slab.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/seq_file.h>
  97. #include <linux/notifier.h>
  98. #include <linux/kallsyms.h>
  99. #include <linux/cpu.h>
  100. #include <linux/sysctl.h>
  101. #include <linux/module.h>
  102. #include <linux/rcupdate.h>
  103. #include <linux/string.h>
  104. #include <linux/nodemask.h>
  105. #include <linux/mempolicy.h>
  106. #include <linux/mutex.h>
  107. #include <asm/uaccess.h>
  108. #include <asm/cacheflush.h>
  109. #include <asm/tlbflush.h>
  110. #include <asm/page.h>
  111. /*
  112. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  113. * SLAB_RED_ZONE & SLAB_POISON.
  114. * 0 for faster, smaller code (especially in the critical paths).
  115. *
  116. * STATS - 1 to collect stats for /proc/slabinfo.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  120. */
  121. #ifdef CONFIG_DEBUG_SLAB
  122. #define DEBUG 1
  123. #define STATS 1
  124. #define FORCED_DEBUG 1
  125. #else
  126. #define DEBUG 0
  127. #define STATS 0
  128. #define FORCED_DEBUG 0
  129. #endif
  130. /* Shouldn't this be in a header file somewhere? */
  131. #define BYTES_PER_WORD sizeof(void *)
  132. #ifndef cache_line_size
  133. #define cache_line_size() L1_CACHE_BYTES
  134. #endif
  135. #ifndef ARCH_KMALLOC_MINALIGN
  136. /*
  137. * Enforce a minimum alignment for the kmalloc caches.
  138. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  139. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  140. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  141. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  142. * Note that this flag disables some debug features.
  143. */
  144. #define ARCH_KMALLOC_MINALIGN 0
  145. #endif
  146. #ifndef ARCH_SLAB_MINALIGN
  147. /*
  148. * Enforce a minimum alignment for all caches.
  149. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  150. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  151. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  152. * some debug features.
  153. */
  154. #define ARCH_SLAB_MINALIGN 0
  155. #endif
  156. #ifndef ARCH_KMALLOC_FLAGS
  157. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  158. #endif
  159. /* Legal flag mask for kmem_cache_create(). */
  160. #if DEBUG
  161. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  162. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  163. SLAB_NO_REAP | SLAB_CACHE_DMA | \
  164. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  165. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  166. SLAB_DESTROY_BY_RCU)
  167. #else
  168. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
  169. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU)
  172. #endif
  173. /*
  174. * kmem_bufctl_t:
  175. *
  176. * Bufctl's are used for linking objs within a slab
  177. * linked offsets.
  178. *
  179. * This implementation relies on "struct page" for locating the cache &
  180. * slab an object belongs to.
  181. * This allows the bufctl structure to be small (one int), but limits
  182. * the number of objects a slab (not a cache) can contain when off-slab
  183. * bufctls are used. The limit is the size of the largest general cache
  184. * that does not use off-slab slabs.
  185. * For 32bit archs with 4 kB pages, is this 56.
  186. * This is not serious, as it is only for large objects, when it is unwise
  187. * to have too many per slab.
  188. * Note: This limit can be raised by introducing a general cache whose size
  189. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  190. */
  191. typedef unsigned int kmem_bufctl_t;
  192. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  193. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  194. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  195. /* Max number of objs-per-slab for caches which use off-slab slabs.
  196. * Needed to avoid a possible looping condition in cache_grow().
  197. */
  198. static unsigned long offslab_limit;
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /* bootstrap: The caches do not work without cpuarrays anymore,
  261. * but the cpuarrays are allocated from the generic caches...
  262. */
  263. #define BOOT_CPUCACHE_ENTRIES 1
  264. struct arraycache_init {
  265. struct array_cache cache;
  266. void *entries[BOOT_CPUCACHE_ENTRIES];
  267. };
  268. /*
  269. * The slab lists for all objects.
  270. */
  271. struct kmem_list3 {
  272. struct list_head slabs_partial; /* partial list first, better asm code */
  273. struct list_head slabs_full;
  274. struct list_head slabs_free;
  275. unsigned long free_objects;
  276. unsigned long next_reap;
  277. int free_touched;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. };
  284. /*
  285. * Need this for bootstrapping a per node allocator.
