amd5536udc.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <asm/unaligned.h>
  54. /* gadget stack */
  55. #include <linux/usb/ch9.h>
  56. #include <linux/usb/gadget.h>
  57. /* udc specific */
  58. #include "amd5536udc.h"
  59. static void udc_tasklet_disconnect(unsigned long);
  60. static void empty_req_queue(struct udc_ep *);
  61. static int udc_probe(struct udc *dev);
  62. static void udc_basic_init(struct udc *dev);
  63. static void udc_setup_endpoints(struct udc *dev);
  64. static void udc_soft_reset(struct udc *dev);
  65. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  66. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  67. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  68. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  69. unsigned long buf_len, gfp_t gfp_flags);
  70. static int udc_remote_wakeup(struct udc *dev);
  71. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  72. static void udc_pci_remove(struct pci_dev *pdev);
  73. /* description */
  74. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  75. static const char name[] = "amd5536udc";
  76. /* structure to hold endpoint function pointers */
  77. static const struct usb_ep_ops udc_ep_ops;
  78. /* received setup data */
  79. static union udc_setup_data setup_data;
  80. /* pointer to device object */
  81. static struct udc *udc;
  82. /* irq spin lock for soft reset */
  83. static DEFINE_SPINLOCK(udc_irq_spinlock);
  84. /* stall spin lock */
  85. static DEFINE_SPINLOCK(udc_stall_spinlock);
  86. /*
  87. * slave mode: pending bytes in rx fifo after nyet,
  88. * used if EPIN irq came but no req was available
  89. */
  90. static unsigned int udc_rxfifo_pending;
  91. /* count soft resets after suspend to avoid loop */
  92. static int soft_reset_occured;
  93. static int soft_reset_after_usbreset_occured;
  94. /* timer */
  95. static struct timer_list udc_timer;
  96. static int stop_timer;
  97. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  98. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  99. * all OUT endpoints. So we have to handle race conditions like
  100. * when OUT data reaches the fifo but no request was queued yet.
  101. * This cannot be solved by letting the RX DMA disabled until a
  102. * request gets queued because there may be other OUT packets
  103. * in the FIFO (important for not blocking control traffic).
  104. * The value of set_rde controls the correspondig timer.
  105. *
  106. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  107. * set_rde 0 == do not touch RDE, do no start the RDE timer
  108. * set_rde 1 == timer function will look whether FIFO has data
  109. * set_rde 2 == set by timer function to enable RX DMA on next call
  110. */
  111. static int set_rde = -1;
  112. static DECLARE_COMPLETION(on_exit);
  113. static struct timer_list udc_pollstall_timer;
  114. static int stop_pollstall_timer;
  115. static DECLARE_COMPLETION(on_pollstall_exit);
  116. /* tasklet for usb disconnect */
  117. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  118. (unsigned long) &udc);
  119. /* endpoint names used for print */
  120. static const char ep0_string[] = "ep0in";
  121. static const char *const ep_string[] = {
  122. ep0_string,
  123. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  124. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  125. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  126. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  127. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  128. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  129. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  130. };
  131. /* DMA usage flag */
  132. static bool use_dma = 1;
  133. /* packet per buffer dma */
  134. static bool use_dma_ppb = 1;
  135. /* with per descr. update */
  136. static bool use_dma_ppb_du;
  137. /* buffer fill mode */
  138. static int use_dma_bufferfill_mode;
  139. /* full speed only mode */
  140. static bool use_fullspeed;
  141. /* tx buffer size for high speed */
  142. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  143. /* module parameters */
  144. module_param(use_dma, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma, "true for DMA");
  146. module_param(use_dma_ppb, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  148. module_param(use_dma_ppb_du, bool, S_IRUGO);
  149. MODULE_PARM_DESC(use_dma_ppb_du,
  150. "true for DMA in packet per buffer mode with descriptor update");
  151. module_param(use_fullspeed, bool, S_IRUGO);
  152. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  153. /*---------------------------------------------------------------------------*/
  154. /* Prints UDC device registers and endpoint irq registers */
  155. static void print_regs(struct udc *dev)
  156. {
  157. DBG(dev, "------- Device registers -------\n");
  158. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  159. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  160. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  161. DBG(dev, "\n");
  162. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  163. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  164. DBG(dev, "\n");
  165. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  166. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  167. DBG(dev, "\n");
  168. DBG(dev, "USE DMA = %d\n", use_dma);
  169. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  170. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  171. "WITHOUT desc. update)\n");
  172. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  173. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  174. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  175. "WITH desc. update)\n");
  176. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  177. }
  178. if (use_dma && use_dma_bufferfill_mode) {
  179. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  181. }
  182. if (!use_dma)
  183. dev_info(&dev->pdev->dev, "FIFO mode\n");
  184. DBG(dev, "-------------------------------------------------------\n");
  185. }
  186. /* Masks unused interrupts */
  187. static int udc_mask_unused_interrupts(struct udc *dev)
  188. {
  189. u32 tmp;
  190. /* mask all dev interrupts */
  191. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  192. AMD_BIT(UDC_DEVINT_ENUM) |
  193. AMD_BIT(UDC_DEVINT_US) |
  194. AMD_BIT(UDC_DEVINT_UR) |
  195. AMD_BIT(UDC_DEVINT_ES) |
  196. AMD_BIT(UDC_DEVINT_SI) |
  197. AMD_BIT(UDC_DEVINT_SOF)|
  198. AMD_BIT(UDC_DEVINT_SC);
  199. writel(tmp, &dev->regs->irqmsk);
  200. /* mask all ep interrupts */
  201. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  202. return 0;
  203. }
  204. /* Enables endpoint 0 interrupts */
  205. static int udc_enable_ep0_interrupts(struct udc *dev)
  206. {
  207. u32 tmp;
  208. DBG(dev, "udc_enable_ep0_interrupts()\n");
  209. /* read irq mask */
  210. tmp = readl(&dev->regs->ep_irqmsk);
  211. /* enable ep0 irq's */
  212. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  213. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  214. writel(tmp, &dev->regs->ep_irqmsk);
  215. return 0;
  216. }
  217. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  218. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  219. {
  220. u32 tmp;
  221. DBG(dev, "enable device interrupts for setup data\n");
  222. /* read irq mask */
  223. tmp = readl(&dev->regs->irqmsk);
  224. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  225. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  229. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  230. writel(tmp, &dev->regs->irqmsk);
  231. return 0;
  232. }
  233. /* Calculates fifo start of endpoint based on preceding endpoints */
  234. static int udc_set_txfifo_addr(struct udc_ep *ep)
  235. {
  236. struct udc *dev;
  237. u32 tmp;
  238. int i;
  239. if (!ep || !(ep->in))
  240. return -EINVAL;
  241. dev = ep->dev;
  242. ep->txfifo = dev->txfifo;
  243. /* traverse ep's */
  244. for (i = 0; i < ep->num; i++) {
  245. if (dev->ep[i].regs) {
  246. /* read fifo size */
  247. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  248. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  249. ep->txfifo += tmp;
  250. }
  251. }
  252. return 0;
  253. }
  254. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  255. static u32 cnak_pending;
  256. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  257. {
  258. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  259. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  260. cnak_pending |= 1 << (num);
  261. ep->naking = 1;
  262. } else
  263. cnak_pending = cnak_pending & (~(1 << (num)));
  264. }
  265. /* Enables endpoint, is called by gadget driver */
  266. static int
  267. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  268. {
  269. struct udc_ep *ep;
  270. struct udc *dev;
  271. u32 tmp;
  272. unsigned long iflags;
  273. u8 udc_csr_epix;
  274. unsigned maxpacket;
  275. if (!usbep
  276. || usbep->name == ep0_string
  277. || !desc
  278. || desc->bDescriptorType != USB_DT_ENDPOINT)
  279. return -EINVAL;
  280. ep = container_of(usbep, struct udc_ep, ep);
  281. dev = ep->dev;
  282. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  283. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  284. return -ESHUTDOWN;
  285. spin_lock_irqsave(&dev->lock, iflags);
  286. ep->desc = desc;
  287. ep->halted = 0;
  288. /* set traffic type */
  289. tmp = readl(&dev->ep[ep->num].regs->ctl);
  290. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  291. writel(tmp, &dev->ep[ep->num].regs->ctl);
  292. /* set max packet size */
  293. maxpacket = usb_endpoint_maxp(desc);
  294. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  295. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  296. ep->ep.maxpacket = maxpacket;
  297. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  298. /* IN ep */
  299. if (ep->in) {
  300. /* ep ix in UDC CSR register space */
  301. udc_csr_epix = ep->num;
  302. /* set buffer size (tx fifo entries) */
  303. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  304. /* double buffering: fifo size = 2 x max packet size */
  305. tmp = AMD_ADDBITS(
  306. tmp,
  307. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  308. / UDC_DWORD_BYTES,
  309. UDC_EPIN_BUFF_SIZE);
  310. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  311. /* calc. tx fifo base addr */
  312. udc_set_txfifo_addr(ep);
  313. /* flush fifo */
  314. tmp = readl(&ep->regs->ctl);
  315. tmp |= AMD_BIT(UDC_EPCTL_F);
  316. writel(tmp, &ep->regs->ctl);
  317. /* OUT ep */
  318. } else {
  319. /* ep ix in UDC CSR register space */
  320. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  321. /* set max packet size UDC CSR */
  322. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  323. tmp = AMD_ADDBITS(tmp, maxpacket,
  324. UDC_CSR_NE_MAX_PKT);
  325. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  326. if (use_dma && !ep->in) {
  327. /* alloc and init BNA dummy request */
  328. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  329. ep->bna_occurred = 0;
  330. }
  331. if (ep->num != UDC_EP0OUT_IX)
  332. dev->data_ep_enabled = 1;
  333. }
  334. /* set ep values */
  335. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  336. /* max packet */
  337. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  338. /* ep number */
  339. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  340. /* ep direction */
  341. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  342. /* ep type */
  343. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  344. /* ep config */
  345. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  346. /* ep interface */
  347. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  348. /* ep alt */
  349. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  350. /* write reg */
  351. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  352. /* enable ep irq */
  353. tmp = readl(&dev->regs->ep_irqmsk);
  354. tmp &= AMD_UNMASK_BIT(ep->num);
  355. writel(tmp, &dev->regs->ep_irqmsk);
  356. /*
  357. * clear NAK by writing CNAK
