. struct btrfs_root *root = btrfs_sb(s);
  669. /*
  670. * If this super block is going away, return false as it
  671. * can't match as an existing super block.
  672. */
  673. if (!atomic_read(&s->s_active))
  674. return 0;
  675. return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
  676. }
  677. static int btrfs_set_super(struct super_block *s, void *data)
  678. {
  679. s->s_fs_info = data;
  680. return set_anon_super(s, data);
  681. }
  682. /*
  683. * subvolumes are identified by ino 256
  684. */
  685. static inline int is_subvolume_inode(struct inode *inode)
  686. {
  687. if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
  688. return 1;
  689. return 0;
  690. }
  691. /*
  692. * This will strip out the subvol=%s argument for an argument string and add
  693. * subvolid=0 to make sure we get the actual tree root for path walking to the
  694. * subvol we want.
  695. */
  696. static char *setup_root_args(char *args)
  697. {
  698. unsigned copied = 0;
  699. unsigned len = strlen(args) + 2;
  700. char *pos;
  701. char *ret;
  702. /*
  703. * We need the same args as before, but minus
  704. *
  705. * subvol=a
  706. *
  707. * and add
  708. *
  709. * subvolid=0
  710. *
  711. * which is a difference of 2 characters, so we allocate strlen(args) +
  712. * 2 characters.
  713. */
  714. ret = kzalloc(len * sizeof(char), GFP_NOFS);
  715. if (!ret)
  716. return NULL;
  717. pos = strstr(args, "subvol=");
  718. /* This shouldn't happen, but just in case.. */
  719. if (!pos) {
  720. kfree(ret);
  721. return NULL;
  722. }
  723. /*
  724. * The subvol=<> arg is not at the front of the string, copy everybody
  725. * up to that into ret.
  726. */
  727. if (pos != args) {
  728. *pos = '\0';
  729. strcpy(ret, args);
  730. copied += strlen(args);
  731. pos++;
  732. }
  733. strncpy(ret + copied, "subvolid=0", len - copied);
  734. /* Length of subvolid=0 */
  735. copied += 10;
  736. /*
  737. * If there is no , after the subvol= option then we know there's no
  738. * other options and we can just return.
  739. */
  740. pos = strchr(pos, ',');
  741. if (!pos)
  742. return ret;
  743. /* Copy the rest of the arguments into our buffer */
  744. strncpy(ret + copied, pos, len - copied);
  745. copied += strlen(pos);
  746. return ret;
  747. }
  748. static struct dentry *mount_subvol(const char *subvol_name, int flags,
  749. const char *device_name, char *data)
  750. {
  751. struct dentry *root;
  752. struct vfsmount *mnt;
  753. char *newargs;
  754. newargs = setup_root_args(data);
  755. if (!newargs)
  756. return ERR_PTR(-ENOMEM);
  757. mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
  758. newargs);
  759. kfree(newargs);
  760. if (IS_ERR(mnt))
  761. return ERR_CAST(mnt);
  762. root = mount_subtree(mnt, subvol_name);
  763. if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
  764. struct super_block *s = root->d_sb;
  765. dput(root);
  766. root = ERR_PTR(-EINVAL);
  767. deactivate_locked_super(s);
  768. printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
  769. subvol_name);
  770. }
  771. return root;
  772. }
  773. /*
  774. * Find a superblock for the given device / mount point.
  775. *
  776. * Note: This is based on get_sb_bdev from fs/super.c with a few additions
  777. * for multiple device setup. Make sure to keep it in sync.
  778. */
  779. static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
  780. const char *device_name, void *data)
  781. {
  782. struct block_device *bdev = NULL;
  783. struct super_block *s;
  784. struct dentry *root;
  785. struct btrfs_fs_devices *fs_devices = NULL;
  786. struct btrfs_fs_info *fs_info = NULL;
  787. fmode_t mode = FMODE_READ;
  788. char *subvol_name = NULL;
  789. u64 subvol_objectid = 0;
  790. u64 subvol_rootid = 0;
  791. int error = 0;
  792. if (!(flags & MS_RDONLY))
  793. mode |= FMODE_WRITE;
  794. error = btrfs_parse_early_options(data, mode, fs_type,
  795. &subvol_name, &subvol_objectid,
  796. &subvol_rootid, &fs_devices);
  797. if (error) {
  798. kfree(subvol_name);
  799. return ERR_PTR(error);
  800. }
  801. if (subvol_name) {
  802. root = mount_subvol(subvol_name, flags, device_name, data);
  803. kfree(subvol_name);
  804. return root;
  805. }
  806. error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
  807. if (error)
  808. return ERR_PTR(error);
  809. /*
  810. * Setup a dummy root and fs_info for test/set super. This is because
  811. * we don't actually fill this stuff out until open_ctree, but we need
  812. * it for searching for existing supers, so this lets us do that and
  813. * then open_ctree will properly initialize everything later.