  286. */
  287. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  288. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  289. #define CACHE_CACHE 0
  290. #define SIZE_AC 1
  291. #define SIZE_L3 (1 + MAX_NUMNODES)
  292. /*
  293. * This function must be completely optimized away if
  294. * a constant is passed to it. Mostly the same as
  295. * what is in linux/slab.h except it returns an
  296. * index.
  297. */
  298. static __always_inline int index_of(const size_t size)
  299. {
  300. extern void __bad_size(void);
  301. if (__builtin_constant_p(size)) {
  302. int i = 0;
  303. #define CACHE(x) \
  304. if (size <=x) \
  305. return i; \
  306. else \
  307. i++;
  308. #include "linux/kmalloc_sizes.h"
  309. #undef CACHE
  310. __bad_size();
  311. } else
  312. __bad_size();
  313. return 0;
  314. }
  315. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  316. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  317. static void kmem_list3_init(struct kmem_list3 *parent)
  318. {
  319. INIT_LIST_HEAD(&parent->slabs_full);
  320. INIT_LIST_HEAD(&parent->slabs_partial);
  321. INIT_LIST_HEAD(&parent->slabs_free);
  322. parent->shared = NULL;
  323. parent->alien = NULL;
  324. parent->colour_next = 0;
  325. spin_lock_init(&parent->list_lock);
  326. parent->free_objects = 0;
  327. parent->free_touched = 0;
  328. }
  329. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  330. do { \
  331. INIT_LIST_HEAD(listp); \
  332. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  333. } while (0)
  334. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  335. do { \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  338. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  339. } while (0)
  340. /*
  341. * struct kmem_cache
  342. *
  343. * manages a cache.
  344. */
  345. struct kmem_cache {
  346. /* 1) per-cpu data, touched during every alloc/free */
  347. struct array_cache *array[NR_CPUS];
  348. unsigned int batchcount;
  349. unsigned int limit;
  350. unsigned int shared;
  351. unsigned int buffer_size;
  352. /* 2) touched by every alloc & free from the backend */
  353. struct kmem_list3 *nodelists[MAX_NUMNODES];
  354. unsigned int flags; /* constant flags */
  355. unsigned int num; /* # of objs per slab */
  356. spinlock_t spinlock;
  357. /* 3) cache_grow/shrink */
  358. /* order of pgs per slab (2^n) */
  359. unsigned int gfporder;
  360. /* force GFP flags, e.g. GFP_DMA */
  361. gfp_t gfpflags;
  362. size_t colour; /* cache colouring range */
  363. unsigned int colour_off; /* colour offset */
  364. struct kmem_cache *slabp_cache;
  365. unsigned int slab_size;
  366. unsigned int dflags; /* dynamic flags */
  367. /* constructor func */
  368. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  369. /* de-constructor func */
  370. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  371. /* 4) cache creation/removal */
  372. const char *name;
  373. struct list_head next;
  374. /* 5) statistics */
  375. #if STATS
  376. unsigned long num_active;
  377. unsigned long num_allocations;
  378. unsigned long high_mark;
  379. unsigned long grown;
  380. unsigned long reaped;
  381. unsigned long errors;
  382. unsigned long max_freeable;
  383. unsigned long node_allocs;
  384. unsigned long node_frees;
  385. atomic_t allochit;
  386. atomic_t allocmiss;
  387. atomic_t freehit;
  388. atomic_t freemiss;
  389. #endif
  390. #if DEBUG
  391. /*
  392. * If debugging is enabled, then the allocator can add additional
  393. * fields and/or padding to every object. buffer_size contains the total
  394. * object size including these internal fields, the following two
  395. * variables contain the offset to the user object and its size.
  396. */
  397. int obj_offset;
  398. int obj_size;
  399. #endif
  400. };
  401. #define CFLGS_OFF_SLAB (0x80000000UL)
  402. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  403. #define BATCHREFILL_LIMIT 16
  404. /* Optimization question: fewer reaps means less
  405. * probability for unnessary cpucache drain/refill cycles.
  406. *
  407. * OTOH the cpuarrays can contain lots of objects,
  408. * which could lock up otherwise freeable slabs.
