lguest.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include "linux/lguest_launcher.h"
  40. #include "linux/virtio_config.h"
  41. #include "linux/virtio_net.h"
  42. #include "linux/virtio_blk.h"
  43. #include "linux/virtio_console.h"
  44. #include "linux/virtio_ring.h"
  45. #include "asm-x86/bootparam.h"
  46. /*L:110 We can ignore the 39 include files we need for this program, but I do
  47. * want to draw attention to the use of kernel-style types.
  48. *
  49. * As Linus said, "C is a Spartan language, and so should your naming be." I
  50. * like these abbreviations, so we define them here. Note that u64 is always
  51. * unsigned long long, which works on all Linux systems: this means that we can
  52. * use %llu in printf for any u64. */
  53. typedef unsigned long long u64;
  54. typedef uint32_t u32;
  55. typedef uint16_t u16;
  56. typedef uint8_t u8;
  57. /*:*/
  58. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  59. #define NET_PEERNUM 1
  60. #define BRIDGE_PFX "bridge:"
  61. #ifndef SIOCBRADDIF
  62. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  63. #endif
  64. /* We can have up to 256 pages for devices. */
  65. #define DEVICE_PAGES 256
  66. /* This will occupy 2 pages: it must be a power of 2. */
  67. #define VIRTQUEUE_NUM 128
  68. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  69. * this, and although I wouldn't recommend it, it works quite nicely here. */
  70. static bool verbose;
  71. #define verbose(args...) \
  72. do { if (verbose) printf(args); } while(0)
  73. /*:*/
  74. /* The pipe to send commands to the waker process */
  75. static int waker_fd;
  76. /* The pointer to the start of guest memory. */
  77. static void *guest_base;
  78. /* The maximum guest physical address allowed, and maximum possible. */
  79. static unsigned long guest_limit, guest_max;
  80. /* a per-cpu variable indicating whose vcpu is currently running */
  81. static unsigned int __thread cpu_id;
  82. /* This is our list of devices. */
  83. struct device_list
  84. {
  85. /* Summary information about the devices in our list: ready to pass to
  86. * select() to ask which need servicing.*/
  87. fd_set infds;
  88. int max_infd;
  89. /* Counter to assign interrupt numbers. */
  90. unsigned int next_irq;
  91. /* Counter to print out convenient device numbers. */
  92. unsigned int device_num;
  93. /* The descriptor page for the devices. */
  94. u8 *descpage;
  95. /* A single linked list of devices. */
  96. struct device *dev;
  97. /* And a pointer to the last device for easy append and also for
  98. * configuration appending. */
  99. struct device *lastdev;
  100. };
  101. /* The list of Guest devices, based on command line arguments. */
  102. static struct device_list devices;
  103. /* The device structure describes a single device. */
  104. struct device
  105. {
  106. /* The linked-list pointer. */
  107. struct device *next;
  108. /* The this device's descriptor, as mapped into the Guest. */
  109. struct lguest_device_desc *desc;
  110. /* The name of this device, for --verbose. */
  111. const char *name;
  112. /* If handle_input is set, it wants to be called when this file
  113. * descriptor is ready. */
  114. int fd;
  115. bool (*handle_input)(int fd, struct device *me);
  116. /* Any queues attached to this device */
  117. struct virtqueue *vq;
  118. /* Handle status being finalized (ie. feature bits stable). */
  119. void (*ready)(struct device *me);
  120. /* Device-specific data. */
  121. void *priv;
  122. };
  123. /* The virtqueue structure describes a queue attached to a device. */
  124. struct virtqueue
  125. {
  126. struct virtqueue *next;
  127. /* Which device owns me. */
  128. struct device *dev;
  129. /* The configuration for this queue. */
  130. struct lguest_vqconfig config;
  131. /* The actual ring of buffers. */
  132. struct vring vring;
  133. /* Last available index we saw. */
  134. u16 last_avail_idx;
  135. /* The routine to call when the Guest pings us. */
  136. void (*handle_output)(int fd, struct virtqueue *me);
  137. /* Outstanding buffers */
  138. unsigned int inflight;
  139. };
  140. /* Remember the arguments to the program so we can "reboot" */
  141. static char **main_args;
  142. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  143. * But I include them in the code in case others copy it. */
  144. #define wmb()
  145. /* Convert an iovec element to the given type.
  146. *
  147. * This is a fairly ugly trick: we need to know the size of the type and
  148. * alignment requirement to check the pointer is kosher. It's also nice to
  149. * have the name of the type in case we report failure.
  150. *
  151. * Typing those three things all the time is cumbersome and error prone, so we
  152. * have a macro which sets them all up and passes to the real function. */
  153. #define convert(iov, type) \
  154. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  155. static void *_convert(struct iovec *iov, size_t size, size_t align,
  156. const char *name)
  157. {
  158. if (iov->iov_len != size)
  159. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  160. if ((unsigned long)iov->iov_base % align != 0)
  161. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  162. return iov->iov_base;
  163. }
  164. /* The virtio configuration space is defined to be little-endian. x86 is
  165. * little-endian too, but it's nice to be explicit so we have these helpers. */
  166. #define cpu_to_le16(v16) (v16)
  167. #define cpu_to_le32(v32) (v32)
  168. #define cpu_to_le64(v64) (v64)
  169. #define le16_to_cpu(v16) (v16)
  170. #define le32_to_cpu(v32) (v32)
  171. #define le64_to_cpu(v64) (v64)
  172. /* The device virtqueue descriptors are followed by feature bitmasks. */
  173. static u8 *get_feature_bits(struct device *dev)
  174. {
  175. return (u8 *)(dev->desc + 1)
  176. + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
  177. }
  178. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  179. * where pointers run wild and free! Unfortunately, like most userspace
  180. * programs, it's quite boring (which is why everyone likes to hack on the
  181. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  182. * will get you through this section. Or, maybe not.
  183. *
  184. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  185. * memory and stores it in "guest_base". In other words, Guest physical ==
  186. * Launcher virtual with an offset.
  187. *
  188. * This can be tough to get your head around, but usually it just means that we
  189. * use these trivial conversion functions when the Guest gives us it's
  190. * "physical" addresses: */
  191. static void *from_guest_phys(unsigned long addr)
  192. {
  193. return guest_base + addr;
  194. }
  195. static unsigned long to_guest_phys(const void *addr)
  196. {
  197. return (addr - guest_base);
  198. }
  199. /*L:130
  200. * Loading the Kernel.
  201. *
  202. * We start with couple of simple helper routines. open_or_die() avoids
  203. * error-checking code cluttering the callers: */
  204. static int open_or_die(const char *name, int flags)
  205. {
  206. int fd = open(name, flags);
  207. if (fd < 0)
  208. err(1, "Failed to open %s", name);
  209. return fd;
  210. }
  211. /* map_zeroed_pages() takes a number of pages. */
  212. static void *map_zeroed_pages(unsigned int num)
  213. {
  214. int fd = open_or_die("/dev/zero", O_RDONLY);
  215. void *addr;
  216. /* We use a private mapping (ie. if we write to the page, it will be
  217. * copied). */
  218. addr = mmap(NULL, getpagesize() * num,
  219. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  220. if (addr == MAP_FAILED)
  221. err(1, "Mmaping %u pages of /dev/zero", num);
  222. close(fd);
  223. return addr;
  224. }
  225. /* Get some more pages for a device. */
  226. static void *get_pages(unsigned int num)
  227. {
  228. void *addr = from_guest_phys(guest_limit);
  229. guest_limit += num * getpagesize();
  230. if (guest_limit > guest_max)
  231. errx(1, "Not enough memory for devices");
  232. return addr;
  233. }
  234. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  235. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  236. * it falls back to reading the memory in. */
  237. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  238. {
  239. ssize_t r;
  240. /* We map writable even though for some segments are marked read-only.