  358. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  359. */
  360. if (!use_dma || ep->in) {
  361. tmp = readl(&ep->regs->ctl);
  362. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  363. writel(tmp, &ep->regs->ctl);
  364. ep->naking = 0;
  365. UDC_QUEUE_CNAK(ep, ep->num);
  366. }
  367. tmp = desc->bEndpointAddress;
  368. DBG(dev, "%s enabled\n", usbep->name);
  369. spin_unlock_irqrestore(&dev->lock, iflags);
  370. return 0;
  371. }
  372. /* Resets endpoint */
  373. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  374. {
  375. u32 tmp;
  376. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  377. ep->desc = NULL;
  378. ep->ep.desc = NULL;
  379. ep->ep.ops = &udc_ep_ops;
  380. INIT_LIST_HEAD(&ep->queue);
  381. ep->ep.maxpacket = (u16) ~0;
  382. /* set NAK */
  383. tmp = readl(&ep->regs->ctl);
  384. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  385. writel(tmp, &ep->regs->ctl);
  386. ep->naking = 1;
  387. /* disable interrupt */
  388. tmp = readl(&regs->ep_irqmsk);
  389. tmp |= AMD_BIT(ep->num);
  390. writel(tmp, &regs->ep_irqmsk);
  391. if (ep->in) {
  392. /* unset P and IN bit of potential former DMA */
  393. tmp = readl(&ep->regs->ctl);
  394. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  395. writel(tmp, &ep->regs->ctl);
  396. tmp = readl(&ep->regs->sts);
  397. tmp |= AMD_BIT(UDC_EPSTS_IN);
  398. writel(tmp, &ep->regs->sts);
  399. /* flush the fifo */
  400. tmp = readl(&ep->regs->ctl);
  401. tmp |= AMD_BIT(UDC_EPCTL_F);
  402. writel(tmp, &ep->regs->ctl);
  403. }
  404. /* reset desc pointer */
  405. writel(0, &ep->regs->desptr);
  406. }
  407. /* Disables endpoint, is called by gadget driver */
  408. static int udc_ep_disable(struct usb_ep *usbep)
  409. {
  410. struct udc_ep *ep = NULL;
  411. unsigned long iflags;
  412. if (!usbep)
  413. return -EINVAL;
  414. ep = container_of(usbep, struct udc_ep, ep);
  415. if (usbep->name == ep0_string || !ep->desc)
  416. return -EINVAL;
  417. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  418. spin_lock_irqsave(&ep->dev->lock, iflags);
  419. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  420. empty_req_queue(ep);
  421. ep_init(ep->dev->regs, ep);
  422. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  423. return 0;
  424. }
  425. /* Allocates request packet, called by gadget driver */
  426. static struct usb_request *
  427. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  428. {
  429. struct udc_request *req;
  430. struct udc_data_dma *dma_desc;
  431. struct udc_ep *ep;
  432. if (!usbep)
  433. return NULL;
  434. ep = container_of(usbep, struct udc_ep, ep);
  435. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  436. req = kzalloc(sizeof(struct udc_request), gfp);
  437. if (!req)
  438. return NULL;
  439. req->req.dma = DMA_DONT_USE;
  440. INIT_LIST_HEAD(&req->queue);
  441. if (ep->dma) {
  442. /* ep0 in requests are allocated from data pool here */
  443. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  444. &req->td_phys);
  445. if (!dma_desc) {
  446. kfree(req);
  447. return NULL;
  448. }
  449. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  450. "td_phys = %lx\n",
  451. req, dma_desc,
  452. (unsigned long)req->td_phys);
  453. /* prevent from using desc. - set HOST BUSY */
  454. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  455. UDC_DMA_STP_STS_BS_HOST_BUSY,
  456. UDC_DMA_STP_STS_BS);
  457. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  458. req->td_data = dma_desc;
  459. req->td_data_last = NULL;
  460. req->chain_len = 1;
  461. }
  462. return &req->req;
  463. }
  464. /* Frees request packet, called by gadget driver */
  465. static void
  466. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  467. {
  468. struct udc_ep *ep;
  469. struct udc_request *req;
  470. if (!usbep || !usbreq)
  471. return;
  472. ep = container_of(usbep, struct udc_ep, ep);
  473. req = container_of(usbreq, struct udc_request, req);
  474. VDBG(ep->dev, "free_req req=%p\n", req);
  475. BUG_ON(!list_empty(&req->queue));
  476. if (req->td_data) {
  477. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  478. /* free dma chain if created */
  479. if (req->chain_len > 1)
  480. udc_free_dma_chain(ep->dev, req);
  481. pci_pool_free(ep->dev->data_requests, req->td_data,
  482. req->td_phys);
  483. }
  484. kfree(req);
  485. }
  486. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  487. static void udc_init_bna_dummy(struct udc_request *req)
  488. {
  489. if (req) {
  490. /* set last bit */
  491. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  492. /* set next pointer to itself */
  493. req->td_data->next = req->td_phys;
  494. /* set HOST BUSY */
  495. req->td_data->status
  496. = AMD_ADDBITS(req->td_data->status,
  497. UDC_DMA_STP_STS_BS_DMA_DONE,
  498. UDC_DMA_STP_STS_BS);
  499. #ifdef UDC_VERBOSE
  500. pr_debug("bna desc = %p, sts = %08x\n",
  501. req->td_data, req->td_data->status);
  502. #endif
  503. }
  504. }
  505. /* Allocate BNA dummy descriptor */
  506. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  507. {
  508. struct udc_request *req = NULL;
  509. struct usb_request *_req = NULL;
  510. /* alloc the dummy request */
  511. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  512. if (_req) {
  513. req = container_of(_req, struct udc_request, req);
  514. ep->bna_dummy_req = req;
  515. udc_init_bna_dummy(req);
  516. }
  517. return req;
  518. }
  519. /* Write data to TX fifo for IN packets */
  520. static void
  521. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  522. {
  523. u8 *req_buf;
  524. u32 *buf;
  525. int i, j;
  526. unsigned bytes = 0;
  527. unsigned remaining = 0;
  528. if (!req || !ep)
  529. return;
  530. req_buf = req->buf + req->actual;
  531. prefetch(req_buf);
  532. remaining = req->length - req->actual;
  533. buf = (u32 *) req_buf;
  534. bytes = ep->ep.maxpacket;
  535. if (bytes > remaining)
  536. bytes = remaining;
  537. /* dwords first */
  538. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  539. writel(*(buf + i), ep->txfifo);
  540. /* remaining bytes must be written by byte access */
  541. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  542. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  543. ep->txfifo);
  544. }
  545. /* dummy write confirm */
  546. writel(0, &ep->regs->confirm);
  547. }
  548. /* Read dwords from RX fifo for OUT transfers */
  549. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  550. {
  551. int i;
  552. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  553. for (i = 0; i < dwords; i++)
  554. *(buf + i) = readl(dev->rxfifo);
  555. return 0;
  556. }
  557. /* Read bytes from RX fifo for OUT transfers */
  558. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  559. {
  560. int i, j;
  561. u32 tmp;
  562. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  563. /* dwords first */
  564. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  565. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  566. /* remaining bytes must be read by byte access */
  567. if (bytes % UDC_DWORD_BYTES) {
  568. tmp = readl(dev->rxfifo);
  569. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  570. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  571. tmp = tmp >> UDC_BITS_PER_BYTE;
  572. }
  573. }
  574. return 0;
  575. }
  576. /* Read data from RX fifo for OUT transfers */
  577. static int
  578. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  579. {
  580. u8 *buf;
  581. unsigned buf_space;
  582. unsigned bytes = 0;
  583. unsigned finished = 0;
  584. /* received number bytes */
  585. bytes = readl(&ep->regs->sts);
  586. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  587. buf_space = req->req.length - req->req.actual;
  588. buf = req->req.buf + req->req.actual;
  589. if (bytes > buf_space) {
  590. if ((buf_space % ep->ep.maxpacket) != 0) {
  591. DBG(ep->dev,
  592. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  593. ep->ep.name, bytes, buf_space);
  594. req->req.status = -EOVERFLOW;
  595. }
  596. bytes = buf_space;
  597. }
  598. req->req.actual += bytes;
  599. /* last packet ? */
  600. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  601. || ((req->req.actual == req->req.length) && !req->req.zero))
  602. finished = 1;
  603. /* read rx fifo bytes */
  604. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  605. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  606. return finished;
  607. }
  608. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  609. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  610. {
  611. int retval = 0;
  612. u32 tmp;
  613. VDBG(ep->dev, "prep_dma\n");
  614. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  615. ep->num, req->td_data);
  616. /* set buffer pointer */
  617. req->td_data->bufptr = req->req.dma;
  618. /* set last bit */
  619. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  620. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  621. if (use_dma_ppb) {
  622. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  623. if (retval != 0) {
  624. if (retval == -ENOMEM)
  625. DBG(ep->dev, "Out of DMA memory\n");
  626. return retval;
  627. }
  628. if (ep->in) {
  629. if (req->req.length == ep->ep.maxpacket) {
  630. /* write tx bytes */
  631. req->td_data->status =
  632. AMD_ADDBITS(req->td_data->status,
  633. ep->ep.maxpacket,
  634. UDC_DMA_IN_STS_TXBYTES);
  635. }
  636. }
  637. }
  638. if (ep->in) {
  639. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  640. "maxpacket=%d ep%d\n",
  641. use_dma_ppb, req->req.length,
  642. ep->ep.maxpacket, ep->num);
  643. /*
  644. * if bytes < max packet then tx bytes must
  645. * be written in packet per buffer mode
  646. */
  647. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  648. || ep->num == UDC_EP0OUT_IX
  649. || ep->num == UDC_EP0IN_IX) {
  650. /* write tx bytes */
  651. req->td_data->status =
  652. AMD_ADDBITS(req->td_data->status,
  653. req->req.length,
  654. UDC_DMA_IN_STS_TXBYTES);
  655. /* reset frame num */
  656. req->td_data->status =
  657. AMD_ADDBITS(req->td_data->status,
  658. 0,
  659. UDC_DMA_IN_STS_FRAMENUM);
  660. }
  661. /* set HOST BUSY */
  662. req->td_data->status =
  663. AMD_ADDBITS(req->td_data->status,
  664. UDC_DMA_STP_STS_BS_HOST_BUSY,
  665. UDC_DMA_STP_STS_BS);
  666. } else {
  667. VDBG(ep->dev, "OUT set host ready\n");
  668. /* set HOST READY */
  669. req->td_data->status =
  670. AMD_ADDBITS(req->td_data->status,
  671. UDC_DMA_STP_STS_BS_HOST_READY,
  672. UDC_DMA_STP_STS_BS);
  673. /* clear NAK by writing CNAK */
  674. if (ep->naking) {
  675. tmp = readl(&ep->regs->ctl);
  676. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  677. writel(tmp, &ep->regs->ctl);
  678. ep->naking = 0;
  679. UDC_QUEUE_CNAK(ep, ep->num);
  680. }
  681. }
  682. return retval;
  683. }
  684. /* Completes request packet ... caller MUST hold lock */
  685. static void
  686. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  687. __releases(ep->dev->lock)
  688. __acquires(ep->dev->lock)
  689. {
  690. struct udc *dev;
  691. unsigned halted;
  692. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  693. dev = ep->dev;
  694. /* unmap DMA */
  695. if (req->dma_mapping) {
  696. if (ep->in)
  697. pci_unmap_single(dev->pdev,
  698. req->req.dma,
  699. req->req.length,
  700. PCI_DMA_TODEVICE);
  701. else
  702. pci_unmap_single(dev->pdev,
  703. req->req.dma,
  704. req->req.length,
  705. PCI_DMA_FROMDEVICE);
  706. req->dma_mapping = 0;
  707. req->req.dma = DMA_DONT_USE;
  708. }
  709. halted = ep->halted;
  710. ep->halted = 1;
  711. /* set new status if pending */
  712. if (req->req.status == -EINPROGRESS)
  713. req->req.status = sts;
  714. /* remove from ep queue */
  715. list_del_init(&req->queue);
  716. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  717. &req->req, req->req.length, ep->ep.name, sts);
  718. spin_unlock(&dev->lock);
  719. req->req.complete(&ep->ep, &req->req);
  720. spin_lock(&dev->lock);
  721. ep->halted = halted;
  722. }
  723. /* frees pci pool descriptors of a DMA chain */
