vmx.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include "vmx.h"
  22. #include "segment_descriptor.h"
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/sched.h>
  28. #include <linux/moduleparam.h>
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. MODULE_AUTHOR("Qumranet");
  32. MODULE_LICENSE("GPL");
  33. static int bypass_guest_pf = 1;
  34. module_param(bypass_guest_pf, bool, 0);
  35. struct vmcs {
  36. u32 revision_id;
  37. u32 abort;
  38. char data[0];
  39. };
  40. struct vcpu_vmx {
  41. struct kvm_vcpu vcpu;
  42. int launched;
  43. u8 fail;
  44. struct kvm_msr_entry *guest_msrs;
  45. struct kvm_msr_entry *host_msrs;
  46. int nmsrs;
  47. int save_nmsrs;
  48. int msr_offset_efer;
  49. #ifdef CONFIG_X86_64
  50. int msr_offset_kernel_gs_base;
  51. #endif
  52. struct vmcs *vmcs;
  53. struct {
  54. int loaded;
  55. u16 fs_sel, gs_sel, ldt_sel;
  56. int gs_ldt_reload_needed;
  57. int fs_reload_needed;
  58. int guest_efer_loaded;
  59. } host_state;
  60. };
  61. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  62. {
  63. return container_of(vcpu, struct vcpu_vmx, vcpu);
  64. }
  65. static int init_rmode_tss(struct kvm *kvm);
  66. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  67. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  68. static struct page *vmx_io_bitmap_a;
  69. static struct page *vmx_io_bitmap_b;
  70. static struct vmcs_config {
  71. int size;
  72. int order;
  73. u32 revision_id;
  74. u32 pin_based_exec_ctrl;
  75. u32 cpu_based_exec_ctrl;
  76. u32 vmexit_ctrl;
  77. u32 vmentry_ctrl;
  78. } vmcs_config;
  79. #define VMX_SEGMENT_FIELD(seg) \
  80. [VCPU_SREG_##seg] = { \
  81. .selector = GUEST_##seg##_SELECTOR, \
  82. .base = GUEST_##seg##_BASE, \
  83. .limit = GUEST_##seg##_LIMIT, \
  84. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  85. }
  86. static struct kvm_vmx_segment_field {
  87. unsigned selector;
  88. unsigned base;
  89. unsigned limit;
  90. unsigned ar_bytes;
  91. } kvm_vmx_segment_fields[] = {
  92. VMX_SEGMENT_FIELD(CS),
  93. VMX_SEGMENT_FIELD(DS),
  94. VMX_SEGMENT_FIELD(ES),
  95. VMX_SEGMENT_FIELD(FS),
  96. VMX_SEGMENT_FIELD(GS),
  97. VMX_SEGMENT_FIELD(SS),
  98. VMX_SEGMENT_FIELD(TR),
  99. VMX_SEGMENT_FIELD(LDTR),
  100. };
  101. /*
  102. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  103. * away by decrementing the array size.
  104. */
  105. static const u32 vmx_msr_index[] = {
  106. #ifdef CONFIG_X86_64
  107. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  108. #endif
  109. MSR_EFER, MSR_K6_STAR,
  110. };
  111. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  112. static void load_msrs(struct kvm_msr_entry *e, int n)
  113. {
  114. int i;
  115. for (i = 0; i < n; ++i)
  116. wrmsrl(e[i].index, e[i].data);
  117. }
  118. static void save_msrs(struct kvm_msr_entry *e, int n)
  119. {
  120. int i;
  121. for (i = 0; i < n; ++i)
  122. rdmsrl(e[i].index, e[i].data);
  123. }
  124. static inline int is_page_fault(u32 intr_info)
  125. {
  126. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  127. INTR_INFO_VALID_MASK)) ==
  128. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  129. }
  130. static inline int is_no_device(u32 intr_info)
  131. {
  132. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  133. INTR_INFO_VALID_MASK)) ==
  134. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  135. }
  136. static inline int is_invalid_opcode(u32 intr_info)
  137. {
  138. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  139. INTR_INFO_VALID_MASK)) ==
  140. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  141. }
  142. static inline int is_external_interrupt(u32 intr_info)
  143. {
  144. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  145. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  146. }
  147. static inline int cpu_has_vmx_tpr_shadow(void)
  148. {
  149. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  150. }
  151. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  152. {
  153. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  154. }
  155. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  156. {
  157. int i;
  158. for (i = 0; i < vmx->nmsrs; ++i)
  159. if (vmx->guest_msrs[i].index == msr)
  160. return i;
  161. return -1;
  162. }
  163. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  164. {
  165. int i;
  166. i = __find_msr_index(vmx, msr);
  167. if (i >= 0)
  168. return &vmx->guest_msrs[i];
  169. return NULL;
  170. }
  171. static void vmcs_clear(struct vmcs *vmcs)
  172. {
  173. u64 phys_addr = __pa(vmcs);
  174. u8 error;
  175. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  176. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  177. : "cc", "memory");
  178. if (error)
  179. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  180. vmcs, phys_addr);
  181. }
  182. static void __vcpu_clear(void *arg)
  183. {
  184. struct vcpu_vmx *vmx = arg;
  185. int cpu = raw_smp_processor_id();
  186. if (vmx->vcpu.cpu == cpu)
  187. vmcs_clear(vmx->vmcs);
  188. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  189. per_cpu(current_vmcs, cpu) = NULL;
  190. rdtscll(vmx->vcpu.host_tsc);
  191. }
  192. static void vcpu_clear(struct vcpu_vmx *vmx)
  193. {
  194. if (vmx->vcpu.cpu == -1)
  195. return;
  196. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  197. vmx->launched = 0;
  198. }
  199. static unsigned long vmcs_readl(unsigned long field)
  200. {
  201. unsigned long value;
  202. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  203. : "=a"(value) : "d"(field) : "cc");
  204. return value;
  205. }
  206. static u16 vmcs_read16(unsigned long field)
  207. {
  208. return vmcs_readl(field);
  209. }
  210. static u32 vmcs_read32(unsigned long field)
  211. {
  212. return vmcs_readl(field);
  213. }
  214. static u64 vmcs_read64(unsigned long field)
  215. {
  216. #ifdef CONFIG_X86_64
  217. return vmcs_readl(field);
  218. #else
  219. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  220. #endif
  221. }
  222. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  223. {
  224. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  225. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  226. dump_stack();
  227. }
  228. static void vmcs_writel(unsigned long field, unsigned long value)
  229. {
  230. u8 error;
  231. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  232. : "=q"(error) : "a"(value), "d"(field) : "cc");
  233. if (unlikely(error))
  234. vmwrite_error(field, value);
  235. }
  236. static void vmcs_write16(unsigned long field, u16 value)
  237. {
  238. vmcs_writel(field, value);
  239. }
  240. static void vmcs_write32(unsigned long field, u32 value)
  241. {
  242. vmcs_writel(field, value);
  243. }
  244. static void vmcs_write64(unsigned long field, u64 value)
  245. {
  246. #ifdef CONFIG_X86_64
  247. vmcs_writel(field, value);
  248. #else
  249. vmcs_writel(field, value);
  250. asm volatile ("");
  251. vmcs_writel(field+1, value >> 32);
  252. #endif
  253. }
  254. static void vmcs_clear_bits(unsigned long field, u32 mask)
  255. {
  256. vmcs_writel(field, vmcs_readl(field) & ~mask);
  257. }
  258. static void vmcs_set_bits(unsigned long field, u32 mask)
  259. {
  260. vmcs_writel(field, vmcs_readl(field) | mask);
  261. }
  262. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  263. {
  264. u32 eb;
  265. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  266. if (!vcpu->fpu_active)
  267. eb |= 1u << NM_VECTOR;
  268. if (vcpu->guest_debug.enabled)
  269. eb |= 1u << 1;
  270. if (vcpu->rmode.active)
  271. eb = ~0;
  272. vmcs_write32(EXCEPTION_BITMAP, eb);
  273. }
  274. static void reload_tss(void)
  275. {
  276. #ifndef CONFIG_X86_64
  277. /*
  278. * VT restores TR but not its size. Useless.
