kvm_main.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  119. /* The thread running this VCPU changed. */
  120. struct pid *oldpid = vcpu->pid;
  121. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  122. rcu_assign_pointer(vcpu->pid, newpid);
  123. synchronize_rcu();
  124. put_pid(oldpid);
  125. }
  126. cpu = get_cpu();
  127. preempt_notifier_register(&vcpu->preempt_notifier);
  128. kvm_arch_vcpu_load(vcpu, cpu);
  129. put_cpu();
  130. }
  131. void vcpu_put(struct kvm_vcpu *vcpu)
  132. {
  133. preempt_disable();
  134. kvm_arch_vcpu_put(vcpu);
  135. preempt_notifier_unregister(&vcpu->preempt_notifier);
  136. preempt_enable();
  137. mutex_unlock(&vcpu->mutex);
  138. }
  139. static void ack_flush(void *_completed)
  140. {
  141. }
  142. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  143. {
  144. int i, cpu, me;
  145. cpumask_var_t cpus;
  146. bool called = true;
  147. struct kvm_vcpu *vcpu;
  148. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  149. me = get_cpu();
  150. kvm_for_each_vcpu(i, vcpu, kvm) {
  151. kvm_make_request(req, vcpu);
  152. cpu = vcpu->cpu;
  153. /* Set ->requests bit before we read ->mode */
  154. smp_mb();
  155. if (cpus != NULL && cpu != -1 && cpu != me &&
  156. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  157. cpumask_set_cpu(cpu, cpus);
  158. }
  159. if (unlikely(cpus == NULL))
  160. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  161. else if (!cpumask_empty(cpus))
  162. smp_call_function_many(cpus, ack_flush, NULL, 1);
  163. else
  164. called = false;
  165. put_cpu();
  166. free_cpumask_var(cpus);
  167. return called;
  168. }
  169. void kvm_flush_remote_tlbs(struct kvm *kvm)
  170. {
  171. int dirty_count = kvm->tlbs_dirty;
  172. smp_mb();
  173. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  174. ++kvm->stat.remote_tlb_flush;
  175. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  176. }
  177. void kvm_reload_remote_mmus(struct kvm *kvm)
  178. {
  179. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  180. }
  181. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  182. {
  183. struct page *page;
  184. int r;
  185. mutex_init(&vcpu->mutex);
  186. vcpu->cpu = -1;
  187. vcpu->kvm = kvm;
  188. vcpu->vcpu_id = id;
  189. vcpu->pid = NULL;
  190. init_waitqueue_head(&vcpu->wq);
  191. kvm_async_pf_vcpu_init(vcpu);
  192. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  193. if (!page) {
  194. r = -ENOMEM;
  195. goto fail;
  196. }
  197. vcpu->run = page_address(page);
  198. r = kvm_arch_vcpu_init(vcpu);
  199. if (r < 0)
  200. goto fail_free_run;
  201. return 0;
  202. fail_free_run:
  203. free_page((unsigned long)vcpu->run);
  204. fail:
  205. return r;
  206. }
  207. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  208. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  209. {
  210. put_pid(vcpu->pid);
  211. kvm_arch_vcpu_uninit(vcpu);
  212. free_page((unsigned long)vcpu->run);
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  215. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  216. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  217. {
  218. return container_of(mn, struct kvm, mmu_notifier);
  219. }
  220. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  221. struct mm_struct *mm,
  222. unsigned long address)
  223. {
  224. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  225. int need_tlb_flush, idx;
  226. /*
  227. * When ->invalidate_page runs, the linux pte has been zapped
  228. * already but the page is still allocated until
  229. * ->invalidate_page returns. So if we increase the sequence
  230. * here the kvm page fault will notice if the spte can't be
  231. * established because the page is going to be freed. If
  232. * instead the kvm page fault establishes the spte before
  233. * ->invalidate_page runs, kvm_unmap_hva will release it
  234. * before returning.
  235. *
  236. * The sequence increase only need to be seen at spin_unlock
  237. * time, and not at spin_lock time.
  238. *
  239. * Increasing the sequence after the spin_unlock would be
  240. * unsafe because the kvm page fault could then establish the
  241. * pte after kvm_unmap_hva returned, without noticing the page
  242. * is going to be freed.
  243. */
  244. idx = srcu_read_lock(&kvm->srcu);
  245. spin_lock(&kvm->mmu_lock);
  246. kvm->mmu_notifier_seq++;
  247. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  248. spin_unlock(&kvm->mmu_lock);
  249. srcu_read_unlock(&kvm->srcu, idx);
  250. /* we've to flush the tlb before the pages can be freed */
  251. if (need_tlb_flush)
  252. kvm_flush_remote_tlbs(kvm);
  253. }
  254. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  255. struct mm_struct *mm,
  256. unsigned long address,
  257. pte_t pte)
  258. {
  259. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  260. int idx;
  261. idx = srcu_read_lock(&kvm->srcu);
  262. spin_lock(&kvm->mmu_lock);
  263. kvm->mmu_notifier_seq++;
  264. kvm_set_spte_hva(kvm, address, pte);
  265. spin_unlock(&kvm->mmu_lock);
  266. srcu_read_unlock(&kvm->srcu, idx);
  267. }
  268. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  269. struct mm_struct *mm,
  270. unsigned long start,
  271. unsigned long end)
  272. {
  273. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  274. int need_tlb_flush = 0, idx;
  275. idx = srcu_read_lock(&kvm->srcu);
  276. spin_lock(&kvm->mmu_lock);
  277. /*
  278. * The count increase must become visible at unlock time as no
  279. * spte can be established without taking the mmu_lock and
  280. * count is also read inside the mmu_lock critical section.
  281. */
  282. kvm->mmu_notifier_count++;
  283. for (; start < end; start += PAGE_SIZE)
  284. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  285. need_tlb_flush |= kvm->tlbs_dirty;
  286. spin_unlock(&kvm->mmu_lock);
  287. srcu_read_unlock(&kvm->srcu, idx);
  288. /* we've to flush the tlb before the pages can be freed */
  289. if (need_tlb_flush)
  290. kvm_flush_remote_tlbs(kvm);
  291. }
  292. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  293. struct mm_struct *mm,
  294. unsigned long start,
  295. unsigned long end)
  296. {
  297. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  298. spin_lock(&kvm->mmu_lock);
  299. /*
  300. * This sequence increase will notify the kvm page fault that
  301. * the page that is going to be mapped in the spte could have
  302. * been freed.
  303. */
  304. kvm->mmu_notifier_seq++;
  305. /*
  306. * The above sequence increase must be visible before the
  307. * below count decrease but both values are read by the kvm
  308. * page fault under mmu_lock spinlock so we don't need to add
  309. * a smb_wmb() here in between the two.