  724. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  725. {
  726. int ret_val = 0;
  727. struct udc_data_dma *td;
  728. struct udc_data_dma *td_last = NULL;
  729. unsigned int i;
  730. DBG(dev, "free chain req = %p\n", req);
  731. /* do not free first desc., will be done by free for request */
  732. td_last = req->td_data;
  733. td = phys_to_virt(td_last->next);
  734. for (i = 1; i < req->chain_len; i++) {
  735. pci_pool_free(dev->data_requests, td,
  736. (dma_addr_t) td_last->next);
  737. td_last = td;
  738. td = phys_to_virt(td_last->next);
  739. }
  740. return ret_val;
  741. }
  742. /* Iterates to the end of a DMA chain and returns last descriptor */
  743. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  744. {
  745. struct udc_data_dma *td;
  746. td = req->td_data;
  747. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  748. td = phys_to_virt(td->next);
  749. return td;
  750. }
  751. /* Iterates to the end of a DMA chain and counts bytes received */
  752. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  753. {
  754. struct udc_data_dma *td;
  755. u32 count;
  756. td = req->td_data;
  757. /* received number bytes */
  758. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  759. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  760. td = phys_to_virt(td->next);
  761. /* received number bytes */
  762. if (td) {
  763. count += AMD_GETBITS(td->status,
  764. UDC_DMA_OUT_STS_RXBYTES);
  765. }
  766. }
  767. return count;
  768. }
  769. /* Creates or re-inits a DMA chain */
  770. static int udc_create_dma_chain(
  771. struct udc_ep *ep,
  772. struct udc_request *req,
  773. unsigned long buf_len, gfp_t gfp_flags
  774. )
  775. {
  776. unsigned long bytes = req->req.length;
  777. unsigned int i;
  778. dma_addr_t dma_addr;
  779. struct udc_data_dma *td = NULL;
  780. struct udc_data_dma *last = NULL;
  781. unsigned long txbytes;
  782. unsigned create_new_chain = 0;
  783. unsigned len;
  784. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  785. bytes, buf_len);
  786. dma_addr = DMA_DONT_USE;
  787. /* unset L bit in first desc for OUT */
  788. if (!ep->in)
  789. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  790. /* alloc only new desc's if not already available */
  791. len = req->req.length / ep->ep.maxpacket;
  792. if (req->req.length % ep->ep.maxpacket)
  793. len++;
  794. if (len > req->chain_len) {
  795. /* shorter chain already allocated before */
  796. if (req->chain_len > 1)
  797. udc_free_dma_chain(ep->dev, req);
  798. req->chain_len = len;
  799. create_new_chain = 1;
  800. }
  801. td = req->td_data;
  802. /* gen. required number of descriptors and buffers */
  803. for (i = buf_len; i < bytes; i += buf_len) {
  804. /* create or determine next desc. */
  805. if (create_new_chain) {
  806. td = pci_pool_alloc(ep->dev->data_requests,
  807. gfp_flags, &dma_addr);
  808. if (!td)
  809. return -ENOMEM;
  810. td->status = 0;
  811. } else if (i == buf_len) {
  812. /* first td */
  813. td = (struct udc_data_dma *) phys_to_virt(
  814. req->td_data->next);
  815. td->status = 0;
  816. } else {
  817. td = (struct udc_data_dma *) phys_to_virt(last->next);
  818. td->status = 0;
  819. }
  820. if (td)
  821. td->bufptr = req->req.dma + i; /* assign buffer */
  822. else
  823. break;
  824. /* short packet ? */
  825. if ((bytes - i) >= buf_len) {
  826. txbytes = buf_len;
  827. } else {
  828. /* short packet */
  829. txbytes = bytes - i;
  830. }
  831. /* link td and assign tx bytes */
  832. if (i == buf_len) {
  833. if (create_new_chain)
  834. req->td_data->next = dma_addr;
  835. /*
  836. else
  837. req->td_data->next = virt_to_phys(td);
  838. */
  839. /* write tx bytes */
  840. if (ep->in) {
  841. /* first desc */
  842. req->td_data->status =
  843. AMD_ADDBITS(req->td_data->status,
  844. ep->ep.maxpacket,
  845. UDC_DMA_IN_STS_TXBYTES);
  846. /* second desc */
  847. td->status = AMD_ADDBITS(td->status,
  848. txbytes,
  849. UDC_DMA_IN_STS_TXBYTES);
  850. }
  851. } else {
  852. if (create_new_chain)
  853. last->next = dma_addr;
  854. /*
  855. else
  856. last->next = virt_to_phys(td);
  857. */
  858. if (ep->in) {
  859. /* write tx bytes */
  860. td->status = AMD_ADDBITS(td->status,
  861. txbytes,
  862. UDC_DMA_IN_STS_TXBYTES);
  863. }
  864. }
  865. last = td;
  866. }
  867. /* set last bit */
  868. if (td) {
  869. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  870. /* last desc. points to itself */
  871. req->td_data_last = td;
  872. }
  873. return 0;
  874. }
  875. /* Enabling RX DMA */
  876. static void udc_set_rde(struct udc *dev)
  877. {
  878. u32 tmp;
  879. VDBG(dev, "udc_set_rde()\n");
  880. /* stop RDE timer */
  881. if (timer_pending(&udc_timer)) {
  882. set_rde = 0;
  883. mod_timer(&udc_timer, jiffies - 1);
  884. }
  885. /* set RDE */
  886. tmp = readl(&dev->regs->ctl);
  887. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  888. writel(tmp, &dev->regs->ctl);
  889. }
  890. /* Queues a request packet, called by gadget driver */
  891. static int
  892. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  893. {
  894. int retval = 0;
  895. u8 open_rxfifo = 0;
  896. unsigned long iflags;
  897. struct udc_ep *ep;
  898. struct udc_request *req;
  899. struct udc *dev;
  900. u32 tmp;
  901. /* check the inputs */
  902. req = container_of(usbreq, struct udc_request, req);
  903. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  904. || !list_empty(&req->queue))
  905. return -EINVAL;
  906. ep = container_of(usbep, struct udc_ep, ep);
  907. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  908. return -EINVAL;
  909. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  910. dev = ep->dev;
  911. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  912. return -ESHUTDOWN;
  913. /* map dma (usually done before) */
  914. if (ep->dma && usbreq->length != 0
  915. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  916. VDBG(dev, "DMA map req %p\n", req);
  917. if (ep->in)
  918. usbreq->dma = pci_map_single(dev->pdev,
  919. usbreq->buf,
  920. usbreq->length,
  921. PCI_DMA_TODEVICE);
  922. else
  923. usbreq->dma = pci_map_single(dev->pdev,
  924. usbreq->buf,
  925. usbreq->length,
  926. PCI_DMA_FROMDEVICE);
  927. req->dma_mapping = 1;
  928. }
  929. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  930. usbep->name, usbreq, usbreq->length,
  931. req->td_data, usbreq->buf);
  932. spin_lock_irqsave(&dev->lock, iflags);
  933. usbreq->actual = 0;
  934. usbreq->status = -EINPROGRESS;
  935. req->dma_done = 0;
  936. /* on empty queue just do first transfer */
  937. if (list_empty(&ep->queue)) {
  938. /* zlp */
  939. if (usbreq->length == 0) {
  940. /* IN zlp's are handled by hardware */
  941. complete_req(ep, req, 0);
  942. VDBG(dev, "%s: zlp\n", ep->ep.name);
  943. /*
  944. * if set_config or set_intf is waiting for ack by zlp
  945. * then set CSR_DONE
  946. */
  947. if (dev->set_cfg_not_acked) {
  948. tmp = readl(&dev->regs->ctl);
  949. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  950. writel(tmp, &dev->regs->ctl);
  951. dev->set_cfg_not_acked = 0;
  952. }
  953. /* setup command is ACK'ed now by zlp */
  954. if (dev->waiting_zlp_ack_ep0in) {
  955. /* clear NAK by writing CNAK in EP0_IN */
  956. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  957. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  958. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  959. dev->ep[UDC_EP0IN_IX].naking = 0;
  960. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  961. UDC_EP0IN_IX);
  962. dev->waiting_zlp_ack_ep0in = 0;
  963. }
  964. goto finished;
  965. }
  966. if (ep->dma) {
  967. retval = prep_dma(ep, req, gfp);
  968. if (retval != 0)
  969. goto finished;
  970. /* write desc pointer to enable DMA */
  971. if (ep->in) {
  972. /* set HOST READY */
  973. req->td_data->status =
  974. AMD_ADDBITS(req->td_data->status,
  975. UDC_DMA_IN_STS_BS_HOST_READY,
  976. UDC_DMA_IN_STS_BS);
  977. }
  978. /* disabled rx dma while descriptor update */
  979. if (!ep->in) {
  980. /* stop RDE timer */
  981. if (timer_pending(&udc_timer)) {
  982. set_rde = 0;
  983. mod_timer(&udc_timer, jiffies - 1);
  984. }
  985. /* clear RDE */
  986. tmp = readl(&dev->regs->ctl);
  987. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  988. writel(tmp, &dev->regs->ctl);
  989. open_rxfifo = 1;
  990. /*
  991. * if BNA occurred then let BNA dummy desc.
  992. * point to current desc.
  993. */
  994. if (ep->bna_occurred) {
  995. VDBG(dev, "copy to BNA dummy desc.\n");
  996. memcpy(ep->bna_dummy_req->td_data,
  997. req->td_data,
  998. sizeof(struct udc_data_dma));
  999. }
  1000. }
  1001. /* write desc pointer */
  1002. writel(req->td_phys, &ep->regs->desptr);
  1003. /* clear NAK by writing CNAK */
  1004. if (ep->naking) {
  1005. tmp = readl(&ep->regs->ctl);
  1006. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1007. writel(tmp, &ep->regs->ctl);
  1008. ep->naking = 0;
  1009. UDC_QUEUE_CNAK(ep, ep->num);
  1010. }
  1011. if (ep->in) {
  1012. /* enable ep irq */
  1013. tmp = readl(&dev->regs->ep_irqmsk);
  1014. tmp &= AMD_UNMASK_BIT(ep->num);
  1015. writel(tmp, &dev->regs->ep_irqmsk);
  1016. }
  1017. } else if (ep->in) {
  1018. /* enable ep irq */
  1019. tmp = readl(&dev->regs->ep_irqmsk);
  1020. tmp &= AMD_UNMASK_BIT(ep->num);
  1021. writel(tmp, &dev->regs->ep_irqmsk);
  1022. }
  1023. } else if (ep->dma) {
  1024. /*
  1025. * prep_dma not used for OUT ep's, this is not possible
  1026. * for PPB modes, because of chain creation reasons
  1027. */
  1028. if (ep->in) {
  1029. retval = prep_dma(ep, req, gfp);
  1030. if (retval != 0)
  1031. goto finished;
  1032. }
  1033. }
  1034. VDBG(dev, "list_add\n");
  1035. /* add request to ep queue */
  1036. if (req) {
  1037. list_add_tail(&req->queue, &ep->queue);
  1038. /* open rxfifo if out data queued */
  1039. if (open_rxfifo) {
  1040. /* enable DMA */
  1041. req->dma_going = 1;
  1042. udc_set_rde(dev);
  1043. if (ep->num != UDC_EP0OUT_IX)
  1044. dev->data_ep_queued = 1;
  1045. }
  1046. /* stop OUT naking */
  1047. if (!ep->in) {
  1048. if (!use_dma && udc_rxfifo_pending) {
  1049. DBG(dev, "udc_queue(): pending bytes in "
  1050. "rxfifo after nyet\n");
  1051. /*
  1052. * read pending bytes afer nyet:
  1053. * referring to isr
  1054. */
  1055. if (udc_rxfifo_read(ep, req)) {
  1056. /* finish */
  1057. complete_req(ep, req, 0);
  1058. }
  1059. udc_rxfifo_pending = 0;
  1060. }
  1061. }
  1062. }
  1063. finished:
  1064. spin_unlock_irqrestore(&dev->lock, iflags);
  1065. return retval;
  1066. }
  1067. /* Empty request queue of an endpoint; caller holds spinlock */
  1068. static void empty_req_queue(struct udc_ep *ep)
  1069. {
  1070. struct udc_request *req;
  1071. ep->halted = 1;
  1072. while (!list_empty(&ep->queue)) {
  1073. req = list_entry(ep->queue.next,
  1074. struct udc_request,
  1075. queue);
  1076. complete_req(ep, req, -ESHUTDOWN);
  1077. }
  1078. }
  1079. /* Dequeues a request packet, called by gadget driver */
  1080. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1081. {
  1082. struct udc_ep *ep;
  1083. struct udc_request *req;
  1084. unsigned halted;
  1085. unsigned long iflags;
  1086. ep = container_of(usbep, struct udc_ep, ep);
  1087. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1088. && ep->num != UDC_EP0OUT_IX)))
  1089. return -EINVAL;
  1090. req = container_of(usbreq, struct udc_request, req);
  1091. spin_lock_irqsave(&ep->dev->lock, iflags);
  1092. halted = ep->halted;
  1093. ep->halted = 1;
  1094. /* request in processing or next one */
  1095. if (ep->queue.next == &req->queue) {
  1096. if (ep->dma && req->dma_going) {
  1097. if (ep->in)
  1098. ep->cancel_transfer = 1;
  1099. else {
  1100. u32 tmp;
  1101. u32 dma_sts;
  1102. /* stop potential receive DMA */
  1103. tmp = readl(&udc->regs->ctl);
  1104. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1105. &udc->regs->ctl);
  1106. /*
  1107. * Cancel transfer later in ISR
  1108. * if descriptor was touched.
