ring_buffer.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /*
  20. * A fast way to enable or disable all ring buffers is to
  21. * call tracing_on or tracing_off. Turning off the ring buffers
  22. * prevents all ring buffers from being recorded to.
  23. * Turning this switch on, makes it OK to write to the
  24. * ring buffer, if the ring buffer is enabled itself.
  25. *
  26. * There's three layers that must be on in order to write
  27. * to the ring buffer.
  28. *
  29. * 1) This global flag must be set.
  30. * 2) The ring buffer must be enabled for recording.
  31. * 3) The per cpu buffer must be enabled for recording.
  32. *
  33. * In case of an anomaly, this global flag has a bit set that
  34. * will permantly disable all ring buffers.
  35. */
  36. /*
  37. * Global flag to disable all recording to ring buffers
  38. * This has two bits: ON, DISABLED
  39. *
  40. * ON DISABLED
  41. * ---- ----------
  42. * 0 0 : ring buffers are off
  43. * 1 0 : ring buffers are on
  44. * X 1 : ring buffers are permanently disabled
  45. */
  46. enum {
  47. RB_BUFFERS_ON_BIT = 0,
  48. RB_BUFFERS_DISABLED_BIT = 1,
  49. };
  50. enum {
  51. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  52. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  53. };
  54. static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  55. /**
  56. * tracing_on - enable all tracing buffers
  57. *
  58. * This function enables all tracing buffers that may have been
  59. * disabled with tracing_off.
  60. */
  61. void tracing_on(void)
  62. {
  63. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  64. }
  65. EXPORT_SYMBOL_GPL(tracing_on);
  66. /**
  67. * tracing_off - turn off all tracing buffers
  68. *
  69. * This function stops all tracing buffers from recording data.
  70. * It does not disable any overhead the tracers themselves may
  71. * be causing. This function simply causes all recording to
  72. * the ring buffers to fail.
  73. */
  74. void tracing_off(void)
  75. {
  76. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  77. }
  78. EXPORT_SYMBOL_GPL(tracing_off);
  79. /**
  80. * tracing_off_permanent - permanently disable ring buffers
  81. *
  82. * This function, once called, will disable all ring buffers
  83. * permanenty.
  84. */
  85. void tracing_off_permanent(void)
  86. {
  87. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  88. }
  89. #include "trace.h"
  90. /* Up this if you want to test the TIME_EXTENTS and normalization */
  91. #define DEBUG_SHIFT 0
  92. /* FIXME!!! */
  93. u64 ring_buffer_time_stamp(int cpu)
  94. {
  95. u64 time;
  96. preempt_disable_notrace();
  97. /* shift to debug/test normalization and TIME_EXTENTS */
  98. time = sched_clock() << DEBUG_SHIFT;
  99. preempt_enable_no_resched_notrace();
  100. return time;
  101. }
  102. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  103. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  104. {
  105. /* Just stupid testing the normalize function and deltas */
  106. *ts >>= DEBUG_SHIFT;
  107. }
  108. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  109. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  110. #define RB_ALIGNMENT_SHIFT 2
  111. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  112. #define RB_MAX_SMALL_DATA 28
  113. enum {
  114. RB_LEN_TIME_EXTEND = 8,
  115. RB_LEN_TIME_STAMP = 16,
  116. };
  117. /* inline for ring buffer fast paths */
  118. static unsigned
  119. rb_event_length(struct ring_buffer_event *event)
  120. {
  121. unsigned length;
  122. switch (event->type) {
  123. case RINGBUF_TYPE_PADDING:
  124. /* undefined */
  125. return -1;
  126. case RINGBUF_TYPE_TIME_EXTEND:
  127. return RB_LEN_TIME_EXTEND;
  128. case RINGBUF_TYPE_TIME_STAMP:
  129. return RB_LEN_TIME_STAMP;
  130. case RINGBUF_TYPE_DATA:
  131. if (event->len)
  132. length = event->len << RB_ALIGNMENT_SHIFT;
  133. else
  134. length = event->array[0];
  135. return length + RB_EVNT_HDR_SIZE;
  136. default:
  137. BUG();
  138. }
  139. /* not hit */
  140. return 0;
  141. }
  142. /**
  143. * ring_buffer_event_length - return the length of the event
  144. * @event: the event to get the length of
  145. */
  146. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  147. {
  148. unsigned length = rb_event_length(event);
  149. if (event->type != RINGBUF_TYPE_DATA)
  150. return length;
  151. length -= RB_EVNT_HDR_SIZE;
  152. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  153. length -= sizeof(event->array[0]);
  154. return length;
  155. }
  156. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  157. /* inline for ring buffer fast paths */
  158. static void *
  159. rb_event_data(struct ring_buffer_event *event)
  160. {
  161. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  162. /* If length is in len field, then array[0] has the data */
  163. if (event->len)
  164. return (void *)&event->array[0];
  165. /* Otherwise length is in array[0] and array[1] has the data */
  166. return (void *)&event->array[1];
  167. }
  168. /**
  169. * ring_buffer_event_data - return the data of the event
  170. * @event: the event to get the data from
  171. */
  172. void *ring_buffer_event_data(struct ring_buffer_event *event)
  173. {
  174. return rb_event_data(event);
  175. }
  176. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  177. #define for_each_buffer_cpu(buffer, cpu) \
  178. for_each_cpu(cpu, buffer->cpumask)
  179. #define TS_SHIFT 27
  180. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  181. #define TS_DELTA_TEST (~TS_MASK)
  182. struct buffer_data_page {
  183. u64 time_stamp; /* page time stamp */
  184. local_t commit; /* write commited index */
  185. unsigned char data[]; /* data of buffer page */
  186. };
  187. struct buffer_page {
  188. local_t write; /* index for next write */
  189. unsigned read; /* index for next read */
  190. struct list_head list; /* list of free pages */
  191. struct buffer_data_page *page; /* Actual data page */
  192. };
  193. static void rb_init_page(struct buffer_data_page *bpage)
  194. {
  195. local_set(&bpage->commit, 0);
  196. }
  197. /*
  198. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  199. * this issue out.
  200. */
  201. static void free_buffer_page(struct buffer_page *bpage)
  202. {
  203. free_page((unsigned long)bpage->page);
  204. kfree(bpage);
  205. }
  206. /*
  207. * We need to fit the time_stamp delta into 27 bits.
  208. */
  209. static inline int test_time_stamp(u64 delta)
  210. {
  211. if (delta & TS_DELTA_TEST)
  212. return 1;
  213. return 0;
  214. }
  215. #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
  216. /*
  217. * head_page == tail_page && head == tail then buffer is empty.
  218. */
  219. struct ring_buffer_per_cpu {
  220. int cpu;
  221. struct ring_buffer *buffer;
  222. spinlock_t reader_lock; /* serialize readers */
  223. raw_spinlock_t lock;
  224. struct lock_class_key lock_key;
  225. struct list_head pages;
  226. struct buffer_page *head_page; /* read from head */
  227. struct buffer_page *tail_page; /* write to tail */
  228. struct buffer_page *commit_page; /* commited pages */
  229. struct buffer_page *reader_page;
  230. unsigned long overrun;
  231. unsigned long entries;
  232. u64 write_stamp;
  233. u64 read_stamp;
  234. atomic_t record_disabled;
  235. };
  236. struct ring_buffer {
  237. unsigned pages;
  238. unsigned flags;
  239. int cpus;
  240. cpumask_var_t cpumask;
  241. atomic_t record_disabled;
  242. struct mutex mutex;
  243. struct ring_buffer_per_cpu **buffers;
  244. };
  245. struct ring_buffer_iter {
  246. struct ring_buffer_per_cpu *cpu_buffer;
  247. unsigned long head;
  248. struct buffer_page *head_page;
  249. u64 read_stamp;
  250. };
  251. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  252. #define RB_WARN_ON(buffer, cond) \
  253. ({ \
  254. int _____ret = unlikely(cond); \
  255. if (_____ret) { \
  256. atomic_inc(&buffer->record_disabled); \
  257. WARN_ON(1); \
  258. } \
  259. _____ret; \
  260. })
  261. /**
  262. * check_pages - integrity check of buffer pages
  263. * @cpu_buffer: CPU buffer with pages to test
  264. *
  265. * As a safty measure we check to make sure the data pages have not
  266. * been corrupted.