  241. * The kernel really wants to be writable: it patches its own
  242. * instructions.
  243. *
  244. * MAP_PRIVATE means that the page won't be copied until a write is
  245. * done to it. This allows us to share untouched memory between
  246. * Guests. */
  247. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  248. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  249. return;
  250. /* pread does a seek and a read in one shot: saves a few lines. */
  251. r = pread(fd, addr, len, offset);
  252. if (r != len)
  253. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  254. }
  255. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  256. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  257. * by all modern binaries on Linux including the kernel.
  258. *
  259. * The ELF headers give *two* addresses: a physical address, and a virtual
  260. * address. We use the physical address; the Guest will map itself to the
  261. * virtual address.
  262. *
  263. * We return the starting address. */
  264. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  265. {
  266. Elf32_Phdr phdr[ehdr->e_phnum];
  267. unsigned int i;
  268. /* Sanity checks on the main ELF header: an x86 executable with a
  269. * reasonable number of correctly-sized program headers. */
  270. if (ehdr->e_type != ET_EXEC
  271. || ehdr->e_machine != EM_386
  272. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  273. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  274. errx(1, "Malformed elf header");
  275. /* An ELF executable contains an ELF header and a number of "program"
  276. * headers which indicate which parts ("segments") of the program to
  277. * load where. */
  278. /* We read in all the program headers at once: */
  279. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  280. err(1, "Seeking to program headers");
  281. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  282. err(1, "Reading program headers");
  283. /* Try all the headers: there are usually only three. A read-only one,
  284. * a read-write one, and a "note" section which we don't load. */
  285. for (i = 0; i < ehdr->e_phnum; i++) {
  286. /* If this isn't a loadable segment, we ignore it */
  287. if (phdr[i].p_type != PT_LOAD)
  288. continue;
  289. verbose("Section %i: size %i addr %p\n",
  290. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  291. /* We map this section of the file at its physical address. */
  292. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  293. phdr[i].p_offset, phdr[i].p_filesz);
  294. }
  295. /* The entry point is given in the ELF header. */
  296. return ehdr->e_entry;
  297. }
  298. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  299. * supposed to jump into it and it will unpack itself. We used to have to
  300. * perform some hairy magic because the unpacking code scared me.
  301. *
  302. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  303. * a small patch to jump over the tricky bits in the Guest, so now we just read
  304. * the funky header so we know where in the file to load, and away we go! */
  305. static unsigned long load_bzimage(int fd)
  306. {
  307. struct boot_params boot;
  308. int r;
  309. /* Modern bzImages get loaded at 1M. */
  310. void *p = from_guest_phys(0x100000);
  311. /* Go back to the start of the file and read the header. It should be
  312. * a Linux boot header (see Documentation/i386/boot.txt) */
  313. lseek(fd, 0, SEEK_SET);
  314. read(fd, &boot, sizeof(boot));
  315. /* Inside the setup_hdr, we expect the magic "HdrS" */
  316. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  317. errx(1, "This doesn't look like a bzImage to me");
  318. /* Skip over the extra sectors of the header. */
  319. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  320. /* Now read everything into memory. in nice big chunks. */
  321. while ((r = read(fd, p, 65536)) > 0)
  322. p += r;
  323. /* Finally, code32_start tells us where to enter the kernel. */
  324. return boot.hdr.code32_start;
  325. }
  326. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  327. * come wrapped up in the self-decompressing "bzImage" format. With a little
  328. * work, we can load those, too. */
  329. static unsigned long load_kernel(int fd)
  330. {
  331. Elf32_Ehdr hdr;
  332. /* Read in the first few bytes. */
  333. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  334. err(1, "Reading kernel");
  335. /* If it's an ELF file, it starts with "\177ELF" */
  336. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  337. return map_elf(fd, &hdr);
  338. /* Otherwise we assume it's a bzImage, and try to load it. */
  339. return load_bzimage(fd);
  340. }
  341. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  342. * it calls getpagesize() twice: "it's dumb code."
  343. *
  344. * Kernel guys get really het up about optimization, even when it's not
  345. * necessary. I leave this code as a reaction against that. */
  346. static inline unsigned long page_align(unsigned long addr)
  347. {
  348. /* Add upwards and truncate downwards. */
  349. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  350. }
  351. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  352. * the kernel which the kernel can use to boot from without needing any
  353. * drivers. Most distributions now use this as standard: the initrd contains
  354. * the code to load the appropriate driver modules for the current machine.
  355. *
  356. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  357. * kernels. He sent me this (and tells me when I break it). */
  358. static unsigned long load_initrd(const char *name, unsigned long mem)
  359. {
  360. int ifd;
  361. struct stat st;
  362. unsigned long len;
  363. ifd = open_or_die(name, O_RDONLY);
  364. /* fstat() is needed to get the file size. */
  365. if (fstat(ifd, &st) < 0)
  366. err(1, "fstat() on initrd '%s'", name);
  367. /* We map the initrd at the top of memory, but mmap wants it to be
  368. * page-aligned, so we round the size up for that. */
  369. len = page_align(st.st_size);
  370. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  371. /* Once a file is mapped, you can close the file descriptor. It's a
  372. * little odd, but quite useful. */
  373. close(ifd);
  374. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  375. /* We return the initrd size. */
  376. return len;
  377. }
  378. /* Once we know how much memory we have we can construct simple linear page
  379. * tables which set virtual == physical which will get the Guest far enough
  380. * into the boot to create its own.
  381. *
  382. * We lay them out of the way, just below the initrd (which is why we need to
  383. * know its size here). */
  384. static unsigned long setup_pagetables(unsigned long mem,
  385. unsigned long initrd_size)
  386. {
  387. unsigned long *pgdir, *linear;
  388. unsigned int mapped_pages, i, linear_pages;
  389. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  390. mapped_pages = mem/getpagesize();
  391. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  392. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  393. /* We put the toplevel page directory page at the top of memory. */
  394. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  395. /* Now we use the next linear_pages pages as pte pages */
  396. linear = (void *)pgdir - linear_pages*getpagesize();
  397. /* Linear mapping is easy: put every page's address into the mapping in
  398. * order. PAGE_PRESENT contains the flags Present, Writable and
  399. * Executable. */
  400. for (i = 0; i < mapped_pages; i++)
  401. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  402. /* The top level points to the linear page table pages above. */
  403. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  404. pgdir[i/ptes_per_page]
  405. = ((to_guest_phys(linear) + i*sizeof(void *))
  406. | PAGE_PRESENT);
  407. }
  408. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  409. mapped_pages, linear_pages, to_guest_phys(linear));
  410. /* We return the top level (guest-physical) address: the kernel needs
  411. * to know where it is. */
  412. return to_guest_phys(pgdir);
  413. }
  414. /*:*/
  415. /* Simple routine to roll all the commandline arguments together with spaces
  416. * between them. */
  417. static void concat(char *dst, char *args[])
  418. {
  419. unsigned int i, len = 0;
  420. for (i = 0; args[i]; i++) {
  421. if (i) {
  422. strcat(dst+len, " ");
  423. len++;
  424. }
  425. strcpy(dst+len, args[i]);
  426. len += strlen(args[i]);
  427. }
  428. /* In case it's empty. */
  429. dst[len] = '\0';
  430. }
  431. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  432. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  433. * the base of Guest "physical" memory, the top physical page to allow, the
  434. * top level pagetable and the entry point for the Guest. */
  435. static int tell_kernel(unsigned long pgdir, unsigned long start)
  436. {
  437. unsigned long args[] = { LHREQ_INITIALIZE,
  438. (unsigned long)guest_base,
  439. guest_limit / getpagesize(), pgdir, start };
  440. int fd;
  441. verbose("Guest: %p - %p (%#lx)\n",
  442. guest_base, guest_base + guest_limit, guest_limit);
  443. fd = open_or_die("/dev/lguest", O_RDWR);
  444. if (write(fd, args, sizeof(args)) < 0)
  445. err(1, "Writing to /dev/lguest");
  446. /* We return the /dev/lguest file descriptor to control this Guest */
  447. return fd;
  448. }
  449. /*:*/
  450. static void add_device_fd(int fd)
  451. {
  452. FD_SET(fd, &devices.infds);
  453. if (fd > devices.max_infd)
  454. devices.max_infd = fd;
  455. }
  456. /*L:200
  457. * The Waker.