  814. */
  815. fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
  816. if (!fs_info)
  817. return ERR_PTR(-ENOMEM);
  818. fs_info->tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  819. if (!fs_info->tree_root) {
  820. error = -ENOMEM;
  821. goto error_fs_info;
  822. }
  823. fs_info->tree_root->fs_info = fs_info;
  824. fs_info->fs_devices = fs_devices;
  825. fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  826. fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  827. if (!fs_info->super_copy || !fs_info->super_for_commit) {
  828. error = -ENOMEM;
  829. goto error_fs_info;
  830. }
  831. error = btrfs_open_devices(fs_devices, mode, fs_type);
  832. if (error)
  833. goto error_fs_info;
  834. if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
  835. error = -EACCES;
  836. goto error_close_devices;
  837. }
  838. bdev = fs_devices->latest_bdev;
  839. s = sget(fs_type, btrfs_test_super, btrfs_set_super,
  840. fs_info->tree_root);
  841. if (IS_ERR(s)) {
  842. error = PTR_ERR(s);
  843. goto error_close_devices;
  844. }
  845. if (s->s_root) {
  846. if ((flags ^ s->s_flags) & MS_RDONLY) {
  847. deactivate_locked_super(s);
  848. error = -EBUSY;
  849. goto error_close_devices;
  850. }
  851. btrfs_close_devices(fs_devices);
  852. free_fs_info(fs_info);
  853. } else {
  854. char b[BDEVNAME_SIZE];
  855. s->s_flags = flags | MS_NOSEC;
  856. strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
  857. btrfs_sb(s)->fs_info->bdev_holder = fs_type;
  858. error = btrfs_fill_super(s, fs_devices, data,
  859. flags & MS_SILENT ? 1 : 0);
  860. if (error) {
  861. deactivate_locked_super(s);
  862. return ERR_PTR(error);
  863. }
  864. s->s_flags |= MS_ACTIVE;
  865. }
  866. root = get_default_root(s, subvol_objectid);
  867. if (IS_ERR(root)) {
  868. deactivate_locked_super(s);
  869. return root;
  870. }
  871. return root;
  872. error_close_devices:
  873. btrfs_close_devices(fs_devices);
  874. error_fs_info:
  875. free_fs_info(fs_info);
  876. return ERR_PTR(error);
  877. }
  878. static int btrfs_remount(struct super_block *sb, int *flags, char *data)
  879. {
  880. struct btrfs_root *root = btrfs_sb(sb);
  881. int ret;
  882. ret = btrfs_parse_options(root, data);
  883. if (ret)
  884. return -EINVAL;
  885. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  886. return 0;
  887. if (*flags & MS_RDONLY) {
  888. sb->s_flags |= MS_RDONLY;
  889. ret = btrfs_commit_super(root);
  890. WARN_ON(ret);
  891. } else {
  892. if (root->fs_info->fs_devices->rw_devices == 0)
  893. return -EACCES;
  894. if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
  895. return -EINVAL;
  896. ret = btrfs_cleanup_fs_roots(root->fs_info);
  897. WARN_ON(ret);
  898. /* recover relocation */
  899. ret = btrfs_recover_relocation(root);
  900. WARN_ON(ret);
  901. sb->s_flags &= ~MS_RDONLY;
  902. }
  903. return 0;
  904. }
  905. /* Used to sort the devices by max_avail(descending sort) */
  906. static int btrfs_cmp_device_free_bytes(const void *dev_info1,
  907. const void *dev_info2)
  908. {
  909. if (((struct btrfs_device_info *)dev_info1)->max_avail >
  910. ((struct btrfs_device_info *)dev_info2)->max_avail)
  911. return -1;
  912. else if (((struct btrfs_device_info *)dev_info1)->max_avail <
  913. ((struct btrfs_device_info *)dev_info2)->max_avail)
  914. return 1;
  915. else
  916. return 0;
  917. }
  918. /*
  919. * sort the devices by max_avail, in which max free extent size of each device
  920. * is stored.(Descending Sort)
  921. */
  922. static inline void btrfs_descending_sort_devices(
  923. struct btrfs_device_info *devices,
  924. size_t nr_devices)
  925. {
  926. sort(devices, nr_devices, sizeof(struct btrfs_device_info),
  927. btrfs_cmp_device_free_bytes, NULL);
  928. }
  929. /*
  930. * The helper to calc the free space on the devices that can be used to store
  931. * file data.