  267. */
  268. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  269. {
  270. struct list_head *head = &cpu_buffer->pages;
  271. struct buffer_page *bpage, *tmp;
  272. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  273. return -1;
  274. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  275. return -1;
  276. list_for_each_entry_safe(bpage, tmp, head, list) {
  277. if (RB_WARN_ON(cpu_buffer,
  278. bpage->list.next->prev != &bpage->list))
  279. return -1;
  280. if (RB_WARN_ON(cpu_buffer,
  281. bpage->list.prev->next != &bpage->list))
  282. return -1;
  283. }
  284. return 0;
  285. }
  286. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  287. unsigned nr_pages)
  288. {
  289. struct list_head *head = &cpu_buffer->pages;
  290. struct buffer_page *bpage, *tmp;
  291. unsigned long addr;
  292. LIST_HEAD(pages);
  293. unsigned i;
  294. for (i = 0; i < nr_pages; i++) {
  295. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  296. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  297. if (!bpage)
  298. goto free_pages;
  299. list_add(&bpage->list, &pages);
  300. addr = __get_free_page(GFP_KERNEL);
  301. if (!addr)
  302. goto free_pages;
  303. bpage->page = (void *)addr;
  304. rb_init_page(bpage->page);
  305. }
  306. list_splice(&pages, head);
  307. rb_check_pages(cpu_buffer);
  308. return 0;
  309. free_pages:
  310. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  311. list_del_init(&bpage->list);
  312. free_buffer_page(bpage);
  313. }
  314. return -ENOMEM;
  315. }
  316. static struct ring_buffer_per_cpu *
  317. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  318. {
  319. struct ring_buffer_per_cpu *cpu_buffer;
  320. struct buffer_page *bpage;
  321. unsigned long addr;
  322. int ret;
  323. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  324. GFP_KERNEL, cpu_to_node(cpu));
  325. if (!cpu_buffer)
  326. return NULL;
  327. cpu_buffer->cpu = cpu;
  328. cpu_buffer->buffer = buffer;
  329. spin_lock_init(&cpu_buffer->reader_lock);
  330. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  331. INIT_LIST_HEAD(&cpu_buffer->pages);
  332. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  333. GFP_KERNEL, cpu_to_node(cpu));
  334. if (!bpage)
  335. goto fail_free_buffer;
  336. cpu_buffer->reader_page = bpage;
  337. addr = __get_free_page(GFP_KERNEL);
  338. if (!addr)
  339. goto fail_free_reader;
  340. bpage->page = (void *)addr;
  341. rb_init_page(bpage->page);
  342. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  343. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  344. if (ret < 0)
  345. goto fail_free_reader;
  346. cpu_buffer->head_page
  347. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  348. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  349. return cpu_buffer;
  350. fail_free_reader:
  351. free_buffer_page(cpu_buffer->reader_page);
  352. fail_free_buffer:
  353. kfree(cpu_buffer);
  354. return NULL;
  355. }
  356. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  357. {
  358. struct list_head *head = &cpu_buffer->pages;
  359. struct buffer_page *bpage, *tmp;
  360. list_del_init(&cpu_buffer->reader_page->list);
  361. free_buffer_page(cpu_buffer->reader_page);
  362. list_for_each_entry_safe(bpage, tmp, head, list) {
  363. list_del_init(&bpage->list);
  364. free_buffer_page(bpage);
  365. }
  366. kfree(cpu_buffer);
  367. }
  368. /*
  369. * Causes compile errors if the struct buffer_page gets bigger
  370. * than the struct page.
  371. */
  372. extern int ring_buffer_page_too_big(void);
  373. /**
  374. * ring_buffer_alloc - allocate a new ring_buffer
  375. * @size: the size in bytes per cpu that is needed.
  376. * @flags: attributes to set for the ring buffer.
  377. *
  378. * Currently the only flag that is available is the RB_FL_OVERWRITE
  379. * flag. This flag means that the buffer will overwrite old data
  380. * when the buffer wraps. If this flag is not set, the buffer will
  381. * drop data when the tail hits the head.
  382. */
  383. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  384. {
  385. struct ring_buffer *buffer;
  386. int bsize;
  387. int cpu;
  388. /* Paranoid! Optimizes out when all is well */
  389. if (sizeof(struct buffer_page) > sizeof(struct page))
  390. ring_buffer_page_too_big();
  391. /* keep it in its own cache line */
  392. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  393. GFP_KERNEL);
  394. if (!buffer)
  395. return NULL;
  396. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  397. goto fail_free_buffer;
  398. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  399. buffer->flags = flags;
  400. /* need at least two pages */
  401. if (buffer->pages == 1)
  402. buffer->pages++;
  403. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  404. buffer->cpus = nr_cpu_ids;
  405. bsize = sizeof(void *) * nr_cpu_ids;
  406. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  407. GFP_KERNEL);
  408. if (!buffer->buffers)
  409. goto fail_free_cpumask;
  410. for_each_buffer_cpu(buffer, cpu) {
  411. buffer->buffers[cpu] =
  412. rb_allocate_cpu_buffer(buffer, cpu);
  413. if (!buffer->buffers[cpu])
  414. goto fail_free_buffers;
  415. }
  416. mutex_init(&buffer->mutex);
  417. return buffer;
  418. fail_free_buffers:
  419. for_each_buffer_cpu(buffer, cpu) {
  420. if (buffer->buffers[cpu])
  421. rb_free_cpu_buffer(buffer->buffers[cpu]);
  422. }
  423. kfree(buffer->buffers);
  424. fail_free_cpumask:
  425. free_cpumask_var(buffer->cpumask);
  426. fail_free_buffer:
  427. kfree(buffer);
  428. return NULL;
  429. }
  430. EXPORT_SYMBOL_GPL(ring_buffer_alloc);
  431. /**
  432. * ring_buffer_free - free a ring buffer.
  433. * @buffer: the buffer to free.
  434. */
  435. void
  436. ring_buffer_free(struct ring_buffer *buffer)
  437. {
  438. int cpu;
  439. for_each_buffer_cpu(buffer, cpu)
  440. rb_free_cpu_buffer(buffer->buffers[cpu]);
  441. free_cpumask_var(buffer->cpumask);
  442. kfree(buffer);
  443. }
  444. EXPORT_SYMBOL_GPL(ring_buffer_free);
  445. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  446. static void
  447. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  448. {
  449. struct buffer_page *bpage;
  450. struct list_head *p;
  451. unsigned i;
  452. atomic_inc(&cpu_buffer->record_disabled);
  453. synchronize_sched();
  454. for (i = 0; i < nr_pages; i++) {
  455. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  456. return;
  457. p = cpu_buffer->pages.next;
  458. bpage = list_entry(p, struct buffer_page, list);
  459. list_del_init(&bpage->list);
  460. free_buffer_page(bpage);
  461. }
  462. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  463. return;
  464. rb_reset_cpu(cpu_buffer);
  465. rb_check_pages(cpu_buffer);
  466. atomic_dec(&cpu_buffer->record_disabled);
  467. }
  468. static void
  469. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  470. struct list_head *pages, unsigned nr_pages)
  471. {
  472. struct buffer_page *bpage;
  473. struct list_head *p;
  474. unsigned i;
  475. atomic_inc(&cpu_buffer->record_disabled);
  476. synchronize_sched();
  477. for (i = 0; i < nr_pages; i++) {
  478. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  479. return;
  480. p = pages->next;
  481. bpage = list_entry(p, struct buffer_page, list);
  482. list_del_init(&bpage->list);
  483. list_add_tail(&bpage->list, &cpu_buffer->pages);
  484. }
  485. rb_reset_cpu(cpu_buffer);
  486. rb_check_pages(cpu_buffer);
  487. atomic_dec(&cpu_buffer->record_disabled);
  488. }
  489. /**
  490. * ring_buffer_resize - resize the ring buffer
  491. * @buffer: the buffer to resize.
  492. * @size: the new size.
  493. *
  494. * The tracer is responsible for making sure that the buffer is
  495. * not being used while changing the size.
  496. * Note: We may be able to change the above requirement by using
  497. * RCU synchronizations.
  498. *
  499. * Minimum size is 2 * BUF_PAGE_SIZE.
  500. *
  501. * Returns -1 on failure.
