target_core_rd.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /*******************************************************************************
  2. * Filename: target_core_rd.c
  3. *
  4. * This file contains the Storage Engine <-> Ramdisk transport
  5. * specific functions.
  6. *
  7. * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc.
  8. * Copyright (c) 2005, 2006, 2007 SBE, Inc.
  9. * Copyright (c) 2007-2010 Rising Tide Systems
  10. * Copyright (c) 2008-2010 Linux-iSCSI.org
  11. *
  12. * Nicholas A. Bellinger <nab@kernel.org>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  27. *
  28. ******************************************************************************/
  29. #include <linux/string.h>
  30. #include <linux/parser.h>
  31. #include <linux/timer.h>
  32. #include <linux/blkdev.h>
  33. #include <linux/slab.h>
  34. #include <linux/spinlock.h>
  35. #include <scsi/scsi.h>
  36. #include <scsi/scsi_host.h>
  37. #include <target/target_core_base.h>
  38. #include <target/target_core_device.h>
  39. #include <target/target_core_transport.h>
  40. #include <target/target_core_fabric_ops.h>
  41. #include "target_core_rd.h"
  42. static struct se_subsystem_api rd_mcp_template;
  43. /* rd_attach_hba(): (Part of se_subsystem_api_t template)
  44. *
  45. *
  46. */
  47. static int rd_attach_hba(struct se_hba *hba, u32 host_id)
  48. {
  49. struct rd_host *rd_host;
  50. rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
  51. if (!rd_host) {
  52. pr_err("Unable to allocate memory for struct rd_host\n");
  53. return -ENOMEM;
  54. }
  55. rd_host->rd_host_id = host_id;
  56. hba->hba_ptr = rd_host;
  57. pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
  58. " Generic Target Core Stack %s\n", hba->hba_id,
  59. RD_HBA_VERSION, TARGET_CORE_MOD_VERSION);
  60. pr_debug("CORE_HBA[%d] - Attached Ramdisk HBA: %u to Generic"
  61. " MaxSectors: %u\n", hba->hba_id,
  62. rd_host->rd_host_id, RD_MAX_SECTORS);
  63. return 0;
  64. }
  65. static void rd_detach_hba(struct se_hba *hba)
  66. {
  67. struct rd_host *rd_host = hba->hba_ptr;
  68. pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
  69. " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
  70. kfree(rd_host);
  71. hba->hba_ptr = NULL;
  72. }
  73. /* rd_release_device_space():
  74. *
  75. *
  76. */
  77. static void rd_release_device_space(struct rd_dev *rd_dev)
  78. {
  79. u32 i, j, page_count = 0, sg_per_table;
  80. struct rd_dev_sg_table *sg_table;
  81. struct page *pg;
  82. struct scatterlist *sg;
  83. if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
  84. return;
  85. sg_table = rd_dev->sg_table_array;
  86. for (i = 0; i < rd_dev->sg_table_count; i++) {
  87. sg = sg_table[i].sg_table;
  88. sg_per_table = sg_table[i].rd_sg_count;
  89. for (j = 0; j < sg_per_table; j++) {
  90. pg = sg_page(&sg[j]);
  91. if (pg) {
  92. __free_page(pg);
  93. page_count++;
  94. }
  95. }
  96. kfree(sg);
  97. }
  98. pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
  99. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  100. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  101. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  102. kfree(sg_table);
  103. rd_dev->sg_table_array = NULL;
  104. rd_dev->sg_table_count = 0;
  105. }
  106. /* rd_build_device_space():
  107. *
  108. *
  109. */
  110. static int rd_build_device_space(struct rd_dev *rd_dev)
  111. {
  112. u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed;
  113. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  114. sizeof(struct scatterlist));
  115. struct rd_dev_sg_table *sg_table;
  116. struct page *pg;
  117. struct scatterlist *sg;
  118. if (rd_dev->rd_page_count <= 0) {
  119. pr_err("Illegal page count: %u for Ramdisk device\n",
  120. rd_dev->rd_page_count);
  121. return -EINVAL;
  122. }
  123. total_sg_needed = rd_dev->rd_page_count;
  124. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  125. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  126. if (!sg_table) {
  127. pr_err("Unable to allocate memory for Ramdisk"
  128. " scatterlist tables\n");
  129. return -ENOMEM;
  130. }
  131. rd_dev->sg_table_array = sg_table;
  132. rd_dev->sg_table_count = sg_tables;
  133. while (total_sg_needed) {
  134. sg_per_table = (total_sg_needed > max_sg_per_table) ?