  1109. */
  1110. dma_sts = AMD_GETBITS(req->td_data->status,
  1111. UDC_DMA_OUT_STS_BS);
  1112. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1113. ep->cancel_transfer = 1;
  1114. else {
  1115. udc_init_bna_dummy(ep->req);
  1116. writel(ep->bna_dummy_req->td_phys,
  1117. &ep->regs->desptr);
  1118. }
  1119. writel(tmp, &udc->regs->ctl);
  1120. }
  1121. }
  1122. }
  1123. complete_req(ep, req, -ECONNRESET);
  1124. ep->halted = halted;
  1125. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1126. return 0;
  1127. }
  1128. /* Halt or clear halt of endpoint */
  1129. static int
  1130. udc_set_halt(struct usb_ep *usbep, int halt)
  1131. {
  1132. struct udc_ep *ep;
  1133. u32 tmp;
  1134. unsigned long iflags;
  1135. int retval = 0;
  1136. if (!usbep)
  1137. return -EINVAL;
  1138. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1139. ep = container_of(usbep, struct udc_ep, ep);
  1140. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1141. return -EINVAL;
  1142. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1143. return -ESHUTDOWN;
  1144. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1145. /* halt or clear halt */
  1146. if (halt) {
  1147. if (ep->num == 0)
  1148. ep->dev->stall_ep0in = 1;
  1149. else {
  1150. /*
  1151. * set STALL
  1152. * rxfifo empty not taken into acount
  1153. */
  1154. tmp = readl(&ep->regs->ctl);
  1155. tmp |= AMD_BIT(UDC_EPCTL_S);
  1156. writel(tmp, &ep->regs->ctl);
  1157. ep->halted = 1;
  1158. /* setup poll timer */
  1159. if (!timer_pending(&udc_pollstall_timer)) {
  1160. udc_pollstall_timer.expires = jiffies +
  1161. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1162. / (1000 * 1000);
  1163. if (!stop_pollstall_timer) {
  1164. DBG(ep->dev, "start polltimer\n");
  1165. add_timer(&udc_pollstall_timer);
  1166. }
  1167. }
  1168. }
  1169. } else {
  1170. /* ep is halted by set_halt() before */
  1171. if (ep->halted) {
  1172. tmp = readl(&ep->regs->ctl);
  1173. /* clear stall bit */
  1174. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1175. /* clear NAK by writing CNAK */
  1176. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1177. writel(tmp, &ep->regs->ctl);
  1178. ep->halted = 0;
  1179. UDC_QUEUE_CNAK(ep, ep->num);
  1180. }
  1181. }
  1182. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1183. return retval;
  1184. }
  1185. /* gadget interface */
  1186. static const struct usb_ep_ops udc_ep_ops = {
  1187. .enable = udc_ep_enable,
  1188. .disable = udc_ep_disable,
  1189. .alloc_request = udc_alloc_request,
  1190. .free_request = udc_free_request,
  1191. .queue = udc_queue,
  1192. .dequeue = udc_dequeue,
  1193. .set_halt = udc_set_halt,
  1194. /* fifo ops not implemented */
  1195. };
  1196. /*-------------------------------------------------------------------------*/
  1197. /* Get frame counter (not implemented) */
  1198. static int udc_get_frame(struct usb_gadget *gadget)
  1199. {
  1200. return -EOPNOTSUPP;
  1201. }
  1202. /* Remote wakeup gadget interface */
  1203. static int udc_wakeup(struct usb_gadget *gadget)
  1204. {
  1205. struct udc *dev;
  1206. if (!gadget)
  1207. return -EINVAL;
  1208. dev = container_of(gadget, struct udc, gadget);
  1209. udc_remote_wakeup(dev);
  1210. return 0;
  1211. }
  1212. static int amd5536_start(struct usb_gadget_driver *driver,
  1213. int (*bind)(struct usb_gadget *));
  1214. static int amd5536_stop(struct usb_gadget_driver *driver);
  1215. /* gadget operations */
  1216. static const struct usb_gadget_ops udc_ops = {
  1217. .wakeup = udc_wakeup,
  1218. .get_frame = udc_get_frame,
  1219. .start = amd5536_start,
  1220. .stop = amd5536_stop,
  1221. };
  1222. /* Setups endpoint parameters, adds endpoints to linked list */
  1223. static void make_ep_lists(struct udc *dev)
  1224. {
  1225. /* make gadget ep lists */
  1226. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1227. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1228. &dev->gadget.ep_list);
  1229. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1230. &dev->gadget.ep_list);
  1231. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1232. &dev->gadget.ep_list);
  1233. /* fifo config */
  1234. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1235. if (dev->gadget.speed == USB_SPEED_FULL)
  1236. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1237. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1238. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1239. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1240. }
  1241. /* init registers at driver load time */
  1242. static int startup_registers(struct udc *dev)
  1243. {
  1244. u32 tmp;
  1245. /* init controller by soft reset */
  1246. udc_soft_reset(dev);
  1247. /* mask not needed interrupts */
  1248. udc_mask_unused_interrupts(dev);
  1249. /* put into initial config */
  1250. udc_basic_init(dev);
  1251. /* link up all endpoints */
  1252. udc_setup_endpoints(dev);
  1253. /* program speed */
  1254. tmp = readl(&dev->regs->cfg);
  1255. if (use_fullspeed)
  1256. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1257. else
  1258. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1259. writel(tmp, &dev->regs->cfg);
  1260. return 0;
  1261. }
  1262. /* Inits UDC context */
  1263. static void udc_basic_init(struct udc *dev)
  1264. {
  1265. u32 tmp;
  1266. DBG(dev, "udc_basic_init()\n");
  1267. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1268. /* stop RDE timer */
  1269. if (timer_pending(&udc_timer)) {
  1270. set_rde = 0;
  1271. mod_timer(&udc_timer, jiffies - 1);
  1272. }
  1273. /* stop poll stall timer */
  1274. if (timer_pending(&udc_pollstall_timer))
  1275. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1276. /* disable DMA */
  1277. tmp = readl(&dev->regs->ctl);
  1278. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1279. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1280. writel(tmp, &dev->regs->ctl);
  1281. /* enable dynamic CSR programming */
  1282. tmp = readl(&dev->regs->cfg);
  1283. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1284. /* set self powered */
  1285. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1286. /* set remote wakeupable */
  1287. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1288. writel(tmp, &dev->regs->cfg);
  1289. make_ep_lists(dev);
  1290. dev->data_ep_enabled = 0;
  1291. dev->data_ep_queued = 0;
  1292. }
  1293. /* Sets initial endpoint parameters */
  1294. static void udc_setup_endpoints(struct udc *dev)
  1295. {
  1296. struct udc_ep *ep;
  1297. u32 tmp;
  1298. u32 reg;
  1299. DBG(dev, "udc_setup_endpoints()\n");
  1300. /* read enum speed */
  1301. tmp = readl(&dev->regs->sts);
  1302. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1303. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1304. dev->gadget.speed = USB_SPEED_HIGH;
  1305. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1306. dev->gadget.speed = USB_SPEED_FULL;
  1307. /* set basic ep parameters */
  1308. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1309. ep = &dev->ep[tmp];
  1310. ep->dev = dev;
  1311. ep->ep.name = ep_string[tmp];
  1312. ep->num = tmp;
  1313. /* txfifo size is calculated at enable time */
  1314. ep->txfifo = dev->txfifo;
  1315. /* fifo size */
  1316. if (tmp < UDC_EPIN_NUM) {
  1317. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1318. ep->in = 1;
  1319. } else {
  1320. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1321. ep->in = 0;
  1322. }
  1323. ep->regs = &dev->ep_regs[tmp];
  1324. /*
  1325. * ep will be reset only if ep was not enabled before to avoid
  1326. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1327. * not enabled by gadget driver
  1328. */
  1329. if (!ep->desc)
  1330. ep_init(dev->regs, ep);
  1331. if (use_dma) {
  1332. /*
  1333. * ep->dma is not really used, just to indicate that
  1334. * DMA is active: remove this
  1335. * dma regs = dev control regs
  1336. */
  1337. ep->dma = &dev->regs->ctl;
  1338. /* nak OUT endpoints until enable - not for ep0 */
  1339. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1340. && tmp > UDC_EPIN_NUM) {
  1341. /* set NAK */
  1342. reg = readl(&dev->ep[tmp].regs->ctl);
  1343. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1344. writel(reg, &dev->ep[tmp].regs->ctl);
  1345. dev->ep[tmp].naking = 1;
  1346. }
  1347. }
  1348. }
  1349. /* EP0 max packet */
  1350. if (dev->gadget.speed == USB_SPEED_FULL) {
  1351. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1352. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1353. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1354. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1355. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1356. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1357. }
  1358. /*
  1359. * with suspend bug workaround, ep0 params for gadget driver
  1360. * are set at gadget driver bind() call
  1361. */
  1362. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1363. dev->ep[UDC_EP0IN_IX].halted = 0;
  1364. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1365. /* init cfg/alt/int */
  1366. dev->cur_config = 0;
  1367. dev->cur_intf = 0;
  1368. dev->cur_alt = 0;
  1369. }
  1370. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1371. static void usb_connect(struct udc *dev)
  1372. {
  1373. dev_info(&dev->pdev->dev, "USB Connect\n");
  1374. dev->connected = 1;
  1375. /* put into initial config */
  1376. udc_basic_init(dev);
  1377. /* enable device setup interrupts */
  1378. udc_enable_dev_setup_interrupts(dev);
  1379. }
  1380. /*
  1381. * Calls gadget with disconnect event and resets the UDC and makes
  1382. * initial bringup to be ready for ep0 events
  1383. */
  1384. static void usb_disconnect(struct udc *dev)
  1385. {
  1386. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1387. dev->connected = 0;
  1388. /* mask interrupts */
  1389. udc_mask_unused_interrupts(dev);
  1390. /* REVISIT there doesn't seem to be a point to having this
  1391. * talk to a tasklet ... do it directly, we already hold
  1392. * the spinlock needed to process the disconnect.
  1393. */
  1394. tasklet_schedule(&disconnect_tasklet);
  1395. }
  1396. /* Tasklet for disconnect to be outside of interrupt context */
  1397. static void udc_tasklet_disconnect(unsigned long par)
  1398. {
  1399. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1400. u32 tmp;
  1401. DBG(dev, "Tasklet disconnect\n");
  1402. spin_lock_irq(&dev->lock);
  1403. if (dev->driver) {
  1404. spin_unlock(&dev->lock);
  1405. dev->driver->disconnect(&dev->gadget);
  1406. spin_lock(&dev->lock);
  1407. /* empty queues */
  1408. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1409. empty_req_queue(&dev->ep[tmp]);
  1410. }
  1411. /* disable ep0 */
  1412. ep_init(dev->regs,
  1413. &dev->ep[UDC_EP0IN_IX]);
  1414. if (!soft_reset_occured) {
  1415. /* init controller by soft reset */
  1416. udc_soft_reset(dev);
  1417. soft_reset_occured++;
  1418. }
  1419. /* re-enable dev interrupts */
  1420. udc_enable_dev_setup_interrupts(dev);
  1421. /* back to full speed ? */
  1422. if (use_fullspeed) {
  1423. tmp = readl(&dev->regs->cfg);
  1424. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1425. writel(tmp, &dev->regs->cfg);
  1426. }
  1427. spin_unlock_irq(&dev->lock);
  1428. }
  1429. /* Reset the UDC core */
  1430. static void udc_soft_reset(struct udc *dev)
  1431. {
  1432. unsigned long flags;
  1433. DBG(dev, "Soft reset\n");
  1434. /*
  1435. * reset possible waiting interrupts, because int.
  1436. * status is lost after soft reset,
  1437. * ep int. status reset
  1438. */
  1439. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1440. /* device int. status reset */
  1441. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1442. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1443. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1444. readl(&dev->regs->cfg);
  1445. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1446. }
  1447. /* RDE timer callback to set RDE bit */
  1448. static void udc_timer_function(unsigned long v)
  1449. {
  1450. u32 tmp;
  1451. spin_lock_irq(&udc_irq_spinlock);
  1452. if (set_rde > 0) {
  1453. /*
  1454. * open the fifo if fifo was filled on last timer call
  1455. * conditionally
  1456. */
  1457. if (set_rde > 1) {
  1458. /* set RDE to receive setup data */
  1459. tmp = readl(&udc->regs->ctl);
  1460. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1461. writel(tmp, &udc->regs->ctl);
  1462. set_rde = -1;
  1463. } else if (readl(&udc->regs->sts)
  1464. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1465. /*
  1466. * if fifo empty setup polling, do not just
  1467. * open the fifo
  1468. */
  1469. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1470. if (!stop_timer)
  1471. add_timer(&udc_timer);
  1472. } else {
  1473. /*
  1474. * fifo contains data now, setup timer for opening
  1475. * the fifo when timer expires to be able to receive
  1476. * setup packets, when data packets gets queued by
  1477. * gadget layer then timer will forced to expire with
  1478. * set_rde=0 (RDE is set in udc_queue())
  1479. */
  1480. set_rde++;
  1481. /* debug: lhadmot_timer_start = 221070 */
  1482. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1483. if (!stop_timer)
  1484. add_timer(&udc_timer);
  1485. }
  1486. } else
  1487. set_rde = -1; /* RDE was set by udc_queue() */
  1488. spin_unlock_irq(&udc_irq_spinlock);
  1489. if (stop_timer)
  1490. complete(&on_exit);
  1491. }
  1492. /* Handle halt state, used in stall poll timer */
  1493. static void udc_handle_halt_state(struct udc_ep *ep)
  1494. {
  1495. u32 tmp;
  1496. /* set stall as long not halted */
  1497. if (ep->halted == 1) {
  1498. tmp = readl(&ep->regs->ctl);
  1499. /* STALL cleared ? */
  1500. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1501. /*
  1502. * FIXME: MSC spec requires that stall remains
  1503. * even on receivng of CLEAR_FEATURE HALT. So
  1504. * we would set STALL again here to be compliant.
  1505. * But with current mass storage drivers this does
  1506. * not work (would produce endless host retries).
  1507. * So we clear halt on CLEAR_FEATURE.