  310. */
  311. kvm->mmu_notifier_count--;
  312. spin_unlock(&kvm->mmu_lock);
  313. BUG_ON(kvm->mmu_notifier_count < 0);
  314. }
  315. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  316. struct mm_struct *mm,
  317. unsigned long address)
  318. {
  319. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  320. int young, idx;
  321. idx = srcu_read_lock(&kvm->srcu);
  322. spin_lock(&kvm->mmu_lock);
  323. young = kvm_age_hva(kvm, address);
  324. spin_unlock(&kvm->mmu_lock);
  325. srcu_read_unlock(&kvm->srcu, idx);
  326. if (young)
  327. kvm_flush_remote_tlbs(kvm);
  328. return young;
  329. }
  330. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  331. struct mm_struct *mm,
  332. unsigned long address)
  333. {
  334. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  335. int young, idx;
  336. idx = srcu_read_lock(&kvm->srcu);
  337. spin_lock(&kvm->mmu_lock);
  338. young = kvm_test_age_hva(kvm, address);
  339. spin_unlock(&kvm->mmu_lock);
  340. srcu_read_unlock(&kvm->srcu, idx);
  341. return young;
  342. }
  343. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  344. struct mm_struct *mm)
  345. {
  346. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  347. int idx;
  348. idx = srcu_read_lock(&kvm->srcu);
  349. kvm_arch_flush_shadow(kvm);
  350. srcu_read_unlock(&kvm->srcu, idx);
  351. }
  352. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  353. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  354. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  355. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  356. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  357. .test_young = kvm_mmu_notifier_test_young,
  358. .change_pte = kvm_mmu_notifier_change_pte,
  359. .release = kvm_mmu_notifier_release,
  360. };
  361. static int kvm_init_mmu_notifier(struct kvm *kvm)
  362. {
  363. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  364. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  365. }
  366. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  367. static int kvm_init_mmu_notifier(struct kvm *kvm)
  368. {
  369. return 0;
  370. }
  371. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  372. static struct kvm *kvm_create_vm(void)
  373. {
  374. int r, i;
  375. struct kvm *kvm = kvm_arch_alloc_vm();
  376. if (!kvm)
  377. return ERR_PTR(-ENOMEM);
  378. r = kvm_arch_init_vm(kvm);
  379. if (r)
  380. goto out_err_nodisable;
  381. r = hardware_enable_all();
  382. if (r)
  383. goto out_err_nodisable;
  384. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  385. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  386. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  387. #endif
  388. r = -ENOMEM;
  389. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  390. if (!kvm->memslots)
  391. goto out_err_nosrcu;
  392. if (init_srcu_struct(&kvm->srcu))
  393. goto out_err_nosrcu;
  394. for (i = 0; i < KVM_NR_BUSES; i++) {
  395. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  396. GFP_KERNEL);
  397. if (!kvm->buses[i])
  398. goto out_err;
  399. }
  400. r = kvm_init_mmu_notifier(kvm);
  401. if (r)
  402. goto out_err;
  403. kvm->mm = current->mm;
  404. atomic_inc(&kvm->mm->mm_count);
  405. spin_lock_init(&kvm->mmu_lock);
  406. kvm_eventfd_init(kvm);
  407. mutex_init(&kvm->lock);
  408. mutex_init(&kvm->irq_lock);
  409. mutex_init(&kvm->slots_lock);
  410. atomic_set(&kvm->users_count, 1);
  411. spin_lock(&kvm_lock);
  412. list_add(&kvm->vm_list, &vm_list);
  413. spin_unlock(&kvm_lock);
  414. return kvm;
  415. out_err:
  416. cleanup_srcu_struct(&kvm->srcu);
  417. out_err_nosrcu:
  418. hardware_disable_all();
  419. out_err_nodisable:
  420. for (i = 0; i < KVM_NR_BUSES; i++)
  421. kfree(kvm->buses[i]);
  422. kfree(kvm->memslots);
  423. kvm_arch_free_vm(kvm);
  424. return ERR_PTR(r);
  425. }
  426. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  427. {
  428. if (!memslot->dirty_bitmap)
  429. return;
  430. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  431. vfree(memslot->dirty_bitmap_head);
  432. else
  433. kfree(memslot->dirty_bitmap_head);
  434. memslot->dirty_bitmap = NULL;
  435. memslot->dirty_bitmap_head = NULL;
  436. }
  437. /*
  438. * Free any memory in @free but not in @dont.
  439. */
  440. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  441. struct kvm_memory_slot *dont)
  442. {
  443. int i;
  444. if (!dont || free->rmap != dont->rmap)
  445. vfree(free->rmap);
  446. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  447. kvm_destroy_dirty_bitmap(free);
  448. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  449. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  450. vfree(free->lpage_info[i]);
  451. free->lpage_info[i] = NULL;
  452. }
  453. }
  454. free->npages = 0;
  455. free->rmap = NULL;
  456. }
  457. void kvm_free_physmem(struct kvm *kvm)
  458. {
  459. int i;
  460. struct kvm_memslots *slots = kvm->memslots;
  461. for (i = 0; i < slots->nmemslots; ++i)
  462. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  463. kfree(kvm->memslots);
  464. }
  465. static void kvm_destroy_vm(struct kvm *kvm)
  466. {
  467. int i;
  468. struct mm_struct *mm = kvm->mm;
  469. kvm_arch_sync_events(kvm);
  470. spin_lock(&kvm_lock);
  471. list_del(&kvm->vm_list);
  472. spin_unlock(&kvm_lock);
  473. kvm_free_irq_routing(kvm);
  474. for (i = 0; i < KVM_NR_BUSES; i++)
  475. kvm_io_bus_destroy(kvm->buses[i]);
  476. kvm_coalesced_mmio_free(kvm);
  477. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  478. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  479. #else
  480. kvm_arch_flush_shadow(kvm);
  481. #endif
  482. kvm_arch_destroy_vm(kvm);
  483. kvm_free_physmem(kvm);
  484. cleanup_srcu_struct(&kvm->srcu);
  485. kvm_arch_free_vm(kvm);
  486. hardware_disable_all();
  487. mmdrop(mm);
  488. }
  489. void kvm_get_kvm(struct kvm *kvm)
  490. {
  491. atomic_inc(&kvm->users_count);
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  494. void kvm_put_kvm(struct kvm *kvm)
  495. {
  496. if (atomic_dec_and_test(&kvm->users_count))
  497. kvm_destroy_vm(kvm);
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  500. static int kvm_vm_release(struct inode *inode, struct file *filp)
  501. {
  502. struct kvm *kvm = filp->private_data;
  503. kvm_irqfd_release(kvm);
  504. kvm_put_kvm(kvm);
  505. return 0;
  506. }
  507. #ifndef CONFIG_S390
  508. /*
  509. * Allocation size is twice as large as the actual dirty bitmap size.
  510. * This makes it possible to do double buffering: see x86's
  511. * kvm_vm_ioctl_get_dirty_log().
  512. */
  513. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  514. {
  515. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  516. if (dirty_bytes > PAGE_SIZE)
  517. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  518. else
  519. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  520. if (!memslot->dirty_bitmap)
  521. return -ENOMEM;
  522. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  523. return 0;
  524. }
  525. #endif /* !CONFIG_S390 */
  526. /*
  527. * Allocate some memory and give it an address in the guest physical address
  528. * space.
  529. *
  530. * Discontiguous memory is allowed, mostly for framebuffers.
  531. *
  532. * Must be called holding mmap_sem for write.
  533. */
  534. int __kvm_set_memory_region(struct kvm *kvm,
  535. struct kvm_userspace_memory_region *mem,
  536. int user_alloc)
  537. {
  538. int r;
  539. gfn_t base_gfn;
  540. unsigned long npages;
  541. unsigned long i;
  542. struct kvm_memory_slot *memslot;
  543. struct kvm_memory_slot old, new;
  544. struct kvm_memslots *slots, *old_memslots;
  545. r = -EINVAL;
  546. /* General sanity checks */
  547. if (mem->memory_size & (PAGE_SIZE - 1))
  548. goto out;
  549. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  550. goto out;
  551. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  552. goto out;
  553. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  554. goto out;
  555. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  556. goto out;
  557. memslot = &kvm->memslots->memslots[mem->slot];
  558. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  559. npages = mem->memory_size >> PAGE_SHIFT;
  560. r = -EINVAL;
  561. if (npages > KVM_MEM_MAX_NR_PAGES)
  562. goto out;
  563. if (!npages)
  564. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  565. new = old = *memslot;
  566. new.id = mem->slot;
  567. new.base_gfn = base_gfn;
  568. new.npages = npages;
  569. new.flags = mem->flags;
  570. /* Disallow changing a memory slot's size. */
  571. r = -EINVAL;
  572. if (npages && old.npages && npages != old.npages)
  573. goto out_free;
  574. /* Check for overlaps */
  575. r = -EEXIST;
  576. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  577. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  578. if (s == memslot || !s->npages)
  579. continue;
  580. if (!((base_gfn + npages <= s->base_gfn) ||
  581. (base_gfn >= s->base_gfn + s->npages)))
  582. goto out_free;
  583. }
  584. /* Free page dirty bitmap if unneeded */
  585. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  586. new.dirty_bitmap = NULL;
  587. r = -ENOMEM;
  588. /* Allocate if a slot is being created */
  589. #ifndef CONFIG_S390
  590. if (npages && !new.rmap) {
  591. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  592. if (!new.rmap)
  593. goto out_free;
  594. new.user_alloc = user_alloc;
  595. new.userspace_addr = mem->userspace_addr;
  596. }
  597. if (!npages)
  598. goto skip_lpage;
  599. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  600. unsigned long ugfn;
  601. unsigned long j;
  602. int lpages;
  603. int level = i + 2;
  604. /* Avoid unused variable warning if no large pages */
  605. (void)level;
  606. if (new.lpage_info[i])
  607. continue;
  608. lpages = 1 + ((base_gfn + npages - 1)
  609. >> KVM_HPAGE_GFN_SHIFT(level));
  610. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  611. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  612. if (!new.lpage_info[i])
  613. goto out_free;
  614. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  615. new.lpage_info[i][0].write_count = 1;
  616. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  617. new.lpage_info[i][lpages - 1].write_count = 1;
  618. ugfn = new.userspace_addr >> PAGE_SHIFT;
  619. /*
  620. * If the gfn and userspace address are not aligned wrt each
  621. * other, or if explicitly asked to, disable large page
  622. * support for this slot
  623. */
  624. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  625. !largepages_enabled)
  626. for (j = 0; j < lpages; ++j)
  627. new.lpage_info[i][j].write_count = 1;
  628. }
  629. skip_lpage:
  630. /* Allocate page dirty bitmap if needed */
  631. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  632. if (kvm_create_dirty_bitmap(&new) < 0)
  633. goto out_free;
  634. /* destroy any largepage mappings for dirty tracking */
  635. }
  636. #else /* not defined CONFIG_S390 */
  637. new.user_alloc = user_alloc;
  638. if (user_alloc)
  639. new.userspace_addr = mem->userspace_addr;
  640. #endif /* not defined CONFIG_S390 */
  641. if (!npages) {
  642. r = -ENOMEM;
  643. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  644. if (!slots)
  645. goto out_free;
  646. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  647. if (mem->slot >= slots->nmemslots)
  648. slots->nmemslots = mem->slot + 1;
  649. slots->generation++;
  650. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  651. old_memslots = kvm->memslots;
  652. rcu_assign_pointer(kvm->memslots, slots);
  653. synchronize_srcu_expedited(&kvm->srcu);
  654. /* From this point no new shadow pages pointing to a deleted
  655. * memslot will be created.