  279. */
  280. struct descriptor_table gdt;
  281. struct segment_descriptor *descs;
  282. get_gdt(&gdt);
  283. descs = (void *)gdt.base;
  284. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  285. load_TR_desc();
  286. #endif
  287. }
  288. static void load_transition_efer(struct vcpu_vmx *vmx)
  289. {
  290. int efer_offset = vmx->msr_offset_efer;
  291. u64 host_efer = vmx->host_msrs[efer_offset].data;
  292. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  293. u64 ignore_bits;
  294. if (efer_offset < 0)
  295. return;
  296. /*
  297. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  298. * outside long mode
  299. */
  300. ignore_bits = EFER_NX | EFER_SCE;
  301. #ifdef CONFIG_X86_64
  302. ignore_bits |= EFER_LMA | EFER_LME;
  303. /* SCE is meaningful only in long mode on Intel */
  304. if (guest_efer & EFER_LMA)
  305. ignore_bits &= ~(u64)EFER_SCE;
  306. #endif
  307. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  308. return;
  309. vmx->host_state.guest_efer_loaded = 1;
  310. guest_efer &= ~ignore_bits;
  311. guest_efer |= host_efer & ignore_bits;
  312. wrmsrl(MSR_EFER, guest_efer);
  313. vmx->vcpu.stat.efer_reload++;
  314. }
  315. static void reload_host_efer(struct vcpu_vmx *vmx)
  316. {
  317. if (vmx->host_state.guest_efer_loaded) {
  318. vmx->host_state.guest_efer_loaded = 0;
  319. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  320. }
  321. }
  322. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  323. {
  324. struct vcpu_vmx *vmx = to_vmx(vcpu);
  325. if (vmx->host_state.loaded)
  326. return;
  327. vmx->host_state.loaded = 1;
  328. /*
  329. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  330. * allow segment selectors with cpl > 0 or ti == 1.
  331. */
  332. vmx->host_state.ldt_sel = read_ldt();
  333. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  334. vmx->host_state.fs_sel = read_fs();
  335. if (!(vmx->host_state.fs_sel & 7)) {
  336. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  337. vmx->host_state.fs_reload_needed = 0;
  338. } else {
  339. vmcs_write16(HOST_FS_SELECTOR, 0);
  340. vmx->host_state.fs_reload_needed = 1;
  341. }
  342. vmx->host_state.gs_sel = read_gs();
  343. if (!(vmx->host_state.gs_sel & 7))
  344. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  345. else {
  346. vmcs_write16(HOST_GS_SELECTOR, 0);
  347. vmx->host_state.gs_ldt_reload_needed = 1;
  348. }
  349. #ifdef CONFIG_X86_64
  350. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  351. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  352. #else
  353. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  354. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  355. #endif
  356. #ifdef CONFIG_X86_64
  357. if (is_long_mode(&vmx->vcpu))
  358. save_msrs(vmx->host_msrs +
  359. vmx->msr_offset_kernel_gs_base, 1);
  360. #endif
  361. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  362. load_transition_efer(vmx);
  363. }
  364. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  365. {
  366. unsigned long flags;
  367. if (!vmx->host_state.loaded)
  368. return;
  369. vmx->host_state.loaded = 0;
  370. if (vmx->host_state.fs_reload_needed)
  371. load_fs(vmx->host_state.fs_sel);
  372. if (vmx->host_state.gs_ldt_reload_needed) {
  373. load_ldt(vmx->host_state.ldt_sel);
  374. /*
  375. * If we have to reload gs, we must take care to
  376. * preserve our gs base.
  377. */
  378. local_irq_save(flags);
  379. load_gs(vmx->host_state.gs_sel);
  380. #ifdef CONFIG_X86_64
  381. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  382. #endif
  383. local_irq_restore(flags);
  384. }
  385. reload_tss();
  386. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  387. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  388. reload_host_efer(vmx);
  389. }
  390. /*
  391. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  392. * vcpu mutex is already taken.
  393. */
  394. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  395. {
  396. struct vcpu_vmx *vmx = to_vmx(vcpu);
  397. u64 phys_addr = __pa(vmx->vmcs);
  398. u64 tsc_this, delta;
  399. if (vcpu->cpu != cpu) {
  400. vcpu_clear(vmx);
  401. kvm_migrate_apic_timer(vcpu);
  402. }
  403. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  404. u8 error;
  405. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  406. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  407. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  408. : "cc");
  409. if (error)
  410. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  411. vmx->vmcs, phys_addr);
  412. }
  413. if (vcpu->cpu != cpu) {
  414. struct descriptor_table dt;
  415. unsigned long sysenter_esp;
  416. vcpu->cpu = cpu;
  417. /*
  418. * Linux uses per-cpu TSS and GDT, so set these when switching
  419. * processors.
  420. */
  421. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  422. get_gdt(&dt);
  423. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  424. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  425. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  426. /*
  427. * Make sure the time stamp counter is monotonous.
  428. */
  429. rdtscll(tsc_this);
  430. delta = vcpu->host_tsc - tsc_this;
  431. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  432. }
  433. }
  434. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  435. {
  436. vmx_load_host_state(to_vmx(vcpu));
  437. kvm_put_guest_fpu(vcpu);
  438. }
  439. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  440. {
  441. if (vcpu->fpu_active)
  442. return;
  443. vcpu->fpu_active = 1;
  444. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  445. if (vcpu->cr0 & X86_CR0_TS)
  446. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  447. update_exception_bitmap(vcpu);
  448. }
  449. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  450. {
  451. if (!vcpu->fpu_active)
  452. return;
  453. vcpu->fpu_active = 0;
  454. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  455. update_exception_bitmap(vcpu);
  456. }
  457. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  458. {
  459. vcpu_clear(to_vmx(vcpu));
  460. }
  461. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  462. {
  463. return vmcs_readl(GUEST_RFLAGS);
  464. }
  465. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  466. {
  467. if (vcpu->rmode.active)
  468. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  469. vmcs_writel(GUEST_RFLAGS, rflags);
  470. }
  471. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  472. {
  473. unsigned long rip;
  474. u32 interruptibility;
  475. rip = vmcs_readl(GUEST_RIP);
  476. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  477. vmcs_writel(GUEST_RIP, rip);
  478. /*
  479. * We emulated an instruction, so temporary interrupt blocking
  480. * should be removed, if set.
  481. */
  482. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  483. if (interruptibility & 3)
  484. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  485. interruptibility & ~3);
  486. vcpu->interrupt_window_open = 1;
  487. }
  488. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  489. {
  490. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  491. vmcs_readl(GUEST_RIP));
  492. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  493. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  494. GP_VECTOR |
  495. INTR_TYPE_EXCEPTION |
  496. INTR_INFO_DELIEVER_CODE_MASK |
  497. INTR_INFO_VALID_MASK);
  498. }
  499. static void vmx_inject_ud(struct kvm_vcpu *vcpu)
  500. {
  501. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  502. UD_VECTOR |
  503. INTR_TYPE_EXCEPTION |
  504. INTR_INFO_VALID_MASK);
  505. }
  506. /*
  507. * Swap MSR entry in host/guest MSR entry array.
  508. */
  509. #ifdef CONFIG_X86_64
  510. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  511. {
  512. struct kvm_msr_entry tmp;
  513. tmp = vmx->guest_msrs[to];
  514. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  515. vmx->guest_msrs[from] = tmp;
  516. tmp = vmx->host_msrs[to];
  517. vmx->host_msrs[to] = vmx->host_msrs[from];
  518. vmx->host_msrs[from] = tmp;
  519. }
  520. #endif
  521. /*
  522. * Set up the vmcs to automatically save and restore system
  523. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  524. * mode, as fiddling with msrs is very expensive.
  525. */
  526. static void setup_msrs(struct vcpu_vmx *vmx)
  527. {
  528. int save_nmsrs;
  529. save_nmsrs = 0;
  530. #ifdef CONFIG_X86_64
  531. if (is_long_mode(&vmx->vcpu)) {
  532. int index;
  533. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  534. if (index >= 0)
  535. move_msr_up(vmx, index, save_nmsrs++);
  536. index = __find_msr_index(vmx, MSR_LSTAR);
  537. if (index >= 0)
  538. move_msr_up(vmx, index, save_nmsrs++);
  539. index = __find_msr_index(vmx, MSR_CSTAR);
  540. if (index >= 0)
  541. move_msr_up(vmx, index, save_nmsrs++);
  542. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  543. if (index >= 0)
  544. move_msr_up(vmx, index, save_nmsrs++);
  545. /*
  546. * MSR_K6_STAR is only needed on long mode guests, and only
  547. * if efer.sce is enabled.
  548. */
  549. index = __find_msr_index(vmx, MSR_K6_STAR);
  550. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  551. move_msr_up(vmx, index, save_nmsrs++);
  552. }
  553. #endif
  554. vmx->save_nmsrs = save_nmsrs;
  555. #ifdef CONFIG_X86_64
  556. vmx->msr_offset_kernel_gs_base =
  557. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  558. #endif
  559. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  560. }
  561. /*
  562. * reads and returns guest's timestamp counter "register"
  563. * guest_tsc = host_tsc + tsc_offset -- 21.3
  564. */
  565. static u64 guest_read_tsc(void)
  566. {
  567. u64 host_tsc, tsc_offset;
  568. rdtscll(host_tsc);
  569. tsc_offset = vmcs_read64(TSC_OFFSET);
  570. return host_tsc + tsc_offset;
  571. }
  572. /*
  573. * writes 'guest_tsc' into guest's timestamp counter "register"
  574. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  575. */
  576. static void guest_write_tsc(u64 guest_tsc)
  577. {
  578. u64 host_tsc;
  579. rdtscll(host_tsc);
  580. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  581. }
  582. /*
  583. * Reads an msr value (of 'msr_index') into 'pdata'.