  502. */
  503. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  504. {
  505. struct ring_buffer_per_cpu *cpu_buffer;
  506. unsigned nr_pages, rm_pages, new_pages;
  507. struct buffer_page *bpage, *tmp;
  508. unsigned long buffer_size;
  509. unsigned long addr;
  510. LIST_HEAD(pages);
  511. int i, cpu;
  512. /*
  513. * Always succeed at resizing a non-existent buffer:
  514. */
  515. if (!buffer)
  516. return size;
  517. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  518. size *= BUF_PAGE_SIZE;
  519. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  520. /* we need a minimum of two pages */
  521. if (size < BUF_PAGE_SIZE * 2)
  522. size = BUF_PAGE_SIZE * 2;
  523. if (size == buffer_size)
  524. return size;
  525. mutex_lock(&buffer->mutex);
  526. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  527. if (size < buffer_size) {
  528. /* easy case, just free pages */
  529. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  530. mutex_unlock(&buffer->mutex);
  531. return -1;
  532. }
  533. rm_pages = buffer->pages - nr_pages;
  534. for_each_buffer_cpu(buffer, cpu) {
  535. cpu_buffer = buffer->buffers[cpu];
  536. rb_remove_pages(cpu_buffer, rm_pages);
  537. }
  538. goto out;
  539. }
  540. /*
  541. * This is a bit more difficult. We only want to add pages
  542. * when we can allocate enough for all CPUs. We do this
  543. * by allocating all the pages and storing them on a local
  544. * link list. If we succeed in our allocation, then we
  545. * add these pages to the cpu_buffers. Otherwise we just free
  546. * them all and return -ENOMEM;
  547. */
  548. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  549. mutex_unlock(&buffer->mutex);
  550. return -1;
  551. }
  552. new_pages = nr_pages - buffer->pages;
  553. for_each_buffer_cpu(buffer, cpu) {
  554. for (i = 0; i < new_pages; i++) {
  555. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  556. cache_line_size()),
  557. GFP_KERNEL, cpu_to_node(cpu));
  558. if (!bpage)
  559. goto free_pages;
  560. list_add(&bpage->list, &pages);
  561. addr = __get_free_page(GFP_KERNEL);
  562. if (!addr)
  563. goto free_pages;
  564. bpage->page = (void *)addr;
  565. rb_init_page(bpage->page);
  566. }
  567. }
  568. for_each_buffer_cpu(buffer, cpu) {
  569. cpu_buffer = buffer->buffers[cpu];
  570. rb_insert_pages(cpu_buffer, &pages, new_pages);
  571. }
  572. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  573. mutex_unlock(&buffer->mutex);
  574. return -1;
  575. }
  576. out:
  577. buffer->pages = nr_pages;
  578. mutex_unlock(&buffer->mutex);
  579. return size;
  580. free_pages:
  581. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  582. list_del_init(&bpage->list);
  583. free_buffer_page(bpage);
  584. }
  585. mutex_unlock(&buffer->mutex);
  586. return -ENOMEM;
  587. }
  588. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  589. static inline int rb_null_event(struct ring_buffer_event *event)
  590. {
  591. return event->type == RINGBUF_TYPE_PADDING;
  592. }
  593. static inline void *
  594. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  595. {
  596. return bpage->data + index;
  597. }
  598. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  599. {
  600. return bpage->page->data + index;
  601. }
  602. static inline struct ring_buffer_event *
  603. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  604. {
  605. return __rb_page_index(cpu_buffer->reader_page,
  606. cpu_buffer->reader_page->read);
  607. }
  608. static inline struct ring_buffer_event *
  609. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  610. {
  611. return __rb_page_index(cpu_buffer->head_page,
  612. cpu_buffer->head_page->read);
  613. }
  614. static inline struct ring_buffer_event *
  615. rb_iter_head_event(struct ring_buffer_iter *iter)
  616. {
  617. return __rb_page_index(iter->head_page, iter->head);
  618. }
  619. static inline unsigned rb_page_write(struct buffer_page *bpage)
  620. {
  621. return local_read(&bpage->write);
  622. }
  623. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  624. {
  625. return local_read(&bpage->page->commit);
  626. }
  627. /* Size is determined by what has been commited */
  628. static inline unsigned rb_page_size(struct buffer_page *bpage)
  629. {
  630. return rb_page_commit(bpage);
  631. }
  632. static inline unsigned
  633. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  634. {
  635. return rb_page_commit(cpu_buffer->commit_page);
  636. }
  637. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  638. {
  639. return rb_page_commit(cpu_buffer->head_page);
  640. }
  641. /*
  642. * When the tail hits the head and the buffer is in overwrite mode,
  643. * the head jumps to the next page and all content on the previous
  644. * page is discarded. But before doing so, we update the overrun
  645. * variable of the buffer.
  646. */
  647. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  648. {
  649. struct ring_buffer_event *event;
  650. unsigned long head;
  651. for (head = 0; head < rb_head_size(cpu_buffer);
  652. head += rb_event_length(event)) {
  653. event = __rb_page_index(cpu_buffer->head_page, head);
  654. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  655. return;
  656. /* Only count data entries */
  657. if (event->type != RINGBUF_TYPE_DATA)
  658. continue;
  659. cpu_buffer->overrun++;
  660. cpu_buffer->entries--;
  661. }
  662. }
  663. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  664. struct buffer_page **bpage)
  665. {
  666. struct list_head *p = (*bpage)->list.next;
  667. if (p == &cpu_buffer->pages)
  668. p = p->next;
  669. *bpage = list_entry(p, struct buffer_page, list);
  670. }
  671. static inline unsigned
  672. rb_event_index(struct ring_buffer_event *event)
  673. {
  674. unsigned long addr = (unsigned long)event;
  675. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  676. }
  677. static int
  678. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  679. struct ring_buffer_event *event)
  680. {
  681. unsigned long addr = (unsigned long)event;
  682. unsigned long index;
  683. index = rb_event_index(event);
  684. addr &= PAGE_MASK;
  685. return cpu_buffer->commit_page->page == (void *)addr &&
  686. rb_commit_index(cpu_buffer) == index;
  687. }
  688. static void
  689. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  690. struct ring_buffer_event *event)
  691. {
  692. unsigned long addr = (unsigned long)event;
  693. unsigned long index;
  694. index = rb_event_index(event);
  695. addr &= PAGE_MASK;
  696. while (cpu_buffer->commit_page->page != (void *)addr) {
  697. if (RB_WARN_ON(cpu_buffer,
  698. cpu_buffer->commit_page == cpu_buffer->tail_page))
  699. return;
  700. cpu_buffer->commit_page->page->commit =
  701. cpu_buffer->commit_page->write;
  702. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  703. cpu_buffer->write_stamp =
  704. cpu_buffer->commit_page->page->time_stamp;
  705. }
  706. /* Now set the commit to the event's index */
  707. local_set(&cpu_buffer->commit_page->page->commit, index);
  708. }
  709. static void
  710. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  711. {
  712. /*
  713. * We only race with interrupts and NMIs on this CPU.
  714. * If we own the commit event, then we can commit
  715. * all others that interrupted us, since the interruptions
  716. * are in stack format (they finish before they come
  717. * back to us). This allows us to do a simple loop to
  718. * assign the commit to the tail.
  719. */
  720. again:
  721. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  722. cpu_buffer->commit_page->page->commit =
  723. cpu_buffer->commit_page->write;
  724. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  725. cpu_buffer->write_stamp =
  726. cpu_buffer->commit_page->page->time_stamp;
  727. /* add barrier to keep gcc from optimizing too much */
  728. barrier();
  729. }
  730. while (rb_commit_index(cpu_buffer) !=
  731. rb_page_write(cpu_buffer->commit_page)) {
  732. cpu_buffer->commit_page->page->commit =
  733. cpu_buffer->commit_page->write;
  734. barrier();
  735. }
  736. /* again, keep gcc from optimizing */
  737. barrier();
  738. /*
  739. * If an interrupt came in just after the first while loop
  740. * and pushed the tail page forward, we will be left with
  741. * a dangling commit that will never go forward.
  742. */
  743. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  744. goto again;
  745. }
  746. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  747. {
  748. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  749. cpu_buffer->reader_page->read = 0;
  750. }
  751. static void rb_inc_iter(struct ring_buffer_iter *iter)
  752. {
  753. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  754. /*
  755. * The iterator could be on the reader page (it starts there).
  756. * But the head could have moved, since the reader was
  757. * found. Check for this case and assign the iterator
  758. * to the head page instead of next.
  759. */
  760. if (iter->head_page == cpu_buffer->reader_page)
  761. iter->head_page = cpu_buffer->head_page;
  762. else
  763. rb_inc_page(cpu_buffer, &iter->head_page);
  764. iter->read_stamp = iter->head_page->page->time_stamp;
  765. iter->head = 0;
  766. }
  767. /**
  768. * ring_buffer_update_event - update event type and data
  769. * @event: the even to update
  770. * @type: the type of event
  771. * @length: the size of the event field in the ring buffer
  772. *
  773. * Update the type and data fields of the event. The length
  774. * is the actual size that is written to the ring buffer,
  775. * and with this, we can determine what to place into the
  776. * data field.
  777. */
  778. static void
  779. rb_update_event(struct ring_buffer_event *event,
  780. unsigned type, unsigned length)
  781. {
  782. event->type = type;
  783. switch (type) {
  784. case RINGBUF_TYPE_PADDING:
  785. break;
  786. case RINGBUF_TYPE_TIME_EXTEND:
  787. event->len =
  788. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  789. >> RB_ALIGNMENT_SHIFT;
  790. break;
  791. case RINGBUF_TYPE_TIME_STAMP:
  792. event->len =
  793. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  794. >> RB_ALIGNMENT_SHIFT;
  795. break;
  796. case RINGBUF_TYPE_DATA:
  797. length -= RB_EVNT_HDR_SIZE;
  798. if (length > RB_MAX_SMALL_DATA) {
  799. event->len = 0;
  800. event->array[0] = length;
  801. } else
  802. event->len =
  803. (length + (RB_ALIGNMENT-1))
  804. >> RB_ALIGNMENT_SHIFT;
  805. break;
  806. default:
  807. BUG();
  808. }
  809. }
  810. static unsigned rb_calculate_event_length(unsigned length)
  811. {
  812. struct ring_buffer_event event; /* Used only for sizeof array */
  813. /* zero length can cause confusions */
  814. if (!length)
  815. length = 1;
  816. if (length > RB_MAX_SMALL_DATA)
  817. length += sizeof(event.array[0]);
  818. length += RB_EVNT_HDR_SIZE;
  819. length = ALIGN(length, RB_ALIGNMENT);
  820. return length;
  821. }
  822. static struct ring_buffer_event *
  823. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  824. unsigned type, unsigned long length, u64 *ts)
  825. {
  826. struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
  827. unsigned long tail, write;
  828. struct ring_buffer *buffer = cpu_buffer->buffer;
  829. struct ring_buffer_event *event;
  830. unsigned long flags;
  831. commit_page = cpu_buffer->commit_page;
  832. /* we just need to protect against interrupts */
  833. barrier();
  834. tail_page = cpu_buffer->tail_page;
  835. write = local_add_return(length, &tail_page->write);
  836. tail = write - length;
  837. /* See if we shot pass the end of this buffer page */
  838. if (write > BUF_PAGE_SIZE) {
  839. struct buffer_page *next_page = tail_page;
  840. local_irq_save(flags);
  841. __raw_spin_lock(&cpu_buffer->lock);
  842. rb_inc_page(cpu_buffer, &next_page);
  843. head_page = cpu_buffer->head_page;
  844. reader_page = cpu_buffer->reader_page;
  845. /* we grabbed the lock before incrementing */
  846. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  847. goto out_unlock;
  848. /*
  849. * If for some reason, we had an interrupt storm that made
  850. * it all the way around the buffer, bail, and warn
  851. * about it.