  656. *
  657. * validation of sp->gfn happens in:
  658. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  659. * - kvm_is_visible_gfn (mmu_check_roots)
  660. */
  661. kvm_arch_flush_shadow(kvm);
  662. kfree(old_memslots);
  663. }
  664. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  665. if (r)
  666. goto out_free;
  667. /* map the pages in iommu page table */
  668. if (npages) {
  669. r = kvm_iommu_map_pages(kvm, &new);
  670. if (r)
  671. goto out_free;
  672. }
  673. r = -ENOMEM;
  674. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  675. if (!slots)
  676. goto out_free;
  677. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  678. if (mem->slot >= slots->nmemslots)
  679. slots->nmemslots = mem->slot + 1;
  680. slots->generation++;
  681. /* actual memory is freed via old in kvm_free_physmem_slot below */
  682. if (!npages) {
  683. new.rmap = NULL;
  684. new.dirty_bitmap = NULL;
  685. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  686. new.lpage_info[i] = NULL;
  687. }
  688. slots->memslots[mem->slot] = new;
  689. old_memslots = kvm->memslots;
  690. rcu_assign_pointer(kvm->memslots, slots);
  691. synchronize_srcu_expedited(&kvm->srcu);
  692. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  693. kvm_free_physmem_slot(&old, &new);
  694. kfree(old_memslots);
  695. return 0;
  696. out_free:
  697. kvm_free_physmem_slot(&new, &old);
  698. out:
  699. return r;
  700. }
  701. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  702. int kvm_set_memory_region(struct kvm *kvm,
  703. struct kvm_userspace_memory_region *mem,
  704. int user_alloc)
  705. {
  706. int r;
  707. mutex_lock(&kvm->slots_lock);
  708. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  709. mutex_unlock(&kvm->slots_lock);
  710. return r;
  711. }
  712. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  713. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  714. struct
  715. kvm_userspace_memory_region *mem,
  716. int user_alloc)
  717. {
  718. if (mem->slot >= KVM_MEMORY_SLOTS)
  719. return -EINVAL;
  720. return kvm_set_memory_region(kvm, mem, user_alloc);
  721. }
  722. int kvm_get_dirty_log(struct kvm *kvm,
  723. struct kvm_dirty_log *log, int *is_dirty)
  724. {
  725. struct kvm_memory_slot *memslot;
  726. int r, i;
  727. unsigned long n;
  728. unsigned long any = 0;
  729. r = -EINVAL;
  730. if (log->slot >= KVM_MEMORY_SLOTS)
  731. goto out;
  732. memslot = &kvm->memslots->memslots[log->slot];
  733. r = -ENOENT;
  734. if (!memslot->dirty_bitmap)
  735. goto out;
  736. n = kvm_dirty_bitmap_bytes(memslot);
  737. for (i = 0; !any && i < n/sizeof(long); ++i)
  738. any = memslot->dirty_bitmap[i];
  739. r = -EFAULT;
  740. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  741. goto out;
  742. if (any)
  743. *is_dirty = 1;
  744. r = 0;
  745. out:
  746. return r;
  747. }
  748. void kvm_disable_largepages(void)
  749. {
  750. largepages_enabled = false;
  751. }
  752. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  753. int is_error_page(struct page *page)
  754. {
  755. return page == bad_page || page == hwpoison_page || page == fault_page;
  756. }
  757. EXPORT_SYMBOL_GPL(is_error_page);
  758. int is_error_pfn(pfn_t pfn)
  759. {
  760. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  761. }
  762. EXPORT_SYMBOL_GPL(is_error_pfn);
  763. int is_hwpoison_pfn(pfn_t pfn)
  764. {
  765. return pfn == hwpoison_pfn;
  766. }
  767. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  768. int is_fault_pfn(pfn_t pfn)
  769. {
  770. return pfn == fault_pfn;
  771. }
  772. EXPORT_SYMBOL_GPL(is_fault_pfn);
  773. static inline unsigned long bad_hva(void)
  774. {
  775. return PAGE_OFFSET;
  776. }
  777. int kvm_is_error_hva(unsigned long addr)
  778. {
  779. return addr == bad_hva();
  780. }
  781. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  782. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  783. gfn_t gfn)
  784. {
  785. int i;
  786. for (i = 0; i < slots->nmemslots; ++i) {
  787. struct kvm_memory_slot *memslot = &slots->memslots[i];
  788. if (gfn >= memslot->base_gfn
  789. && gfn < memslot->base_gfn + memslot->npages)
  790. return memslot;
  791. }
  792. return NULL;
  793. }
  794. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  795. {
  796. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  797. }
  798. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  799. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  800. {
  801. int i;
  802. struct kvm_memslots *slots = kvm_memslots(kvm);
  803. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  804. struct kvm_memory_slot *memslot = &slots->memslots[i];
  805. if (memslot->flags & KVM_MEMSLOT_INVALID)
  806. continue;
  807. if (gfn >= memslot->base_gfn
  808. && gfn < memslot->base_gfn + memslot->npages)
  809. return 1;
  810. }
  811. return 0;
  812. }
  813. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  814. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  815. {
  816. struct vm_area_struct *vma;
  817. unsigned long addr, size;
  818. size = PAGE_SIZE;
  819. addr = gfn_to_hva(kvm, gfn);
  820. if (kvm_is_error_hva(addr))
  821. return PAGE_SIZE;
  822. down_read(&current->mm->mmap_sem);
  823. vma = find_vma(current->mm, addr);
  824. if (!vma)
  825. goto out;
  826. size = vma_kernel_pagesize(vma);
  827. out:
  828. up_read(&current->mm->mmap_sem);
  829. return size;
  830. }
  831. int memslot_id(struct kvm *kvm, gfn_t gfn)
  832. {
  833. int i;
  834. struct kvm_memslots *slots = kvm_memslots(kvm);
  835. struct kvm_memory_slot *memslot = NULL;
  836. for (i = 0; i < slots->nmemslots; ++i) {
  837. memslot = &slots->memslots[i];
  838. if (gfn >= memslot->base_gfn
  839. && gfn < memslot->base_gfn + memslot->npages)
  840. break;
  841. }
  842. return memslot - slots->memslots;
  843. }
  844. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  845. gfn_t *nr_pages)
  846. {
  847. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  848. return bad_hva();
  849. if (nr_pages)
  850. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  851. return gfn_to_hva_memslot(slot, gfn);
  852. }
  853. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  854. {
  855. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  856. }
  857. EXPORT_SYMBOL_GPL(gfn_to_hva);
  858. static pfn_t get_fault_pfn(void)
  859. {
  860. get_page(fault_page);
  861. return fault_pfn;
  862. }
  863. static inline int check_user_page_hwpoison(unsigned long addr)
  864. {
  865. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  866. rc = __get_user_pages(current, current->mm, addr, 1,
  867. flags, NULL, NULL, NULL);
  868. return rc == -EHWPOISON;
  869. }
  870. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  871. bool *async, bool write_fault, bool *writable)
  872. {
  873. struct page *page[1];
  874. int npages = 0;
  875. pfn_t pfn;
  876. /* we can do it either atomically or asynchronously, not both */
  877. BUG_ON(atomic && async);
  878. BUG_ON(!write_fault && !writable);
  879. if (writable)
  880. *writable = true;
  881. if (atomic || async)
  882. npages = __get_user_pages_fast(addr, 1, 1, page);
  883. if (unlikely(npages != 1) && !atomic) {
  884. might_sleep();
  885. if (writable)
  886. *writable = write_fault;
  887. npages = get_user_pages_fast(addr, 1, write_fault, page);
  888. /* map read fault as writable if possible */
  889. if (unlikely(!write_fault) && npages == 1) {