  584. * Returns 0 on success, non-0 otherwise.
  585. * Assumes vcpu_load() was already called.
  586. */
  587. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  588. {
  589. u64 data;
  590. struct kvm_msr_entry *msr;
  591. if (!pdata) {
  592. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  593. return -EINVAL;
  594. }
  595. switch (msr_index) {
  596. #ifdef CONFIG_X86_64
  597. case MSR_FS_BASE:
  598. data = vmcs_readl(GUEST_FS_BASE);
  599. break;
  600. case MSR_GS_BASE:
  601. data = vmcs_readl(GUEST_GS_BASE);
  602. break;
  603. case MSR_EFER:
  604. return kvm_get_msr_common(vcpu, msr_index, pdata);
  605. #endif
  606. case MSR_IA32_TIME_STAMP_COUNTER:
  607. data = guest_read_tsc();
  608. break;
  609. case MSR_IA32_SYSENTER_CS:
  610. data = vmcs_read32(GUEST_SYSENTER_CS);
  611. break;
  612. case MSR_IA32_SYSENTER_EIP:
  613. data = vmcs_readl(GUEST_SYSENTER_EIP);
  614. break;
  615. case MSR_IA32_SYSENTER_ESP:
  616. data = vmcs_readl(GUEST_SYSENTER_ESP);
  617. break;
  618. default:
  619. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  620. if (msr) {
  621. data = msr->data;
  622. break;
  623. }
  624. return kvm_get_msr_common(vcpu, msr_index, pdata);
  625. }
  626. *pdata = data;
  627. return 0;
  628. }
  629. /*
  630. * Writes msr value into into the appropriate "register".
  631. * Returns 0 on success, non-0 otherwise.
  632. * Assumes vcpu_load() was already called.
  633. */
  634. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  635. {
  636. struct vcpu_vmx *vmx = to_vmx(vcpu);
  637. struct kvm_msr_entry *msr;
  638. int ret = 0;
  639. switch (msr_index) {
  640. #ifdef CONFIG_X86_64
  641. case MSR_EFER:
  642. ret = kvm_set_msr_common(vcpu, msr_index, data);
  643. if (vmx->host_state.loaded) {
  644. reload_host_efer(vmx);
  645. load_transition_efer(vmx);
  646. }
  647. break;
  648. case MSR_FS_BASE:
  649. vmcs_writel(GUEST_FS_BASE, data);
  650. break;
  651. case MSR_GS_BASE:
  652. vmcs_writel(GUEST_GS_BASE, data);
  653. break;
  654. #endif
  655. case MSR_IA32_SYSENTER_CS:
  656. vmcs_write32(GUEST_SYSENTER_CS, data);
  657. break;
  658. case MSR_IA32_SYSENTER_EIP:
  659. vmcs_writel(GUEST_SYSENTER_EIP, data);
  660. break;
  661. case MSR_IA32_SYSENTER_ESP:
  662. vmcs_writel(GUEST_SYSENTER_ESP, data);
  663. break;
  664. case MSR_IA32_TIME_STAMP_COUNTER:
  665. guest_write_tsc(data);
  666. break;
  667. default:
  668. msr = find_msr_entry(vmx, msr_index);
  669. if (msr) {
  670. msr->data = data;
  671. if (vmx->host_state.loaded)
  672. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  673. break;
  674. }
  675. ret = kvm_set_msr_common(vcpu, msr_index, data);
  676. }
  677. return ret;
  678. }
  679. /*
  680. * Sync the rsp and rip registers into the vcpu structure. This allows
  681. * registers to be accessed by indexing vcpu->regs.
  682. */
  683. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  684. {
  685. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  686. vcpu->rip = vmcs_readl(GUEST_RIP);
  687. }
  688. /*
  689. * Syncs rsp and rip back into the vmcs. Should be called after possible
  690. * modification.
  691. */
  692. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  693. {
  694. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  695. vmcs_writel(GUEST_RIP, vcpu->rip);
  696. }
  697. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  698. {
  699. unsigned long dr7 = 0x400;
  700. int old_singlestep;
  701. old_singlestep = vcpu->guest_debug.singlestep;
  702. vcpu->guest_debug.enabled = dbg->enabled;
  703. if (vcpu->guest_debug.enabled) {
  704. int i;
  705. dr7 |= 0x200; /* exact */
  706. for (i = 0; i < 4; ++i) {
  707. if (!dbg->breakpoints[i].enabled)
  708. continue;
  709. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  710. dr7 |= 2 << (i*2); /* global enable */
  711. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  712. }
  713. vcpu->guest_debug.singlestep = dbg->singlestep;
  714. } else
  715. vcpu->guest_debug.singlestep = 0;
  716. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  717. unsigned long flags;
  718. flags = vmcs_readl(GUEST_RFLAGS);
  719. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  720. vmcs_writel(GUEST_RFLAGS, flags);
  721. }
  722. update_exception_bitmap(vcpu);
  723. vmcs_writel(GUEST_DR7, dr7);
  724. return 0;
  725. }
  726. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  727. {
  728. u32 idtv_info_field;
  729. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  730. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  731. if (is_external_interrupt(idtv_info_field))
  732. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  733. else
  734. printk(KERN_DEBUG "pending exception: not handled yet\n");
  735. }
  736. return -1;
  737. }
  738. static __init int cpu_has_kvm_support(void)
  739. {
  740. unsigned long ecx = cpuid_ecx(1);
  741. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  742. }
  743. static __init int vmx_disabled_by_bios(void)
  744. {
  745. u64 msr;
  746. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  747. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  748. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  749. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  750. /* locked but not enabled */
  751. }
  752. static void hardware_enable(void *garbage)
  753. {
  754. int cpu = raw_smp_processor_id();
  755. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  756. u64 old;
  757. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  758. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  759. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  760. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  761. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  762. /* enable and lock */
  763. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  764. MSR_IA32_FEATURE_CONTROL_LOCKED |
  765. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  766. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  767. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  768. : "memory", "cc");
  769. }
  770. static void hardware_disable(void *garbage)
  771. {
  772. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  773. }
  774. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  775. u32 msr, u32 *result)
  776. {
  777. u32 vmx_msr_low, vmx_msr_high;
  778. u32 ctl = ctl_min | ctl_opt;
  779. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  780. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  781. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  782. /* Ensure minimum (required) set of control bits are supported. */
  783. if (ctl_min & ~ctl)
  784. return -EIO;
  785. *result = ctl;
  786. return 0;
  787. }
  788. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  789. {
  790. u32 vmx_msr_low, vmx_msr_high;
  791. u32 min, opt;
  792. u32 _pin_based_exec_control = 0;
  793. u32 _cpu_based_exec_control = 0;
  794. u32 _vmexit_control = 0;
  795. u32 _vmentry_control = 0;
  796. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  797. opt = 0;
  798. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  799. &_pin_based_exec_control) < 0)
  800. return -EIO;
  801. min = CPU_BASED_HLT_EXITING |
  802. #ifdef CONFIG_X86_64
  803. CPU_BASED_CR8_LOAD_EXITING |
  804. CPU_BASED_CR8_STORE_EXITING |
  805. #endif
  806. CPU_BASED_USE_IO_BITMAPS |
  807. CPU_BASED_MOV_DR_EXITING |
  808. CPU_BASED_USE_TSC_OFFSETING;
  809. #ifdef CONFIG_X86_64
  810. opt = CPU_BASED_TPR_SHADOW;
  811. #else
  812. opt = 0;
  813. #endif
  814. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  815. &_cpu_based_exec_control) < 0)
  816. return -EIO;
  817. #ifdef CONFIG_X86_64
  818. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  819. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  820. ~CPU_BASED_CR8_STORE_EXITING;
  821. #endif
  822. min = 0;
  823. #ifdef CONFIG_X86_64
  824. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  825. #endif
  826. opt = 0;
  827. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  828. &_vmexit_control) < 0)
  829. return -EIO;
  830. min = opt = 0;
  831. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  832. &_vmentry_control) < 0)
  833. return -EIO;
  834. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  835. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  836. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  837. return -EIO;
  838. #ifdef CONFIG_X86_64
  839. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  840. if (vmx_msr_high & (1u<<16))
  841. return -EIO;
  842. #endif
  843. /* Require Write-Back (WB) memory type for VMCS accesses. */
  844. if (((vmx_msr_high >> 18) & 15) != 6)
  845. return -EIO;
  846. vmcs_conf->size = vmx_msr_high & 0x1fff;
  847. vmcs_conf->order = get_order(vmcs_config.size);
  848. vmcs_conf->revision_id = vmx_msr_low;
  849. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  850. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  851. vmcs_conf->vmexit_ctrl = _vmexit_control;
  852. vmcs_conf->vmentry_ctrl = _vmentry_control;
  853. return 0;
  854. }
  855. static struct vmcs *alloc_vmcs_cpu(int cpu)
  856. {
  857. int node = cpu_to_node(cpu);
  858. struct page *pages;
  859. struct vmcs *vmcs;
  860. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  861. if (!pages)
  862. return NULL;
  863. vmcs = page_address(pages);
  864. memset(vmcs, 0, vmcs_config.size);
  865. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  866. return vmcs;
  867. }
  868. static struct vmcs *alloc_vmcs(void)
  869. {
  870. return alloc_vmcs_cpu(raw_smp_processor_id());
  871. }
  872. static void free_vmcs(struct vmcs *vmcs)
  873. {