  852. */
  853. if (unlikely(next_page == commit_page)) {
  854. WARN_ON_ONCE(1);
  855. goto out_unlock;
  856. }
  857. if (next_page == head_page) {
  858. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  859. /* reset write */
  860. if (tail <= BUF_PAGE_SIZE)
  861. local_set(&tail_page->write, tail);
  862. goto out_unlock;
  863. }
  864. /* tail_page has not moved yet? */
  865. if (tail_page == cpu_buffer->tail_page) {
  866. /* count overflows */
  867. rb_update_overflow(cpu_buffer);
  868. rb_inc_page(cpu_buffer, &head_page);
  869. cpu_buffer->head_page = head_page;
  870. cpu_buffer->head_page->read = 0;
  871. }
  872. }
  873. /*
  874. * If the tail page is still the same as what we think
  875. * it is, then it is up to us to update the tail
  876. * pointer.
  877. */
  878. if (tail_page == cpu_buffer->tail_page) {
  879. local_set(&next_page->write, 0);
  880. local_set(&next_page->page->commit, 0);
  881. cpu_buffer->tail_page = next_page;
  882. /* reread the time stamp */
  883. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  884. cpu_buffer->tail_page->page->time_stamp = *ts;
  885. }
  886. /*
  887. * The actual tail page has moved forward.
  888. */
  889. if (tail < BUF_PAGE_SIZE) {
  890. /* Mark the rest of the page with padding */
  891. event = __rb_page_index(tail_page, tail);
  892. event->type = RINGBUF_TYPE_PADDING;
  893. }
  894. if (tail <= BUF_PAGE_SIZE)
  895. /* Set the write back to the previous setting */
  896. local_set(&tail_page->write, tail);
  897. /*
  898. * If this was a commit entry that failed,
  899. * increment that too
  900. */
  901. if (tail_page == cpu_buffer->commit_page &&
  902. tail == rb_commit_index(cpu_buffer)) {
  903. rb_set_commit_to_write(cpu_buffer);
  904. }
  905. __raw_spin_unlock(&cpu_buffer->lock);
  906. local_irq_restore(flags);
  907. /* fail and let the caller try again */
  908. return ERR_PTR(-EAGAIN);
  909. }
  910. /* We reserved something on the buffer */
  911. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  912. return NULL;
  913. event = __rb_page_index(tail_page, tail);
  914. rb_update_event(event, type, length);
  915. /*
  916. * If this is a commit and the tail is zero, then update
  917. * this page's time stamp.
  918. */
  919. if (!tail && rb_is_commit(cpu_buffer, event))
  920. cpu_buffer->commit_page->page->time_stamp = *ts;
  921. return event;
  922. out_unlock:
  923. __raw_spin_unlock(&cpu_buffer->lock);
  924. local_irq_restore(flags);
  925. return NULL;
  926. }
  927. static int
  928. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  929. u64 *ts, u64 *delta)
  930. {
  931. struct ring_buffer_event *event;
  932. static int once;
  933. int ret;
  934. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  935. printk(KERN_WARNING "Delta way too big! %llu"
  936. " ts=%llu write stamp = %llu\n",
  937. (unsigned long long)*delta,
  938. (unsigned long long)*ts,
  939. (unsigned long long)cpu_buffer->write_stamp);
  940. WARN_ON(1);
  941. }
  942. /*
  943. * The delta is too big, we to add a
  944. * new timestamp.
  945. */
  946. event = __rb_reserve_next(cpu_buffer,
  947. RINGBUF_TYPE_TIME_EXTEND,
  948. RB_LEN_TIME_EXTEND,
  949. ts);
  950. if (!event)
  951. return -EBUSY;
  952. if (PTR_ERR(event) == -EAGAIN)
  953. return -EAGAIN;
  954. /* Only a commited time event can update the write stamp */
  955. if (rb_is_commit(cpu_buffer, event)) {
  956. /*
  957. * If this is the first on the page, then we need to
  958. * update the page itself, and just put in a zero.
  959. */
  960. if (rb_event_index(event)) {
  961. event->time_delta = *delta & TS_MASK;
  962. event->array[0] = *delta >> TS_SHIFT;
  963. } else {
  964. cpu_buffer->commit_page->page->time_stamp = *ts;
  965. event->time_delta = 0;
  966. event->array[0] = 0;
  967. }
  968. cpu_buffer->write_stamp = *ts;
  969. /* let the caller know this was the commit */
  970. ret = 1;
  971. } else {
  972. /* Darn, this is just wasted space */
  973. event->time_delta = 0;
  974. event->array[0] = 0;
  975. ret = 0;
  976. }
  977. *delta = 0;
  978. return ret;
  979. }
  980. static struct ring_buffer_event *
  981. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  982. unsigned type, unsigned long length)
  983. {
  984. struct ring_buffer_event *event;
  985. u64 ts, delta;
  986. int commit = 0;
  987. int nr_loops = 0;
  988. again:
  989. /*
  990. * We allow for interrupts to reenter here and do a trace.
  991. * If one does, it will cause this original code to loop
  992. * back here. Even with heavy interrupts happening, this
  993. * should only happen a few times in a row. If this happens
  994. * 1000 times in a row, there must be either an interrupt
  995. * storm or we have something buggy.
  996. * Bail!
  997. */
  998. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  999. return NULL;
  1000. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  1001. /*
  1002. * Only the first commit can update the timestamp.
  1003. * Yes there is a race here. If an interrupt comes in
  1004. * just after the conditional and it traces too, then it
  1005. * will also check the deltas. More than one timestamp may
  1006. * also be made. But only the entry that did the actual
  1007. * commit will be something other than zero.
  1008. */
  1009. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  1010. rb_page_write(cpu_buffer->tail_page) ==
  1011. rb_commit_index(cpu_buffer)) {
  1012. delta = ts - cpu_buffer->write_stamp;
  1013. /* make sure this delta is calculated here */
  1014. barrier();
  1015. /* Did the write stamp get updated already? */
  1016. if (unlikely(ts < cpu_buffer->write_stamp))
  1017. delta = 0;
  1018. if (test_time_stamp(delta)) {
  1019. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  1020. if (commit == -EBUSY)
  1021. return NULL;
  1022. if (commit == -EAGAIN)
  1023. goto again;
  1024. RB_WARN_ON(cpu_buffer, commit < 0);
  1025. }
  1026. } else
  1027. /* Non commits have zero deltas */
  1028. delta = 0;
  1029. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  1030. if (PTR_ERR(event) == -EAGAIN)
  1031. goto again;
  1032. if (!event) {
  1033. if (unlikely(commit))
  1034. /*
  1035. * Ouch! We needed a timestamp and it was commited. But
  1036. * we didn't get our event reserved.
  1037. */
  1038. rb_set_commit_to_write(cpu_buffer);
  1039. return NULL;
  1040. }
  1041. /*
  1042. * If the timestamp was commited, make the commit our entry
  1043. * now so that we will update it when needed.
  1044. */
  1045. if (commit)
  1046. rb_set_commit_event(cpu_buffer, event);
  1047. else if (!rb_is_commit(cpu_buffer, event))
  1048. delta = 0;
  1049. event->time_delta = delta;
  1050. return event;
  1051. }
  1052. static DEFINE_PER_CPU(int, rb_need_resched);
  1053. /**
  1054. * ring_buffer_lock_reserve - reserve a part of the buffer
  1055. * @buffer: the ring buffer to reserve from
  1056. * @length: the length of the data to reserve (excluding event header)
  1057. * @flags: a pointer to save the interrupt flags
  1058. *
  1059. * Returns a reseverd event on the ring buffer to copy directly to.
  1060. * The user of this interface will need to get the body to write into
  1061. * and can use the ring_buffer_event_data() interface.
  1062. *
  1063. * The length is the length of the data needed, not the event length
  1064. * which also includes the event header.