  135. max_sg_per_table : total_sg_needed;
  136. sg = kzalloc(sg_per_table * sizeof(struct scatterlist),
  137. GFP_KERNEL);
  138. if (!sg) {
  139. pr_err("Unable to allocate scatterlist array"
  140. " for struct rd_dev\n");
  141. return -ENOMEM;
  142. }
  143. sg_init_table(sg, sg_per_table);
  144. sg_table[i].sg_table = sg;
  145. sg_table[i].rd_sg_count = sg_per_table;
  146. sg_table[i].page_start_offset = page_offset;
  147. sg_table[i++].page_end_offset = (page_offset + sg_per_table)
  148. - 1;
  149. for (j = 0; j < sg_per_table; j++) {
  150. pg = alloc_pages(GFP_KERNEL, 0);
  151. if (!pg) {
  152. pr_err("Unable to allocate scatterlist"
  153. " pages for struct rd_dev_sg_table\n");
  154. return -ENOMEM;
  155. }
  156. sg_assign_page(&sg[j], pg);
  157. sg[j].length = PAGE_SIZE;
  158. }
  159. page_offset += sg_per_table;
  160. total_sg_needed -= sg_per_table;
  161. }
  162. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
  163. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  164. rd_dev->rd_dev_id, rd_dev->rd_page_count,
  165. rd_dev->sg_table_count);
  166. return 0;
  167. }
  168. static void *rd_allocate_virtdevice(
  169. struct se_hba *hba,
  170. const char *name,
  171. int rd_direct)
  172. {
  173. struct rd_dev *rd_dev;
  174. struct rd_host *rd_host = hba->hba_ptr;
  175. rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
  176. if (!rd_dev) {
  177. pr_err("Unable to allocate memory for struct rd_dev\n");
  178. return NULL;
  179. }
  180. rd_dev->rd_host = rd_host;
  181. rd_dev->rd_direct = rd_direct;
  182. return rd_dev;
  183. }
  184. static void *rd_MEMCPY_allocate_virtdevice(struct se_hba *hba, const char *name)
  185. {
  186. return rd_allocate_virtdevice(hba, name, 0);
  187. }
  188. /* rd_create_virtdevice():
  189. *
  190. *
  191. */
  192. static struct se_device *rd_create_virtdevice(
  193. struct se_hba *hba,
  194. struct se_subsystem_dev *se_dev,
  195. void *p,
  196. int rd_direct)
  197. {
  198. struct se_device *dev;
  199. struct se_dev_limits dev_limits;
  200. struct rd_dev *rd_dev = p;
  201. struct rd_host *rd_host = hba->hba_ptr;
  202. int dev_flags = 0, ret;
  203. char prod[16], rev[4];
  204. memset(&dev_limits, 0, sizeof(struct se_dev_limits));
  205. ret = rd_build_device_space(rd_dev);
  206. if (ret < 0)
  207. goto fail;
  208. snprintf(prod, 16, "RAMDISK-%s", (rd_dev->rd_direct) ? "DR" : "MCP");
  209. snprintf(rev, 4, "%s", (rd_dev->rd_direct) ? RD_DR_VERSION :
  210. RD_MCP_VERSION);
  211. dev_limits.limits.logical_block_size = RD_BLOCKSIZE;
  212. dev_limits.limits.max_hw_sectors = RD_MAX_SECTORS;
  213. dev_limits.limits.max_sectors = RD_MAX_SECTORS;
  214. dev_limits.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
  215. dev_limits.queue_depth = RD_DEVICE_QUEUE_DEPTH;
  216. dev = transport_add_device_to_core_hba(hba,
  217. &rd_mcp_template, se_dev, dev_flags, rd_dev,
  218. &dev_limits, prod, rev);
  219. if (!dev)
  220. goto fail;
  221. rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
  222. rd_dev->rd_queue_depth = dev->queue_depth;
  223. pr_debug("CORE_RD[%u] - Added TCM %s Ramdisk Device ID: %u of"
  224. " %u pages in %u tables, %lu total bytes\n",
  225. rd_host->rd_host_id, (!rd_dev->rd_direct) ? "MEMCPY" :
  226. "DIRECT", rd_dev->rd_dev_id, rd_dev->rd_page_count,
  227. rd_dev->sg_table_count,
  228. (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
  229. return dev;
  230. fail:
  231. rd_release_device_space(rd_dev);
  232. return ERR_PTR(ret);
  233. }
  234. static struct se_device *rd_MEMCPY_create_virtdevice(
  235. struct se_hba *hba,
  236. struct se_subsystem_dev *se_dev,
  237. void *p)
  238. {
  239. return rd_create_virtdevice(hba, se_dev, p, 0);
  240. }