  874. free_pages((unsigned long)vmcs, vmcs_config.order);
  875. }
  876. static void free_kvm_area(void)
  877. {
  878. int cpu;
  879. for_each_online_cpu(cpu)
  880. free_vmcs(per_cpu(vmxarea, cpu));
  881. }
  882. static __init int alloc_kvm_area(void)
  883. {
  884. int cpu;
  885. for_each_online_cpu(cpu) {
  886. struct vmcs *vmcs;
  887. vmcs = alloc_vmcs_cpu(cpu);
  888. if (!vmcs) {
  889. free_kvm_area();
  890. return -ENOMEM;
  891. }
  892. per_cpu(vmxarea, cpu) = vmcs;
  893. }
  894. return 0;
  895. }
  896. static __init int hardware_setup(void)
  897. {
  898. if (setup_vmcs_config(&vmcs_config) < 0)
  899. return -EIO;
  900. return alloc_kvm_area();
  901. }
  902. static __exit void hardware_unsetup(void)
  903. {
  904. free_kvm_area();
  905. }
  906. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  907. {
  908. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  909. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  910. vmcs_write16(sf->selector, save->selector);
  911. vmcs_writel(sf->base, save->base);
  912. vmcs_write32(sf->limit, save->limit);
  913. vmcs_write32(sf->ar_bytes, save->ar);
  914. } else {
  915. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  916. << AR_DPL_SHIFT;
  917. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  918. }
  919. }
  920. static void enter_pmode(struct kvm_vcpu *vcpu)
  921. {
  922. unsigned long flags;
  923. vcpu->rmode.active = 0;
  924. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  925. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  926. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  927. flags = vmcs_readl(GUEST_RFLAGS);
  928. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  929. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  930. vmcs_writel(GUEST_RFLAGS, flags);
  931. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  932. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  933. update_exception_bitmap(vcpu);
  934. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  935. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  936. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  937. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  938. vmcs_write16(GUEST_SS_SELECTOR, 0);
  939. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  940. vmcs_write16(GUEST_CS_SELECTOR,
  941. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  942. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  943. }
  944. static gva_t rmode_tss_base(struct kvm *kvm)
  945. {
  946. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  947. return base_gfn << PAGE_SHIFT;
  948. }
  949. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  950. {
  951. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  952. save->selector = vmcs_read16(sf->selector);
  953. save->base = vmcs_readl(sf->base);
  954. save->limit = vmcs_read32(sf->limit);
  955. save->ar = vmcs_read32(sf->ar_bytes);
  956. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  957. vmcs_write32(sf->limit, 0xffff);
  958. vmcs_write32(sf->ar_bytes, 0xf3);
  959. }
  960. static void enter_rmode(struct kvm_vcpu *vcpu)
  961. {
  962. unsigned long flags;
  963. vcpu->rmode.active = 1;
  964. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  965. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  966. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  967. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  968. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  969. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  970. flags = vmcs_readl(GUEST_RFLAGS);
  971. vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  972. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  973. vmcs_writel(GUEST_RFLAGS, flags);
  974. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  975. update_exception_bitmap(vcpu);
  976. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  977. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  978. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  979. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  980. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  981. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  982. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  983. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  984. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  985. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  986. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  987. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  988. kvm_mmu_reset_context(vcpu);
  989. init_rmode_tss(vcpu->kvm);
  990. }
  991. #ifdef CONFIG_X86_64
  992. static void enter_lmode(struct kvm_vcpu *vcpu)
  993. {
  994. u32 guest_tr_ar;
  995. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  996. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  997. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  998. __FUNCTION__);
  999. vmcs_write32(GUEST_TR_AR_BYTES,
  1000. (guest_tr_ar & ~AR_TYPE_MASK)
  1001. | AR_TYPE_BUSY_64_TSS);
  1002. }
  1003. vcpu->shadow_efer |= EFER_LMA;
  1004. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1005. vmcs_write32(VM_ENTRY_CONTROLS,
  1006. vmcs_read32(VM_ENTRY_CONTROLS)
  1007. | VM_ENTRY_IA32E_MODE);
  1008. }
  1009. static void exit_lmode(struct kvm_vcpu *vcpu)
  1010. {
  1011. vcpu->shadow_efer &= ~EFER_LMA;
  1012. vmcs_write32(VM_ENTRY_CONTROLS,
  1013. vmcs_read32(VM_ENTRY_CONTROLS)
  1014. & ~VM_ENTRY_IA32E_MODE);
  1015. }
  1016. #endif
  1017. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1018. {
  1019. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  1020. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1021. }
  1022. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1023. {
  1024. vmx_fpu_deactivate(vcpu);
  1025. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  1026. enter_pmode(vcpu);
  1027. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  1028. enter_rmode(vcpu);
  1029. #ifdef CONFIG_X86_64
  1030. if (vcpu->shadow_efer & EFER_LME) {
  1031. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1032. enter_lmode(vcpu);
  1033. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1034. exit_lmode(vcpu);
  1035. }
  1036. #endif
  1037. vmcs_writel(CR0_READ_SHADOW, cr0);
  1038. vmcs_writel(GUEST_CR0,
  1039. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1040. vcpu->cr0 = cr0;
  1041. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1042. vmx_fpu_activate(vcpu);
  1043. }
  1044. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1045. {
  1046. vmcs_writel(GUEST_CR3, cr3);
  1047. if (vcpu->cr0 & X86_CR0_PE)
  1048. vmx_fpu_deactivate(vcpu);
  1049. }
  1050. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1051. {
  1052. vmcs_writel(CR4_READ_SHADOW, cr4);
  1053. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1054. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1055. vcpu->cr4 = cr4;
  1056. }
  1057. #ifdef CONFIG_X86_64
  1058. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1059. {
  1060. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1061. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1062. vcpu->shadow_efer = efer;
  1063. if (efer & EFER_LMA) {
  1064. vmcs_write32(VM_ENTRY_CONTROLS,
  1065. vmcs_read32(VM_ENTRY_CONTROLS) |
  1066. VM_ENTRY_IA32E_MODE);
  1067. msr->data = efer;
  1068. } else {
  1069. vmcs_write32(VM_ENTRY_CONTROLS,
  1070. vmcs_read32(VM_ENTRY_CONTROLS) &
  1071. ~VM_ENTRY_IA32E_MODE);
  1072. msr->data = efer & ~EFER_LME;
  1073. }
  1074. setup_msrs(vmx);
  1075. }
  1076. #endif
  1077. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1078. {
  1079. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1080. return vmcs_readl(sf->base);
  1081. }
  1082. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1083. struct kvm_segment *var, int seg)
  1084. {
  1085. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1086. u32 ar;
  1087. var->base = vmcs_readl(sf->base);
  1088. var->limit = vmcs_read32(sf->limit);
  1089. var->selector = vmcs_read16(sf->selector);
  1090. ar = vmcs_read32(sf->ar_bytes);
  1091. if (ar & AR_UNUSABLE_MASK)
  1092. ar = 0;
  1093. var->type = ar & 15;
  1094. var->s = (ar >> 4) & 1;
  1095. var->dpl = (ar >> 5) & 3;
  1096. var->present = (ar >> 7) & 1;
  1097. var->avl = (ar >> 12) & 1;
  1098. var->l = (ar >> 13) & 1;
  1099. var->db = (ar >> 14) & 1;
  1100. var->g = (ar >> 15) & 1;
  1101. var->unusable = (ar >> 16) & 1;
  1102. }
  1103. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1104. {
  1105. u32 ar;
  1106. if (var->unusable)
  1107. ar = 1 << 16;
  1108. else {
  1109. ar = var->type & 15;
  1110. ar |= (var->s & 1) << 4;
  1111. ar |= (var->dpl & 3) << 5;
  1112. ar |= (var->present & 1) << 7;
  1113. ar |= (var->avl & 1) << 12;
  1114. ar |= (var->l & 1) << 13;
  1115. ar |= (var->db & 1) << 14;
  1116. ar |= (var->g & 1) << 15;
  1117. }
  1118. if (ar == 0) /* a 0 value means unusable */
  1119. ar = AR_UNUSABLE_MASK;
  1120. return ar;
  1121. }
  1122. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1123. struct kvm_segment *var, int seg)
  1124. {
  1125. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1126. u32 ar;
  1127. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1128. vcpu->rmode.tr.selector = var->selector;
  1129. vcpu->rmode.tr.base = var->base;
  1130. vcpu->rmode.tr.limit = var->limit;
  1131. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1132. return;
  1133. }
  1134. vmcs_writel(sf->base, var->base);
  1135. vmcs_write32(sf->limit, var->limit);
  1136. vmcs_write16(sf->selector, var->selector);
  1137. if (vcpu->rmode.active && var->s) {
  1138. /*
  1139. * Hack real-mode segments into vm86 compatibility.