  1065. *
  1066. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1067. * If NULL is returned, then nothing has been allocated or locked.
  1068. */
  1069. struct ring_buffer_event *
  1070. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  1071. unsigned long length,
  1072. unsigned long *flags)
  1073. {
  1074. struct ring_buffer_per_cpu *cpu_buffer;
  1075. struct ring_buffer_event *event;
  1076. int cpu, resched;
  1077. if (ring_buffer_flags != RB_BUFFERS_ON)
  1078. return NULL;
  1079. if (atomic_read(&buffer->record_disabled))
  1080. return NULL;
  1081. /* If we are tracing schedule, we don't want to recurse */
  1082. resched = ftrace_preempt_disable();
  1083. cpu = raw_smp_processor_id();
  1084. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1085. goto out;
  1086. cpu_buffer = buffer->buffers[cpu];
  1087. if (atomic_read(&cpu_buffer->record_disabled))
  1088. goto out;
  1089. length = rb_calculate_event_length(length);
  1090. if (length > BUF_PAGE_SIZE)
  1091. goto out;
  1092. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1093. if (!event)
  1094. goto out;
  1095. /*
  1096. * Need to store resched state on this cpu.
  1097. * Only the first needs to.
  1098. */
  1099. if (preempt_count() == 1)
  1100. per_cpu(rb_need_resched, cpu) = resched;
  1101. return event;
  1102. out:
  1103. ftrace_preempt_enable(resched);
  1104. return NULL;
  1105. }
  1106. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  1107. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1108. struct ring_buffer_event *event)
  1109. {
  1110. cpu_buffer->entries++;
  1111. /* Only process further if we own the commit */
  1112. if (!rb_is_commit(cpu_buffer, event))
  1113. return;
  1114. cpu_buffer->write_stamp += event->time_delta;
  1115. rb_set_commit_to_write(cpu_buffer);
  1116. }
  1117. /**
  1118. * ring_buffer_unlock_commit - commit a reserved
  1119. * @buffer: The buffer to commit to
  1120. * @event: The event pointer to commit.
  1121. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  1122. *
  1123. * This commits the data to the ring buffer, and releases any locks held.
  1124. *
  1125. * Must be paired with ring_buffer_lock_reserve.
  1126. */
  1127. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1128. struct ring_buffer_event *event,
  1129. unsigned long flags)
  1130. {
  1131. struct ring_buffer_per_cpu *cpu_buffer;
  1132. int cpu = raw_smp_processor_id();
  1133. cpu_buffer = buffer->buffers[cpu];
  1134. rb_commit(cpu_buffer, event);
  1135. /*
  1136. * Only the last preempt count needs to restore preemption.
  1137. */
  1138. if (preempt_count() == 1)
  1139. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1140. else
  1141. preempt_enable_no_resched_notrace();
  1142. return 0;
  1143. }
  1144. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  1145. /**
  1146. * ring_buffer_write - write data to the buffer without reserving
  1147. * @buffer: The ring buffer to write to.
  1148. * @length: The length of the data being written (excluding the event header)
  1149. * @data: The data to write to the buffer.
  1150. *
  1151. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1152. * one function. If you already have the data to write to the buffer, it
  1153. * may be easier to simply call this function.
  1154. *
  1155. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1156. * and not the length of the event which would hold the header.
  1157. */
  1158. int ring_buffer_write(struct ring_buffer *buffer,
  1159. unsigned long length,
  1160. void *data)
  1161. {
  1162. struct ring_buffer_per_cpu *cpu_buffer;
  1163. struct ring_buffer_event *event;
  1164. unsigned long event_length;
  1165. void *body;
  1166. int ret = -EBUSY;
  1167. int cpu, resched;
  1168. if (ring_buffer_flags != RB_BUFFERS_ON)
  1169. return -EBUSY;
  1170. if (atomic_read(&buffer->record_disabled))
  1171. return -EBUSY;
  1172. resched = ftrace_preempt_disable();
  1173. cpu = raw_smp_processor_id();
  1174. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1175. goto out;
  1176. cpu_buffer = buffer->buffers[cpu];
  1177. if (atomic_read(&cpu_buffer->record_disabled))
  1178. goto out;
  1179. event_length = rb_calculate_event_length(length);
  1180. event = rb_reserve_next_event(cpu_buffer,
  1181. RINGBUF_TYPE_DATA, event_length);
  1182. if (!event)
  1183. goto out;
  1184. body = rb_event_data(event);
  1185. memcpy(body, data, length);
  1186. rb_commit(cpu_buffer, event);
  1187. ret = 0;
  1188. out:
  1189. ftrace_preempt_enable(resched);
  1190. return ret;
  1191. }
  1192. EXPORT_SYMBOL_GPL(ring_buffer_write);
  1193. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1194. {
  1195. struct buffer_page *reader = cpu_buffer->reader_page;
  1196. struct buffer_page *head = cpu_buffer->head_page;
  1197. struct buffer_page *commit = cpu_buffer->commit_page;
  1198. return reader->read == rb_page_commit(reader) &&
  1199. (commit == reader ||
  1200. (commit == head &&
  1201. head->read == rb_page_commit(commit)));
  1202. }
  1203. /**
  1204. * ring_buffer_record_disable - stop all writes into the buffer
  1205. * @buffer: The ring buffer to stop writes to.
  1206. *
  1207. * This prevents all writes to the buffer. Any attempt to write
  1208. * to the buffer after this will fail and return NULL.
  1209. *
  1210. * The caller should call synchronize_sched() after this.
  1211. */
  1212. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1213. {
  1214. atomic_inc(&buffer->record_disabled);
  1215. }
  1216. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  1217. /**
  1218. * ring_buffer_record_enable - enable writes to the buffer
  1219. * @buffer: The ring buffer to enable writes
  1220. *
  1221. * Note, multiple disables will need the same number of enables
  1222. * to truely enable the writing (much like preempt_disable).
  1223. */
  1224. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1225. {
  1226. atomic_dec(&buffer->record_disabled);
  1227. }
  1228. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  1229. /**
  1230. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1231. * @buffer: The ring buffer to stop writes to.
  1232. * @cpu: The CPU buffer to stop
  1233. *
  1234. * This prevents all writes to the buffer. Any attempt to write
  1235. * to the buffer after this will fail and return NULL.
  1236. *
  1237. * The caller should call synchronize_sched() after this.
  1238. */
  1239. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1240. {
  1241. struct ring_buffer_per_cpu *cpu_buffer;
  1242. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1243. return;
  1244. cpu_buffer = buffer->buffers[cpu];
  1245. atomic_inc(&cpu_buffer->record_disabled);
  1246. }
  1247. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  1248. /**
  1249. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1250. * @buffer: The ring buffer to enable writes
  1251. * @cpu: The CPU to enable.
  1252. *
  1253. * Note, multiple disables will need the same number of enables
  1254. * to truely enable the writing (much like preempt_disable).
  1255. */
  1256. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1257. {
  1258. struct ring_buffer_per_cpu *cpu_buffer;
  1259. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1260. return;
  1261. cpu_buffer = buffer->buffers[cpu];
  1262. atomic_dec(&cpu_buffer->record_disabled);
  1263. }
  1264. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  1265. /**
  1266. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1267. * @buffer: The ring buffer
  1268. * @cpu: The per CPU buffer to get the entries from.
  1269. */
  1270. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1271. {
  1272. struct ring_buffer_per_cpu *cpu_buffer;
  1273. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1274. return 0;
  1275. cpu_buffer = buffer->buffers[cpu];
  1276. return cpu_buffer->entries;
  1277. }
  1278. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  1279. /**
  1280. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1281. * @buffer: The ring buffer
  1282. * @cpu: The per CPU buffer to get the number of overruns from
  1283. */
  1284. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1285. {
  1286. struct ring_buffer_per_cpu *cpu_buffer;
  1287. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1288. return 0;
  1289. cpu_buffer = buffer->buffers[cpu];
  1290. return cpu_buffer->overrun;
  1291. }
  1292. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  1293. /**
  1294. * ring_buffer_entries - get the number of entries in a buffer
  1295. * @buffer: The ring buffer
  1296. *
  1297. * Returns the total number of entries in the ring buffer
  1298. * (all CPU entries)
  1299. */
  1300. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1301. {
  1302. struct ring_buffer_per_cpu *cpu_buffer;
  1303. unsigned long entries = 0;
  1304. int cpu;
  1305. /* if you care about this being correct, lock the buffer */
  1306. for_each_buffer_cpu(buffer, cpu) {
  1307. cpu_buffer = buffer->buffers[cpu];
  1308. entries += cpu_buffer->entries;
  1309. }
  1310. return entries;
  1311. }
  1312. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  1313. /**
  1314. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1315. * @buffer: The ring buffer
  1316. *
  1317. * Returns the total number of overruns in the ring buffer
  1318. * (all CPU entries)
  1319. */
  1320. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1321. {
  1322. struct ring_buffer_per_cpu *cpu_buffer;
  1323. unsigned long overruns = 0;
  1324. int cpu;
  1325. /* if you care about this being correct, lock the buffer */
  1326. for_each_buffer_cpu(buffer, cpu) {
  1327. cpu_buffer = buffer->buffers[cpu];
  1328. overruns += cpu_buffer->overrun;
  1329. }
  1330. return overruns;
  1331. }
  1332. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  1333. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1334. {
  1335. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1336. /* Iterator usage is expected to have record disabled */
  1337. if (list_empty(&cpu_buffer->reader_page->list)) {
  1338. iter->head_page = cpu_buffer->head_page;
  1339. iter->head = cpu_buffer->head_page->read;
  1340. } else {
  1341. iter->head_page = cpu_buffer->reader_page;
  1342. iter->head = cpu_buffer->reader_page->read;
  1343. }
  1344. if (iter->head)
  1345. iter->read_stamp = cpu_buffer->read_stamp;
  1346. else
  1347. iter->read_stamp = iter->head_page->page->time_stamp;
  1348. }
  1349. /**
  1350. * ring_buffer_iter_reset - reset an iterator
  1351. * @iter: The iterator to reset
  1352. *
  1353. * Resets the iterator, so that it will start from the beginning
  1354. * again.