  1508. *
  1509. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1510. tmp |= AMD_BIT(UDC_EPCTL_S);
  1511. writel(tmp, &ep->regs->ctl);*/
  1512. /* clear NAK by writing CNAK */
  1513. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1514. writel(tmp, &ep->regs->ctl);
  1515. ep->halted = 0;
  1516. UDC_QUEUE_CNAK(ep, ep->num);
  1517. }
  1518. }
  1519. }
  1520. /* Stall timer callback to poll S bit and set it again after */
  1521. static void udc_pollstall_timer_function(unsigned long v)
  1522. {
  1523. struct udc_ep *ep;
  1524. int halted = 0;
  1525. spin_lock_irq(&udc_stall_spinlock);
  1526. /*
  1527. * only one IN and OUT endpoints are handled
  1528. * IN poll stall
  1529. */
  1530. ep = &udc->ep[UDC_EPIN_IX];
  1531. udc_handle_halt_state(ep);
  1532. if (ep->halted)
  1533. halted = 1;
  1534. /* OUT poll stall */
  1535. ep = &udc->ep[UDC_EPOUT_IX];
  1536. udc_handle_halt_state(ep);
  1537. if (ep->halted)
  1538. halted = 1;
  1539. /* setup timer again when still halted */
  1540. if (!stop_pollstall_timer && halted) {
  1541. udc_pollstall_timer.expires = jiffies +
  1542. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1543. / (1000 * 1000);
  1544. add_timer(&udc_pollstall_timer);
  1545. }
  1546. spin_unlock_irq(&udc_stall_spinlock);
  1547. if (stop_pollstall_timer)
  1548. complete(&on_pollstall_exit);
  1549. }
  1550. /* Inits endpoint 0 so that SETUP packets are processed */
  1551. static void activate_control_endpoints(struct udc *dev)
  1552. {
  1553. u32 tmp;
  1554. DBG(dev, "activate_control_endpoints\n");
  1555. /* flush fifo */
  1556. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1557. tmp |= AMD_BIT(UDC_EPCTL_F);
  1558. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1559. /* set ep0 directions */
  1560. dev->ep[UDC_EP0IN_IX].in = 1;
  1561. dev->ep[UDC_EP0OUT_IX].in = 0;
  1562. /* set buffer size (tx fifo entries) of EP0_IN */
  1563. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1564. if (dev->gadget.speed == USB_SPEED_FULL)
  1565. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1566. UDC_EPIN_BUFF_SIZE);
  1567. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1568. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1569. UDC_EPIN_BUFF_SIZE);
  1570. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1571. /* set max packet size of EP0_IN */
  1572. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1573. if (dev->gadget.speed == USB_SPEED_FULL)
  1574. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1575. UDC_EP_MAX_PKT_SIZE);
  1576. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1577. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1578. UDC_EP_MAX_PKT_SIZE);
  1579. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1580. /* set max packet size of EP0_OUT */
  1581. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1582. if (dev->gadget.speed == USB_SPEED_FULL)
  1583. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1584. UDC_EP_MAX_PKT_SIZE);
  1585. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1586. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1587. UDC_EP_MAX_PKT_SIZE);
  1588. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1589. /* set max packet size of EP0 in UDC CSR */
  1590. tmp = readl(&dev->csr->ne[0]);
  1591. if (dev->gadget.speed == USB_SPEED_FULL)
  1592. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1593. UDC_CSR_NE_MAX_PKT);
  1594. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1595. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1596. UDC_CSR_NE_MAX_PKT);
  1597. writel(tmp, &dev->csr->ne[0]);
  1598. if (use_dma) {
  1599. dev->ep[UDC_EP0OUT_IX].td->status |=
  1600. AMD_BIT(UDC_DMA_OUT_STS_L);
  1601. /* write dma desc address */
  1602. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1603. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1604. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1605. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1606. /* stop RDE timer */
  1607. if (timer_pending(&udc_timer)) {
  1608. set_rde = 0;
  1609. mod_timer(&udc_timer, jiffies - 1);
  1610. }
  1611. /* stop pollstall timer */
  1612. if (timer_pending(&udc_pollstall_timer))
  1613. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1614. /* enable DMA */
  1615. tmp = readl(&dev->regs->ctl);
  1616. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1617. | AMD_BIT(UDC_DEVCTL_RDE)
  1618. | AMD_BIT(UDC_DEVCTL_TDE);
  1619. if (use_dma_bufferfill_mode)
  1620. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1621. else if (use_dma_ppb_du)
  1622. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1623. writel(tmp, &dev->regs->ctl);
  1624. }
  1625. /* clear NAK by writing CNAK for EP0IN */
  1626. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1627. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1628. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1629. dev->ep[UDC_EP0IN_IX].naking = 0;
  1630. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1631. /* clear NAK by writing CNAK for EP0OUT */
  1632. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1633. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1634. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1635. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1636. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1637. }
  1638. /* Make endpoint 0 ready for control traffic */
  1639. static int setup_ep0(struct udc *dev)
  1640. {
  1641. activate_control_endpoints(dev);
  1642. /* enable ep0 interrupts */
  1643. udc_enable_ep0_interrupts(dev);
  1644. /* enable device setup interrupts */
  1645. udc_enable_dev_setup_interrupts(dev);
  1646. return 0;
  1647. }
  1648. /* Called by gadget driver to register itself */
  1649. static int amd5536_start(struct usb_gadget_driver *driver,
  1650. int (*bind)(struct usb_gadget *))
  1651. {
  1652. struct udc *dev = udc;
  1653. int retval;
  1654. u32 tmp;
  1655. if (!driver || !bind || !driver->setup
  1656. || driver->max_speed < USB_SPEED_HIGH)
  1657. return -EINVAL;
  1658. if (!dev)
  1659. return -ENODEV;
  1660. if (dev->driver)
  1661. return -EBUSY;
  1662. driver->driver.bus = NULL;
  1663. dev->driver = driver;
  1664. dev->gadget.dev.driver = &driver->driver;
  1665. retval = bind(&dev->gadget);
  1666. /* Some gadget drivers use both ep0 directions.
  1667. * NOTE: to gadget driver, ep0 is just one endpoint...
  1668. */
  1669. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1670. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1671. if (retval) {
  1672. DBG(dev, "binding to %s returning %d\n",
  1673. driver->driver.name, retval);
  1674. dev->driver = NULL;
  1675. dev->gadget.dev.driver = NULL;
  1676. return retval;
  1677. }
  1678. /* get ready for ep0 traffic */
  1679. setup_ep0(dev);
  1680. /* clear SD */
  1681. tmp = readl(&dev->regs->ctl);
  1682. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1683. writel(tmp, &dev->regs->ctl);
  1684. usb_connect(dev);
  1685. return 0;
  1686. }
  1687. /* shutdown requests and disconnect from gadget */
  1688. static void
  1689. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1690. __releases(dev->lock)
  1691. __acquires(dev->lock)
  1692. {
  1693. int tmp;
  1694. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1695. spin_unlock(&dev->lock);
  1696. driver->disconnect(&dev->gadget);
  1697. spin_lock(&dev->lock);
  1698. }
  1699. /* empty queues and init hardware */
  1700. udc_basic_init(dev);
  1701. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1702. empty_req_queue(&dev->ep[tmp]);
  1703. udc_setup_endpoints(dev);
  1704. }
  1705. /* Called by gadget driver to unregister itself */
  1706. static int amd5536_stop(struct usb_gadget_driver *driver)
  1707. {
  1708. struct udc *dev = udc;
  1709. unsigned long flags;
  1710. u32 tmp;
  1711. if (!dev)
  1712. return -ENODEV;
  1713. if (!driver || driver != dev->driver || !driver->unbind)
  1714. return -EINVAL;
  1715. spin_lock_irqsave(&dev->lock, flags);
  1716. udc_mask_unused_interrupts(dev);
  1717. shutdown(dev, driver);
  1718. spin_unlock_irqrestore(&dev->lock, flags);
  1719. driver->unbind(&dev->gadget);
  1720. dev->gadget.dev.driver = NULL;
  1721. dev->driver = NULL;
  1722. /* set SD */
  1723. tmp = readl(&dev->regs->ctl);
  1724. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1725. writel(tmp, &dev->regs->ctl);
  1726. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1727. return 0;
  1728. }
  1729. /* Clear pending NAK bits */
  1730. static void udc_process_cnak_queue(struct udc *dev)
  1731. {
  1732. u32 tmp;
  1733. u32 reg;
  1734. /* check epin's */
  1735. DBG(dev, "CNAK pending queue processing\n");
  1736. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1737. if (cnak_pending & (1 << tmp)) {
  1738. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1739. /* clear NAK by writing CNAK */
  1740. reg = readl(&dev->ep[tmp].regs->ctl);
  1741. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1742. writel(reg, &dev->ep[tmp].regs->ctl);
  1743. dev->ep[tmp].naking = 0;
  1744. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1745. }
  1746. }
  1747. /* ... and ep0out */
  1748. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1749. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1750. /* clear NAK by writing CNAK */
  1751. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1752. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1753. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1754. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1755. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1756. dev->ep[UDC_EP0OUT_IX].num);
  1757. }
  1758. }
  1759. /* Enabling RX DMA after setup packet */
  1760. static void udc_ep0_set_rde(struct udc *dev)
  1761. {
  1762. if (use_dma) {
  1763. /*
  1764. * only enable RXDMA when no data endpoint enabled
  1765. * or data is queued
  1766. */
  1767. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1768. udc_set_rde(dev);
  1769. } else {
  1770. /*
  1771. * setup timer for enabling RDE (to not enable
  1772. * RXFIFO DMA for data endpoints to early)
  1773. */
  1774. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1775. udc_timer.expires =
  1776. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1777. set_rde = 1;
  1778. if (!stop_timer)
  1779. add_timer(&udc_timer);
  1780. }
  1781. }
  1782. }
  1783. }
  1784. /* Interrupt handler for data OUT traffic */
  1785. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1786. {
  1787. irqreturn_t ret_val = IRQ_NONE;
  1788. u32 tmp;
  1789. struct udc_ep *ep;
  1790. struct udc_request *req;
  1791. unsigned int count;
  1792. struct udc_data_dma *td = NULL;
  1793. unsigned dma_done;
  1794. VDBG(dev, "ep%d irq\n", ep_ix);
  1795. ep = &dev->ep[ep_ix];
  1796. tmp = readl(&ep->regs->sts);
  1797. if (use_dma) {
  1798. /* BNA event ? */
  1799. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1800. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1801. ep->num, readl(&ep->regs->desptr));
  1802. /* clear BNA */
  1803. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1804. if (!ep->cancel_transfer)
  1805. ep->bna_occurred = 1;
  1806. else
  1807. ep->cancel_transfer = 0;
  1808. ret_val = IRQ_HANDLED;
  1809. goto finished;
  1810. }
  1811. }
  1812. /* HE event ? */
  1813. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1814. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1815. /* clear HE */
  1816. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1817. ret_val = IRQ_HANDLED;
  1818. goto finished;
  1819. }
  1820. if (!list_empty(&ep->queue)) {
  1821. /* next request */
  1822. req = list_entry(ep->queue.next,
  1823. struct udc_request, queue);
  1824. } else {
  1825. req = NULL;
  1826. udc_rxfifo_pending = 1;
  1827. }
  1828. VDBG(dev, "req = %p\n", req);
  1829. /* fifo mode */
  1830. if (!use_dma) {
  1831. /* read fifo */
  1832. if (req && udc_rxfifo_read(ep, req)) {
  1833. ret_val = IRQ_HANDLED;
  1834. /* finish */
  1835. complete_req(ep, req, 0);
  1836. /* next request */
  1837. if (!list_empty(&ep->queue) && !ep->halted) {
  1838. req = list_entry(ep->queue.next,
  1839. struct udc_request, queue);
  1840. } else
  1841. req = NULL;
  1842. }
  1843. /* DMA */
  1844. } else if (!ep->cancel_transfer && req != NULL) {
  1845. ret_val = IRQ_HANDLED;
  1846. /* check for DMA done */
  1847. if (!use_dma_ppb) {
  1848. dma_done = AMD_GETBITS(req->td_data->status,
  1849. UDC_DMA_OUT_STS_BS);
  1850. /* packet per buffer mode - rx bytes */
  1851. } else {
  1852. /*
  1853. * if BNA occurred then recover desc. from
  1854. * BNA dummy desc.