  458. *
  459. * With console, block and network devices, we can have lots of input which we
  460. * need to process. We could try to tell the kernel what file descriptors to
  461. * watch, but handing a file descriptor mask through to the kernel is fairly
  462. * icky.
  463. *
  464. * Instead, we fork off a process which watches the file descriptors and writes
  465. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  466. * stop running the Guest. This causes the Launcher to return from the
  467. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  468. * the LHREQ_BREAK and wake us up again.
  469. *
  470. * This, of course, is merely a different *kind* of icky.
  471. */
  472. static void wake_parent(int pipefd, int lguest_fd)
  473. {
  474. /* Add the pipe from the Launcher to the fdset in the device_list, so
  475. * we watch it, too. */
  476. add_device_fd(pipefd);
  477. for (;;) {
  478. fd_set rfds = devices.infds;
  479. unsigned long args[] = { LHREQ_BREAK, 1 };
  480. /* Wait until input is ready from one of the devices. */
  481. select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
  482. /* Is it a message from the Launcher? */
  483. if (FD_ISSET(pipefd, &rfds)) {
  484. int fd;
  485. /* If read() returns 0, it means the Launcher has
  486. * exited. We silently follow. */
  487. if (read(pipefd, &fd, sizeof(fd)) == 0)
  488. exit(0);
  489. /* Otherwise it's telling us to change what file
  490. * descriptors we're to listen to. Positive means
  491. * listen to a new one, negative means stop
  492. * listening. */
  493. if (fd >= 0)
  494. FD_SET(fd, &devices.infds);
  495. else
  496. FD_CLR(-fd - 1, &devices.infds);
  497. } else /* Send LHREQ_BREAK command. */
  498. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  499. }
  500. }
  501. /* This routine just sets up a pipe to the Waker process. */
  502. static int setup_waker(int lguest_fd)
  503. {
  504. int pipefd[2], child;
  505. /* We create a pipe to talk to the Waker, and also so it knows when the
  506. * Launcher dies (and closes pipe). */
  507. pipe(pipefd);
  508. child = fork();
  509. if (child == -1)
  510. err(1, "forking");
  511. if (child == 0) {
  512. /* We are the Waker: close the "writing" end of our copy of the
  513. * pipe and start waiting for input. */
  514. close(pipefd[1]);
  515. wake_parent(pipefd[0], lguest_fd);
  516. }
  517. /* Close the reading end of our copy of the pipe. */
  518. close(pipefd[0]);
  519. /* Here is the fd used to talk to the waker. */
  520. return pipefd[1];
  521. }
  522. /*
  523. * Device Handling.
  524. *
  525. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  526. * We need to make sure it's not trying to reach into the Launcher itself, so
  527. * we have a convenient routine which checks it and exits with an error message
  528. * if something funny is going on:
  529. */
  530. static void *_check_pointer(unsigned long addr, unsigned int size,
  531. unsigned int line)
  532. {
  533. /* We have to separately check addr and addr+size, because size could
  534. * be huge and addr + size might wrap around. */
  535. if (addr >= guest_limit || addr + size >= guest_limit)
  536. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  537. /* We return a pointer for the caller's convenience, now we know it's
  538. * safe to use. */
  539. return from_guest_phys(addr);
  540. }
  541. /* A macro which transparently hands the line number to the real function. */
  542. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  543. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  544. * function returns the next descriptor in the chain, or vq->vring.num if we're
  545. * at the end. */
  546. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  547. {
  548. unsigned int next;
  549. /* If this descriptor says it doesn't chain, we're done. */
  550. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  551. return vq->vring.num;
  552. /* Check they're not leading us off end of descriptors. */
  553. next = vq->vring.desc[i].next;
  554. /* Make sure compiler knows to grab that: we don't want it changing! */
  555. wmb();
  556. if (next >= vq->vring.num)
  557. errx(1, "Desc next is %u", next);
  558. return next;
  559. }
  560. /* This looks in the virtqueue and for the first available buffer, and converts
  561. * it to an iovec for convenient access. Since descriptors consist of some
  562. * number of output then some number of input descriptors, it's actually two
  563. * iovecs, but we pack them into one and note how many of each there were.
  564. *
  565. * This function returns the descriptor number found, or vq->vring.num (which
  566. * is never a valid descriptor number) if none was found. */
  567. static unsigned get_vq_desc(struct virtqueue *vq,
  568. struct iovec iov[],
  569. unsigned int *out_num, unsigned int *in_num)
  570. {
  571. unsigned int i, head;
  572. /* Check it isn't doing very strange things with descriptor numbers. */
  573. if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
  574. errx(1, "Guest moved used index from %u to %u",
  575. vq->last_avail_idx, vq->vring.avail->idx);
  576. /* If there's nothing new since last we looked, return invalid. */
  577. if (vq->vring.avail->idx == vq->last_avail_idx)
  578. return vq->vring.num;
  579. /* Grab the next descriptor number they're advertising, and increment
  580. * the index we've seen. */
  581. head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
  582. /* If their number is silly, that's a fatal mistake. */
  583. if (head >= vq->vring.num)
  584. errx(1, "Guest says index %u is available", head);
  585. /* When we start there are none of either input nor output. */
  586. *out_num = *in_num = 0;
  587. i = head;
  588. do {
  589. /* Grab the first descriptor, and check it's OK. */
  590. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  591. iov[*out_num + *in_num].iov_base
  592. = check_pointer(vq->vring.desc[i].addr,
  593. vq->vring.desc[i].len);
  594. /* If this is an input descriptor, increment that count. */
  595. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  596. (*in_num)++;
  597. else {
  598. /* If it's an output descriptor, they're all supposed
  599. * to come before any input descriptors. */
  600. if (*in_num)
  601. errx(1, "Descriptor has out after in");
  602. (*out_num)++;
  603. }
  604. /* If we've got too many, that implies a descriptor loop. */
  605. if (*out_num + *in_num > vq->vring.num)
  606. errx(1, "Looped descriptor");
  607. } while ((i = next_desc(vq, i)) != vq->vring.num);
  608. vq->inflight++;
  609. return head;
  610. }
  611. /* After we've used one of their buffers, we tell them about it. We'll then
  612. * want to send them an interrupt, using trigger_irq(). */
  613. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  614. {
  615. struct vring_used_elem *used;
  616. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  617. * next entry in that used ring. */
  618. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  619. used->id = head;
  620. used->len = len;
  621. /* Make sure buffer is written before we update index. */
  622. wmb();
  623. vq->vring.used->idx++;
  624. vq->inflight--;
  625. }
  626. /* This actually sends the interrupt for this virtqueue */
  627. static void trigger_irq(int fd, struct virtqueue *vq)
  628. {
  629. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  630. /* If they don't want an interrupt, don't send one, unless empty. */
  631. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  632. && vq->inflight)
  633. return;
  634. /* Send the Guest an interrupt tell them we used something up. */
  635. if (write(fd, buf, sizeof(buf)) != 0)
  636. err(1, "Triggering irq %i", vq->config.irq);
  637. }