  1355. */
  1356. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1357. {
  1358. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1359. unsigned long flags;
  1360. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1361. rb_iter_reset(iter);
  1362. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1363. }
  1364. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  1365. /**
  1366. * ring_buffer_iter_empty - check if an iterator has no more to read
  1367. * @iter: The iterator to check
  1368. */
  1369. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1370. {
  1371. struct ring_buffer_per_cpu *cpu_buffer;
  1372. cpu_buffer = iter->cpu_buffer;
  1373. return iter->head_page == cpu_buffer->commit_page &&
  1374. iter->head == rb_commit_index(cpu_buffer);
  1375. }
  1376. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  1377. static void
  1378. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1379. struct ring_buffer_event *event)
  1380. {
  1381. u64 delta;
  1382. switch (event->type) {
  1383. case RINGBUF_TYPE_PADDING:
  1384. return;
  1385. case RINGBUF_TYPE_TIME_EXTEND:
  1386. delta = event->array[0];
  1387. delta <<= TS_SHIFT;
  1388. delta += event->time_delta;
  1389. cpu_buffer->read_stamp += delta;
  1390. return;
  1391. case RINGBUF_TYPE_TIME_STAMP:
  1392. /* FIXME: not implemented */
  1393. return;
  1394. case RINGBUF_TYPE_DATA:
  1395. cpu_buffer->read_stamp += event->time_delta;
  1396. return;
  1397. default:
  1398. BUG();
  1399. }
  1400. return;
  1401. }
  1402. static void
  1403. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1404. struct ring_buffer_event *event)
  1405. {
  1406. u64 delta;
  1407. switch (event->type) {
  1408. case RINGBUF_TYPE_PADDING:
  1409. return;
  1410. case RINGBUF_TYPE_TIME_EXTEND:
  1411. delta = event->array[0];
  1412. delta <<= TS_SHIFT;
  1413. delta += event->time_delta;
  1414. iter->read_stamp += delta;
  1415. return;
  1416. case RINGBUF_TYPE_TIME_STAMP:
  1417. /* FIXME: not implemented */
  1418. return;
  1419. case RINGBUF_TYPE_DATA:
  1420. iter->read_stamp += event->time_delta;
  1421. return;
  1422. default:
  1423. BUG();
  1424. }
  1425. return;
  1426. }
  1427. static struct buffer_page *
  1428. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1429. {
  1430. struct buffer_page *reader = NULL;
  1431. unsigned long flags;
  1432. int nr_loops = 0;
  1433. local_irq_save(flags);
  1434. __raw_spin_lock(&cpu_buffer->lock);
  1435. again:
  1436. /*
  1437. * This should normally only loop twice. But because the
  1438. * start of the reader inserts an empty page, it causes
  1439. * a case where we will loop three times. There should be no
  1440. * reason to loop four times (that I know of).
  1441. */
  1442. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1443. reader = NULL;
  1444. goto out;
  1445. }
  1446. reader = cpu_buffer->reader_page;
  1447. /* If there's more to read, return this page */
  1448. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1449. goto out;
  1450. /* Never should we have an index greater than the size */
  1451. if (RB_WARN_ON(cpu_buffer,
  1452. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1453. goto out;
  1454. /* check if we caught up to the tail */
  1455. reader = NULL;
  1456. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1457. goto out;
  1458. /*
  1459. * Splice the empty reader page into the list around the head.
  1460. * Reset the reader page to size zero.
  1461. */
  1462. reader = cpu_buffer->head_page;
  1463. cpu_buffer->reader_page->list.next = reader->list.next;
  1464. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1465. local_set(&cpu_buffer->reader_page->write, 0);
  1466. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1467. /* Make the reader page now replace the head */
  1468. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1469. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1470. /*
  1471. * If the tail is on the reader, then we must set the head
  1472. * to the inserted page, otherwise we set it one before.
  1473. */
  1474. cpu_buffer->head_page = cpu_buffer->reader_page;
  1475. if (cpu_buffer->commit_page != reader)
  1476. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1477. /* Finally update the reader page to the new head */
  1478. cpu_buffer->reader_page = reader;
  1479. rb_reset_reader_page(cpu_buffer);
  1480. goto again;
  1481. out:
  1482. __raw_spin_unlock(&cpu_buffer->lock);
  1483. local_irq_restore(flags);
  1484. return reader;
  1485. }
  1486. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1487. {
  1488. struct ring_buffer_event *event;
  1489. struct buffer_page *reader;
  1490. unsigned length;
  1491. reader = rb_get_reader_page(cpu_buffer);
  1492. /* This function should not be called when buffer is empty */
  1493. if (RB_WARN_ON(cpu_buffer, !reader))
  1494. return;
  1495. event = rb_reader_event(cpu_buffer);
  1496. if (event->type == RINGBUF_TYPE_DATA)
  1497. cpu_buffer->entries--;
  1498. rb_update_read_stamp(cpu_buffer, event);
  1499. length = rb_event_length(event);
  1500. cpu_buffer->reader_page->read += length;
  1501. }
  1502. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1503. {
  1504. struct ring_buffer *buffer;
  1505. struct ring_buffer_per_cpu *cpu_buffer;
  1506. struct ring_buffer_event *event;
  1507. unsigned length;
  1508. cpu_buffer = iter->cpu_buffer;
  1509. buffer = cpu_buffer->buffer;
  1510. /*
  1511. * Check if we are at the end of the buffer.
  1512. */
  1513. if (iter->head >= rb_page_size(iter->head_page)) {
  1514. if (RB_WARN_ON(buffer,
  1515. iter->head_page == cpu_buffer->commit_page))
  1516. return;
  1517. rb_inc_iter(iter);
  1518. return;
  1519. }
  1520. event = rb_iter_head_event(iter);
  1521. length = rb_event_length(event);
  1522. /*
  1523. * This should not be called to advance the header if we are
  1524. * at the tail of the buffer.
  1525. */
  1526. if (RB_WARN_ON(cpu_buffer,
  1527. (iter->head_page == cpu_buffer->commit_page) &&
  1528. (iter->head + length > rb_commit_index(cpu_buffer))))
  1529. return;
  1530. rb_update_iter_read_stamp(iter, event);
  1531. iter->head += length;
  1532. /* check for end of page padding */
  1533. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1534. (iter->head_page != cpu_buffer->commit_page))
  1535. rb_advance_iter(iter);
  1536. }
  1537. static struct ring_buffer_event *
  1538. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1539. {
  1540. struct ring_buffer_per_cpu *cpu_buffer;
  1541. struct ring_buffer_event *event;
  1542. struct buffer_page *reader;
  1543. int nr_loops = 0;
  1544. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1545. return NULL;
  1546. cpu_buffer = buffer->buffers[cpu];
  1547. again:
  1548. /*
  1549. * We repeat when a timestamp is encountered. It is possible
  1550. * to get multiple timestamps from an interrupt entering just
  1551. * as one timestamp is about to be written. The max times
  1552. * that this can happen is the number of nested interrupts we
  1553. * can have. Nesting 10 deep of interrupts is clearly
  1554. * an anomaly.