  932. */
  933. static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
  934. {
  935. struct btrfs_fs_info *fs_info = root->fs_info;
  936. struct btrfs_device_info *devices_info;
  937. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  938. struct btrfs_device *device;
  939. u64 skip_space;
  940. u64 type;
  941. u64 avail_space;
  942. u64 used_space;
  943. u64 min_stripe_size;
  944. int min_stripes = 1, num_stripes = 1;
  945. int i = 0, nr_devices;
  946. int ret;
  947. nr_devices = fs_info->fs_devices->open_devices;
  948. BUG_ON(!nr_devices);
  949. devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
  950. GFP_NOFS);
  951. if (!devices_info)
  952. return -ENOMEM;
  953. /* calc min stripe number for data space alloction */
  954. type = btrfs_get_alloc_profile(root, 1);
  955. if (type & BTRFS_BLOCK_GROUP_RAID0) {
  956. min_stripes = 2;
  957. num_stripes = nr_devices;
  958. } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
  959. min_stripes = 2;
  960. num_stripes = 2;
  961. } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
  962. min_stripes = 4;
  963. num_stripes = 4;
  964. }
  965. if (type & BTRFS_BLOCK_GROUP_DUP)
  966. min_stripe_size = 2 * BTRFS_STRIPE_LEN;
  967. else
  968. min_stripe_size = BTRFS_STRIPE_LEN;
  969. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  970. if (!device->in_fs_metadata || !device->bdev)
  971. continue;
  972. avail_space = device->total_bytes - device->bytes_used;
  973. /* align with stripe_len */
  974. do_div(avail_space, BTRFS_STRIPE_LEN);
  975. avail_space *= BTRFS_STRIPE_LEN;
  976. /*
  977. * In order to avoid overwritting the superblock on the drive,
  978. * btrfs starts at an offset of at least 1MB when doing chunk
  979. * allocation.
  980. */
  981. skip_space = 1024 * 1024;
  982. /* user can set the offset in fs_info->alloc_start. */
  983. if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
  984. device->total_bytes)
  985. skip_space = max(fs_info->alloc_start, skip_space);
  986. /*
  987. * btrfs can not use the free space in [0, skip_space - 1],
  988. * we must subtract it from the total. In order to implement
  989. * it, we account the used space in this range first.
  990. */
  991. ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
  992. &used_space);
  993. if (ret) {
  994. kfree(devices_info);
  995. return ret;
  996. }
  997. /* calc the free space in [0, skip_space - 1] */
  998. skip_space -= used_space;
  999. /*
  1000. * we can use the free space in [0, skip_space - 1], subtract
  1001. * it from the total.