  638. /* And here's the combo meal deal. Supersize me! */
  639. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  640. unsigned int head, int len)
  641. {
  642. add_used(vq, head, len);
  643. trigger_irq(fd, vq);
  644. }
  645. /*
  646. * The Console
  647. *
  648. * Here is the input terminal setting we save, and the routine to restore them
  649. * on exit so the user gets their terminal back. */
  650. static struct termios orig_term;
  651. static void restore_term(void)
  652. {
  653. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  654. }
  655. /* We associate some data with the console for our exit hack. */
  656. struct console_abort
  657. {
  658. /* How many times have they hit ^C? */
  659. int count;
  660. /* When did they start? */
  661. struct timeval start;
  662. };
  663. /* This is the routine which handles console input (ie. stdin). */
  664. static bool handle_console_input(int fd, struct device *dev)
  665. {
  666. int len;
  667. unsigned int head, in_num, out_num;
  668. struct iovec iov[dev->vq->vring.num];
  669. struct console_abort *abort = dev->priv;
  670. /* First we need a console buffer from the Guests's input virtqueue. */
  671. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  672. /* If they're not ready for input, stop listening to this file
  673. * descriptor. We'll start again once they add an input buffer. */
  674. if (head == dev->vq->vring.num)
  675. return false;
  676. if (out_num)
  677. errx(1, "Output buffers in console in queue?");
  678. /* This is why we convert to iovecs: the readv() call uses them, and so
  679. * it reads straight into the Guest's buffer. */
  680. len = readv(dev->fd, iov, in_num);
  681. if (len <= 0) {
  682. /* This implies that the console is closed, is /dev/null, or
  683. * something went terribly wrong. */
  684. warnx("Failed to get console input, ignoring console.");
  685. /* Put the input terminal back. */
  686. restore_term();
  687. /* Remove callback from input vq, so it doesn't restart us. */
  688. dev->vq->handle_output = NULL;
  689. /* Stop listening to this fd: don't call us again. */
  690. return false;
  691. }
  692. /* Tell the Guest about the new input. */
  693. add_used_and_trigger(fd, dev->vq, head, len);
  694. /* Three ^C within one second? Exit.
  695. *
  696. * This is such a hack, but works surprisingly well. Each ^C has to be
  697. * in a buffer by itself, so they can't be too fast. But we check that
  698. * we get three within about a second, so they can't be too slow. */
  699. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  700. if (!abort->count++)
  701. gettimeofday(&abort->start, NULL);
  702. else if (abort->count == 3) {
  703. struct timeval now;
  704. gettimeofday(&now, NULL);
  705. if (now.tv_sec <= abort->start.tv_sec+1) {
  706. unsigned long args[] = { LHREQ_BREAK, 0 };
  707. /* Close the fd so Waker will know it has to
  708. * exit. */
  709. close(waker_fd);
  710. /* Just in case waker is blocked in BREAK, send
  711. * unbreak now. */
  712. write(fd, args, sizeof(args));
  713. exit(2);
  714. }
  715. abort->count = 0;
  716. }
  717. } else
  718. /* Any other key resets the abort counter. */
  719. abort->count = 0;
  720. /* Everything went OK! */
  721. return true;
  722. }
  723. /* Handling output for console is simple: we just get all the output buffers
  724. * and write them to stdout. */
  725. static void handle_console_output(int fd, struct virtqueue *vq)
  726. {
  727. unsigned int head, out, in;
  728. int len;
  729. struct iovec iov[vq->vring.num];
  730. /* Keep getting output buffers from the Guest until we run out. */
  731. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  732. if (in)
  733. errx(1, "Input buffers in output queue?");
  734. len = writev(STDOUT_FILENO, iov, out);
  735. add_used_and_trigger(fd, vq, head, len);
  736. }
  737. }
  738. /*
  739. * The Network
  740. *
  741. * Handling output for network is also simple: we get all the output buffers
  742. * and write them (ignoring the first element) to this device's file descriptor
  743. * (/dev/net/tun).
  744. */
  745. static void handle_net_output(int fd, struct virtqueue *vq)
  746. {
  747. unsigned int head, out, in;
  748. int len;
  749. struct iovec iov[vq->vring.num];
  750. /* Keep getting output buffers from the Guest until we run out. */
  751. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  752. if (in)
  753. errx(1, "Input buffers in output queue?");
  754. /* Check header, but otherwise ignore it (we told the Guest we
  755. * supported no features, so it shouldn't have anything
  756. * interesting). */
  757. (void)convert(&iov[0], struct virtio_net_hdr);
  758. len = writev(vq->dev->fd, iov+1, out-1);
  759. add_used_and_trigger(fd, vq, head, len);
  760. }
  761. }
  762. /* This is where we handle a packet coming in from the tun device to our
  763. * Guest. */
  764. static bool handle_tun_input(int fd, struct device *dev)
  765. {
  766. unsigned int head, in_num, out_num;
  767. int len;
  768. struct iovec iov[dev->vq->vring.num];
  769. struct virtio_net_hdr *hdr;
  770. /* First we need a network buffer from the Guests's recv virtqueue. */
  771. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  772. if (head == dev->vq->vring.num) {
  773. /* Now, it's expected that if we try to send a packet too
  774. * early, the Guest won't be ready yet. Wait until the device
  775. * status says it's ready. */
  776. /* FIXME: Actually want DRIVER_ACTIVE here. */
  777. if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
  778. warn("network: no dma buffer!");
  779. /* We'll turn this back on if input buffers are registered. */
  780. return false;
  781. } else if (out_num)
  782. errx(1, "Output buffers in network recv queue?");
  783. /* First element is the header: we set it to 0 (no features). */
  784. hdr = convert(&iov[0], struct virtio_net_hdr);
  785. hdr->flags = 0;
  786. hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
  787. /* Read the packet from the device directly into the Guest's buffer. */
  788. len = readv(dev->fd, iov+1, in_num-1);
  789. if (len <= 0)
  790. err(1, "reading network");
  791. /* Tell the Guest about the new packet. */
  792. add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
  793. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  794. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  795. head != dev->vq->vring.num ? "sent" : "discarded");
  796. /* All good. */
  797. return true;
  798. }
  799. /*L:215 This is the callback attached to the network and console input
  800. * virtqueues: it ensures we try again, in case we stopped console or net
  801. * delivery because Guest didn't have any buffers. */
  802. static void enable_fd(int fd, struct virtqueue *vq)
  803. {
  804. add_device_fd(vq->dev->fd);
  805. /* Tell waker to listen to it again */
  806. write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
  807. }
  808. /* When the Guest tells us they updated the status field, we handle it. */
  809. static void update_device_status(struct device *dev)
  810. {
  811. struct virtqueue *vq;
  812. /* This is a reset. */
  813. if (dev->desc->status == 0) {
  814. verbose("Resetting device %s\n", dev->name);
  815. /* Clear any features they've acked. */
  816. memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
  817. dev->desc->feature_len);
  818. /* Zero out the virtqueues. */
  819. for (vq = dev->vq; vq; vq = vq->next) {
  820. memset(vq->vring.desc, 0,
  821. vring_size(vq->config.num, getpagesize()));
  822. vq->last_avail_idx = 0;
  823. }
  824. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  825. warnx("Device %s configuration FAILED", dev->name);
  826. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  827. unsigned int i;