  1855. */
  1856. if (ep->bna_occurred) {
  1857. VDBG(dev, "Recover desc. from BNA dummy\n");
  1858. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1859. sizeof(struct udc_data_dma));
  1860. ep->bna_occurred = 0;
  1861. udc_init_bna_dummy(ep->req);
  1862. }
  1863. td = udc_get_last_dma_desc(req);
  1864. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1865. }
  1866. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1867. /* buffer fill mode - rx bytes */
  1868. if (!use_dma_ppb) {
  1869. /* received number bytes */
  1870. count = AMD_GETBITS(req->td_data->status,
  1871. UDC_DMA_OUT_STS_RXBYTES);
  1872. VDBG(dev, "rx bytes=%u\n", count);
  1873. /* packet per buffer mode - rx bytes */
  1874. } else {
  1875. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1876. VDBG(dev, "last desc = %p\n", td);
  1877. /* received number bytes */
  1878. if (use_dma_ppb_du) {
  1879. /* every desc. counts bytes */
  1880. count = udc_get_ppbdu_rxbytes(req);
  1881. } else {
  1882. /* last desc. counts bytes */
  1883. count = AMD_GETBITS(td->status,
  1884. UDC_DMA_OUT_STS_RXBYTES);
  1885. if (!count && req->req.length
  1886. == UDC_DMA_MAXPACKET) {
  1887. /*
  1888. * on 64k packets the RXBYTES
  1889. * field is zero
  1890. */
  1891. count = UDC_DMA_MAXPACKET;
  1892. }
  1893. }
  1894. VDBG(dev, "last desc rx bytes=%u\n", count);
  1895. }
  1896. tmp = req->req.length - req->req.actual;
  1897. if (count > tmp) {
  1898. if ((tmp % ep->ep.maxpacket) != 0) {
  1899. DBG(dev, "%s: rx %db, space=%db\n",
  1900. ep->ep.name, count, tmp);
  1901. req->req.status = -EOVERFLOW;
  1902. }
  1903. count = tmp;
  1904. }
  1905. req->req.actual += count;
  1906. req->dma_going = 0;
  1907. /* complete request */
  1908. complete_req(ep, req, 0);
  1909. /* next request */
  1910. if (!list_empty(&ep->queue) && !ep->halted) {
  1911. req = list_entry(ep->queue.next,
  1912. struct udc_request,
  1913. queue);
  1914. /*
  1915. * DMA may be already started by udc_queue()
  1916. * called by gadget drivers completion
  1917. * routine. This happens when queue
  1918. * holds one request only.
  1919. */
  1920. if (req->dma_going == 0) {
  1921. /* next dma */
  1922. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1923. goto finished;
  1924. /* write desc pointer */
  1925. writel(req->td_phys,
  1926. &ep->regs->desptr);
  1927. req->dma_going = 1;
  1928. /* enable DMA */
  1929. udc_set_rde(dev);
  1930. }
  1931. } else {
  1932. /*
  1933. * implant BNA dummy descriptor to allow
  1934. * RXFIFO opening by RDE
  1935. */
  1936. if (ep->bna_dummy_req) {
  1937. /* write desc pointer */
  1938. writel(ep->bna_dummy_req->td_phys,
  1939. &ep->regs->desptr);
  1940. ep->bna_occurred = 0;
  1941. }
  1942. /*
  1943. * schedule timer for setting RDE if queue
  1944. * remains empty to allow ep0 packets pass
  1945. * through
  1946. */
  1947. if (set_rde != 0
  1948. && !timer_pending(&udc_timer)) {
  1949. udc_timer.expires =
  1950. jiffies
  1951. + HZ*UDC_RDE_TIMER_SECONDS;
  1952. set_rde = 1;
  1953. if (!stop_timer)
  1954. add_timer(&udc_timer);
  1955. }
  1956. if (ep->num != UDC_EP0OUT_IX)
  1957. dev->data_ep_queued = 0;
  1958. }
  1959. } else {
  1960. /*
  1961. * RX DMA must be reenabled for each desc in PPBDU mode
  1962. * and must be enabled for PPBNDU mode in case of BNA
  1963. */
  1964. udc_set_rde(dev);
  1965. }
  1966. } else if (ep->cancel_transfer) {
  1967. ret_val = IRQ_HANDLED;
  1968. ep->cancel_transfer = 0;
  1969. }
  1970. /* check pending CNAKS */
  1971. if (cnak_pending) {
  1972. /* CNAk processing when rxfifo empty only */
  1973. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1974. udc_process_cnak_queue(dev);
  1975. }
  1976. /* clear OUT bits in ep status */
  1977. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1978. finished:
  1979. return ret_val;
  1980. }
  1981. /* Interrupt handler for data IN traffic */
  1982. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1983. {
  1984. irqreturn_t ret_val = IRQ_NONE;
  1985. u32 tmp;
  1986. u32 epsts;
  1987. struct udc_ep *ep;
  1988. struct udc_request *req;
  1989. struct udc_data_dma *td;
  1990. unsigned dma_done;
  1991. unsigned len;
  1992. ep = &dev->ep[ep_ix];
  1993. epsts = readl(&ep->regs->sts);
  1994. if (use_dma) {
  1995. /* BNA ? */
  1996. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1997. dev_err(&dev->pdev->dev,
  1998. "BNA ep%din occurred - DESPTR = %08lx\n",
  1999. ep->num,
  2000. (unsigned long) readl(&ep->regs->desptr));
  2001. /* clear BNA */
  2002. writel(epsts, &ep->regs->sts);
  2003. ret_val = IRQ_HANDLED;
  2004. goto finished;
  2005. }
  2006. }
  2007. /* HE event ? */
  2008. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2009. dev_err(&dev->pdev->dev,
  2010. "HE ep%dn occurred - DESPTR = %08lx\n",
  2011. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2012. /* clear HE */
  2013. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2014. ret_val = IRQ_HANDLED;
  2015. goto finished;
  2016. }
  2017. /* DMA completion */
  2018. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2019. VDBG(dev, "TDC set- completion\n");
  2020. ret_val = IRQ_HANDLED;
  2021. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2022. req = list_entry(ep->queue.next,
  2023. struct udc_request, queue);
  2024. /*
  2025. * length bytes transferred
  2026. * check dma done of last desc. in PPBDU mode
  2027. */
  2028. if (use_dma_ppb_du) {
  2029. td = udc_get_last_dma_desc(req);
  2030. if (td) {
  2031. dma_done =
  2032. AMD_GETBITS(td->status,
  2033. UDC_DMA_IN_STS_BS);
  2034. /* don't care DMA done */
  2035. req->req.actual = req->req.length;
  2036. }
  2037. } else {
  2038. /* assume all bytes transferred */
  2039. req->req.actual = req->req.length;
  2040. }
  2041. if (req->req.actual == req->req.length) {
  2042. /* complete req */
  2043. complete_req(ep, req, 0);
  2044. req->dma_going = 0;
  2045. /* further request available ? */
  2046. if (list_empty(&ep->queue)) {
  2047. /* disable interrupt */
  2048. tmp = readl(&dev->regs->ep_irqmsk);
  2049. tmp |= AMD_BIT(ep->num);
  2050. writel(tmp, &dev->regs->ep_irqmsk);
  2051. }
  2052. }
  2053. }
  2054. ep->cancel_transfer = 0;
  2055. }
  2056. /*
  2057. * status reg has IN bit set and TDC not set (if TDC was handled,
  2058. * IN must not be handled (UDC defect) ?
  2059. */
  2060. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2061. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2062. ret_val = IRQ_HANDLED;
  2063. if (!list_empty(&ep->queue)) {
  2064. /* next request */
  2065. req = list_entry(ep->queue.next,
  2066. struct udc_request, queue);
  2067. /* FIFO mode */
  2068. if (!use_dma) {
  2069. /* write fifo */
  2070. udc_txfifo_write(ep, &req->req);
  2071. len = req->req.length - req->req.actual;
  2072. if (len > ep->ep.maxpacket)
  2073. len = ep->ep.maxpacket;
  2074. req->req.actual += len;
  2075. if (req->req.actual == req->req.length
  2076. || (len != ep->ep.maxpacket)) {
  2077. /* complete req */
  2078. complete_req(ep, req, 0);
  2079. }
  2080. /* DMA */
  2081. } else if (req && !req->dma_going) {
  2082. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2083. req, req->td_data);
  2084. if (req->td_data) {
  2085. req->dma_going = 1;
  2086. /*
  2087. * unset L bit of first desc.
  2088. * for chain
  2089. */
  2090. if (use_dma_ppb && req->req.length >
  2091. ep->ep.maxpacket) {
  2092. req->td_data->status &=
  2093. AMD_CLEAR_BIT(
  2094. UDC_DMA_IN_STS_L);
  2095. }
  2096. /* write desc pointer */
  2097. writel(req->td_phys, &ep->regs->desptr);
  2098. /* set HOST READY */
  2099. req->td_data->status =
  2100. AMD_ADDBITS(
  2101. req->td_data->status,
  2102. UDC_DMA_IN_STS_BS_HOST_READY,
  2103. UDC_DMA_IN_STS_BS);
  2104. /* set poll demand bit */
  2105. tmp = readl(&ep->regs->ctl);
  2106. tmp |= AMD_BIT(UDC_EPCTL_P);
  2107. writel(tmp, &ep->regs->ctl);
  2108. }
  2109. }
  2110. } else if (!use_dma && ep->in) {
  2111. /* disable interrupt */
  2112. tmp = readl(
  2113. &dev->regs->ep_irqmsk);
  2114. tmp |= AMD_BIT(ep->num);
  2115. writel(tmp,
  2116. &dev->regs->ep_irqmsk);
  2117. }
  2118. }
  2119. /* clear status bits */
  2120. writel(epsts, &ep->regs->sts);
  2121. finished:
  2122. return ret_val;
  2123. }
  2124. /* Interrupt handler for Control OUT traffic */
  2125. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2126. __releases(dev->lock)
  2127. __acquires(dev->lock)
  2128. {
  2129. irqreturn_t ret_val = IRQ_NONE;
  2130. u32 tmp;
  2131. int setup_supported;
  2132. u32 count;
  2133. int set = 0;
  2134. struct udc_ep *ep;
  2135. struct udc_ep *ep_tmp;
  2136. ep = &dev->ep[UDC_EP0OUT_IX];
  2137. /* clear irq */
  2138. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2139. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2140. /* check BNA and clear if set */
  2141. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2142. VDBG(dev, "ep0: BNA set\n");
  2143. writel(AMD_BIT(UDC_EPSTS_BNA),
  2144. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2145. ep->bna_occurred = 1;
  2146. ret_val = IRQ_HANDLED;
  2147. goto finished;
  2148. }
  2149. /* type of data: SETUP or DATA 0 bytes */
  2150. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2151. VDBG(dev, "data_typ = %x\n", tmp);
  2152. /* setup data */
  2153. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2154. ret_val = IRQ_HANDLED;
  2155. ep->dev->stall_ep0in = 0;
  2156. dev->waiting_zlp_ack_ep0in = 0;
  2157. /* set NAK for EP0_IN */
  2158. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2159. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2160. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2161. dev->ep[UDC_EP0IN_IX].naking = 1;
  2162. /* get setup data */
  2163. if (use_dma) {
  2164. /* clear OUT bits in ep status */
  2165. writel(UDC_EPSTS_OUT_CLEAR,
  2166. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2167. setup_data.data[0] =
  2168. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2169. setup_data.data[1] =
  2170. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2171. /* set HOST READY */
  2172. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2173. UDC_DMA_STP_STS_BS_HOST_READY;
  2174. } else {
  2175. /* read fifo */
  2176. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2177. }
  2178. /* determine direction of control data */
  2179. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2180. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2181. /* enable RDE */
  2182. udc_ep0_set_rde(dev);
  2183. set = 0;
  2184. } else {
  2185. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2186. /*
  2187. * implant BNA dummy descriptor to allow RXFIFO opening
  2188. * by RDE
  2189. */
  2190. if (ep->bna_dummy_req) {
  2191. /* write desc pointer */
  2192. writel(ep->bna_dummy_req->td_phys,
  2193. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2194. ep->bna_occurred = 0;
  2195. }
  2196. set = 1;
  2197. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2198. /*
  2199. * setup timer for enabling RDE (to not enable
  2200. * RXFIFO DMA for data to early)
  2201. */
  2202. set_rde = 1;
  2203. if (!timer_pending(&udc_timer)) {
  2204. udc_timer.expires = jiffies +
  2205. HZ/UDC_RDE_TIMER_DIV;
  2206. if (!stop_timer)
  2207. add_timer(&udc_timer);
  2208. }
  2209. }
  2210. /*
  2211. * mass storage reset must be processed here because
  2212. * next packet may be a CLEAR_FEATURE HALT which would not
  2213. * clear the stall bit when no STALL handshake was received
  2214. * before (autostall can cause this)
  2215. */
  2216. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2217. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2218. DBG(dev, "MSC Reset\n");
  2219. /*
  2220. * clear stall bits
  2221. * only one IN and OUT endpoints are handled
  2222. */
  2223. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2224. udc_set_halt(&ep_tmp->ep, 0);
  2225. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2226. udc_set_halt(&ep_tmp->ep, 0);
  2227. }
  2228. /* call gadget with setup data received */
  2229. spin_unlock(&dev->lock);
  2230. setup_supported = dev->driver->setup(&dev->gadget,
  2231. &setup_data.request);
  2232. spin_lock(&dev->lock);
  2233. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2234. /* ep0 in returns data (not zlp) on IN phase */