  890. struct page *wpage[1];
  891. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  892. if (npages == 1) {
  893. *writable = true;
  894. put_page(page[0]);
  895. page[0] = wpage[0];
  896. }
  897. npages = 1;
  898. }
  899. }
  900. if (unlikely(npages != 1)) {
  901. struct vm_area_struct *vma;
  902. if (atomic)
  903. return get_fault_pfn();
  904. down_read(&current->mm->mmap_sem);
  905. if (check_user_page_hwpoison(addr)) {
  906. up_read(&current->mm->mmap_sem);
  907. get_page(hwpoison_page);
  908. return page_to_pfn(hwpoison_page);
  909. }
  910. vma = find_vma_intersection(current->mm, addr, addr+1);
  911. if (vma == NULL)
  912. pfn = get_fault_pfn();
  913. else if ((vma->vm_flags & VM_PFNMAP)) {
  914. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  915. vma->vm_pgoff;
  916. BUG_ON(!kvm_is_mmio_pfn(pfn));
  917. } else {
  918. if (async && (vma->vm_flags & VM_WRITE))
  919. *async = true;
  920. pfn = get_fault_pfn();
  921. }
  922. up_read(&current->mm->mmap_sem);
  923. } else
  924. pfn = page_to_pfn(page[0]);
  925. return pfn;
  926. }
  927. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  928. {
  929. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  930. }
  931. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  932. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  933. bool write_fault, bool *writable)
  934. {
  935. unsigned long addr;
  936. if (async)
  937. *async = false;
  938. addr = gfn_to_hva(kvm, gfn);
  939. if (kvm_is_error_hva(addr)) {
  940. get_page(bad_page);
  941. return page_to_pfn(bad_page);
  942. }
  943. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  944. }
  945. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  946. {
  947. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  948. }
  949. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  950. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  951. bool write_fault, bool *writable)
  952. {
  953. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  954. }
  955. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  956. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  957. {
  958. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  959. }
  960. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  961. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  962. bool *writable)
  963. {
  964. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  965. }
  966. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  967. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  968. struct kvm_memory_slot *slot, gfn_t gfn)
  969. {
  970. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  971. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  972. }
  973. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  974. int nr_pages)
  975. {
  976. unsigned long addr;
  977. gfn_t entry;
  978. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  979. if (kvm_is_error_hva(addr))
  980. return -1;
  981. if (entry < nr_pages)
  982. return 0;
  983. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  984. }
  985. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  986. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  987. {
  988. pfn_t pfn;
  989. pfn = gfn_to_pfn(kvm, gfn);
  990. if (!kvm_is_mmio_pfn(pfn))
  991. return pfn_to_page(pfn);
  992. WARN_ON(kvm_is_mmio_pfn(pfn));
  993. get_page(bad_page);
  994. return bad_page;
  995. }
  996. EXPORT_SYMBOL_GPL(gfn_to_page);
  997. void kvm_release_page_clean(struct page *page)
  998. {
  999. kvm_release_pfn_clean(page_to_pfn(page));
  1000. }
  1001. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1002. void kvm_release_pfn_clean(pfn_t pfn)
  1003. {
  1004. if (!kvm_is_mmio_pfn(pfn))
  1005. put_page(pfn_to_page(pfn));
  1006. }
  1007. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1008. void kvm_release_page_dirty(struct page *page)
  1009. {
  1010. kvm_release_pfn_dirty(page_to_pfn(page));
  1011. }
  1012. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1013. void kvm_release_pfn_dirty(pfn_t pfn)
  1014. {
  1015. kvm_set_pfn_dirty(pfn);
  1016. kvm_release_pfn_clean(pfn);
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1019. void kvm_set_page_dirty(struct page *page)
  1020. {
  1021. kvm_set_pfn_dirty(page_to_pfn(page));
  1022. }
  1023. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1024. void kvm_set_pfn_dirty(pfn_t pfn)
  1025. {
  1026. if (!kvm_is_mmio_pfn(pfn)) {
  1027. struct page *page = pfn_to_page(pfn);
  1028. if (!PageReserved(page))
  1029. SetPageDirty(page);
  1030. }
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1033. void kvm_set_pfn_accessed(pfn_t pfn)
  1034. {
  1035. if (!kvm_is_mmio_pfn(pfn))
  1036. mark_page_accessed(pfn_to_page(pfn));
  1037. }
  1038. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1039. void kvm_get_pfn(pfn_t pfn)
  1040. {
  1041. if (!kvm_is_mmio_pfn(pfn))
  1042. get_page(pfn_to_page(pfn));
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1045. static int next_segment(unsigned long len, int offset)
  1046. {
  1047. if (len > PAGE_SIZE - offset)
  1048. return PAGE_SIZE - offset;
  1049. else
  1050. return len;
  1051. }
  1052. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1053. int len)
  1054. {
  1055. int r;
  1056. unsigned long addr;
  1057. addr = gfn_to_hva(kvm, gfn);
  1058. if (kvm_is_error_hva(addr))
  1059. return -EFAULT;
  1060. r = copy_from_user(data, (void __user *)addr + offset, len);
  1061. if (r)
  1062. return -EFAULT;
  1063. return 0;
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1066. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1067. {
  1068. gfn_t gfn = gpa >> PAGE_SHIFT;
  1069. int seg;
  1070. int offset = offset_in_page(gpa);
  1071. int ret;
  1072. while ((seg = next_segment(len, offset)) != 0) {
  1073. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1074. if (ret < 0)
  1075. return ret;
  1076. offset = 0;
  1077. len -= seg;
  1078. data += seg;
  1079. ++gfn;
  1080. }
  1081. return 0;
  1082. }
  1083. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1084. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1085. unsigned long len)
  1086. {
  1087. int r;
  1088. unsigned long addr;
  1089. gfn_t gfn = gpa >> PAGE_SHIFT;
  1090. int offset = offset_in_page(gpa);
  1091. addr = gfn_to_hva(kvm, gfn);
  1092. if (kvm_is_error_hva(addr))
  1093. return -EFAULT;
  1094. pagefault_disable();
  1095. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1096. pagefault_enable();
  1097. if (r)
  1098. return -EFAULT;
  1099. return 0;
  1100. }
  1101. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1102. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1103. int offset, int len)
  1104. {
  1105. int r;
  1106. unsigned long addr;
  1107. addr = gfn_to_hva(kvm, gfn);
  1108. if (kvm_is_error_hva(addr))
  1109. return -EFAULT;
  1110. r = copy_to_user((void __user *)addr + offset, data, len);
  1111. if (r)
  1112. return -EFAULT;
  1113. mark_page_dirty(kvm, gfn);
  1114. return 0;
  1115. }
  1116. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1117. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1118. unsigned long len)
  1119. {
  1120. gfn_t gfn = gpa >> PAGE_SHIFT;
  1121. int seg;
  1122. int offset = offset_in_page(gpa);
  1123. int ret;
  1124. while ((seg = next_segment(len, offset)) != 0) {
  1125. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1126. if (ret < 0)