  828. verbose("Device %s OK: offered", dev->name);
  829. for (i = 0; i < dev->desc->feature_len; i++)
  830. verbose(" %02x", get_feature_bits(dev)[i]);
  831. verbose(", accepted");
  832. for (i = 0; i < dev->desc->feature_len; i++)
  833. verbose(" %02x", get_feature_bits(dev)
  834. [dev->desc->feature_len+i]);
  835. if (dev->ready)
  836. dev->ready(dev);
  837. }
  838. }
  839. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  840. static void handle_output(int fd, unsigned long addr)
  841. {
  842. struct device *i;
  843. struct virtqueue *vq;
  844. /* Check each device and virtqueue. */
  845. for (i = devices.dev; i; i = i->next) {
  846. /* Notifications to device descriptors update device status. */
  847. if (from_guest_phys(addr) == i->desc) {
  848. update_device_status(i);
  849. return;
  850. }
  851. /* Notifications to virtqueues mean output has occurred. */
  852. for (vq = i->vq; vq; vq = vq->next) {
  853. if (vq->config.pfn != addr/getpagesize())
  854. continue;
  855. /* Guest should acknowledge (and set features!) before
  856. * using the device. */
  857. if (i->desc->status == 0) {
  858. warnx("%s gave early output", i->name);
  859. return;
  860. }
  861. if (strcmp(vq->dev->name, "console") != 0)
  862. verbose("Output to %s\n", vq->dev->name);
  863. if (vq->handle_output)
  864. vq->handle_output(fd, vq);
  865. return;
  866. }
  867. }
  868. /* Early console write is done using notify on a nul-terminated string
  869. * in Guest memory. */
  870. if (addr >= guest_limit)
  871. errx(1, "Bad NOTIFY %#lx", addr);
  872. write(STDOUT_FILENO, from_guest_phys(addr),
  873. strnlen(from_guest_phys(addr), guest_limit - addr));
  874. }
  875. /* This is called when the Waker wakes us up: check for incoming file
  876. * descriptors. */
  877. static void handle_input(int fd)
  878. {
  879. /* select() wants a zeroed timeval to mean "don't wait". */
  880. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  881. for (;;) {
  882. struct device *i;
  883. fd_set fds = devices.infds;
  884. /* If nothing is ready, we're done. */
  885. if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
  886. break;
  887. /* Otherwise, call the device(s) which have readable file
  888. * descriptors and a method of handling them. */
  889. for (i = devices.dev; i; i = i->next) {
  890. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  891. int dev_fd;
  892. if (i->handle_input(fd, i))
  893. continue;
  894. /* If handle_input() returns false, it means we
  895. * should no longer service it. Networking and
  896. * console do this when there's no input
  897. * buffers to deliver into. Console also uses
  898. * it when it discovers that stdin is closed. */
  899. FD_CLR(i->fd, &devices.infds);
  900. /* Tell waker to ignore it too, by sending a
  901. * negative fd number (-1, since 0 is a valid
  902. * FD number). */
  903. dev_fd = -i->fd - 1;
  904. write(waker_fd, &dev_fd, sizeof(dev_fd));
  905. }
  906. }
  907. }
  908. }
  909. /*L:190
  910. * Device Setup
  911. *
  912. * All devices need a descriptor so the Guest knows it exists, and a "struct
  913. * device" so the Launcher can keep track of it. We have common helper
  914. * routines to allocate and manage them.
  915. */
  916. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  917. * number of virtqueue descriptors, then two sets of feature bits, then an
  918. * array of configuration bytes. This routine returns the configuration
  919. * pointer. */
  920. static u8 *device_config(const struct device *dev)
  921. {
  922. return (void *)(dev->desc + 1)
  923. + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
  924. + dev->desc->feature_len * 2;
  925. }
  926. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  927. * table page just above the Guest's normal memory. It returns a pointer to
  928. * that descriptor. */
  929. static struct lguest_device_desc *new_dev_desc(u16 type)
  930. {
  931. struct lguest_device_desc d = { .type = type };
  932. void *p;
  933. /* Figure out where the next device config is, based on the last one. */
  934. if (devices.lastdev)
  935. p = device_config(devices.lastdev)
  936. + devices.lastdev->desc->config_len;
  937. else
  938. p = devices.descpage;
  939. /* We only have one page for all the descriptors. */
  940. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  941. errx(1, "Too many devices");
  942. /* p might not be aligned, so we memcpy in. */
  943. return memcpy(p, &d, sizeof(d));
  944. }
  945. /* Each device descriptor is followed by the description of its virtqueues. We
  946. * specify how many descriptors the virtqueue is to have. */
  947. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  948. void (*handle_output)(int fd, struct virtqueue *me))
  949. {
  950. unsigned int pages;
  951. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  952. void *p;
  953. /* First we need some memory for this virtqueue. */
  954. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  955. / getpagesize();
  956. p = get_pages(pages);
  957. /* Initialize the virtqueue */
  958. vq->next = NULL;
  959. vq->last_avail_idx = 0;
  960. vq->dev = dev;
  961. vq->inflight = 0;
  962. /* Initialize the configuration. */
  963. vq->config.num = num_descs;
  964. vq->config.irq = devices.next_irq++;
  965. vq->config.pfn = to_guest_phys(p) / getpagesize();
  966. /* Initialize the vring. */
  967. vring_init(&vq->vring, num_descs, p, getpagesize());
  968. /* Append virtqueue to this device's descriptor. We use
  969. * device_config() to get the end of the device's current virtqueues;
  970. * we check that we haven't added any config or feature information
  971. * yet, otherwise we'd be overwriting them. */
  972. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  973. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  974. dev->desc->num_vq++;
  975. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  976. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  977. * second. */
  978. for (i = &dev->vq; *i; i = &(*i)->next);
  979. *i = vq;
  980. /* Set the routine to call when the Guest does something to this
  981. * virtqueue. */
  982. vq->handle_output = handle_output;
  983. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  984. * don't have a handler */
  985. if (!handle_output)
  986. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  987. }
  988. /* The first half of the feature bitmask is for us to advertise features. The
  989. * second half is for the Guest to accept features. */
  990. static void add_feature(struct device *dev, unsigned bit)
  991. {
  992. u8 *features = get_feature_bits(dev);
  993. /* We can't extend the feature bits once we've added config bytes */
  994. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  995. assert(dev->desc->config_len == 0);
  996. dev->desc->feature_len = (bit / CHAR_BIT) + 1;
  997. }
  998. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  999. }
  1000. /* This routine sets the configuration fields for an existing device's
  1001. * descriptor. It only works for the last device, but that's OK because that's
  1002. * how we use it. */
  1003. static void set_config(struct device *dev, unsigned len, const void *conf)
  1004. {
  1005. /* Check we haven't overflowed our single page. */
  1006. if (device_config(dev) + len > devices.descpage + getpagesize())
  1007. errx(1, "Too many devices");
  1008. /* Copy in the config information, and store the length. */
  1009. memcpy(device_config(dev), conf, len);
  1010. dev->desc->config_len = len;
  1011. }
  1012. /* This routine does all the creation and setup of a new device, including
  1013. * calling new_dev_desc() to allocate the descriptor and device memory.