  241. /* rd_free_device(): (Part of se_subsystem_api_t template)
  242. *
  243. *
  244. */
  245. static void rd_free_device(void *p)
  246. {
  247. struct rd_dev *rd_dev = p;
  248. rd_release_device_space(rd_dev);
  249. kfree(rd_dev);
  250. }
  251. static inline struct rd_request *RD_REQ(struct se_task *task)
  252. {
  253. return container_of(task, struct rd_request, rd_task);
  254. }
  255. static struct se_task *
  256. rd_alloc_task(unsigned char *cdb)
  257. {
  258. struct rd_request *rd_req;
  259. rd_req = kzalloc(sizeof(struct rd_request), GFP_KERNEL);
  260. if (!rd_req) {
  261. pr_err("Unable to allocate struct rd_request\n");
  262. return NULL;
  263. }
  264. return &rd_req->rd_task;
  265. }
  266. /* rd_get_sg_table():
  267. *
  268. *
  269. */
  270. static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
  271. {
  272. u32 i;
  273. struct rd_dev_sg_table *sg_table;
  274. for (i = 0; i < rd_dev->sg_table_count; i++) {
  275. sg_table = &rd_dev->sg_table_array[i];
  276. if ((sg_table->page_start_offset <= page) &&
  277. (sg_table->page_end_offset >= page))
  278. return sg_table;
  279. }
  280. pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
  281. page);
  282. return NULL;
  283. }
  284. static int rd_MEMCPY(struct rd_request *req, u32 read_rd)
  285. {
  286. struct se_task *task = &req->rd_task;
  287. struct rd_dev *dev = req->rd_task.task_se_cmd->se_dev->dev_ptr;
  288. struct rd_dev_sg_table *table;
  289. struct scatterlist *rd_sg;
  290. struct sg_mapping_iter m;
  291. u32 rd_offset = req->rd_offset;
  292. u32 src_len;
  293. table = rd_get_sg_table(dev, req->rd_page);
  294. if (!table)
  295. return -EINVAL;
  296. rd_sg = &table->sg_table[req->rd_page - table->page_start_offset];
  297. pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
  298. dev->rd_dev_id, read_rd ? "Read" : "Write",
  299. task->task_lba, req->rd_size, req->rd_page,
  300. rd_offset);
  301. src_len = PAGE_SIZE - rd_offset;
  302. sg_miter_start(&m, task->task_sg, task->task_sg_nents,
  303. read_rd ? SG_MITER_TO_SG : SG_MITER_FROM_SG);
  304. while (req->rd_size) {
  305. u32 len;
  306. void *rd_addr;
  307. sg_miter_next(&m);
  308. len = min((u32)m.length, src_len);
  309. m.consumed = len;
  310. rd_addr = sg_virt(rd_sg) + rd_offset;
  311. if (read_rd)
  312. memcpy(m.addr, rd_addr, len);
  313. else
  314. memcpy(rd_addr, m.addr, len);
  315. req->rd_size -= len;
  316. if (!req->rd_size)
  317. continue;
  318. src_len -= len;
  319. if (src_len) {
  320. rd_offset += len;
  321. continue;
  322. }
  323. /* rd page completed, next one please */
  324. req->rd_page++;
  325. rd_offset = 0;
  326. src_len = PAGE_SIZE;
  327. if (req->rd_page <= table->page_end_offset) {
  328. rd_sg++;
  329. continue;
  330. }
  331. table = rd_get_sg_table(dev, req->rd_page);
  332. if (!table) {
  333. sg_miter_stop(&m);
  334. return -EINVAL;
  335. }
  336. /* since we increment, the first sg entry is correct */
  337. rd_sg = table->sg_table;
  338. }
  339. sg_miter_stop(&m);
  340. return 0;
  341. }
  342. /* rd_MEMCPY_do_task(): (Part of se_subsystem_api_t template)
  343. *
  344. *
  345. */
  346. static int rd_MEMCPY_do_task(struct se_task *task)
  347. {
  348. struct se_device *dev = task->task_se_cmd->se_dev;
  349. struct rd_request *req = RD_REQ(task);
  350. u64 tmp;
  351. int ret;
  352. tmp = task->task_lba * dev->se_sub_dev->se_dev_attrib.block_size;
  353. req->rd_offset = do_div(tmp, PAGE_SIZE);
  354. req->rd_page = tmp;
  355. req->rd_size = task->task_size;
  356. ret = rd_MEMCPY(req, task->task_data_direction == DMA_FROM_DEVICE);
  357. if (ret != 0)
  358. return ret;
  359. task->task_scsi_status = GOOD;
  360. transport_complete_task(task, 1);
  361. return 0;
  362. }