  1127. return ret;
  1128. offset = 0;
  1129. len -= seg;
  1130. data += seg;
  1131. ++gfn;
  1132. }
  1133. return 0;
  1134. }
  1135. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1136. gpa_t gpa)
  1137. {
  1138. struct kvm_memslots *slots = kvm_memslots(kvm);
  1139. int offset = offset_in_page(gpa);
  1140. gfn_t gfn = gpa >> PAGE_SHIFT;
  1141. ghc->gpa = gpa;
  1142. ghc->generation = slots->generation;
  1143. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1144. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1145. if (!kvm_is_error_hva(ghc->hva))
  1146. ghc->hva += offset;
  1147. else
  1148. return -EFAULT;
  1149. return 0;
  1150. }
  1151. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1152. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1153. void *data, unsigned long len)
  1154. {
  1155. struct kvm_memslots *slots = kvm_memslots(kvm);
  1156. int r;
  1157. if (slots->generation != ghc->generation)
  1158. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1159. if (kvm_is_error_hva(ghc->hva))
  1160. return -EFAULT;
  1161. r = copy_to_user((void __user *)ghc->hva, data, len);
  1162. if (r)
  1163. return -EFAULT;
  1164. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1165. return 0;
  1166. }
  1167. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1168. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1169. {
  1170. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1171. offset, len);
  1172. }
  1173. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1174. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1175. {
  1176. gfn_t gfn = gpa >> PAGE_SHIFT;
  1177. int seg;
  1178. int offset = offset_in_page(gpa);
  1179. int ret;
  1180. while ((seg = next_segment(len, offset)) != 0) {
  1181. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1182. if (ret < 0)
  1183. return ret;
  1184. offset = 0;
  1185. len -= seg;
  1186. ++gfn;
  1187. }
  1188. return 0;
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1191. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1192. gfn_t gfn)
  1193. {
  1194. if (memslot && memslot->dirty_bitmap) {
  1195. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1196. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1197. }
  1198. }
  1199. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1200. {
  1201. struct kvm_memory_slot *memslot;
  1202. memslot = gfn_to_memslot(kvm, gfn);
  1203. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1204. }
  1205. /*
  1206. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1207. */
  1208. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1209. {
  1210. DEFINE_WAIT(wait);
  1211. for (;;) {
  1212. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1213. if (kvm_arch_vcpu_runnable(vcpu)) {
  1214. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1215. break;
  1216. }
  1217. if (kvm_cpu_has_pending_timer(vcpu))
  1218. break;
  1219. if (signal_pending(current))
  1220. break;
  1221. schedule();
  1222. }
  1223. finish_wait(&vcpu->wq, &wait);
  1224. }
  1225. void kvm_resched(struct kvm_vcpu *vcpu)
  1226. {
  1227. if (!need_resched())
  1228. return;
  1229. cond_resched();
  1230. }
  1231. EXPORT_SYMBOL_GPL(kvm_resched);
  1232. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1233. {
  1234. ktime_t expires;
  1235. DEFINE_WAIT(wait);
  1236. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1237. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1238. expires = ktime_add_ns(ktime_get(), 100000UL);
  1239. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1240. finish_wait(&vcpu->wq, &wait);
  1241. }
  1242. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1243. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1244. {
  1245. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1246. struct page *page;
  1247. if (vmf->pgoff == 0)
  1248. page = virt_to_page(vcpu->run);
  1249. #ifdef CONFIG_X86
  1250. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1251. page = virt_to_page(vcpu->arch.pio_data);
  1252. #endif
  1253. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1254. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1255. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1256. #endif
  1257. else
  1258. return VM_FAULT_SIGBUS;
  1259. get_page(page);
  1260. vmf->page = page;
  1261. return 0;
  1262. }
  1263. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1264. .fault = kvm_vcpu_fault,
  1265. };
  1266. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1267. {
  1268. vma->vm_ops = &kvm_vcpu_vm_ops;
  1269. return 0;
  1270. }
  1271. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1272. {
  1273. struct kvm_vcpu *vcpu = filp->private_data;
  1274. kvm_put_kvm(vcpu->kvm);
  1275. return 0;
  1276. }
  1277. static struct file_operations kvm_vcpu_fops = {
  1278. .release = kvm_vcpu_release,
  1279. .unlocked_ioctl = kvm_vcpu_ioctl,
  1280. .compat_ioctl = kvm_vcpu_ioctl,
  1281. .mmap = kvm_vcpu_mmap,
  1282. .llseek = noop_llseek,
  1283. };
  1284. /*
  1285. * Allocates an inode for the vcpu.
  1286. */
  1287. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1288. {
  1289. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1290. }
  1291. /*
  1292. * Creates some virtual cpus. Good luck creating more than one.
  1293. */
  1294. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1295. {
  1296. int r;
  1297. struct kvm_vcpu *vcpu, *v;
  1298. vcpu = kvm_arch_vcpu_create(kvm, id);
  1299. if (IS_ERR(vcpu))
  1300. return PTR_ERR(vcpu);
  1301. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1302. r = kvm_arch_vcpu_setup(vcpu);
  1303. if (r)
  1304. return r;
  1305. mutex_lock(&kvm->lock);
  1306. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1307. r = -EINVAL;
  1308. goto vcpu_destroy;
  1309. }
  1310. kvm_for_each_vcpu(r, v, kvm)
  1311. if (v->vcpu_id == id) {
  1312. r = -EEXIST;
  1313. goto vcpu_destroy;
  1314. }
  1315. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1316. /* Now it's all set up, let userspace reach it */
  1317. kvm_get_kvm(kvm);
  1318. r = create_vcpu_fd(vcpu);
  1319. if (r < 0) {
  1320. kvm_put_kvm(kvm);
  1321. goto vcpu_destroy;
  1322. }
  1323. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1324. smp_wmb();
  1325. atomic_inc(&kvm->online_vcpus);
  1326. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1327. if (kvm->bsp_vcpu_id == id)
  1328. kvm->bsp_vcpu = vcpu;
  1329. #endif
  1330. mutex_unlock(&kvm->lock);
  1331. return r;
  1332. vcpu_destroy:
  1333. mutex_unlock(&kvm->lock);
  1334. kvm_arch_vcpu_destroy(vcpu);
  1335. return r;
  1336. }
  1337. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1338. {
  1339. if (sigset) {
  1340. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1341. vcpu->sigset_active = 1;
  1342. vcpu->sigset = *sigset;
  1343. } else
  1344. vcpu->sigset_active = 0;
  1345. return 0;
  1346. }
  1347. static long kvm_vcpu_ioctl(struct file *filp,
  1348. unsigned int ioctl, unsigned long arg)
  1349. {
  1350. struct kvm_vcpu *vcpu = filp->private_data;
  1351. void __user *argp = (void __user *)arg;
  1352. int r;
  1353. struct kvm_fpu *fpu = NULL;
  1354. struct kvm_sregs *kvm_sregs = NULL;
  1355. if (vcpu->kvm->mm != current->mm)
  1356. return -EIO;
  1357. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1358. /*
  1359. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1360. * so vcpu_load() would break it.