  1014. *
  1015. * See what I mean about userspace being boring? */
  1016. static struct device *new_device(const char *name, u16 type, int fd,
  1017. bool (*handle_input)(int, struct device *))
  1018. {
  1019. struct device *dev = malloc(sizeof(*dev));
  1020. /* Now we populate the fields one at a time. */
  1021. dev->fd = fd;
  1022. /* If we have an input handler for this file descriptor, then we add it
  1023. * to the device_list's fdset and maxfd. */
  1024. if (handle_input)
  1025. add_device_fd(dev->fd);
  1026. dev->desc = new_dev_desc(type);
  1027. dev->handle_input = handle_input;
  1028. dev->name = name;
  1029. dev->vq = NULL;
  1030. dev->ready = NULL;
  1031. /* Append to device list. Prepending to a single-linked list is
  1032. * easier, but the user expects the devices to be arranged on the bus
  1033. * in command-line order. The first network device on the command line
  1034. * is eth0, the first block device /dev/vda, etc. */
  1035. if (devices.lastdev)
  1036. devices.lastdev->next = dev;
  1037. else
  1038. devices.dev = dev;
  1039. devices.lastdev = dev;
  1040. return dev;
  1041. }
  1042. /* Our first setup routine is the console. It's a fairly simple device, but
  1043. * UNIX tty handling makes it uglier than it could be. */
  1044. static void setup_console(void)
  1045. {
  1046. struct device *dev;
  1047. /* If we can save the initial standard input settings... */
  1048. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1049. struct termios term = orig_term;
  1050. /* Then we turn off echo, line buffering and ^C etc. We want a
  1051. * raw input stream to the Guest. */
  1052. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1053. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1054. /* If we exit gracefully, the original settings will be
  1055. * restored so the user can see what they're typing. */
  1056. atexit(restore_term);
  1057. }
  1058. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1059. STDIN_FILENO, handle_console_input);
  1060. /* We store the console state in dev->priv, and initialize it. */
  1061. dev->priv = malloc(sizeof(struct console_abort));
  1062. ((struct console_abort *)dev->priv)->count = 0;
  1063. /* The console needs two virtqueues: the input then the output. When
  1064. * they put something the input queue, we make sure we're listening to
  1065. * stdin. When they put something in the output queue, we write it to
  1066. * stdout. */
  1067. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1068. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1069. verbose("device %u: console\n", devices.device_num++);
  1070. }
  1071. /*:*/
  1072. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1073. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1074. * used to send packets to another guest in a 1:1 manner.
  1075. *
  1076. * More sopisticated is to use one of the tools developed for project like UML
  1077. * to do networking.
  1078. *
  1079. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1080. * completely generic ("here's my vring, attach to your vring") and would work
  1081. * for any traffic. Of course, namespace and permissions issues need to be
  1082. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1083. * multiple inter-guest channels behind one interface, although it would
  1084. * require some manner of hotplugging new virtio channels.
  1085. *
  1086. * Finally, we could implement a virtio network switch in the kernel. :*/
  1087. static u32 str2ip(const char *ipaddr)
  1088. {
  1089. unsigned int byte[4];
  1090. sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
  1091. return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
  1092. }
  1093. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1094. * network device to the bridge device specified by the command line.
  1095. *
  1096. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1097. * dislike bridging), and I just try not to break it. */
  1098. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1099. {
  1100. int ifidx;
  1101. struct ifreq ifr;
  1102. if (!*br_name)
  1103. errx(1, "must specify bridge name");
  1104. ifidx = if_nametoindex(if_name);
  1105. if (!ifidx)
  1106. errx(1, "interface %s does not exist!", if_name);
  1107. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1108. ifr.ifr_ifindex = ifidx;
  1109. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1110. err(1, "can't add %s to bridge %s", if_name, br_name);
  1111. }
  1112. /* This sets up the Host end of the network device with an IP address, brings
  1113. * it up so packets will flow, the copies the MAC address into the hwaddr
  1114. * pointer. */
  1115. static void configure_device(int fd, const char *devname, u32 ipaddr,
  1116. unsigned char hwaddr[6])
  1117. {
  1118. struct ifreq ifr;
  1119. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1120. /* Don't read these incantations. Just cut & paste them like I did! */
  1121. memset(&ifr, 0, sizeof(ifr));
  1122. strcpy(ifr.ifr_name, devname);
  1123. sin->sin_family = AF_INET;
  1124. sin->sin_addr.s_addr = htonl(ipaddr);
  1125. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1126. err(1, "Setting %s interface address", devname);
  1127. ifr.ifr_flags = IFF_UP;
  1128. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1129. err(1, "Bringing interface %s up", devname);
  1130. /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
  1131. * above). IF means Interface, and HWADDR is hardware address.
  1132. * Simple! */
  1133. if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
  1134. err(1, "getting hw address for %s", devname);
  1135. memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
  1136. }
  1137. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1138. * routing, but the principle is the same: it uses the "tun" device to inject
  1139. * packets into the Host as if they came in from a normal network card. We
  1140. * just shunt packets between the Guest and the tun device. */
  1141. static void setup_tun_net(const char *arg)
  1142. {
  1143. struct device *dev;
  1144. struct ifreq ifr;
  1145. int netfd, ipfd;
  1146. u32 ip;
  1147. const char *br_name = NULL;
  1148. struct virtio_net_config conf;
  1149. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1150. * tap device is like a tun device, only somehow different. To tell
  1151. * the truth, I completely blundered my way through this code, but it
  1152. * works now! */
  1153. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1154. memset(&ifr, 0, sizeof(ifr));
  1155. ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
  1156. strcpy(ifr.ifr_name, "tap%d");
  1157. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1158. err(1, "configuring /dev/net/tun");
  1159. /* We don't need checksums calculated for packets coming in this
  1160. * device: trust us! */
  1161. ioctl(netfd, TUNSETNOCSUM, 1);
  1162. /* First we create a new network device. */
  1163. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1164. /* Network devices need a receive and a send queue, just like
  1165. * console. */
  1166. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1167. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1168. /* We need a socket to perform the magic network ioctls to bring up the
  1169. * tap interface, connect to the bridge etc. Any socket will do! */
  1170. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1171. if (ipfd < 0)
  1172. err(1, "opening IP socket");
  1173. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1174. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1175. ip = INADDR_ANY;
  1176. br_name = arg + strlen(BRIDGE_PFX);
  1177. add_to_bridge(ipfd, ifr.ifr_name, br_name);
  1178. } else /* It is an IP address to set up the device with */
  1179. ip = str2ip(arg);
  1180. /* Set up the tun device, and get the mac address for the interface. */
  1181. configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
  1182. /* Tell Guest what MAC address to use. */
  1183. add_feature(dev, VIRTIO_NET_F_MAC);
  1184. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1185. set_config(dev, sizeof(conf), &conf);
  1186. /* We don't need the socket any more; setup is done. */
  1187. close(ipfd);
  1188. verbose("device %u: tun net %u.%u.%u.%u\n",
  1189. devices.device_num++,
  1190. (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
  1191. if (br_name)
  1192. verbose("attached to bridge: %s\n", br_name);
  1193. }
  1194. /* Our block (disk) device should be really simple: the Guest asks for a block
  1195. * number and we read or write that position in the file. Unfortunately, that
  1196. * was amazingly slow: the Guest waits until the read is finished before
  1197. * running anything else, even if it could have been doing useful work.
  1198. *
  1199. * We could use async I/O, except it's reputed to suck so hard that characters
  1200. * actually go missing from your code when you try to use it.