  1140. */
  1141. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1142. vmcs_writel(sf->base, 0xf0000);
  1143. ar = 0xf3;
  1144. } else
  1145. ar = vmx_segment_access_rights(var);
  1146. vmcs_write32(sf->ar_bytes, ar);
  1147. }
  1148. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1149. {
  1150. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1151. *db = (ar >> 14) & 1;
  1152. *l = (ar >> 13) & 1;
  1153. }
  1154. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1155. {
  1156. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1157. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1158. }
  1159. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1160. {
  1161. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1162. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1163. }
  1164. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1165. {
  1166. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1167. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1168. }
  1169. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1170. {
  1171. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1172. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1173. }
  1174. static int init_rmode_tss(struct kvm *kvm)
  1175. {
  1176. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1177. u16 data = 0;
  1178. int r;
  1179. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1180. if (r < 0)
  1181. return 0;
  1182. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1183. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1184. if (r < 0)
  1185. return 0;
  1186. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1187. if (r < 0)
  1188. return 0;
  1189. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1190. if (r < 0)
  1191. return 0;
  1192. data = ~0;
  1193. r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1194. sizeof(u8));
  1195. if (r < 0)
  1196. return 0;
  1197. return 1;
  1198. }
  1199. static void seg_setup(int seg)
  1200. {
  1201. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1202. vmcs_write16(sf->selector, 0);
  1203. vmcs_writel(sf->base, 0);
  1204. vmcs_write32(sf->limit, 0xffff);
  1205. vmcs_write32(sf->ar_bytes, 0x93);
  1206. }
  1207. /*
  1208. * Sets up the vmcs for emulated real mode.
  1209. */
  1210. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1211. {
  1212. u32 host_sysenter_cs;
  1213. u32 junk;
  1214. unsigned long a;
  1215. struct descriptor_table dt;
  1216. int i;
  1217. int ret = 0;
  1218. unsigned long kvm_vmx_return;
  1219. u64 msr;
  1220. u32 exec_control;
  1221. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1222. ret = -ENOMEM;
  1223. goto out;
  1224. }
  1225. vmx->vcpu.rmode.active = 0;
  1226. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1227. set_cr8(&vmx->vcpu, 0);
  1228. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1229. if (vmx->vcpu.vcpu_id == 0)
  1230. msr |= MSR_IA32_APICBASE_BSP;
  1231. kvm_set_apic_base(&vmx->vcpu, msr);
  1232. fx_init(&vmx->vcpu);
  1233. /*
  1234. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1235. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1236. */
  1237. if (vmx->vcpu.vcpu_id == 0) {
  1238. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1239. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1240. } else {
  1241. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1242. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1243. }
  1244. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1245. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1246. seg_setup(VCPU_SREG_DS);
  1247. seg_setup(VCPU_SREG_ES);
  1248. seg_setup(VCPU_SREG_FS);
  1249. seg_setup(VCPU_SREG_GS);
  1250. seg_setup(VCPU_SREG_SS);
  1251. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1252. vmcs_writel(GUEST_TR_BASE, 0);
  1253. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1254. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1255. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1256. vmcs_writel(GUEST_LDTR_BASE, 0);
  1257. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1258. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1259. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1260. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1261. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1262. vmcs_writel(GUEST_RFLAGS, 0x02);
  1263. if (vmx->vcpu.vcpu_id == 0)
  1264. vmcs_writel(GUEST_RIP, 0xfff0);
  1265. else
  1266. vmcs_writel(GUEST_RIP, 0);
  1267. vmcs_writel(GUEST_RSP, 0);
  1268. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1269. vmcs_writel(GUEST_DR7, 0x400);
  1270. vmcs_writel(GUEST_GDTR_BASE, 0);
  1271. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1272. vmcs_writel(GUEST_IDTR_BASE, 0);
  1273. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1274. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1275. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1276. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1277. /* I/O */
  1278. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1279. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1280. guest_write_tsc(0);
  1281. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1282. /* Special registers */
  1283. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1284. /* Control */
  1285. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1286. vmcs_config.pin_based_exec_ctrl);
  1287. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1288. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1289. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1290. #ifdef CONFIG_X86_64
  1291. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1292. CPU_BASED_CR8_LOAD_EXITING;
  1293. #endif
  1294. }
  1295. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1296. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1297. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1298. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1299. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1300. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1301. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1302. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1303. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1304. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1305. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1306. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1307. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1308. #ifdef CONFIG_X86_64
  1309. rdmsrl(MSR_FS_BASE, a);
  1310. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1311. rdmsrl(MSR_GS_BASE, a);
  1312. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1313. #else
  1314. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1315. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1316. #endif
  1317. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1318. get_idt(&dt);
  1319. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1320. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1321. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1322. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1323. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1324. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1325. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1326. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1327. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1328. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1329. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1330. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1331. for (i = 0; i < NR_VMX_MSR; ++i) {
  1332. u32 index = vmx_msr_index[i];
  1333. u32 data_low, data_high;
  1334. u64 data;
  1335. int j = vmx->nmsrs;
  1336. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1337. continue;
  1338. if (wrmsr_safe(index, data_low, data_high) < 0)
  1339. continue;
  1340. data = data_low | ((u64)data_high << 32);
  1341. vmx->host_msrs[j].index = index;
  1342. vmx->host_msrs[j].reserved = 0;
  1343. vmx->host_msrs[j].data = data;
  1344. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1345. ++vmx->nmsrs;
  1346. }
  1347. setup_msrs(vmx);
  1348. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1349. /* 22.2.1, 20.8.1 */
  1350. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1351. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1352. #ifdef CONFIG_X86_64
  1353. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1354. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1355. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1356. page_to_phys(vmx->vcpu.apic->regs_page));
  1357. vmcs_write32(TPR_THRESHOLD, 0);
  1358. #endif
  1359. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1360. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1361. vmx->vcpu.cr0 = 0x60000010;
  1362. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
  1363. vmx_set_cr4(&vmx->vcpu, 0);
  1364. #ifdef CONFIG_X86_64
  1365. vmx_set_efer(&vmx->vcpu, 0);
  1366. #endif
  1367. vmx_fpu_activate(&vmx->vcpu);
  1368. update_exception_bitmap(&vmx->vcpu);
  1369. return 0;
  1370. out:
  1371. return ret;
  1372. }
  1373. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1374. {
  1375. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1376. vmx_vcpu_setup(vmx);
  1377. }
  1378. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1379. {
  1380. u16 ent[2];
  1381. u16 cs;
  1382. u16 ip;
  1383. unsigned long flags;
  1384. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1385. u16 sp = vmcs_readl(GUEST_RSP);
  1386. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1387. if (sp > ss_limit || sp < 6) {
  1388. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1389. __FUNCTION__,
  1390. vmcs_readl(GUEST_RSP),
  1391. vmcs_readl(GUEST_SS_BASE),
  1392. vmcs_read32(GUEST_SS_LIMIT));
  1393. return;
  1394. }
  1395. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1396. X86EMUL_CONTINUE) {
  1397. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1398. return;
  1399. }
  1400. flags = vmcs_readl(GUEST_RFLAGS);
  1401. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1402. ip = vmcs_readl(GUEST_RIP);
  1403. if (emulator_write_emulated(
  1404. ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1405. emulator_write_emulated(
  1406. ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1407. emulator_write_emulated(
  1408. ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1409. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1410. return;
  1411. }
  1412. vmcs_writel(GUEST_RFLAGS, flags &
  1413. ~(X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1414. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1415. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1416. vmcs_writel(GUEST_RIP, ent[0]);
  1417. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1418. }
  1419. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1420. {
  1421. if (vcpu->rmode.active) {
  1422. inject_rmode_irq(vcpu, irq);
  1423. return;
  1424. }
  1425. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1426. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1427. }
  1428. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1429. {
  1430. int word_index = __ffs(vcpu->irq_summary);
  1431. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1432. int irq = word_index * BITS_PER_LONG + bit_index;
  1433. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1434. if (!vcpu->irq_pending[word_index])
  1435. clear_bit(word_index, &vcpu->irq_summary);
  1436. vmx_inject_irq(vcpu, irq);
  1437. }
  1438. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1439. struct kvm_run *kvm_run)
  1440. {
  1441. u32 cpu_based_vm_exec_control;
  1442. vcpu->interrupt_window_open =
  1443. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1444. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1445. if (vcpu->interrupt_window_open &&
  1446. vcpu->irq_summary &&
  1447. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1448. /*
  1449. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1450. */
  1451. kvm_do_inject_irq(vcpu);
  1452. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1453. if (!vcpu->interrupt_window_open &&
  1454. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1455. /*
  1456. * Interrupts blocked. Wait for unblock.