  2235. if (setup_supported >= 0 && setup_supported <
  2236. UDC_EP0IN_MAXPACKET) {
  2237. /* clear NAK by writing CNAK in EP0_IN */
  2238. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2239. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2240. dev->ep[UDC_EP0IN_IX].naking = 0;
  2241. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2242. /* if unsupported request then stall */
  2243. } else if (setup_supported < 0) {
  2244. tmp |= AMD_BIT(UDC_EPCTL_S);
  2245. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2246. } else
  2247. dev->waiting_zlp_ack_ep0in = 1;
  2248. /* clear NAK by writing CNAK in EP0_OUT */
  2249. if (!set) {
  2250. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2251. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2252. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2253. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2254. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2255. }
  2256. if (!use_dma) {
  2257. /* clear OUT bits in ep status */
  2258. writel(UDC_EPSTS_OUT_CLEAR,
  2259. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2260. }
  2261. /* data packet 0 bytes */
  2262. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2263. /* clear OUT bits in ep status */
  2264. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2265. /* get setup data: only 0 packet */
  2266. if (use_dma) {
  2267. /* no req if 0 packet, just reactivate */
  2268. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2269. VDBG(dev, "ZLP\n");
  2270. /* set HOST READY */
  2271. dev->ep[UDC_EP0OUT_IX].td->status =
  2272. AMD_ADDBITS(
  2273. dev->ep[UDC_EP0OUT_IX].td->status,
  2274. UDC_DMA_OUT_STS_BS_HOST_READY,
  2275. UDC_DMA_OUT_STS_BS);
  2276. /* enable RDE */
  2277. udc_ep0_set_rde(dev);
  2278. ret_val = IRQ_HANDLED;
  2279. } else {
  2280. /* control write */
  2281. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2282. /* re-program desc. pointer for possible ZLPs */
  2283. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2284. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2285. /* enable RDE */
  2286. udc_ep0_set_rde(dev);
  2287. }
  2288. } else {
  2289. /* received number bytes */
  2290. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2291. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2292. /* out data for fifo mode not working */
  2293. count = 0;
  2294. /* 0 packet or real data ? */
  2295. if (count != 0) {
  2296. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2297. } else {
  2298. /* dummy read confirm */
  2299. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2300. ret_val = IRQ_HANDLED;
  2301. }
  2302. }
  2303. }
  2304. /* check pending CNAKS */
  2305. if (cnak_pending) {
  2306. /* CNAk processing when rxfifo empty only */
  2307. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2308. udc_process_cnak_queue(dev);
  2309. }
  2310. finished:
  2311. return ret_val;
  2312. }
  2313. /* Interrupt handler for Control IN traffic */
  2314. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2315. {
  2316. irqreturn_t ret_val = IRQ_NONE;
  2317. u32 tmp;
  2318. struct udc_ep *ep;
  2319. struct udc_request *req;
  2320. unsigned len;
  2321. ep = &dev->ep[UDC_EP0IN_IX];
  2322. /* clear irq */
  2323. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2324. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2325. /* DMA completion */
  2326. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2327. VDBG(dev, "isr: TDC clear\n");
  2328. ret_val = IRQ_HANDLED;
  2329. /* clear TDC bit */
  2330. writel(AMD_BIT(UDC_EPSTS_TDC),
  2331. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2332. /* status reg has IN bit set ? */
  2333. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2334. ret_val = IRQ_HANDLED;
  2335. if (ep->dma) {
  2336. /* clear IN bit */
  2337. writel(AMD_BIT(UDC_EPSTS_IN),
  2338. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2339. }
  2340. if (dev->stall_ep0in) {
  2341. DBG(dev, "stall ep0in\n");
  2342. /* halt ep0in */
  2343. tmp = readl(&ep->regs->ctl);
  2344. tmp |= AMD_BIT(UDC_EPCTL_S);
  2345. writel(tmp, &ep->regs->ctl);
  2346. } else {
  2347. if (!list_empty(&ep->queue)) {
  2348. /* next request */
  2349. req = list_entry(ep->queue.next,
  2350. struct udc_request, queue);
  2351. if (ep->dma) {
  2352. /* write desc pointer */
  2353. writel(req->td_phys, &ep->regs->desptr);
  2354. /* set HOST READY */
  2355. req->td_data->status =
  2356. AMD_ADDBITS(
  2357. req->td_data->status,
  2358. UDC_DMA_STP_STS_BS_HOST_READY,
  2359. UDC_DMA_STP_STS_BS);
  2360. /* set poll demand bit */
  2361. tmp =
  2362. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2363. tmp |= AMD_BIT(UDC_EPCTL_P);
  2364. writel(tmp,
  2365. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2366. /* all bytes will be transferred */
  2367. req->req.actual = req->req.length;
  2368. /* complete req */
  2369. complete_req(ep, req, 0);
  2370. } else {
  2371. /* write fifo */
  2372. udc_txfifo_write(ep, &req->req);
  2373. /* lengh bytes transferred */
  2374. len = req->req.length - req->req.actual;
  2375. if (len > ep->ep.maxpacket)
  2376. len = ep->ep.maxpacket;
  2377. req->req.actual += len;
  2378. if (req->req.actual == req->req.length
  2379. || (len != ep->ep.maxpacket)) {
  2380. /* complete req */
  2381. complete_req(ep, req, 0);
  2382. }
  2383. }
  2384. }
  2385. }
  2386. ep->halted = 0;
  2387. dev->stall_ep0in = 0;
  2388. if (!ep->dma) {
  2389. /* clear IN bit */
  2390. writel(AMD_BIT(UDC_EPSTS_IN),
  2391. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2392. }
  2393. }
  2394. return ret_val;
  2395. }
  2396. /* Interrupt handler for global device events */
  2397. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2398. __releases(dev->lock)
  2399. __acquires(dev->lock)
  2400. {
  2401. irqreturn_t ret_val = IRQ_NONE;
  2402. u32 tmp;
  2403. u32 cfg;
  2404. struct udc_ep *ep;
  2405. u16 i;
  2406. u8 udc_csr_epix;
  2407. /* SET_CONFIG irq ? */
  2408. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2409. ret_val = IRQ_HANDLED;
  2410. /* read config value */
  2411. tmp = readl(&dev->regs->sts);
  2412. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2413. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2414. dev->cur_config = cfg;
  2415. dev->set_cfg_not_acked = 1;
  2416. /* make usb request for gadget driver */
  2417. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2418. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2419. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2420. /* programm the NE registers */
  2421. for (i = 0; i < UDC_EP_NUM; i++) {
  2422. ep = &dev->ep[i];
  2423. if (ep->in) {
  2424. /* ep ix in UDC CSR register space */
  2425. udc_csr_epix = ep->num;
  2426. /* OUT ep */
  2427. } else {
  2428. /* ep ix in UDC CSR register space */
  2429. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2430. }
  2431. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2432. /* ep cfg */
  2433. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2434. UDC_CSR_NE_CFG);
  2435. /* write reg */
  2436. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2437. /* clear stall bits */
  2438. ep->halted = 0;
  2439. tmp = readl(&ep->regs->ctl);
  2440. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2441. writel(tmp, &ep->regs->ctl);
  2442. }
  2443. /* call gadget zero with setup data received */
  2444. spin_unlock(&dev->lock);
  2445. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2446. spin_lock(&dev->lock);
  2447. } /* SET_INTERFACE ? */
  2448. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2449. ret_val = IRQ_HANDLED;
  2450. dev->set_cfg_not_acked = 1;
  2451. /* read interface and alt setting values */
  2452. tmp = readl(&dev->regs->sts);
  2453. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2454. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2455. /* make usb request for gadget driver */
  2456. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2457. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2458. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2459. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2460. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2461. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2462. dev->cur_alt, dev->cur_intf);
  2463. /* programm the NE registers */
  2464. for (i = 0; i < UDC_EP_NUM; i++) {
  2465. ep = &dev->ep[i];
  2466. if (ep->in) {
  2467. /* ep ix in UDC CSR register space */
  2468. udc_csr_epix = ep->num;
  2469. /* OUT ep */
  2470. } else {
  2471. /* ep ix in UDC CSR register space */
  2472. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2473. }
  2474. /* UDC CSR reg */
  2475. /* set ep values */
  2476. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2477. /* ep interface */
  2478. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2479. UDC_CSR_NE_INTF);
  2480. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2481. /* ep alt */
  2482. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2483. UDC_CSR_NE_ALT);
  2484. /* write reg */
  2485. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2486. /* clear stall bits */
  2487. ep->halted = 0;
  2488. tmp = readl(&ep->regs->ctl);
  2489. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2490. writel(tmp, &ep->regs->ctl);
  2491. }
  2492. /* call gadget zero with setup data received */
  2493. spin_unlock(&dev->lock);
  2494. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2495. spin_lock(&dev->lock);
  2496. } /* USB reset */
  2497. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2498. DBG(dev, "USB Reset interrupt\n");
  2499. ret_val = IRQ_HANDLED;
  2500. /* allow soft reset when suspend occurs */
  2501. soft_reset_occured = 0;
  2502. dev->waiting_zlp_ack_ep0in = 0;
  2503. dev->set_cfg_not_acked = 0;
  2504. /* mask not needed interrupts */
  2505. udc_mask_unused_interrupts(dev);
  2506. /* call gadget to resume and reset configs etc. */
  2507. spin_unlock(&dev->lock);
  2508. if (dev->sys_suspended && dev->driver->resume) {
  2509. dev->driver->resume(&dev->gadget);
  2510. dev->sys_suspended = 0;
  2511. }
  2512. dev->driver->disconnect(&dev->gadget);
  2513. spin_lock(&dev->lock);
  2514. /* disable ep0 to empty req queue */
  2515. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2516. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2517. /* soft reset when rxfifo not empty */
  2518. tmp = readl(&dev->regs->sts);
  2519. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2520. && !soft_reset_after_usbreset_occured) {
  2521. udc_soft_reset(dev);
  2522. soft_reset_after_usbreset_occured++;
  2523. }
  2524. /*
  2525. * DMA reset to kill potential old DMA hw hang,
  2526. * POLL bit is already reset by ep_init() through
  2527. * disconnect()
  2528. */
  2529. DBG(dev, "DMA machine reset\n");
  2530. tmp = readl(&dev->regs->cfg);
  2531. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2532. writel(tmp, &dev->regs->cfg);
  2533. /* put into initial config */
  2534. udc_basic_init(dev);
  2535. /* enable device setup interrupts */
  2536. udc_enable_dev_setup_interrupts(dev);
  2537. /* enable suspend interrupt */
  2538. tmp = readl(&dev->regs->irqmsk);
  2539. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2540. writel(tmp, &dev->regs->irqmsk);
  2541. } /* USB suspend */
  2542. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2543. DBG(dev, "USB Suspend interrupt\n");
  2544. ret_val = IRQ_HANDLED;
  2545. if (dev->driver->suspend) {
  2546. spin_unlock(&dev->lock);
  2547. dev->sys_suspended = 1;
  2548. dev->driver->suspend(&dev->gadget);
  2549. spin_lock(&dev->lock);
  2550. }
  2551. } /* new speed ? */
  2552. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2553. DBG(dev, "ENUM interrupt\n");
  2554. ret_val = IRQ_HANDLED;
  2555. soft_reset_after_usbreset_occured = 0;
  2556. /* disable ep0 to empty req queue */
  2557. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2558. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2559. /* link up all endpoints */
  2560. udc_setup_endpoints(dev);
  2561. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2562. usb_speed_string(dev->gadget.speed));
  2563. /* init ep 0 */
  2564. activate_control_endpoints(dev);
  2565. /* enable ep0 interrupts */