  1201. *
  1202. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1203. /* This hangs off device->priv. */
  1204. struct vblk_info
  1205. {
  1206. /* The size of the file. */
  1207. off64_t len;
  1208. /* The file descriptor for the file. */
  1209. int fd;
  1210. /* IO thread listens on this file descriptor [0]. */
  1211. int workpipe[2];
  1212. /* IO thread writes to this file descriptor to mark it done, then
  1213. * Launcher triggers interrupt to Guest. */
  1214. int done_fd;
  1215. };
  1216. /*L:210
  1217. * The Disk
  1218. *
  1219. * Remember that the block device is handled by a separate I/O thread. We head
  1220. * straight into the core of that thread here:
  1221. */
  1222. static bool service_io(struct device *dev)
  1223. {
  1224. struct vblk_info *vblk = dev->priv;
  1225. unsigned int head, out_num, in_num, wlen;
  1226. int ret;
  1227. u8 *in;
  1228. struct virtio_blk_outhdr *out;
  1229. struct iovec iov[dev->vq->vring.num];
  1230. off64_t off;
  1231. /* See if there's a request waiting. If not, nothing to do. */
  1232. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1233. if (head == dev->vq->vring.num)
  1234. return false;
  1235. /* Every block request should contain at least one output buffer
  1236. * (detailing the location on disk and the type of request) and one
  1237. * input buffer (to hold the result). */
  1238. if (out_num == 0 || in_num == 0)
  1239. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1240. head, out_num, in_num);
  1241. out = convert(&iov[0], struct virtio_blk_outhdr);
  1242. in = convert(&iov[out_num+in_num-1], u8);
  1243. off = out->sector * 512;
  1244. /* The block device implements "barriers", where the Guest indicates
  1245. * that it wants all previous writes to occur before this write. We
  1246. * don't have a way of asking our kernel to do a barrier, so we just
  1247. * synchronize all the data in the file. Pretty poor, no? */
  1248. if (out->type & VIRTIO_BLK_T_BARRIER)
  1249. fdatasync(vblk->fd);
  1250. /* In general the virtio block driver is allowed to try SCSI commands.
  1251. * It'd be nice if we supported eject, for example, but we don't. */
  1252. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1253. fprintf(stderr, "Scsi commands unsupported\n");
  1254. *in = VIRTIO_BLK_S_UNSUPP;
  1255. wlen = sizeof(*in);
  1256. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1257. /* Write */
  1258. /* Move to the right location in the block file. This can fail
  1259. * if they try to write past end. */
  1260. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1261. err(1, "Bad seek to sector %llu", out->sector);
  1262. ret = writev(vblk->fd, iov+1, out_num-1);
  1263. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1264. /* Grr... Now we know how long the descriptor they sent was, we
  1265. * make sure they didn't try to write over the end of the block
  1266. * file (possibly extending it). */
  1267. if (ret > 0 && off + ret > vblk->len) {
  1268. /* Trim it back to the correct length */
  1269. ftruncate64(vblk->fd, vblk->len);
  1270. /* Die, bad Guest, die. */
  1271. errx(1, "Write past end %llu+%u", off, ret);
  1272. }
  1273. wlen = sizeof(*in);
  1274. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1275. } else {
  1276. /* Read */
  1277. /* Move to the right location in the block file. This can fail
  1278. * if they try to read past end. */
  1279. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1280. err(1, "Bad seek to sector %llu", out->sector);
  1281. ret = readv(vblk->fd, iov+1, in_num-1);
  1282. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1283. if (ret >= 0) {
  1284. wlen = sizeof(*in) + ret;
  1285. *in = VIRTIO_BLK_S_OK;
  1286. } else {
  1287. wlen = sizeof(*in);
  1288. *in = VIRTIO_BLK_S_IOERR;
  1289. }
  1290. }
  1291. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1292. * that when we tell it we're done. */
  1293. add_used(dev->vq, head, wlen);
  1294. return true;
  1295. }
  1296. /* This is the thread which actually services the I/O. */
  1297. static int io_thread(void *_dev)
  1298. {
  1299. struct device *dev = _dev;
  1300. struct vblk_info *vblk = dev->priv;
  1301. char c;
  1302. /* Close other side of workpipe so we get 0 read when main dies. */
  1303. close(vblk->workpipe[1]);
  1304. /* Close the other side of the done_fd pipe. */
  1305. close(dev->fd);
  1306. /* When this read fails, it means Launcher died, so we follow. */
  1307. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1308. /* We acknowledge each request immediately to reduce latency,
  1309. * rather than waiting until we've done them all. I haven't
  1310. * measured to see if it makes any difference.
  1311. *
  1312. * That would be an interesting test, wouldn't it? You could
  1313. * also try having more than one I/O thread. */
  1314. while (service_io(dev))
  1315. write(vblk->done_fd, &c, 1);
  1316. }
  1317. return 0;
  1318. }
  1319. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1320. * when that thread tells us it's completed some I/O. */
  1321. static bool handle_io_finish(int fd, struct device *dev)
  1322. {
  1323. char c;
  1324. /* If the I/O thread died, presumably it printed the error, so we
  1325. * simply exit. */
  1326. if (read(dev->fd, &c, 1) != 1)
  1327. exit(1);
  1328. /* It did some work, so trigger the irq. */
  1329. trigger_irq(fd, dev->vq);
  1330. return true;
  1331. }
  1332. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1333. static void handle_virtblk_output(int fd, struct virtqueue *vq)
  1334. {
  1335. struct vblk_info *vblk = vq->dev->priv;
  1336. char c = 0;
  1337. /* Wake up I/O thread and tell it to go to work! */
  1338. if (write(vblk->workpipe[1], &c, 1) != 1)
  1339. /* Presumably it indicated why it died. */
  1340. exit(1);
  1341. }
  1342. /*L:198 This actually sets up a virtual block device. */
  1343. static void setup_block_file(const char *filename)
  1344. {
  1345. int p[2];
  1346. struct device *dev;
  1347. struct vblk_info *vblk;
  1348. void *stack;
  1349. struct virtio_blk_config conf;
  1350. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1351. pipe(p);
  1352. /* The device responds to return from I/O thread. */
  1353. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1354. /* The device has one virtqueue, where the Guest places requests. */
  1355. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1356. /* Allocate the room for our own bookkeeping */
  1357. vblk = dev->priv = malloc(sizeof(*vblk));
  1358. /* First we open the file and store the length. */
  1359. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1360. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1361. /* We support barriers. */
  1362. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1363. /* Tell Guest how many sectors this device has. */
  1364. conf.capacity = cpu_to_le64(vblk->len / 512);
  1365. /* Tell Guest not to put in too many descriptors at once: two are used
  1366. * for the in and out elements. */
  1367. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1368. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1369. set_config(dev, sizeof(conf), &conf);
  1370. /* The I/O thread writes to this end of the pipe when done. */
  1371. vblk->done_fd = p[1];
  1372. /* This is the second pipe, which is how we tell the I/O thread about
  1373. * more work. */
  1374. pipe(vblk->workpipe);
  1375. /* Create stack for thread and run it. Since stack grows upwards, we
  1376. * point the stack pointer to the end of this region. */
  1377. stack = malloc(32768);
  1378. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1379. * becoming a zombie. */
  1380. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1381. err(1, "Creating clone");
  1382. /* We don't need to keep the I/O thread's end of the pipes open. */
  1383. close(vblk->done_fd);
  1384. close(vblk->workpipe[0]);
  1385. verbose("device %u: virtblock %llu sectors\n",
  1386. devices.device_num, le64_to_cpu(conf.capacity));
  1387. }
  1388. /* That's the end of device setup. */
  1389. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1390. static void __attribute__((noreturn)) restart_guest(void)
  1391. {
  1392. unsigned int i;
  1393. /* Closing pipes causes the Waker thread and io_threads to die, and
  1394. * closing /dev/lguest cleans up the Guest. Since we don't track all
  1395. * open fds, we simply close everything beyond stderr. */
  1396. for (i = 3; i < FD_SETSIZE; i++)
  1397. close(i);
  1398. execv(main_args[0], main_args);
  1399. err(1, "Could not exec %s", main_args[0]);
  1400. }
  1401. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1402. * its input and output, and finally, lays it to rest. */
  1403. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1404. {
  1405. for (;;) {
  1406. unsigned long args[] = { LHREQ_BREAK, 0 };
  1407. unsigned long notify_addr;
  1408. int readval;
  1409. /* We read from the /dev/lguest device to run the Guest. */
  1410. readval = pread(lguest_fd, &notify_addr,
  1411. sizeof(notify_addr), cpu_id);
  1412. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1413. if (readval == sizeof(notify_addr)) {
  1414. verbose("Notify on address %#lx\n", notify_addr);
  1415. handle_output(lguest_fd, notify_addr);
  1416. continue;
  1417. /* ENOENT means the Guest died. Reading tells us why. */
  1418. } else if (errno == ENOENT) {
  1419. char reason[1024] = { 0 };
  1420. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1421. errx(1, "%s", reason);
  1422. /* ERESTART means that we need to reboot the guest */
  1423. } else if (errno == ERESTART) {
  1424. restart_guest();
  1425. /* EAGAIN means the Waker wanted us to look at some input.