  1555. */
  1556. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1557. return NULL;
  1558. reader = rb_get_reader_page(cpu_buffer);
  1559. if (!reader)
  1560. return NULL;
  1561. event = rb_reader_event(cpu_buffer);
  1562. switch (event->type) {
  1563. case RINGBUF_TYPE_PADDING:
  1564. RB_WARN_ON(cpu_buffer, 1);
  1565. rb_advance_reader(cpu_buffer);
  1566. return NULL;
  1567. case RINGBUF_TYPE_TIME_EXTEND:
  1568. /* Internal data, OK to advance */
  1569. rb_advance_reader(cpu_buffer);
  1570. goto again;
  1571. case RINGBUF_TYPE_TIME_STAMP:
  1572. /* FIXME: not implemented */
  1573. rb_advance_reader(cpu_buffer);
  1574. goto again;
  1575. case RINGBUF_TYPE_DATA:
  1576. if (ts) {
  1577. *ts = cpu_buffer->read_stamp + event->time_delta;
  1578. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1579. }
  1580. return event;
  1581. default:
  1582. BUG();
  1583. }
  1584. return NULL;
  1585. }
  1586. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  1587. static struct ring_buffer_event *
  1588. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1589. {
  1590. struct ring_buffer *buffer;
  1591. struct ring_buffer_per_cpu *cpu_buffer;
  1592. struct ring_buffer_event *event;
  1593. int nr_loops = 0;
  1594. if (ring_buffer_iter_empty(iter))
  1595. return NULL;
  1596. cpu_buffer = iter->cpu_buffer;
  1597. buffer = cpu_buffer->buffer;
  1598. again:
  1599. /*
  1600. * We repeat when a timestamp is encountered. It is possible
  1601. * to get multiple timestamps from an interrupt entering just
  1602. * as one timestamp is about to be written. The max times
  1603. * that this can happen is the number of nested interrupts we
  1604. * can have. Nesting 10 deep of interrupts is clearly
  1605. * an anomaly.
  1606. */
  1607. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1608. return NULL;
  1609. if (rb_per_cpu_empty(cpu_buffer))
  1610. return NULL;
  1611. event = rb_iter_head_event(iter);
  1612. switch (event->type) {
  1613. case RINGBUF_TYPE_PADDING:
  1614. rb_inc_iter(iter);
  1615. goto again;
  1616. case RINGBUF_TYPE_TIME_EXTEND:
  1617. /* Internal data, OK to advance */
  1618. rb_advance_iter(iter);
  1619. goto again;
  1620. case RINGBUF_TYPE_TIME_STAMP:
  1621. /* FIXME: not implemented */
  1622. rb_advance_iter(iter);
  1623. goto again;
  1624. case RINGBUF_TYPE_DATA:
  1625. if (ts) {
  1626. *ts = iter->read_stamp + event->time_delta;
  1627. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1628. }
  1629. return event;
  1630. default:
  1631. BUG();
  1632. }
  1633. return NULL;
  1634. }
  1635. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  1636. /**
  1637. * ring_buffer_peek - peek at the next event to be read
  1638. * @buffer: The ring buffer to read
  1639. * @cpu: The cpu to peak at
  1640. * @ts: The timestamp counter of this event.
  1641. *
  1642. * This will return the event that will be read next, but does
  1643. * not consume the data.
  1644. */
  1645. struct ring_buffer_event *
  1646. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1647. {
  1648. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1649. struct ring_buffer_event *event;
  1650. unsigned long flags;
  1651. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1652. event = rb_buffer_peek(buffer, cpu, ts);
  1653. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1654. return event;
  1655. }
  1656. /**
  1657. * ring_buffer_iter_peek - peek at the next event to be read
  1658. * @iter: The ring buffer iterator
  1659. * @ts: The timestamp counter of this event.
  1660. *
  1661. * This will return the event that will be read next, but does
  1662. * not increment the iterator.
  1663. */
  1664. struct ring_buffer_event *
  1665. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1666. {
  1667. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1668. struct ring_buffer_event *event;
  1669. unsigned long flags;
  1670. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1671. event = rb_iter_peek(iter, ts);
  1672. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1673. return event;
  1674. }
  1675. /**
  1676. * ring_buffer_consume - return an event and consume it
  1677. * @buffer: The ring buffer to get the next event from
  1678. *
  1679. * Returns the next event in the ring buffer, and that event is consumed.
  1680. * Meaning, that sequential reads will keep returning a different event,
  1681. * and eventually empty the ring buffer if the producer is slower.
  1682. */
  1683. struct ring_buffer_event *
  1684. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1685. {
  1686. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1687. struct ring_buffer_event *event;
  1688. unsigned long flags;
  1689. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1690. return NULL;
  1691. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1692. event = rb_buffer_peek(buffer, cpu, ts);
  1693. if (!event)
  1694. goto out;
  1695. rb_advance_reader(cpu_buffer);
  1696. out:
  1697. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1698. return event;
  1699. }
  1700. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  1701. /**
  1702. * ring_buffer_read_start - start a non consuming read of the buffer
  1703. * @buffer: The ring buffer to read from
  1704. * @cpu: The cpu buffer to iterate over
  1705. *
  1706. * This starts up an iteration through the buffer. It also disables
  1707. * the recording to the buffer until the reading is finished.
  1708. * This prevents the reading from being corrupted. This is not
  1709. * a consuming read, so a producer is not expected.
  1710. *
  1711. * Must be paired with ring_buffer_finish.
  1712. */
  1713. struct ring_buffer_iter *
  1714. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1715. {
  1716. struct ring_buffer_per_cpu *cpu_buffer;
  1717. struct ring_buffer_iter *iter;
  1718. unsigned long flags;
  1719. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1720. return NULL;
  1721. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1722. if (!iter)
  1723. return NULL;
  1724. cpu_buffer = buffer->buffers[cpu];
  1725. iter->cpu_buffer = cpu_buffer;
  1726. atomic_inc(&cpu_buffer->record_disabled);
  1727. synchronize_sched();
  1728. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1729. __raw_spin_lock(&cpu_buffer->lock);
  1730. rb_iter_reset(iter);
  1731. __raw_spin_unlock(&cpu_buffer->lock);
  1732. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1733. return iter;
  1734. }
  1735. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  1736. /**
  1737. * ring_buffer_finish - finish reading the iterator of the buffer
  1738. * @iter: The iterator retrieved by ring_buffer_start
  1739. *
  1740. * This re-enables the recording to the buffer, and frees the
  1741. * iterator.
  1742. */
  1743. void
  1744. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1745. {
  1746. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1747. atomic_dec(&cpu_buffer->record_disabled);
  1748. kfree(iter);
  1749. }
  1750. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  1751. /**
  1752. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1753. * @iter: The ring buffer iterator
  1754. * @ts: The time stamp of the event read.
  1755. *
  1756. * This reads the next event in the ring buffer and increments the iterator.
  1757. */
  1758. struct ring_buffer_event *
  1759. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1760. {
  1761. struct ring_buffer_event *event;
  1762. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1763. unsigned long flags;
  1764. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1765. event = rb_iter_peek(iter, ts);
  1766. if (!event)
  1767. goto out;
  1768. rb_advance_iter(iter);
  1769. out:
  1770. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1771. return event;
  1772. }
  1773. EXPORT_SYMBOL_GPL(ring_buffer_read);
  1774. /**
  1775. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1776. * @buffer: The ring buffer.
  1777. */
  1778. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1779. {
  1780. return BUF_PAGE_SIZE * buffer->pages;
  1781. }
  1782. EXPORT_SYMBOL_GPL(ring_buffer_size);
  1783. static void
  1784. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1785. {
  1786. cpu_buffer->head_page
  1787. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1788. local_set(&cpu_buffer->head_page->write, 0);
  1789. local_set(&cpu_buffer->head_page->page->commit, 0);
  1790. cpu_buffer->head_page->read = 0;
  1791. cpu_buffer->tail_page = cpu_buffer->head_page;
  1792. cpu_buffer->commit_page = cpu_buffer->head_page;
  1793. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1794. local_set(&cpu_buffer->reader_page->write, 0);
  1795. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1796. cpu_buffer->reader_page->read = 0;
  1797. cpu_buffer->overrun = 0;
  1798. cpu_buffer->entries = 0;
  1799. }
  1800. /**
  1801. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1802. * @buffer: The ring buffer to reset a per cpu buffer of
  1803. * @cpu: The CPU buffer to be reset
  1804. */
  1805. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1806. {
  1807. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1808. unsigned long flags;
  1809. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1810. return;
  1811. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1812. __raw_spin_lock(&cpu_buffer->lock);
  1813. rb_reset_cpu(cpu_buffer);
  1814. __raw_spin_unlock(&cpu_buffer->lock);
  1815. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1816. }
  1817. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  1818. /**
  1819. * ring_buffer_reset - reset a ring buffer
  1820. * @buffer: The ring buffer to reset all cpu buffers
  1821. */
  1822. void ring_buffer_reset(struct ring_buffer *buffer)
  1823. {
  1824. int cpu;
  1825. for_each_buffer_cpu(buffer, cpu)
  1826. ring_buffer_reset_cpu(buffer, cpu);
  1827. }
  1828. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  1829. /**
  1830. * rind_buffer_empty - is the ring buffer empty?
  1831. * @buffer: The ring buffer to test
  1832. */
  1833. int ring_buffer_empty(struct ring_buffer *buffer)
  1834. {
  1835. struct ring_buffer_per_cpu *cpu_buffer;
  1836. int cpu;
  1837. /* yes this is racy, but if you don't like the race, lock the buffer */
  1838. for_each_buffer_cpu(buffer, cpu) {
  1839. cpu_buffer = buffer->buffers[cpu];
  1840. if (!rb_per_cpu_empty(cpu_buffer))
  1841. return 0;
  1842. }
  1843. return 1;
  1844. }
  1845. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  1846. /**
  1847. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1848. * @buffer: The ring buffer
  1849. * @cpu: The CPU buffer to test
  1850. */
  1851. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1852. {
  1853. struct ring_buffer_per_cpu *cpu_buffer;
  1854. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1855. return 1;
  1856. cpu_buffer = buffer->buffers[cpu];
  1857. return rb_per_cpu_empty(cpu_buffer);
  1858. }
  1859. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  1860. /**
  1861. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1862. * @buffer_a: One buffer to swap with
  1863. * @buffer_b: The other buffer to swap with
  1864. *
  1865. * This function is useful for tracers that want to take a "snapshot"
  1866. * of a CPU buffer and has another back up buffer lying around.