  409. */
  410. #define REAPTIMEOUT_CPUC (2*HZ)
  411. #define REAPTIMEOUT_LIST3 (4*HZ)
  412. #if STATS
  413. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  414. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  415. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  416. #define STATS_INC_GROWN(x) ((x)->grown++)
  417. #define STATS_INC_REAPED(x) ((x)->reaped++)
  418. #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
  419. (x)->high_mark = (x)->num_active; \
  420. } while (0)
  421. #define STATS_INC_ERR(x) ((x)->errors++)
  422. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  423. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  424. #define STATS_SET_FREEABLE(x, i) \
  425. do { if ((x)->max_freeable < i) \
  426. (x)->max_freeable = i; \
  427. } while (0)
  428. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  429. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  430. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  431. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  432. #else
  433. #define STATS_INC_ACTIVE(x) do { } while (0)
  434. #define STATS_DEC_ACTIVE(x) do { } while (0)
  435. #define STATS_INC_ALLOCED(x) do { } while (0)
  436. #define STATS_INC_GROWN(x) do { } while (0)
  437. #define STATS_INC_REAPED(x) do { } while (0)
  438. #define STATS_SET_HIGH(x) do { } while (0)
  439. #define STATS_INC_ERR(x) do { } while (0)
  440. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  441. #define STATS_INC_NODEFREES(x) do { } while (0)
  442. #define STATS_SET_FREEABLE(x, i) \
  443. do { } while (0)
  444. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  445. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  446. #define STATS_INC_FREEHIT(x) do { } while (0)
  447. #define STATS_INC_FREEMISS(x) do { } while (0)
  448. #endif
  449. #if DEBUG
  450. /* Magic nums for obj red zoning.
  451. * Placed in the first word before and the first word after an obj.
  452. */
  453. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  454. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  455. /* ...and for poisoning */
  456. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  457. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  458. #define POISON_END 0xa5 /* end-byte of poisoning */
  459. /* memory layout of objects:
  460. * 0 : objp
  461. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  462. * the end of an object is aligned with the end of the real
  463. * allocation. Catches writes behind the end of the allocation.
  464. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  465. * redzone word.
  466. * cachep->obj_offset: The real object.
  467. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  468. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
  469. */
  470. static int obj_offset(struct kmem_cache *cachep)
  471. {
  472. return cachep->obj_offset;
  473. }
  474. static int obj_size(struct kmem_cache *cachep)
  475. {
  476. return cachep->obj_size;
  477. }
  478. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  479. {
  480. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  481. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  482. }
  483. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. if (cachep->flags & SLAB_STORE_USER)
  487. return (unsigned long *)(objp + cachep->buffer_size -
  488. 2 * BYTES_PER_WORD);
  489. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  490. }
  491. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  492. {
  493. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  494. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. #else
  497. #define obj_offset(x) 0
  498. #define obj_size(cachep) (cachep->buffer_size)
  499. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  500. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  501. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  502. #endif
  503. /*
  504. * Maximum size of an obj (in 2^order pages)
  505. * and absolute limit for the gfp order.
  506. */
  507. #if defined(CONFIG_LARGE_ALLOCS)
  508. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  509. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  510. #elif defined(CONFIG_MMU)
  511. #define MAX_OBJ_ORDER 5 /* 32 pages */
  512. #define MAX_GFP_ORDER 5 /* 32 pages */
  513. #else
  514. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  515. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  516. #endif
  517. /*
  518. * Do not go above this order unless 0 objects fit into the slab.
  519. */
  520. #define BREAK_GFP_ORDER_HI 1
  521. #define BREAK_GFP_ORDER_LO 0
  522. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  523. /* Functions for storing/retrieving the cachep and or slab from the
  524. * global 'mem_map'. These are used to find the slab an obj belongs to.
  525. * With kfree(), these are used to find the cache which an obj belongs to.