  1426. * Anything else means a bug or incompatible change. */
  1427. } else if (errno != EAGAIN)
  1428. err(1, "Running guest failed");
  1429. /* Only service input on thread for CPU 0. */
  1430. if (cpu_id != 0)
  1431. continue;
  1432. /* Service input, then unset the BREAK to release the Waker. */
  1433. handle_input(lguest_fd);
  1434. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1435. err(1, "Resetting break");
  1436. }
  1437. }
  1438. /*L:240
  1439. * This is the end of the Launcher. The good news: we are over halfway
  1440. * through! The bad news: the most fiendish part of the code still lies ahead
  1441. * of us.
  1442. *
  1443. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1444. * "make Host".
  1445. :*/
  1446. static struct option opts[] = {
  1447. { "verbose", 0, NULL, 'v' },
  1448. { "tunnet", 1, NULL, 't' },
  1449. { "block", 1, NULL, 'b' },
  1450. { "initrd", 1, NULL, 'i' },
  1451. { NULL },
  1452. };
  1453. static void usage(void)
  1454. {
  1455. errx(1, "Usage: lguest [--verbose] "
  1456. "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
  1457. "|--block=<filename>|--initrd=<filename>]...\n"
  1458. "<mem-in-mb> vmlinux [args...]");
  1459. }
  1460. /*L:105 The main routine is where the real work begins: */
  1461. int main(int argc, char *argv[])
  1462. {
  1463. /* Memory, top-level pagetable, code startpoint and size of the
  1464. * (optional) initrd. */
  1465. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1466. /* Two temporaries and the /dev/lguest file descriptor. */
  1467. int i, c, lguest_fd;
  1468. /* The boot information for the Guest. */
  1469. struct boot_params *boot;
  1470. /* If they specify an initrd file to load. */
  1471. const char *initrd_name = NULL;
  1472. /* Save the args: we "reboot" by execing ourselves again. */
  1473. main_args = argv;
  1474. /* We don't "wait" for the children, so prevent them from becoming
  1475. * zombies. */
  1476. signal(SIGCHLD, SIG_IGN);
  1477. /* First we initialize the device list. Since console and network
  1478. * device receive input from a file descriptor, we keep an fdset
  1479. * (infds) and the maximum fd number (max_infd) with the head of the
  1480. * list. We also keep a pointer to the last device. Finally, we keep
  1481. * the next interrupt number to use for devices (1: remember that 0 is
  1482. * used by the timer). */
  1483. FD_ZERO(&devices.infds);
  1484. devices.max_infd = -1;
  1485. devices.lastdev = NULL;
  1486. devices.next_irq = 1;
  1487. cpu_id = 0;
  1488. /* We need to know how much memory so we can set up the device
  1489. * descriptor and memory pages for the devices as we parse the command
  1490. * line. So we quickly look through the arguments to find the amount
  1491. * of memory now. */
  1492. for (i = 1; i < argc; i++) {
  1493. if (argv[i][0] != '-') {
  1494. mem = atoi(argv[i]) * 1024 * 1024;
  1495. /* We start by mapping anonymous pages over all of
  1496. * guest-physical memory range. This fills it with 0,
  1497. * and ensures that the Guest won't be killed when it
  1498. * tries to access it. */
  1499. guest_base = map_zeroed_pages(mem / getpagesize()
  1500. + DEVICE_PAGES);
  1501. guest_limit = mem;
  1502. guest_max = mem + DEVICE_PAGES*getpagesize();
  1503. devices.descpage = get_pages(1);
  1504. break;
  1505. }
  1506. }
  1507. /* The options are fairly straight-forward */
  1508. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1509. switch (c) {
  1510. case 'v':
  1511. verbose = true;
  1512. break;
  1513. case 't':
  1514. setup_tun_net(optarg);
  1515. break;
  1516. case 'b':
  1517. setup_block_file(optarg);
  1518. break;
  1519. case 'i':
  1520. initrd_name = optarg;
  1521. break;
  1522. default:
  1523. warnx("Unknown argument %s", argv[optind]);
  1524. usage();
  1525. }
  1526. }
  1527. /* After the other arguments we expect memory and kernel image name,
  1528. * followed by command line arguments for the kernel. */
  1529. if (optind + 2 > argc)
  1530. usage();
  1531. verbose("Guest base is at %p\n", guest_base);
  1532. /* We always have a console device */
  1533. setup_console();
  1534. /* Now we load the kernel */
  1535. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1536. /* Boot information is stashed at physical address 0 */
  1537. boot = from_guest_phys(0);
  1538. /* Map the initrd image if requested (at top of physical memory) */
  1539. if (initrd_name) {
  1540. initrd_size = load_initrd(initrd_name, mem);
  1541. /* These are the location in the Linux boot header where the
  1542. * start and size of the initrd are expected to be found. */
  1543. boot->hdr.ramdisk_image = mem - initrd_size;
  1544. boot->hdr.ramdisk_size = initrd_size;
  1545. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1546. boot->hdr.type_of_loader = 0xFF;
  1547. }
  1548. /* Set up the initial linear pagetables, starting below the initrd. */
  1549. pgdir = setup_pagetables(mem, initrd_size);
  1550. /* The Linux boot header contains an "E820" memory map: ours is a
  1551. * simple, single region. */
  1552. boot->e820_entries = 1;
  1553. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1554. /* The boot header contains a command line pointer: we put the command
  1555. * line after the boot header. */
  1556. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1557. /* We use a simple helper to copy the arguments separated by spaces. */
  1558. concat((char *)(boot + 1), argv+optind+2);
  1559. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1560. boot->hdr.version = 0x207;
  1561. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1562. boot->hdr.hardware_subarch = 1;
  1563. /* Tell the entry path not to try to reload segment registers. */
  1564. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1565. /* We tell the kernel to initialize the Guest: this returns the open
  1566. * /dev/lguest file descriptor. */
  1567. lguest_fd = tell_kernel(pgdir, start);
  1568. /* We fork off a child process, which wakes the Launcher whenever one
  1569. * of the input file descriptors needs attention. We call this the
  1570. * Waker, and we'll cover it in a moment. */
  1571. waker_fd = setup_waker(lguest_fd);
  1572. /* Finally, run the Guest. This doesn't return. */
  1573. run_guest(lguest_fd);
  1574. }
  1575. /*:*/
  1576. /*M:999
  1577. * Mastery is done: you now know everything I do.
  1578. *
  1579. * But surely you have seen code, features and bugs in your wanderings which
  1580. * you now yearn to attack? That is the real game, and I look forward to you
  1581. * patching and forking lguest into the Your-Name-Here-visor.
  1582. *
  1583. * Farewell, and good coding!
  1584. * Rusty Russell.
  1585. */