  2566. udc_enable_ep0_interrupts(dev);
  2567. }
  2568. /* session valid change interrupt */
  2569. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2570. DBG(dev, "USB SVC interrupt\n");
  2571. ret_val = IRQ_HANDLED;
  2572. /* check that session is not valid to detect disconnect */
  2573. tmp = readl(&dev->regs->sts);
  2574. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2575. /* disable suspend interrupt */
  2576. tmp = readl(&dev->regs->irqmsk);
  2577. tmp |= AMD_BIT(UDC_DEVINT_US);
  2578. writel(tmp, &dev->regs->irqmsk);
  2579. DBG(dev, "USB Disconnect (session valid low)\n");
  2580. /* cleanup on disconnect */
  2581. usb_disconnect(udc);
  2582. }
  2583. }
  2584. return ret_val;
  2585. }
  2586. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2587. static irqreturn_t udc_irq(int irq, void *pdev)
  2588. {
  2589. struct udc *dev = pdev;
  2590. u32 reg;
  2591. u16 i;
  2592. u32 ep_irq;
  2593. irqreturn_t ret_val = IRQ_NONE;
  2594. spin_lock(&dev->lock);
  2595. /* check for ep irq */
  2596. reg = readl(&dev->regs->ep_irqsts);
  2597. if (reg) {
  2598. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2599. ret_val |= udc_control_out_isr(dev);
  2600. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2601. ret_val |= udc_control_in_isr(dev);
  2602. /*
  2603. * data endpoint
  2604. * iterate ep's
  2605. */
  2606. for (i = 1; i < UDC_EP_NUM; i++) {
  2607. ep_irq = 1 << i;
  2608. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2609. continue;
  2610. /* clear irq status */
  2611. writel(ep_irq, &dev->regs->ep_irqsts);
  2612. /* irq for out ep ? */
  2613. if (i > UDC_EPIN_NUM)
  2614. ret_val |= udc_data_out_isr(dev, i);
  2615. else
  2616. ret_val |= udc_data_in_isr(dev, i);
  2617. }
  2618. }
  2619. /* check for dev irq */
  2620. reg = readl(&dev->regs->irqsts);
  2621. if (reg) {
  2622. /* clear irq */
  2623. writel(reg, &dev->regs->irqsts);
  2624. ret_val |= udc_dev_isr(dev, reg);
  2625. }
  2626. spin_unlock(&dev->lock);
  2627. return ret_val;
  2628. }
  2629. /* Tears down device */
  2630. static void gadget_release(struct device *pdev)
  2631. {
  2632. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2633. kfree(dev);
  2634. }
  2635. /* Cleanup on device remove */
  2636. static void udc_remove(struct udc *dev)
  2637. {
  2638. /* remove timer */
  2639. stop_timer++;
  2640. if (timer_pending(&udc_timer))
  2641. wait_for_completion(&on_exit);
  2642. if (udc_timer.data)
  2643. del_timer_sync(&udc_timer);
  2644. /* remove pollstall timer */
  2645. stop_pollstall_timer++;
  2646. if (timer_pending(&udc_pollstall_timer))
  2647. wait_for_completion(&on_pollstall_exit);
  2648. if (udc_pollstall_timer.data)
  2649. del_timer_sync(&udc_pollstall_timer);
  2650. udc = NULL;
  2651. }
  2652. /* Reset all pci context */
  2653. static void udc_pci_remove(struct pci_dev *pdev)
  2654. {
  2655. struct udc *dev;
  2656. dev = pci_get_drvdata(pdev);
  2657. usb_del_gadget_udc(&udc->gadget);
  2658. /* gadget driver must not be registered */
  2659. BUG_ON(dev->driver != NULL);
  2660. /* dma pool cleanup */
  2661. if (dev->data_requests)
  2662. pci_pool_destroy(dev->data_requests);
  2663. if (dev->stp_requests) {
  2664. /* cleanup DMA desc's for ep0in */
  2665. pci_pool_free(dev->stp_requests,
  2666. dev->ep[UDC_EP0OUT_IX].td_stp,
  2667. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2668. pci_pool_free(dev->stp_requests,
  2669. dev->ep[UDC_EP0OUT_IX].td,
  2670. dev->ep[UDC_EP0OUT_IX].td_phys);
  2671. pci_pool_destroy(dev->stp_requests);
  2672. }
  2673. /* reset controller */
  2674. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2675. if (dev->irq_registered)
  2676. free_irq(pdev->irq, dev);
  2677. if (dev->regs)
  2678. iounmap(dev->regs);
  2679. if (dev->mem_region)
  2680. release_mem_region(pci_resource_start(pdev, 0),
  2681. pci_resource_len(pdev, 0));
  2682. if (dev->active)
  2683. pci_disable_device(pdev);
  2684. device_unregister(&dev->gadget.dev);
  2685. pci_set_drvdata(pdev, NULL);
  2686. udc_remove(dev);
  2687. }
  2688. /* create dma pools on init */
  2689. static int init_dma_pools(struct udc *dev)
  2690. {
  2691. struct udc_stp_dma *td_stp;
  2692. struct udc_data_dma *td_data;
  2693. int retval;
  2694. /* consistent DMA mode setting ? */
  2695. if (use_dma_ppb) {
  2696. use_dma_bufferfill_mode = 0;
  2697. } else {
  2698. use_dma_ppb_du = 0;
  2699. use_dma_bufferfill_mode = 1;
  2700. }
  2701. /* DMA setup */
  2702. dev->data_requests = dma_pool_create("data_requests", NULL,
  2703. sizeof(struct udc_data_dma), 0, 0);
  2704. if (!dev->data_requests) {
  2705. DBG(dev, "can't get request data pool\n");
  2706. retval = -ENOMEM;
  2707. goto finished;
  2708. }
  2709. /* EP0 in dma regs = dev control regs */
  2710. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2711. /* dma desc for setup data */
  2712. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2713. sizeof(struct udc_stp_dma), 0, 0);
  2714. if (!dev->stp_requests) {
  2715. DBG(dev, "can't get stp request pool\n");
  2716. retval = -ENOMEM;
  2717. goto finished;
  2718. }
  2719. /* setup */
  2720. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2721. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2722. if (td_stp == NULL) {
  2723. retval = -ENOMEM;
  2724. goto finished;
  2725. }
  2726. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2727. /* data: 0 packets !? */
  2728. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2729. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2730. if (td_data == NULL) {
  2731. retval = -ENOMEM;
  2732. goto finished;
  2733. }
  2734. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2735. return 0;
  2736. finished:
  2737. return retval;
  2738. }
  2739. /* Called by pci bus driver to init pci context */
  2740. static int udc_pci_probe(
  2741. struct pci_dev *pdev,
  2742. const struct pci_device_id *id
  2743. )
  2744. {
  2745. struct udc *dev;
  2746. unsigned long resource;
  2747. unsigned long len;
  2748. int retval = 0;
  2749. /* one udc only */
  2750. if (udc) {
  2751. dev_dbg(&pdev->dev, "already probed\n");
  2752. return -EBUSY;
  2753. }
  2754. /* init */
  2755. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2756. if (!dev) {
  2757. retval = -ENOMEM;
  2758. goto finished;
  2759. }
  2760. /* pci setup */
  2761. if (pci_enable_device(pdev) < 0) {
  2762. kfree(dev);
  2763. dev = NULL;
  2764. retval = -ENODEV;
  2765. goto finished;
  2766. }
  2767. dev->active = 1;
  2768. /* PCI resource allocation */
  2769. resource = pci_resource_start(pdev, 0);
  2770. len = pci_resource_len(pdev, 0);
  2771. if (!request_mem_region(resource, len, name)) {
  2772. dev_dbg(&pdev->dev, "pci device used already\n");
  2773. kfree(dev);
  2774. dev = NULL;
  2775. retval = -EBUSY;
  2776. goto finished;
  2777. }
  2778. dev->mem_region = 1;
  2779. dev->virt_addr = ioremap_nocache(resource, len);
  2780. if (dev->virt_addr == NULL) {
  2781. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2782. kfree(dev);
  2783. dev = NULL;
  2784. retval = -EFAULT;
  2785. goto finished;
  2786. }
  2787. if (!pdev->irq) {
  2788. dev_err(&dev->pdev->dev, "irq not set\n");
  2789. kfree(dev);
  2790. dev = NULL;
  2791. retval = -ENODEV;
  2792. goto finished;
  2793. }
  2794. spin_lock_init(&dev->lock);
  2795. /* udc csr registers base */
  2796. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2797. /* dev registers base */
  2798. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2799. /* ep registers base */
  2800. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2801. /* fifo's base */
  2802. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2803. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2804. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2805. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2806. kfree(dev);
  2807. dev = NULL;
  2808. retval = -EBUSY;
  2809. goto finished;
  2810. }
  2811. dev->irq_registered = 1;
  2812. pci_set_drvdata(pdev, dev);
  2813. /* chip revision for Hs AMD5536 */
  2814. dev->chiprev = pdev->revision;
  2815. pci_set_master(pdev);
  2816. pci_try_set_mwi(pdev);
  2817. /* init dma pools */
  2818. if (use_dma) {
  2819. retval = init_dma_pools(dev);
  2820. if (retval != 0)
  2821. goto finished;
  2822. }
  2823. dev->phys_addr = resource;
  2824. dev->irq = pdev->irq;
  2825. dev->pdev = pdev;
  2826. dev->gadget.dev.parent = &pdev->dev;
  2827. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2828. /* general probing */
  2829. if (udc_probe(dev) == 0)
  2830. return 0;
  2831. finished:
  2832. if (dev)
  2833. udc_pci_remove(pdev);
  2834. return retval;
  2835. }
  2836. /* general probe */
  2837. static int udc_probe(struct udc *dev)
  2838. {
  2839. char tmp[128];
  2840. u32 reg;
  2841. int retval;
  2842. /* mark timer as not initialized */
  2843. udc_timer.data = 0;
  2844. udc_pollstall_timer.data = 0;
  2845. /* device struct setup */
  2846. dev->gadget.ops = &udc_ops;
  2847. dev_set_name(&dev->gadget.dev, "gadget");
  2848. dev->gadget.dev.release = gadget_release;
  2849. dev->gadget.name = name;
  2850. dev->gadget.max_speed = USB_SPEED_HIGH;
  2851. /* init registers, interrupts, ... */
  2852. startup_registers(dev);
  2853. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2854. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2855. dev_info(&dev->pdev->dev,
  2856. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2857. tmp, dev->phys_addr, dev->chiprev,
  2858. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2859. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2860. if (dev->chiprev == UDC_HSA0_REV) {
  2861. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2862. retval = -ENODEV;
  2863. goto finished;
  2864. }
  2865. dev_info(&dev->pdev->dev,
  2866. "driver version: %s(for Geode5536 B1)\n", tmp);
  2867. udc = dev;
  2868. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2869. if (retval)
  2870. goto finished;
  2871. retval = device_register(&dev->gadget.dev);
  2872. if (retval) {
  2873. usb_del_gadget_udc(&dev->gadget);
  2874. put_device(&dev->gadget.dev);
  2875. goto finished;
  2876. }
  2877. /* timer init */
  2878. init_timer(&udc_timer);
  2879. udc_timer.function = udc_timer_function;
  2880. udc_timer.data = 1;
  2881. /* timer pollstall init */
  2882. init_timer(&udc_pollstall_timer);
  2883. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2884. udc_pollstall_timer.data = 1;
  2885. /* set SD */
  2886. reg = readl(&dev->regs->ctl);
  2887. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2888. writel(reg, &dev->regs->ctl);
  2889. /* print dev register info */
  2890. print_regs(dev);
  2891. return 0;
  2892. finished:
  2893. return retval;
  2894. }
  2895. /* Initiates a remote wakeup */
  2896. static int udc_remote_wakeup(struct udc *dev)
  2897. {
  2898. unsigned long flags;
  2899. u32 tmp;
  2900. DBG(dev, "UDC initiates remote wakeup\n");
  2901. spin_lock_irqsave(&dev->lock, flags);
  2902. tmp = readl(&dev->regs->ctl);
  2903. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2904. writel(tmp, &dev->regs->ctl);
  2905. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2906. writel(tmp, &dev->regs->ctl);
  2907. spin_unlock_irqrestore(&dev->lock, flags);
  2908. return 0;
  2909. }
  2910. /* PCI device parameters */
  2911. static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
  2912. {
  2913. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2914. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2915. .class_mask = 0xffffffff,
  2916. },
  2917. {},
  2918. };
  2919. MODULE_DEVICE_TABLE(pci, pci_id);
  2920. /* PCI functions */
  2921. static struct pci_driver udc_pci_driver = {
  2922. .name = (char *) name,
  2923. .id_table = pci_id,
  2924. .probe = udc_pci_probe,
  2925. .remove = udc_pci_remove,
  2926. };
  2927. /* Inits driver */
  2928. static int __init init(void)
  2929. {
  2930. return pci_register_driver(&udc_pci_driver);
  2931. }
  2932. module_init(init);
  2933. /* Cleans driver */
  2934. static void __exit cleanup(void)
  2935. {
  2936. pci_unregister_driver(&udc_pci_driver);
  2937. }
  2938. module_exit(cleanup);
  2939. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2940. MODULE_AUTHOR("Thomas Dahlmann");
  2941. MODULE_LICENSE("GPL");