  1867. * it is expected that the tracer handles the cpu buffer not being
  1868. * used at the moment.
  1869. */
  1870. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1871. struct ring_buffer *buffer_b, int cpu)
  1872. {
  1873. struct ring_buffer_per_cpu *cpu_buffer_a;
  1874. struct ring_buffer_per_cpu *cpu_buffer_b;
  1875. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  1876. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  1877. return -EINVAL;
  1878. /* At least make sure the two buffers are somewhat the same */
  1879. if (buffer_a->pages != buffer_b->pages)
  1880. return -EINVAL;
  1881. cpu_buffer_a = buffer_a->buffers[cpu];
  1882. cpu_buffer_b = buffer_b->buffers[cpu];
  1883. /*
  1884. * We can't do a synchronize_sched here because this
  1885. * function can be called in atomic context.
  1886. * Normally this will be called from the same CPU as cpu.
  1887. * If not it's up to the caller to protect this.
  1888. */
  1889. atomic_inc(&cpu_buffer_a->record_disabled);
  1890. atomic_inc(&cpu_buffer_b->record_disabled);
  1891. buffer_a->buffers[cpu] = cpu_buffer_b;
  1892. buffer_b->buffers[cpu] = cpu_buffer_a;
  1893. cpu_buffer_b->buffer = buffer_a;
  1894. cpu_buffer_a->buffer = buffer_b;
  1895. atomic_dec(&cpu_buffer_a->record_disabled);
  1896. atomic_dec(&cpu_buffer_b->record_disabled);
  1897. return 0;
  1898. }
  1899. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  1900. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1901. struct buffer_data_page *bpage)
  1902. {
  1903. struct ring_buffer_event *event;
  1904. unsigned long head;
  1905. __raw_spin_lock(&cpu_buffer->lock);
  1906. for (head = 0; head < local_read(&bpage->commit);
  1907. head += rb_event_length(event)) {
  1908. event = __rb_data_page_index(bpage, head);
  1909. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1910. return;
  1911. /* Only count data entries */
  1912. if (event->type != RINGBUF_TYPE_DATA)
  1913. continue;
  1914. cpu_buffer->entries--;
  1915. }
  1916. __raw_spin_unlock(&cpu_buffer->lock);
  1917. }
  1918. /**
  1919. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1920. * @buffer: the buffer to allocate for.
  1921. *
  1922. * This function is used in conjunction with ring_buffer_read_page.
  1923. * When reading a full page from the ring buffer, these functions
  1924. * can be used to speed up the process. The calling function should
  1925. * allocate a few pages first with this function. Then when it
  1926. * needs to get pages from the ring buffer, it passes the result
  1927. * of this function into ring_buffer_read_page, which will swap
  1928. * the page that was allocated, with the read page of the buffer.
  1929. *
  1930. * Returns:
  1931. * The page allocated, or NULL on error.
  1932. */
  1933. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1934. {
  1935. unsigned long addr;
  1936. struct buffer_data_page *bpage;
  1937. addr = __get_free_page(GFP_KERNEL);
  1938. if (!addr)
  1939. return NULL;
  1940. bpage = (void *)addr;
  1941. return bpage;
  1942. }
  1943. /**
  1944. * ring_buffer_free_read_page - free an allocated read page
  1945. * @buffer: the buffer the page was allocate for
  1946. * @data: the page to free
  1947. *
  1948. * Free a page allocated from ring_buffer_alloc_read_page.
  1949. */
  1950. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1951. {
  1952. free_page((unsigned long)data);
  1953. }
  1954. /**
  1955. * ring_buffer_read_page - extract a page from the ring buffer
  1956. * @buffer: buffer to extract from
  1957. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1958. * @cpu: the cpu of the buffer to extract
  1959. * @full: should the extraction only happen when the page is full.
  1960. *
  1961. * This function will pull out a page from the ring buffer and consume it.
  1962. * @data_page must be the address of the variable that was returned
  1963. * from ring_buffer_alloc_read_page. This is because the page might be used
  1964. * to swap with a page in the ring buffer.
  1965. *
  1966. * for example:
  1967. * rpage = ring_buffer_alloc_page(buffer);
  1968. * if (!rpage)
  1969. * return error;
  1970. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  1971. * if (ret)
  1972. * process_page(rpage);
  1973. *
  1974. * When @full is set, the function will not return true unless
  1975. * the writer is off the reader page.
  1976. *
  1977. * Note: it is up to the calling functions to handle sleeps and wakeups.
  1978. * The ring buffer can be used anywhere in the kernel and can not
  1979. * blindly call wake_up. The layer that uses the ring buffer must be
  1980. * responsible for that.
  1981. *
  1982. * Returns:
  1983. * 1 if data has been transferred
  1984. * 0 if no data has been transferred.
  1985. */
  1986. int ring_buffer_read_page(struct ring_buffer *buffer,
  1987. void **data_page, int cpu, int full)
  1988. {
  1989. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1990. struct ring_buffer_event *event;
  1991. struct buffer_data_page *bpage;
  1992. unsigned long flags;
  1993. int ret = 0;
  1994. if (!data_page)
  1995. return 0;
  1996. bpage = *data_page;
  1997. if (!bpage)
  1998. return 0;
  1999. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2000. /*
  2001. * rb_buffer_peek will get the next ring buffer if
  2002. * the current reader page is empty.
  2003. */
  2004. event = rb_buffer_peek(buffer, cpu, NULL);
  2005. if (!event)
  2006. goto out;
  2007. /* check for data */
  2008. if (!local_read(&cpu_buffer->reader_page->page->commit))
  2009. goto out;
  2010. /*
  2011. * If the writer is already off of the read page, then simply
  2012. * switch the read page with the given page. Otherwise
  2013. * we need to copy the data from the reader to the writer.
  2014. */
  2015. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  2016. unsigned int read = cpu_buffer->reader_page->read;
  2017. if (full)
  2018. goto out;
  2019. /* The writer is still on the reader page, we must copy */
  2020. bpage = cpu_buffer->reader_page->page;
  2021. memcpy(bpage->data,
  2022. cpu_buffer->reader_page->page->data + read,
  2023. local_read(&bpage->commit) - read);
  2024. /* consume what was read */
  2025. cpu_buffer->reader_page += read;
  2026. } else {
  2027. /* swap the pages */
  2028. rb_init_page(bpage);
  2029. bpage = cpu_buffer->reader_page->page;
  2030. cpu_buffer->reader_page->page = *data_page;
  2031. cpu_buffer->reader_page->read = 0;
  2032. *data_page = bpage;
  2033. }
  2034. ret = 1;
  2035. /* update the entry counter */
  2036. rb_remove_entries(cpu_buffer, bpage);
  2037. out:
  2038. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2039. return ret;
  2040. }
  2041. static ssize_t
  2042. rb_simple_read(struct file *filp, char __user *ubuf,
  2043. size_t cnt, loff_t *ppos)
  2044. {
  2045. long *p = filp->private_data;
  2046. char buf[64];
  2047. int r;
  2048. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  2049. r = sprintf(buf, "permanently disabled\n");
  2050. else
  2051. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  2052. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  2053. }
  2054. static ssize_t
  2055. rb_simple_write(struct file *filp, const char __user *ubuf,
  2056. size_t cnt, loff_t *ppos)
  2057. {
  2058. long *p = filp->private_data;
  2059. char buf[64];
  2060. long val;
  2061. int ret;
  2062. if (cnt >= sizeof(buf))
  2063. return -EINVAL;
  2064. if (copy_from_user(&buf, ubuf, cnt))
  2065. return -EFAULT;
  2066. buf[cnt] = 0;
  2067. ret = strict_strtoul(buf, 10, &val);
  2068. if (ret < 0)
  2069. return ret;
  2070. if (val)
  2071. set_bit(RB_BUFFERS_ON_BIT, p);
  2072. else
  2073. clear_bit(RB_BUFFERS_ON_BIT, p);
  2074. (*ppos)++;
  2075. return cnt;
  2076. }
  2077. static struct file_operations rb_simple_fops = {
  2078. .open = tracing_open_generic,
  2079. .read = rb_simple_read,
  2080. .write = rb_simple_write,
  2081. };
  2082. static __init int rb_init_debugfs(void)
  2083. {
  2084. struct dentry *d_tracer;
  2085. struct dentry *entry;
  2086. d_tracer = tracing_init_dentry();
  2087. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2088. &ring_buffer_flags, &rb_simple_fops);
  2089. if (!entry)
  2090. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2091. return 0;
  2092. }
  2093. fs_initcall(rb_init_debugfs);