  1361. */
  1362. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1363. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1364. #endif
  1365. vcpu_load(vcpu);
  1366. switch (ioctl) {
  1367. case KVM_RUN:
  1368. r = -EINVAL;
  1369. if (arg)
  1370. goto out;
  1371. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1372. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1373. break;
  1374. case KVM_GET_REGS: {
  1375. struct kvm_regs *kvm_regs;
  1376. r = -ENOMEM;
  1377. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1378. if (!kvm_regs)
  1379. goto out;
  1380. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1381. if (r)
  1382. goto out_free1;
  1383. r = -EFAULT;
  1384. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1385. goto out_free1;
  1386. r = 0;
  1387. out_free1:
  1388. kfree(kvm_regs);
  1389. break;
  1390. }
  1391. case KVM_SET_REGS: {
  1392. struct kvm_regs *kvm_regs;
  1393. r = -ENOMEM;
  1394. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1395. if (!kvm_regs)
  1396. goto out;
  1397. r = -EFAULT;
  1398. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1399. goto out_free2;
  1400. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1401. if (r)
  1402. goto out_free2;
  1403. r = 0;
  1404. out_free2:
  1405. kfree(kvm_regs);
  1406. break;
  1407. }
  1408. case KVM_GET_SREGS: {
  1409. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1410. r = -ENOMEM;
  1411. if (!kvm_sregs)
  1412. goto out;
  1413. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1414. if (r)
  1415. goto out;
  1416. r = -EFAULT;
  1417. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1418. goto out;
  1419. r = 0;
  1420. break;
  1421. }
  1422. case KVM_SET_SREGS: {
  1423. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1424. r = -ENOMEM;
  1425. if (!kvm_sregs)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1429. goto out;
  1430. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1431. if (r)
  1432. goto out;
  1433. r = 0;
  1434. break;
  1435. }
  1436. case KVM_GET_MP_STATE: {
  1437. struct kvm_mp_state mp_state;
  1438. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1439. if (r)
  1440. goto out;
  1441. r = -EFAULT;
  1442. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1443. goto out;
  1444. r = 0;
  1445. break;
  1446. }
  1447. case KVM_SET_MP_STATE: {
  1448. struct kvm_mp_state mp_state;
  1449. r = -EFAULT;
  1450. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1451. goto out;
  1452. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1453. if (r)
  1454. goto out;
  1455. r = 0;
  1456. break;
  1457. }
  1458. case KVM_TRANSLATE: {
  1459. struct kvm_translation tr;
  1460. r = -EFAULT;
  1461. if (copy_from_user(&tr, argp, sizeof tr))
  1462. goto out;
  1463. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1464. if (r)
  1465. goto out;
  1466. r = -EFAULT;
  1467. if (copy_to_user(argp, &tr, sizeof tr))
  1468. goto out;
  1469. r = 0;
  1470. break;
  1471. }
  1472. case KVM_SET_GUEST_DEBUG: {
  1473. struct kvm_guest_debug dbg;
  1474. r = -EFAULT;
  1475. if (copy_from_user(&dbg, argp, sizeof dbg))
  1476. goto out;
  1477. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1478. if (r)
  1479. goto out;
  1480. r = 0;
  1481. break;
  1482. }
  1483. case KVM_SET_SIGNAL_MASK: {
  1484. struct kvm_signal_mask __user *sigmask_arg = argp;
  1485. struct kvm_signal_mask kvm_sigmask;
  1486. sigset_t sigset, *p;
  1487. p = NULL;
  1488. if (argp) {
  1489. r = -EFAULT;
  1490. if (copy_from_user(&kvm_sigmask, argp,
  1491. sizeof kvm_sigmask))
  1492. goto out;
  1493. r = -EINVAL;
  1494. if (kvm_sigmask.len != sizeof sigset)
  1495. goto out;
  1496. r = -EFAULT;
  1497. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1498. sizeof sigset))
  1499. goto out;
  1500. p = &sigset;
  1501. }
  1502. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1503. break;
  1504. }
  1505. case KVM_GET_FPU: {
  1506. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1507. r = -ENOMEM;
  1508. if (!fpu)
  1509. goto out;
  1510. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1511. if (r)
  1512. goto out;
  1513. r = -EFAULT;
  1514. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. case KVM_SET_FPU: {
  1520. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1521. r = -ENOMEM;
  1522. if (!fpu)
  1523. goto out;
  1524. r = -EFAULT;
  1525. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1526. goto out;
  1527. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1528. if (r)
  1529. goto out;
  1530. r = 0;
  1531. break;
  1532. }
  1533. default:
  1534. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1535. }
  1536. out:
  1537. vcpu_put(vcpu);
  1538. kfree(fpu);
  1539. kfree(kvm_sregs);
  1540. return r;
  1541. }
  1542. static long kvm_vm_ioctl(struct file *filp,
  1543. unsigned int ioctl, unsigned long arg)
  1544. {
  1545. struct kvm *kvm = filp->private_data;
  1546. void __user *argp = (void __user *)arg;
  1547. int r;
  1548. if (kvm->mm != current->mm)
  1549. return -EIO;
  1550. switch (ioctl) {
  1551. case KVM_CREATE_VCPU:
  1552. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1553. if (r < 0)
  1554. goto out;
  1555. break;
  1556. case KVM_SET_USER_MEMORY_REGION: {
  1557. struct kvm_userspace_memory_region kvm_userspace_mem;
  1558. r = -EFAULT;
  1559. if (copy_from_user(&kvm_userspace_mem, argp,
  1560. sizeof kvm_userspace_mem))
  1561. goto out;
  1562. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1563. if (r)
  1564. goto out;
  1565. break;
  1566. }
  1567. case KVM_GET_DIRTY_LOG: {
  1568. struct kvm_dirty_log log;
  1569. r = -EFAULT;
  1570. if (copy_from_user(&log, argp, sizeof log))
  1571. goto out;
  1572. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1573. if (r)
  1574. goto out;
  1575. break;
  1576. }
  1577. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1578. case KVM_REGISTER_COALESCED_MMIO: {
  1579. struct kvm_coalesced_mmio_zone zone;
  1580. r = -EFAULT;
  1581. if (copy_from_user(&zone, argp, sizeof zone))
  1582. goto out;
  1583. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1584. if (r)
  1585. goto out;
  1586. r = 0;
  1587. break;
  1588. }
  1589. case KVM_UNREGISTER_COALESCED_MMIO: {
  1590. struct kvm_coalesced_mmio_zone zone;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&zone, argp, sizeof zone))
  1593. goto out;
  1594. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1595. if (r)
  1596. goto out;
  1597. r = 0;
  1598. break;
  1599. }
  1600. #endif
  1601. case KVM_IRQFD: {
  1602. struct kvm_irqfd data;
  1603. r = -EFAULT;
  1604. if (copy_from_user(&data, argp, sizeof data))
  1605. goto out;
  1606. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1607. break;
  1608. }
  1609. case KVM_IOEVENTFD: {
  1610. struct kvm_ioeventfd data;
  1611. r = -EFAULT;
  1612. if (copy_from_user(&data, argp, sizeof data))
  1613. goto out;
  1614. r = kvm_ioeventfd(kvm, &data);
  1615. break;
  1616. }
  1617. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1618. case KVM_SET_BOOT_CPU_ID:
  1619. r = 0;
  1620. mutex_lock(&kvm->lock);
  1621. if (atomic_read(&kvm->online_vcpus) != 0)
  1622. r = -EBUSY;
  1623. else
  1624. kvm->bsp_vcpu_id = arg;
  1625. mutex_unlock(&kvm->lock);
  1626. break;
  1627. #endif
  1628. default:
  1629. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1630. if (r == -ENOTTY)
  1631. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1632. }
  1633. out:
  1634. return r;
  1635. }
  1636. #ifdef CONFIG_COMPAT
  1637. struct compat_kvm_dirty_log {
  1638. __u32 slot;
  1639. __u32 padding1;
  1640. union {