  1457. */
  1458. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1459. else
  1460. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1461. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1462. }
  1463. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1464. {
  1465. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1466. set_debugreg(dbg->bp[0], 0);
  1467. set_debugreg(dbg->bp[1], 1);
  1468. set_debugreg(dbg->bp[2], 2);
  1469. set_debugreg(dbg->bp[3], 3);
  1470. if (dbg->singlestep) {
  1471. unsigned long flags;
  1472. flags = vmcs_readl(GUEST_RFLAGS);
  1473. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1474. vmcs_writel(GUEST_RFLAGS, flags);
  1475. }
  1476. }
  1477. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1478. int vec, u32 err_code)
  1479. {
  1480. if (!vcpu->rmode.active)
  1481. return 0;
  1482. /*
  1483. * Instruction with address size override prefix opcode 0x67
  1484. * Cause the #SS fault with 0 error code in VM86 mode.
  1485. */
  1486. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1487. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1488. return 1;
  1489. return 0;
  1490. }
  1491. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1492. {
  1493. u32 intr_info, error_code;
  1494. unsigned long cr2, rip;
  1495. u32 vect_info;
  1496. enum emulation_result er;
  1497. int r;
  1498. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1499. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1500. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1501. !is_page_fault(intr_info))
  1502. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1503. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1504. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1505. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1506. set_bit(irq, vcpu->irq_pending);
  1507. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1508. }
  1509. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1510. return 1; /* already handled by vmx_vcpu_run() */
  1511. if (is_no_device(intr_info)) {
  1512. vmx_fpu_activate(vcpu);
  1513. return 1;
  1514. }
  1515. if (is_invalid_opcode(intr_info)) {
  1516. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1517. if (er != EMULATE_DONE)
  1518. vmx_inject_ud(vcpu);
  1519. return 1;
  1520. }
  1521. error_code = 0;
  1522. rip = vmcs_readl(GUEST_RIP);
  1523. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1524. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1525. if (is_page_fault(intr_info)) {
  1526. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1527. mutex_lock(&vcpu->kvm->lock);
  1528. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1529. if (r < 0) {
  1530. mutex_unlock(&vcpu->kvm->lock);
  1531. return r;
  1532. }
  1533. if (!r) {
  1534. mutex_unlock(&vcpu->kvm->lock);
  1535. return 1;
  1536. }
  1537. er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0);
  1538. mutex_unlock(&vcpu->kvm->lock);
  1539. switch (er) {
  1540. case EMULATE_DONE:
  1541. return 1;
  1542. case EMULATE_DO_MMIO:
  1543. ++vcpu->stat.mmio_exits;
  1544. return 0;
  1545. case EMULATE_FAIL:
  1546. kvm_report_emulation_failure(vcpu, "pagetable");
  1547. break;
  1548. default:
  1549. BUG();
  1550. }
  1551. }
  1552. if (vcpu->rmode.active &&
  1553. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1554. error_code)) {
  1555. if (vcpu->halt_request) {
  1556. vcpu->halt_request = 0;
  1557. return kvm_emulate_halt(vcpu);
  1558. }
  1559. return 1;
  1560. }
  1561. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1562. (INTR_TYPE_EXCEPTION | 1)) {
  1563. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1564. return 0;
  1565. }
  1566. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1567. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1568. kvm_run->ex.error_code = error_code;
  1569. return 0;
  1570. }
  1571. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1572. struct kvm_run *kvm_run)
  1573. {
  1574. ++vcpu->stat.irq_exits;
  1575. return 1;
  1576. }
  1577. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1578. {
  1579. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1580. return 0;
  1581. }
  1582. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1583. {
  1584. unsigned long exit_qualification;
  1585. int size, down, in, string, rep;
  1586. unsigned port;
  1587. ++vcpu->stat.io_exits;
  1588. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1589. string = (exit_qualification & 16) != 0;
  1590. if (string) {
  1591. if (emulate_instruction(vcpu,
  1592. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1593. return 0;
  1594. return 1;
  1595. }
  1596. size = (exit_qualification & 7) + 1;
  1597. in = (exit_qualification & 8) != 0;
  1598. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1599. rep = (exit_qualification & 32) != 0;
  1600. port = exit_qualification >> 16;
  1601. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1602. }
  1603. static void
  1604. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1605. {
  1606. /*
  1607. * Patch in the VMCALL instruction:
  1608. */
  1609. hypercall[0] = 0x0f;
  1610. hypercall[1] = 0x01;
  1611. hypercall[2] = 0xc1;
  1612. }
  1613. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1614. {
  1615. unsigned long exit_qualification;
  1616. int cr;
  1617. int reg;
  1618. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1619. cr = exit_qualification & 15;
  1620. reg = (exit_qualification >> 8) & 15;
  1621. switch ((exit_qualification >> 4) & 3) {
  1622. case 0: /* mov to cr */
  1623. switch (cr) {
  1624. case 0:
  1625. vcpu_load_rsp_rip(vcpu);
  1626. set_cr0(vcpu, vcpu->regs[reg]);
  1627. skip_emulated_instruction(vcpu);
  1628. return 1;
  1629. case 3:
  1630. vcpu_load_rsp_rip(vcpu);
  1631. set_cr3(vcpu, vcpu->regs[reg]);
  1632. skip_emulated_instruction(vcpu);
  1633. return 1;
  1634. case 4:
  1635. vcpu_load_rsp_rip(vcpu);
  1636. set_cr4(vcpu, vcpu->regs[reg]);
  1637. skip_emulated_instruction(vcpu);
  1638. return 1;
  1639. case 8:
  1640. vcpu_load_rsp_rip(vcpu);
  1641. set_cr8(vcpu, vcpu->regs[reg]);
  1642. skip_emulated_instruction(vcpu);
  1643. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1644. return 0;
  1645. };
  1646. break;
  1647. case 2: /* clts */
  1648. vcpu_load_rsp_rip(vcpu);
  1649. vmx_fpu_deactivate(vcpu);
  1650. vcpu->cr0 &= ~X86_CR0_TS;
  1651. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1652. vmx_fpu_activate(vcpu);
  1653. skip_emulated_instruction(vcpu);
  1654. return 1;
  1655. case 1: /*mov from cr*/
  1656. switch (cr) {
  1657. case 3:
  1658. vcpu_load_rsp_rip(vcpu);
  1659. vcpu->regs[reg] = vcpu->cr3;
  1660. vcpu_put_rsp_rip(vcpu);
  1661. skip_emulated_instruction(vcpu);
  1662. return 1;
  1663. case 8:
  1664. vcpu_load_rsp_rip(vcpu);
  1665. vcpu->regs[reg] = get_cr8(vcpu);
  1666. vcpu_put_rsp_rip(vcpu);
  1667. skip_emulated_instruction(vcpu);
  1668. return 1;
  1669. }
  1670. break;
  1671. case 3: /* lmsw */
  1672. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1673. skip_emulated_instruction(vcpu);
  1674. return 1;
  1675. default:
  1676. break;
  1677. }
  1678. kvm_run->exit_reason = 0;
  1679. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1680. (int)(exit_qualification >> 4) & 3, cr);
  1681. return 0;
  1682. }
  1683. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1684. {
  1685. unsigned long exit_qualification;
  1686. unsigned long val;
  1687. int dr, reg;
  1688. /*
  1689. * FIXME: this code assumes the host is debugging the guest.
  1690. * need to deal with guest debugging itself too.