  1002. */
  1003. if (avail_space && avail_space >= skip_space)
  1004. avail_space -= skip_space;
  1005. else
  1006. avail_space = 0;
  1007. if (avail_space < min_stripe_size)
  1008. continue;
  1009. devices_info[i].dev = device;
  1010. devices_info[i].max_avail = avail_space;
  1011. i++;
  1012. }
  1013. nr_devices = i;
  1014. btrfs_descending_sort_devices(devices_info, nr_devices);
  1015. i = nr_devices - 1;
  1016. avail_space = 0;
  1017. while (nr_devices >= min_stripes) {
  1018. if (num_stripes > nr_devices)
  1019. num_stripes = nr_devices;
  1020. if (devices_info[i].max_avail >= min_stripe_size) {
  1021. int j;
  1022. u64 alloc_size;
  1023. avail_space += devices_info[i].max_avail * num_stripes;
  1024. alloc_size = devices_info[i].max_avail;
  1025. for (j = i + 1 - num_stripes; j <= i; j++)
  1026. devices_info[j].max_avail -= alloc_size;
  1027. }
  1028. i--;
  1029. nr_devices--;
  1030. }
  1031. kfree(devices_info);
  1032. *free_bytes = avail_space;
  1033. return 0;
  1034. }
  1035. static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1036. {
  1037. struct btrfs_root *root = btrfs_sb(dentry->d_sb);
  1038. struct btrfs_super_block *disk_super = root->fs_info->super_copy;
  1039. struct list_head *head = &root->fs_info->space_info;
  1040. struct btrfs_space_info *found;
  1041. u64 total_used = 0;
  1042. u64 total_free_data = 0;
  1043. int bits = dentry->d_sb->s_blocksize_bits;
  1044. __be32 *fsid = (__be32 *)root->fs_info->fsid;
  1045. int ret;
  1046. /* holding chunk_muext to avoid allocating new chunks */
  1047. mutex_lock(&root->fs_info->chunk_mutex);
  1048. rcu_read_lock();
  1049. list_for_each_entry_rcu(found, head, list) {
  1050. if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
  1051. total_free_data += found->disk_total - found->disk_used;
  1052. total_free_data -=
  1053. btrfs_account_ro_block_groups_free_space(found);
  1054. }
  1055. total_used += found->disk_used;
  1056. }
  1057. rcu_read_unlock();
  1058. buf->f_namelen = BTRFS_NAME_LEN;
  1059. buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
  1060. buf->f_bfree = buf->f_blocks - (total_used >> bits);
  1061. buf->f_bsize = dentry->d_sb->s_blocksize;
  1062. buf->f_type = BTRFS_SUPER_MAGIC;
  1063. buf->f_bavail = total_free_data;
  1064. ret = btrfs_calc_avail_data_space(root, &total_free_data);
  1065. if (ret) {
  1066. mutex_unlock(&root->fs_info->chunk_mutex);
  1067. return ret;
  1068. }
  1069. buf->f_bavail += total_free_data;
  1070. buf->f_bavail = buf->f_bavail >> bits;
  1071. mutex_unlock(&root->fs_info->chunk_mutex);
  1072. /* We treat it as constant endianness (it doesn't matter _which_)
  1073. because we want the fsid to come out the same whether mounted
  1074. on a big-endian or little-endian host */
  1075. buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
  1076. buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
  1077. /* Mask in the root object ID too, to disambiguate subvols */
  1078. buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
  1079. buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
  1080. return 0;
  1081. }
  1082. static struct file_system_type btrfs_fs_type = {
  1083. .owner = THIS_MODULE,
  1084. .name = "btrfs",
  1085. .mount = btrfs_mount,
  1086. .kill_sb = kill_anon_super,
  1087. .fs_flags = FS_REQUIRES_DEV,
  1088. };
  1089. /*
  1090. * used by btrfsctl to scan devices when no FS is mounted
  1091. */
  1092. static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
  1093. unsigned long arg)
  1094. {
  1095. struct btrfs_ioctl_vol_args *vol;
  1096. struct btrfs_fs_devices *fs_devices;
  1097. int ret = -ENOTTY;
  1098. if (!capable(CAP_SYS_ADMIN))
  1099. return -EPERM;
  1100. vol = memdup_user((void __user *)arg, sizeof(*vol));
  1101. if (IS_ERR(vol))
  1102. return PTR_ERR(vol);
  1103. switch (cmd) {
  1104. case BTRFS_IOC_SCAN_DEV:
  1105. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  1106. &btrfs_fs_type, &fs_devices);
  1107. break;
  1108. }
  1109. kfree(vol);
  1110. return ret;
  1111. }
  1112. static int btrfs_freeze(struct super_block *sb)
  1113. {
  1114. struct btrfs_root *root = btrfs_sb(sb);
  1115. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1116. mutex_lock(&root->fs_info->cleaner_mutex);
  1117. return 0;
  1118. }
  1119. static int btrfs_unfreeze(struct super_block *sb)
  1120. {
  1121. struct btrfs_root *root = btrfs_sb(sb);
  1122. mutex_unlock(&root->fs_info->cleaner_mutex);
  1123. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1124. return 0;
  1125. }
  1126. static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
  1127. {
  1128. int ret;
  1129. ret = btrfs_dirty_inode(inode);
  1130. if (ret)
  1131. printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
  1132. "error %d\n", btrfs_ino(inode), ret);
  1133. }
  1134. static const struct super_operations btrfs_super_ops = {
  1135. .drop_inode = btrfs_drop_inode,
  1136. .evict_inode = btrfs_evict_inode,
  1137. .put_super = btrfs_put_super,
  1138. .sync_fs = btrfs_sync_fs,
  1139. .show_options = btrfs_show_options,
  1140. .write_inode = btrfs_write_inode,
  1141. .dirty_inode = btrfs_fs_dirty_inode,
  1142. .alloc_inode = btrfs_alloc_inode,
  1143. .destroy_inode = btrfs_destroy_inode,
  1144. .statfs = btrfs_statfs,
  1145. .remount_fs = btrfs_remount,
  1146. .freeze_fs = btrfs_freeze,
  1147. .unfreeze_fs = btrfs_unfreeze,
  1148. };
  1149. static const struct file_operations btrfs_ctl_fops = {
  1150. .unlocked_ioctl = btrfs_control_ioctl,
  1151. .compat_ioctl = btrfs_control_ioctl,
  1152. .owner = THIS_MODULE,
  1153. .llseek = noop_llseek,
  1154. };
  1155. static struct miscdevice btrfs_misc = {
  1156. .minor = BTRFS_MINOR,
  1157. .name = "btrfs-control",
  1158. .fops = &btrfs_ctl_fops
  1159. };
  1160. MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
  1161. MODULE_ALIAS("devname:btrfs-control");
  1162. static int btrfs_interface_init(void)
  1163. {
  1164. return misc_register(&btrfs_misc);
  1165. }
  1166. static void btrfs_interface_exit(void)
  1167. {
  1168. if (misc_deregister(&btrfs_misc) < 0)
  1169. printk(KERN_INFO "misc_deregister failed for control device");
  1170. }
  1171. static int __init init_btrfs_fs(void)
  1172. {
  1173. int err;
  1174. err = btrfs_init_sysfs();
  1175. if (err)
  1176. return err;
  1177. err = btrfs_init_compress();
  1178. if (err)
  1179. goto free_sysfs;
  1180. err = btrfs_init_cachep();
  1181. if (err)
  1182. goto free_compress;
  1183. err = extent_io_init();
  1184. if (err)
  1185. goto free_cachep;
  1186. err = extent_map_init();
  1187. if (err)
  1188. goto free_extent_io;
  1189. err = btrfs_delayed_inode_init();
  1190. if (err)
  1191. goto free_extent_map;
  1192. err = btrfs_interface_init();
  1193. if (err)
  1194. goto free_delayed_inode;
  1195. err = register_filesystem(&btrfs_fs_type);
  1196. if (err)
  1197. goto unregister_ioctl;
  1198. printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
  1199. return 0;
  1200. unregister_ioctl:
  1201. btrfs_interface_exit();
  1202. free_delayed_inode:
  1203. btrfs_delayed_inode_exit();
  1204. free_extent_map:
  1205. extent_map_exit();
  1206. free_extent_io:
  1207. extent_io_exit();
  1208. free_cachep:
  1209. btrfs_destroy_cachep();
  1210. free_compress:
  1211. btrfs_exit_compress();
  1212. free_sysfs:
  1213. btrfs_exit_sysfs();
  1214. return err;
  1215. }
  1216. static void __exit exit_btrfs_fs(void)
  1217. {
  1218. btrfs_destroy_cachep();
  1219. btrfs_delayed_inode_exit();
  1220. extent_map_exit();
  1221. extent_io_exit();
  1222. btrfs_interface_exit();
  1223. unregister_filesystem(&btrfs_fs_type);
  1224. btrfs_exit_sysfs();
  1225. btrfs_cleanup_fs_uuids();
  1226. btrfs_exit_compress();
  1227. }
  1228. module_init(init_btrfs_fs)
  1229. module_exit(exit_btrfs_fs)
  1230. MODULE_LICENSE("GPL");