  1641. compat_uptr_t dirty_bitmap; /* one bit per page */
  1642. __u64 padding2;
  1643. };
  1644. };
  1645. static long kvm_vm_compat_ioctl(struct file *filp,
  1646. unsigned int ioctl, unsigned long arg)
  1647. {
  1648. struct kvm *kvm = filp->private_data;
  1649. int r;
  1650. if (kvm->mm != current->mm)
  1651. return -EIO;
  1652. switch (ioctl) {
  1653. case KVM_GET_DIRTY_LOG: {
  1654. struct compat_kvm_dirty_log compat_log;
  1655. struct kvm_dirty_log log;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&compat_log, (void __user *)arg,
  1658. sizeof(compat_log)))
  1659. goto out;
  1660. log.slot = compat_log.slot;
  1661. log.padding1 = compat_log.padding1;
  1662. log.padding2 = compat_log.padding2;
  1663. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1664. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1665. if (r)
  1666. goto out;
  1667. break;
  1668. }
  1669. default:
  1670. r = kvm_vm_ioctl(filp, ioctl, arg);
  1671. }
  1672. out:
  1673. return r;
  1674. }
  1675. #endif
  1676. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1677. {
  1678. struct page *page[1];
  1679. unsigned long addr;
  1680. int npages;
  1681. gfn_t gfn = vmf->pgoff;
  1682. struct kvm *kvm = vma->vm_file->private_data;
  1683. addr = gfn_to_hva(kvm, gfn);
  1684. if (kvm_is_error_hva(addr))
  1685. return VM_FAULT_SIGBUS;
  1686. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1687. NULL);
  1688. if (unlikely(npages != 1))
  1689. return VM_FAULT_SIGBUS;
  1690. vmf->page = page[0];
  1691. return 0;
  1692. }
  1693. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1694. .fault = kvm_vm_fault,
  1695. };
  1696. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1697. {
  1698. vma->vm_ops = &kvm_vm_vm_ops;
  1699. return 0;
  1700. }
  1701. static struct file_operations kvm_vm_fops = {
  1702. .release = kvm_vm_release,
  1703. .unlocked_ioctl = kvm_vm_ioctl,
  1704. #ifdef CONFIG_COMPAT
  1705. .compat_ioctl = kvm_vm_compat_ioctl,
  1706. #endif
  1707. .mmap = kvm_vm_mmap,
  1708. .llseek = noop_llseek,
  1709. };
  1710. static int kvm_dev_ioctl_create_vm(void)
  1711. {
  1712. int r;
  1713. struct kvm *kvm;
  1714. kvm = kvm_create_vm();
  1715. if (IS_ERR(kvm))
  1716. return PTR_ERR(kvm);
  1717. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1718. r = kvm_coalesced_mmio_init(kvm);
  1719. if (r < 0) {
  1720. kvm_put_kvm(kvm);
  1721. return r;
  1722. }
  1723. #endif
  1724. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1725. if (r < 0)
  1726. kvm_put_kvm(kvm);
  1727. return r;
  1728. }
  1729. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1730. {
  1731. switch (arg) {
  1732. case KVM_CAP_USER_MEMORY:
  1733. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1734. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1735. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1736. case KVM_CAP_SET_BOOT_CPU_ID:
  1737. #endif
  1738. case KVM_CAP_INTERNAL_ERROR_DATA:
  1739. return 1;
  1740. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1741. case KVM_CAP_IRQ_ROUTING:
  1742. return KVM_MAX_IRQ_ROUTES;
  1743. #endif
  1744. default:
  1745. break;
  1746. }
  1747. return kvm_dev_ioctl_check_extension(arg);
  1748. }
  1749. static long kvm_dev_ioctl(struct file *filp,
  1750. unsigned int ioctl, unsigned long arg)
  1751. {
  1752. long r = -EINVAL;
  1753. switch (ioctl) {
  1754. case KVM_GET_API_VERSION:
  1755. r = -EINVAL;
  1756. if (arg)
  1757. goto out;
  1758. r = KVM_API_VERSION;
  1759. break;
  1760. case KVM_CREATE_VM:
  1761. r = -EINVAL;
  1762. if (arg)
  1763. goto out;
  1764. r = kvm_dev_ioctl_create_vm();
  1765. break;
  1766. case KVM_CHECK_EXTENSION:
  1767. r = kvm_dev_ioctl_check_extension_generic(arg);
  1768. break;
  1769. case KVM_GET_VCPU_MMAP_SIZE:
  1770. r = -EINVAL;
  1771. if (arg)
  1772. goto out;
  1773. r = PAGE_SIZE; /* struct kvm_run */
  1774. #ifdef CONFIG_X86
  1775. r += PAGE_SIZE; /* pio data page */
  1776. #endif
  1777. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1778. r += PAGE_SIZE; /* coalesced mmio ring page */
  1779. #endif
  1780. break;
  1781. case KVM_TRACE_ENABLE:
  1782. case KVM_TRACE_PAUSE:
  1783. case KVM_TRACE_DISABLE:
  1784. r = -EOPNOTSUPP;
  1785. break;
  1786. default:
  1787. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1788. }
  1789. out:
  1790. return r;
  1791. }
  1792. static struct file_operations kvm_chardev_ops = {
  1793. .unlocked_ioctl = kvm_dev_ioctl,
  1794. .compat_ioctl = kvm_dev_ioctl,
  1795. .llseek = noop_llseek,
  1796. };
  1797. static struct miscdevice kvm_dev = {
  1798. KVM_MINOR,
  1799. "kvm",
  1800. &kvm_chardev_ops,
  1801. };
  1802. static void hardware_enable_nolock(void *junk)
  1803. {
  1804. int cpu = raw_smp_processor_id();
  1805. int r;
  1806. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1807. return;
  1808. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1809. r = kvm_arch_hardware_enable(NULL);
  1810. if (r) {
  1811. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1812. atomic_inc(&hardware_enable_failed);
  1813. printk(KERN_INFO "kvm: enabling virtualization on "
  1814. "CPU%d failed\n", cpu);
  1815. }
  1816. }
  1817. static void hardware_enable(void *junk)
  1818. {
  1819. spin_lock(&kvm_lock);
  1820. hardware_enable_nolock(junk);
  1821. spin_unlock(&kvm_lock);
  1822. }
  1823. static void hardware_disable_nolock(void *junk)
  1824. {
  1825. int cpu = raw_smp_processor_id();
  1826. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1827. return;
  1828. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1829. kvm_arch_hardware_disable(NULL);
  1830. }
  1831. static void hardware_disable(void *junk)
  1832. {
  1833. spin_lock(&kvm_lock);
  1834. hardware_disable_nolock(junk);
  1835. spin_unlock(&kvm_lock);
  1836. }
  1837. static void hardware_disable_all_nolock(void)
  1838. {
  1839. BUG_ON(!kvm_usage_count);
  1840. kvm_usage_count--;
  1841. if (!kvm_usage_count)
  1842. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1843. }
  1844. static void hardware_disable_all(void)
  1845. {
  1846. spin_lock(&kvm_lock);
  1847. hardware_disable_all_nolock();
  1848. spin_unlock(&kvm_lock);
  1849. }
  1850. static int hardware_enable_all(void)
  1851. {
  1852. int r = 0;
  1853. spin_lock(&kvm_lock);
  1854. kvm_usage_count++;
  1855. if (kvm_usage_count == 1) {
  1856. atomic_set(&hardware_enable_failed, 0);
  1857. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1858. if (atomic_read(&hardware_enable_failed)) {
  1859. hardware_disable_all_nolock();
  1860. r = -EBUSY;
  1861. }
  1862. }
  1863. spin_unlock(&kvm_lock);
  1864. return r;
  1865. }
  1866. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1867. void *v)
  1868. {
  1869. int cpu = (long)v;
  1870. if (!kvm_usage_count)
  1871. return NOTIFY_OK;
  1872. val &= ~CPU_TASKS_FROZEN;
  1873. switch (val) {
  1874. case CPU_DYING:
  1875. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1876. cpu);
  1877. hardware_disable(NULL);
  1878. break;
  1879. case CPU_STARTING:
  1880. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1881. cpu);
  1882. hardware_enable(NULL);
  1883. break;
  1884. }
  1885. return NOTIFY_OK;
  1886. }
  1887. asmlinkage void kvm_spurious_fault(void)
  1888. {
  1889. /* Fault while not rebooting. We want the trace. */
  1890. BUG();
  1891. }
  1892. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1893. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1894. void *v)
  1895. {
  1896. /*
  1897. * Some (well, at least mine) BIOSes hang on reboot if
  1898. * in vmx root mode.
  1899. *
  1900. * And Intel TXT required VMX off for all cpu when system shutdown.