  363. /* rd_free_task(): (Part of se_subsystem_api_t template)
  364. *
  365. *
  366. */
  367. static void rd_free_task(struct se_task *task)
  368. {
  369. kfree(RD_REQ(task));
  370. }
  371. enum {
  372. Opt_rd_pages, Opt_err
  373. };
  374. static match_table_t tokens = {
  375. {Opt_rd_pages, "rd_pages=%d"},
  376. {Opt_err, NULL}
  377. };
  378. static ssize_t rd_set_configfs_dev_params(
  379. struct se_hba *hba,
  380. struct se_subsystem_dev *se_dev,
  381. const char *page,
  382. ssize_t count)
  383. {
  384. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  385. char *orig, *ptr, *opts;
  386. substring_t args[MAX_OPT_ARGS];
  387. int ret = 0, arg, token;
  388. opts = kstrdup(page, GFP_KERNEL);
  389. if (!opts)
  390. return -ENOMEM;
  391. orig = opts;
  392. while ((ptr = strsep(&opts, ",")) != NULL) {
  393. if (!*ptr)
  394. continue;
  395. token = match_token(ptr, tokens, args);
  396. switch (token) {
  397. case Opt_rd_pages:
  398. match_int(args, &arg);
  399. rd_dev->rd_page_count = arg;
  400. pr_debug("RAMDISK: Referencing Page"
  401. " Count: %u\n", rd_dev->rd_page_count);
  402. rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
  403. break;
  404. default:
  405. break;
  406. }
  407. }
  408. kfree(orig);
  409. return (!ret) ? count : ret;
  410. }
  411. static ssize_t rd_check_configfs_dev_params(struct se_hba *hba, struct se_subsystem_dev *se_dev)
  412. {
  413. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  414. if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
  415. pr_debug("Missing rd_pages= parameter\n");
  416. return -EINVAL;
  417. }
  418. return 0;
  419. }
  420. static ssize_t rd_show_configfs_dev_params(
  421. struct se_hba *hba,
  422. struct se_subsystem_dev *se_dev,
  423. char *b)
  424. {
  425. struct rd_dev *rd_dev = se_dev->se_dev_su_ptr;
  426. ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: %s\n",
  427. rd_dev->rd_dev_id, (rd_dev->rd_direct) ?
  428. "rd_direct" : "rd_mcp");
  429. bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
  430. " SG_table_count: %u\n", rd_dev->rd_page_count,
  431. PAGE_SIZE, rd_dev->sg_table_count);
  432. return bl;
  433. }
  434. static u32 rd_get_device_rev(struct se_device *dev)
  435. {
  436. return SCSI_SPC_2; /* Returns SPC-3 in Initiator Data */
  437. }
  438. static u32 rd_get_device_type(struct se_device *dev)
  439. {
  440. return TYPE_DISK;
  441. }
  442. static sector_t rd_get_blocks(struct se_device *dev)
  443. {
  444. struct rd_dev *rd_dev = dev->dev_ptr;
  445. unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
  446. dev->se_sub_dev->se_dev_attrib.block_size) - 1;
  447. return blocks_long;
  448. }
  449. static struct se_subsystem_api rd_mcp_template = {
  450. .name = "rd_mcp",
  451. .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV,
  452. .attach_hba = rd_attach_hba,
  453. .detach_hba = rd_detach_hba,
  454. .allocate_virtdevice = rd_MEMCPY_allocate_virtdevice,
  455. .create_virtdevice = rd_MEMCPY_create_virtdevice,
  456. .free_device = rd_free_device,
  457. .alloc_task = rd_alloc_task,
  458. .do_task = rd_MEMCPY_do_task,
  459. .free_task = rd_free_task,
  460. .check_configfs_dev_params = rd_check_configfs_dev_params,
  461. .set_configfs_dev_params = rd_set_configfs_dev_params,
  462. .show_configfs_dev_params = rd_show_configfs_dev_params,
  463. .get_device_rev = rd_get_device_rev,
  464. .get_device_type = rd_get_device_type,
  465. .get_blocks = rd_get_blocks,
  466. };
  467. int __init rd_module_init(void)
  468. {
  469. int ret;
  470. ret = transport_subsystem_register(&rd_mcp_template);
  471. if (ret < 0) {
  472. return ret;
  473. }
  474. return 0;
  475. }
  476. void rd_module_exit(void)
  477. {
  478. transport_subsystem_release(&rd_mcp_template);
  479. }