  1691. */
  1692. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1693. dr = exit_qualification & 7;
  1694. reg = (exit_qualification >> 8) & 15;
  1695. vcpu_load_rsp_rip(vcpu);
  1696. if (exit_qualification & 16) {
  1697. /* mov from dr */
  1698. switch (dr) {
  1699. case 6:
  1700. val = 0xffff0ff0;
  1701. break;
  1702. case 7:
  1703. val = 0x400;
  1704. break;
  1705. default:
  1706. val = 0;
  1707. }
  1708. vcpu->regs[reg] = val;
  1709. } else {
  1710. /* mov to dr */
  1711. }
  1712. vcpu_put_rsp_rip(vcpu);
  1713. skip_emulated_instruction(vcpu);
  1714. return 1;
  1715. }
  1716. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1717. {
  1718. kvm_emulate_cpuid(vcpu);
  1719. return 1;
  1720. }
  1721. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1722. {
  1723. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1724. u64 data;
  1725. if (vmx_get_msr(vcpu, ecx, &data)) {
  1726. vmx_inject_gp(vcpu, 0);
  1727. return 1;
  1728. }
  1729. /* FIXME: handling of bits 32:63 of rax, rdx */
  1730. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1731. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1732. skip_emulated_instruction(vcpu);
  1733. return 1;
  1734. }
  1735. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1736. {
  1737. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1738. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1739. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1740. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1741. vmx_inject_gp(vcpu, 0);
  1742. return 1;
  1743. }
  1744. skip_emulated_instruction(vcpu);
  1745. return 1;
  1746. }
  1747. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1748. struct kvm_run *kvm_run)
  1749. {
  1750. return 1;
  1751. }
  1752. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1753. struct kvm_run *kvm_run)
  1754. {
  1755. u32 cpu_based_vm_exec_control;
  1756. /* clear pending irq */
  1757. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1758. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1759. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1760. /*
  1761. * If the user space waits to inject interrupts, exit as soon as
  1762. * possible
  1763. */
  1764. if (kvm_run->request_interrupt_window &&
  1765. !vcpu->irq_summary) {
  1766. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1767. ++vcpu->stat.irq_window_exits;
  1768. return 0;
  1769. }
  1770. return 1;
  1771. }
  1772. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1773. {
  1774. skip_emulated_instruction(vcpu);
  1775. return kvm_emulate_halt(vcpu);
  1776. }
  1777. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1778. {
  1779. skip_emulated_instruction(vcpu);
  1780. kvm_emulate_hypercall(vcpu);
  1781. return 1;
  1782. }
  1783. /*
  1784. * The exit handlers return 1 if the exit was handled fully and guest execution
  1785. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1786. * to be done to userspace and return 0.
  1787. */
  1788. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1789. struct kvm_run *kvm_run) = {
  1790. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1791. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1792. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1793. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1794. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1795. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1796. [EXIT_REASON_CPUID] = handle_cpuid,
  1797. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1798. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1799. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1800. [EXIT_REASON_HLT] = handle_halt,
  1801. [EXIT_REASON_VMCALL] = handle_vmcall,
  1802. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
  1803. };
  1804. static const int kvm_vmx_max_exit_handlers =
  1805. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1806. /*
  1807. * The guest has exited. See if we can fix it or if we need userspace
  1808. * assistance.
  1809. */
  1810. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1811. {
  1812. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1813. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1815. if (unlikely(vmx->fail)) {
  1816. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1817. kvm_run->fail_entry.hardware_entry_failure_reason
  1818. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1819. return 0;
  1820. }
  1821. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1822. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1823. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1824. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1825. if (exit_reason < kvm_vmx_max_exit_handlers
  1826. && kvm_vmx_exit_handlers[exit_reason])
  1827. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1828. else {
  1829. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1830. kvm_run->hw.hardware_exit_reason = exit_reason;
  1831. }
  1832. return 0;
  1833. }
  1834. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1835. {
  1836. }
  1837. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1838. {
  1839. int max_irr, tpr;
  1840. if (!vm_need_tpr_shadow(vcpu->kvm))
  1841. return;
  1842. if (!kvm_lapic_enabled(vcpu) ||
  1843. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1844. vmcs_write32(TPR_THRESHOLD, 0);
  1845. return;
  1846. }
  1847. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1848. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1849. }
  1850. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1851. {
  1852. u32 cpu_based_vm_exec_control;
  1853. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1854. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1855. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1856. }
  1857. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1858. {
  1859. u32 idtv_info_field, intr_info_field;
  1860. int has_ext_irq, interrupt_window_open;
  1861. int vector;
  1862. update_tpr_threshold(vcpu);
  1863. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1864. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1865. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1866. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1867. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1868. /* TODO: fault when IDT_Vectoring */
  1869. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1870. }
  1871. if (has_ext_irq)
  1872. enable_irq_window(vcpu);
  1873. return;
  1874. }
  1875. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1876. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1877. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1878. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1879. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1880. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1881. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1882. if (unlikely(has_ext_irq))
  1883. enable_irq_window(vcpu);
  1884. return;
  1885. }
  1886. if (!has_ext_irq)
  1887. return;
  1888. interrupt_window_open =
  1889. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1890. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1891. if (interrupt_window_open) {
  1892. vector = kvm_cpu_get_interrupt(vcpu);
  1893. vmx_inject_irq(vcpu, vector);
  1894. kvm_timer_intr_post(vcpu, vector);
  1895. } else
  1896. enable_irq_window(vcpu);
  1897. }
  1898. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1899. {
  1900. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1901. u32 intr_info;
  1902. /*
  1903. * Loading guest fpu may have cleared host cr0.ts
  1904. */
  1905. vmcs_writel(HOST_CR0, read_cr0());
  1906. asm(
  1907. /* Store host registers */
  1908. #ifdef CONFIG_X86_64
  1909. "push %%rax; push %%rbx; push %%rdx;"
  1910. "push %%rsi; push %%rdi; push %%rbp;"
  1911. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1912. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1913. "push %%rcx \n\t"
  1914. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1915. #else
  1916. "pusha; push %%ecx \n\t"
  1917. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1918. #endif
  1919. /* Check if vmlaunch of vmresume is needed */
  1920. "cmp $0, %1 \n\t"
  1921. /* Load guest registers. Don't clobber flags. */
  1922. #ifdef CONFIG_X86_64
  1923. "mov %c[cr2](%3), %%rax \n\t"
  1924. "mov %%rax, %%cr2 \n\t"
  1925. "mov %c[rax](%3), %%rax \n\t"
  1926. "mov %c[rbx](%3), %%rbx \n\t"
  1927. "mov %c[rdx](%3), %%rdx \n\t"
  1928. "mov %c[rsi](%3), %%rsi \n\t"
  1929. "mov %c[rdi](%3), %%rdi \n\t"
  1930. "mov %c[rbp](%3), %%rbp \n\t"
  1931. "mov %c[r8](%3), %%r8 \n\t"
  1932. "mov %c[r9](%3), %%r9 \n\t"
  1933. "mov %c[r10](%3), %%r10 \n\t"
  1934. "mov %c[r11](%3), %%r11 \n\t"
  1935. "mov %c[r12](%3), %%r12 \n\t"
  1936. "mov %c[r13](%3), %%r13 \n\t"
  1937. "mov %c[r14](%3), %%r14 \n\t"
  1938. "mov %c[r15](%3), %%r15 \n\t"
  1939. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1940. #else
  1941. "mov %c[cr2](%3), %%eax \n\t"
  1942. "mov %%eax, %%cr2 \n\t"
  1943. "mov %c[rax](%3), %%eax \n\t"
  1944. "mov %c[rbx](%3), %%ebx \n\t"
  1945. "mov %c[rdx](%3), %%edx \n\t"
  1946. "mov %c[rsi](%3), %%esi \n\t"
  1947. "mov %c[rdi](%3), %%edi \n\t"
  1948. "mov %c[rbp](%3), %%ebp \n\t"
  1949. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1950. #endif
  1951. /* Enter guest mode */
  1952. "jne .Llaunched \n\t"
  1953. ASM_VMX_VMLAUNCH "\n\t"
  1954. "jmp .Lkvm_vmx_return \n\t"