  1901. */
  1902. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1903. kvm_rebooting = true;
  1904. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1905. return NOTIFY_OK;
  1906. }
  1907. static struct notifier_block kvm_reboot_notifier = {
  1908. .notifier_call = kvm_reboot,
  1909. .priority = 0,
  1910. };
  1911. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1912. {
  1913. int i;
  1914. for (i = 0; i < bus->dev_count; i++) {
  1915. struct kvm_io_device *pos = bus->devs[i];
  1916. kvm_iodevice_destructor(pos);
  1917. }
  1918. kfree(bus);
  1919. }
  1920. /* kvm_io_bus_write - called under kvm->slots_lock */
  1921. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1922. int len, const void *val)
  1923. {
  1924. int i;
  1925. struct kvm_io_bus *bus;
  1926. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1927. for (i = 0; i < bus->dev_count; i++)
  1928. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1929. return 0;
  1930. return -EOPNOTSUPP;
  1931. }
  1932. /* kvm_io_bus_read - called under kvm->slots_lock */
  1933. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1934. int len, void *val)
  1935. {
  1936. int i;
  1937. struct kvm_io_bus *bus;
  1938. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1939. for (i = 0; i < bus->dev_count; i++)
  1940. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1941. return 0;
  1942. return -EOPNOTSUPP;
  1943. }
  1944. /* Caller must hold slots_lock. */
  1945. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1946. struct kvm_io_device *dev)
  1947. {
  1948. struct kvm_io_bus *new_bus, *bus;
  1949. bus = kvm->buses[bus_idx];
  1950. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1951. return -ENOSPC;
  1952. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1953. if (!new_bus)
  1954. return -ENOMEM;
  1955. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1956. new_bus->devs[new_bus->dev_count++] = dev;
  1957. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1958. synchronize_srcu_expedited(&kvm->srcu);
  1959. kfree(bus);
  1960. return 0;
  1961. }
  1962. /* Caller must hold slots_lock. */
  1963. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1964. struct kvm_io_device *dev)
  1965. {
  1966. int i, r;
  1967. struct kvm_io_bus *new_bus, *bus;
  1968. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1969. if (!new_bus)
  1970. return -ENOMEM;
  1971. bus = kvm->buses[bus_idx];
  1972. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1973. r = -ENOENT;
  1974. for (i = 0; i < new_bus->dev_count; i++)
  1975. if (new_bus->devs[i] == dev) {
  1976. r = 0;
  1977. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1978. break;
  1979. }
  1980. if (r) {
  1981. kfree(new_bus);
  1982. return r;
  1983. }
  1984. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1985. synchronize_srcu_expedited(&kvm->srcu);
  1986. kfree(bus);
  1987. return r;
  1988. }
  1989. static struct notifier_block kvm_cpu_notifier = {
  1990. .notifier_call = kvm_cpu_hotplug,
  1991. };
  1992. static int vm_stat_get(void *_offset, u64 *val)
  1993. {
  1994. unsigned offset = (long)_offset;
  1995. struct kvm *kvm;
  1996. *val = 0;
  1997. spin_lock(&kvm_lock);
  1998. list_for_each_entry(kvm, &vm_list, vm_list)
  1999. *val += *(u32 *)((void *)kvm + offset);
  2000. spin_unlock(&kvm_lock);
  2001. return 0;
  2002. }
  2003. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2004. static int vcpu_stat_get(void *_offset, u64 *val)
  2005. {
  2006. unsigned offset = (long)_offset;
  2007. struct kvm *kvm;
  2008. struct kvm_vcpu *vcpu;
  2009. int i;
  2010. *val = 0;
  2011. spin_lock(&kvm_lock);
  2012. list_for_each_entry(kvm, &vm_list, vm_list)
  2013. kvm_for_each_vcpu(i, vcpu, kvm)
  2014. *val += *(u32 *)((void *)vcpu + offset);
  2015. spin_unlock(&kvm_lock);
  2016. return 0;
  2017. }
  2018. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2019. static const struct file_operations *stat_fops[] = {
  2020. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2021. [KVM_STAT_VM] = &vm_stat_fops,
  2022. };
  2023. static void kvm_init_debug(void)
  2024. {
  2025. struct kvm_stats_debugfs_item *p;
  2026. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2027. for (p = debugfs_entries; p->name; ++p)
  2028. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2029. (void *)(long)p->offset,
  2030. stat_fops[p->kind]);
  2031. }
  2032. static void kvm_exit_debug(void)
  2033. {
  2034. struct kvm_stats_debugfs_item *p;
  2035. for (p = debugfs_entries; p->name; ++p)
  2036. debugfs_remove(p->dentry);
  2037. debugfs_remove(kvm_debugfs_dir);
  2038. }
  2039. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2040. {
  2041. if (kvm_usage_count)
  2042. hardware_disable_nolock(NULL);
  2043. return 0;
  2044. }
  2045. static int kvm_resume(struct sys_device *dev)
  2046. {
  2047. if (kvm_usage_count) {
  2048. WARN_ON(spin_is_locked(&kvm_lock));
  2049. hardware_enable_nolock(NULL);
  2050. }
  2051. return 0;
  2052. }
  2053. static struct sysdev_class kvm_sysdev_class = {
  2054. .name = "kvm",
  2055. .suspend = kvm_suspend,
  2056. .resume = kvm_resume,
  2057. };
  2058. static struct sys_device kvm_sysdev = {
  2059. .id = 0,
  2060. .cls = &kvm_sysdev_class,
  2061. };
  2062. struct page *bad_page;
  2063. pfn_t bad_pfn;
  2064. static inline
  2065. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2066. {
  2067. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2068. }
  2069. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2070. {
  2071. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2072. kvm_arch_vcpu_load(vcpu, cpu);
  2073. }
  2074. static void kvm_sched_out(struct preempt_notifier *pn,
  2075. struct task_struct *next)
  2076. {
  2077. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2078. kvm_arch_vcpu_put(vcpu);
  2079. }
  2080. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2081. struct module *module)
  2082. {
  2083. int r;
  2084. int cpu;
  2085. r = kvm_arch_init(opaque);
  2086. if (r)
  2087. goto out_fail;
  2088. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2089. if (bad_page == NULL) {
  2090. r = -ENOMEM;
  2091. goto out;
  2092. }
  2093. bad_pfn = page_to_pfn(bad_page);
  2094. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2095. if (hwpoison_page == NULL) {
  2096. r = -ENOMEM;
  2097. goto out_free_0;
  2098. }
  2099. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2100. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2101. if (fault_page == NULL) {
  2102. r = -ENOMEM;
  2103. goto out_free_0;
  2104. }
  2105. fault_pfn = page_to_pfn(fault_page);
  2106. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2107. r = -ENOMEM;
  2108. goto out_free_0;
  2109. }
  2110. r = kvm_arch_hardware_setup();
  2111. if (r < 0)
  2112. goto out_free_0a;
  2113. for_each_online_cpu(cpu) {
  2114. smp_call_function_single(cpu,
  2115. kvm_arch_check_processor_compat,
  2116. &r, 1);
  2117. if (r < 0)
  2118. goto out_free_1;
  2119. }
  2120. r = register_cpu_notifier(&kvm_cpu_notifier);
  2121. if (r)
  2122. goto out_free_2;
  2123. register_reboot_notifier(&kvm_reboot_notifier);
  2124. r = sysdev_class_register(&kvm_sysdev_class);
  2125. if (r)
  2126. goto out_free_3;
  2127. r = sysdev_register(&kvm_sysdev);
  2128. if (r)
  2129. goto out_free_4;
  2130. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2131. if (!vcpu_align)
  2132. vcpu_align = __alignof__(struct kvm_vcpu);
  2133. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2134. 0, NULL);
  2135. if (!kvm_vcpu_cache) {
  2136. r = -ENOMEM;
  2137. goto out_free_5;
  2138. }
  2139. r = kvm_async_pf_init();
  2140. if (r)
  2141. goto out_free;
  2142. kvm_chardev_ops.owner = module;
  2143. kvm_vm_fops.owner = module;
  2144. kvm_vcpu_fops.owner = module;
  2145. r = misc_register(&kvm_dev);
  2146. if (r) {
  2147. printk(KERN_ERR "kvm: misc device register failed\n");
  2148. goto out_unreg;
  2149. }
  2150. kvm_preempt_ops.sched_in = kvm_sched_in;
  2151. kvm_preempt_ops.sched_out = kvm_sched_out;
  2152. kvm_init_debug();
  2153. return 0;
  2154. out_unreg:
  2155. kvm_async_pf_deinit();
  2156. out_free:
  2157. kmem_cache_destroy(kvm_vcpu_cache);
  2158. out_free_5:
  2159. sysdev_unregister(&kvm_sysdev);
  2160. out_free_4:
  2161. sysdev_class_unregister(&kvm_sysdev_class);
  2162. out_free_3:
  2163. unregister_reboot_notifier(&kvm_reboot_notifier);
  2164. unregister_cpu_notifier(&kvm_cpu_notifier);
  2165. out_free_2:
  2166. out_free_1:
  2167. kvm_arch_hardware_unsetup();
  2168. out_free_0a:
  2169. free_cpumask_var(cpus_hardware_enabled);
  2170. out_free_0:
  2171. if (fault_page)
  2172. __free_page(fault_page);
  2173. if (hwpoison_page)
  2174. __free_page(hwpoison_page);
  2175. __free_page(bad_page);
  2176. out:
  2177. kvm_arch_exit();
  2178. out_fail:
  2179. return r;
  2180. }
  2181. EXPORT_SYMBOL_GPL(kvm_init);
  2182. void kvm_exit(void)
  2183. {
  2184. kvm_exit_debug();
  2185. misc_deregister(&kvm_dev);
  2186. kmem_cache_destroy(kvm_vcpu_cache);
  2187. kvm_async_pf_deinit();
  2188. sysdev_unregister(&kvm_sysdev);
  2189. sysdev_class_unregister(&kvm_sysdev_class);
  2190. unregister_reboot_notifier(&kvm_reboot_notifier);
  2191. unregister_cpu_notifier(&kvm_cpu_notifier);
  2192. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2193. kvm_arch_hardware_unsetup();
  2194. kvm_arch_exit();
  2195. free_cpumask_var(cpus_hardware_enabled);
  2196. __free_page(hwpoison_page);
  2197. __free_page(bad_page);
  2198. }
  2199. EXPORT_SYMBOL_GPL(kvm_exit);