  1955. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1956. ".Lkvm_vmx_return: "
  1957. /* Save guest registers, load host registers, keep flags */
  1958. #ifdef CONFIG_X86_64
  1959. "xchg %3, (%%rsp) \n\t"
  1960. "mov %%rax, %c[rax](%3) \n\t"
  1961. "mov %%rbx, %c[rbx](%3) \n\t"
  1962. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1963. "mov %%rdx, %c[rdx](%3) \n\t"
  1964. "mov %%rsi, %c[rsi](%3) \n\t"
  1965. "mov %%rdi, %c[rdi](%3) \n\t"
  1966. "mov %%rbp, %c[rbp](%3) \n\t"
  1967. "mov %%r8, %c[r8](%3) \n\t"
  1968. "mov %%r9, %c[r9](%3) \n\t"
  1969. "mov %%r10, %c[r10](%3) \n\t"
  1970. "mov %%r11, %c[r11](%3) \n\t"
  1971. "mov %%r12, %c[r12](%3) \n\t"
  1972. "mov %%r13, %c[r13](%3) \n\t"
  1973. "mov %%r14, %c[r14](%3) \n\t"
  1974. "mov %%r15, %c[r15](%3) \n\t"
  1975. "mov %%cr2, %%rax \n\t"
  1976. "mov %%rax, %c[cr2](%3) \n\t"
  1977. "mov (%%rsp), %3 \n\t"
  1978. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1979. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1980. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1981. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1982. #else
  1983. "xchg %3, (%%esp) \n\t"
  1984. "mov %%eax, %c[rax](%3) \n\t"
  1985. "mov %%ebx, %c[rbx](%3) \n\t"
  1986. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1987. "mov %%edx, %c[rdx](%3) \n\t"
  1988. "mov %%esi, %c[rsi](%3) \n\t"
  1989. "mov %%edi, %c[rdi](%3) \n\t"
  1990. "mov %%ebp, %c[rbp](%3) \n\t"
  1991. "mov %%cr2, %%eax \n\t"
  1992. "mov %%eax, %c[cr2](%3) \n\t"
  1993. "mov (%%esp), %3 \n\t"
  1994. "pop %%ecx; popa \n\t"
  1995. #endif
  1996. "setbe %0 \n\t"
  1997. : "=q" (vmx->fail)
  1998. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1999. "c"(vcpu),
  2000. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  2001. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  2002. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  2003. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  2004. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  2005. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  2006. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  2007. #ifdef CONFIG_X86_64
  2008. [r8]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8])),
  2009. [r9]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9])),
  2010. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  2011. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  2012. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  2013. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  2014. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  2015. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  2016. #endif
  2017. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  2018. : "cc", "memory");
  2019. vcpu->interrupt_window_open =
  2020. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2021. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2022. vmx->launched = 1;
  2023. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2024. /* We need to handle NMIs before interrupts are enabled */
  2025. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2026. asm("int $2");
  2027. }
  2028. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2029. unsigned long addr,
  2030. u32 err_code)
  2031. {
  2032. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2033. ++vcpu->stat.pf_guest;
  2034. if (is_page_fault(vect_info)) {
  2035. printk(KERN_DEBUG "inject_page_fault: "
  2036. "double fault 0x%lx @ 0x%lx\n",
  2037. addr, vmcs_readl(GUEST_RIP));
  2038. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2039. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2040. DF_VECTOR |
  2041. INTR_TYPE_EXCEPTION |
  2042. INTR_INFO_DELIEVER_CODE_MASK |
  2043. INTR_INFO_VALID_MASK);
  2044. return;
  2045. }
  2046. vcpu->cr2 = addr;
  2047. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2048. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2049. PF_VECTOR |
  2050. INTR_TYPE_EXCEPTION |
  2051. INTR_INFO_DELIEVER_CODE_MASK |
  2052. INTR_INFO_VALID_MASK);
  2053. }
  2054. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2055. {
  2056. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2057. if (vmx->vmcs) {
  2058. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2059. free_vmcs(vmx->vmcs);
  2060. vmx->vmcs = NULL;
  2061. }
  2062. }
  2063. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2064. {
  2065. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2066. vmx_free_vmcs(vcpu);
  2067. kfree(vmx->host_msrs);
  2068. kfree(vmx->guest_msrs);
  2069. kvm_vcpu_uninit(vcpu);
  2070. kmem_cache_free(kvm_vcpu_cache, vmx);
  2071. }
  2072. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2073. {
  2074. int err;
  2075. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2076. int cpu;
  2077. if (!vmx)
  2078. return ERR_PTR(-ENOMEM);
  2079. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2080. if (err)
  2081. goto free_vcpu;
  2082. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2083. if (!vmx->guest_msrs) {
  2084. err = -ENOMEM;
  2085. goto uninit_vcpu;
  2086. }
  2087. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2088. if (!vmx->host_msrs)
  2089. goto free_guest_msrs;
  2090. vmx->vmcs = alloc_vmcs();
  2091. if (!vmx->vmcs)
  2092. goto free_msrs;
  2093. vmcs_clear(vmx->vmcs);
  2094. cpu = get_cpu();
  2095. vmx_vcpu_load(&vmx->vcpu, cpu);
  2096. err = vmx_vcpu_setup(vmx);
  2097. vmx_vcpu_put(&vmx->vcpu);
  2098. put_cpu();
  2099. if (err)
  2100. goto free_vmcs;
  2101. return &vmx->vcpu;
  2102. free_vmcs:
  2103. free_vmcs(vmx->vmcs);
  2104. free_msrs:
  2105. kfree(vmx->host_msrs);
  2106. free_guest_msrs:
  2107. kfree(vmx->guest_msrs);
  2108. uninit_vcpu:
  2109. kvm_vcpu_uninit(&vmx->vcpu);
  2110. free_vcpu:
  2111. kmem_cache_free(kvm_vcpu_cache, vmx);
  2112. return ERR_PTR(err);
  2113. }
  2114. static void __init vmx_check_processor_compat(void *rtn)
  2115. {
  2116. struct vmcs_config vmcs_conf;
  2117. *(int *)rtn = 0;
  2118. if (setup_vmcs_config(&vmcs_conf) < 0)
  2119. *(int *)rtn = -EIO;
  2120. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2121. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2122. smp_processor_id());
  2123. *(int *)rtn = -EIO;
  2124. }
  2125. }
  2126. static struct kvm_x86_ops vmx_x86_ops = {
  2127. .cpu_has_kvm_support = cpu_has_kvm_support,
  2128. .disabled_by_bios = vmx_disabled_by_bios,
  2129. .hardware_setup = hardware_setup,
  2130. .hardware_unsetup = hardware_unsetup,
  2131. .check_processor_compatibility = vmx_check_processor_compat,
  2132. .hardware_enable = hardware_enable,
  2133. .hardware_disable = hardware_disable,
  2134. .vcpu_create = vmx_create_vcpu,
  2135. .vcpu_free = vmx_free_vcpu,
  2136. .vcpu_reset = vmx_vcpu_reset,
  2137. .prepare_guest_switch = vmx_save_host_state,
  2138. .vcpu_load = vmx_vcpu_load,
  2139. .vcpu_put = vmx_vcpu_put,
  2140. .vcpu_decache = vmx_vcpu_decache,
  2141. .set_guest_debug = set_guest_debug,
  2142. .guest_debug_pre = kvm_guest_debug_pre,
  2143. .get_msr = vmx_get_msr,
  2144. .set_msr = vmx_set_msr,
  2145. .get_segment_base = vmx_get_segment_base,
  2146. .get_segment = vmx_get_segment,
  2147. .set_segment = vmx_set_segment,
  2148. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2149. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2150. .set_cr0 = vmx_set_cr0,
  2151. .set_cr3 = vmx_set_cr3,
  2152. .set_cr4 = vmx_set_cr4,
  2153. #ifdef CONFIG_X86_64
  2154. .set_efer = vmx_set_efer,
  2155. #endif
  2156. .get_idt = vmx_get_idt,
  2157. .set_idt = vmx_set_idt,
  2158. .get_gdt = vmx_get_gdt,
  2159. .set_gdt = vmx_set_gdt,
  2160. .cache_regs = vcpu_load_rsp_rip,
  2161. .decache_regs = vcpu_put_rsp_rip,
  2162. .get_rflags = vmx_get_rflags,
  2163. .set_rflags = vmx_set_rflags,
  2164. .tlb_flush = vmx_flush_tlb,
  2165. .inject_page_fault = vmx_inject_page_fault,
  2166. .inject_gp = vmx_inject_gp,
  2167. .run = vmx_vcpu_run,
  2168. .handle_exit = kvm_handle_exit,
  2169. .skip_emulated_instruction = skip_emulated_instruction,
  2170. .patch_hypercall = vmx_patch_hypercall,
  2171. .get_irq = vmx_get_irq,
  2172. .set_irq = vmx_inject_irq,
  2173. .inject_pending_irq = vmx_intr_assist,
  2174. .inject_pending_vectors = do_interrupt_requests,
  2175. };
  2176. static int __init vmx_init(void)
  2177. {
  2178. void *iova;
  2179. int r;
  2180. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2181. if (!vmx_io_bitmap_a)
  2182. return -ENOMEM;
  2183. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2184. if (!vmx_io_bitmap_b) {
  2185. r = -ENOMEM;
  2186. goto out;
  2187. }
  2188. /*
  2189. * Allow direct access to the PC debug port (it is often used for I/O
  2190. * delays, but the vmexits simply slow things down).
  2191. */
  2192. iova = kmap(vmx_io_bitmap_a);
  2193. memset(iova, 0xff, PAGE_SIZE);
  2194. clear_bit(0x80, iova);
  2195. kunmap(vmx_io_bitmap_a);
  2196. iova = kmap(vmx_io_bitmap_b);
  2197. memset(iova, 0xff, PAGE_SIZE);
  2198. kunmap(vmx_io_bitmap_b);
  2199. r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2200. if (r)
  2201. goto out1;
  2202. if (bypass_guest_pf)
  2203. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2204. return 0;
  2205. out1:
  2206. __free_page(vmx_io_bitmap_b);
  2207. out:
  2208. __free_page(vmx_io_bitmap_a);
  2209. return r;
  2210. }
  2211. static void __exit vmx_exit(void)
  2212. {
  2213. __free_page(vmx_io_bitmap_b);
  2214. __free_page(vmx_io_bitmap_a);
  2215. kvm_exit_x86();
  2216. }
  2217. module_init(vmx_init)
  2218. module_exit(vmx_exit)