  526. */
  527. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  528. {
  529. page->lru.next = (struct list_head *)cache;
  530. }
  531. static inline struct kmem_cache *page_get_cache(struct page *page)
  532. {
  533. return (struct kmem_cache *)page->lru.next;
  534. }
  535. static inline void page_set_slab(struct page *page, struct slab *slab)
  536. {
  537. page->lru.prev = (struct list_head *)slab;
  538. }
  539. static inline struct slab *page_get_slab(struct page *page)
  540. {
  541. return (struct slab *)page->lru.prev;
  542. }
  543. static inline struct kmem_cache *virt_to_cache(const void *obj)
  544. {
  545. struct page *page = virt_to_page(obj);
  546. return page_get_cache(page);
  547. }
  548. static inline struct slab *virt_to_slab(const void *obj)
  549. {
  550. struct page *page = virt_to_page(obj);
  551. return page_get_slab(page);
  552. }
  553. /* These are the default caches for kmalloc. Custom caches can have other sizes. */
  554. struct cache_sizes malloc_sizes[] = {
  555. #define CACHE(x) { .cs_size = (x) },
  556. #include <linux/kmalloc_sizes.h>
  557. CACHE(ULONG_MAX)
  558. #undef CACHE
  559. };
  560. EXPORT_SYMBOL(malloc_sizes);
  561. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  562. struct cache_names {
  563. char *name;
  564. char *name_dma;
  565. };
  566. static struct cache_names __initdata cache_names[] = {
  567. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  568. #include <linux/kmalloc_sizes.h>
  569. {NULL,}
  570. #undef CACHE
  571. };
  572. static struct arraycache_init initarray_cache __initdata =
  573. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  574. static struct arraycache_init initarray_generic =
  575. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  576. /* internal cache of cache description objs */
  577. static struct kmem_cache cache_cache = {
  578. .batchcount = 1,
  579. .limit = BOOT_CPUCACHE_ENTRIES,
  580. .shared = 1,
  581. .buffer_size = sizeof(struct kmem_cache),
  582. .flags = SLAB_NO_REAP,
  583. .spinlock = SPIN_LOCK_UNLOCKED,
  584. .name = "kmem_cache",
  585. #if DEBUG
  586. .obj_size = sizeof(struct kmem_cache),
  587. #endif
  588. };
  589. /* Guard access to the cache-chain. */
  590. static DEFINE_MUTEX(cache_chain_mutex);
  591. static struct list_head cache_chain;
  592. /*
  593. * vm_enough_memory() looks at this to determine how many
  594. * slab-allocated pages are possibly freeable under pressure
  595. *
  596. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  597. */
  598. atomic_t slab_reclaim_pages;
  599. /*
  600. * chicken and egg problem: delay the per-cpu array allocation
  601. * until the general caches are up.
  602. */
  603. static enum {
  604. NONE,
  605. PARTIAL_AC,
  606. PARTIAL_L3,
  607. FULL
  608. } g_cpucache_up;
  609. static DEFINE_PER_CPU(struct work_struct, reap_work);
  610. static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
  611. static void enable_cpucache(struct kmem_cache *cachep);
  612. static void cache_reap(void *unused);
  613. static int __node_shrink(struct kmem_cache *cachep, int node);
  614. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  615. {
  616. return cachep->array[smp_processor_id()];
  617. }
  618. static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
  619. {
  620. struct cache_sizes *csizep = malloc_sizes;
  621. #if DEBUG
  622. /* This happens if someone tries to call
  623. * kmem_cache_create(), or __kmalloc(), before
  624. * the generic caches are initialized.
  625. */
  626. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  627. #endif
  628. while (size > csizep->cs_size)
  629. csizep++;
  630. /*
  631. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  632. * has cs_{dma,}cachep==NULL. Thus no special case
  633. * for large kmalloc calls required.
  634. */
  635. if (unlikely(gfpflags & GFP_DMA))
  636. return csizep->cs_dmacachep;
  637. return csizep->cs_cachep;
  638. }
  639. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  640. {
  641. return __find_general_cachep(size, gfpflags);
  642. }
  643. EXPORT_SYMBOL(kmem_find_general_cachep);
  644. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  645. {
  646. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  647. }
  648. /* Calculate the number of objects and left-over bytes for a given
  649. buffer size. */
  650. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  651. size_t align, int flags, size_t *left_over,
  652. unsigned int *num)
  653. {
  654. int nr_objs;
  655. size_t mgmt_size;
  656. size_t slab_size = PAGE_SIZE << gfporder;
  657. /*
  658. * The slab management structure can be either off the slab or
  659. * on it. For the latter case, the memory allocated for a
  660. * slab is used for:
  661. *
  662. * - The struct slab
  663. * - One kmem_bufctl_t for each object
  664. * - Padding to respect alignment of @align
  665. * - @buffer_size bytes for each object
  666. *
  667. * If the slab management structure is off the slab, then the
  668. * alignment will already be calculated into the size. Because
  669. * the slabs are all pages aligned, the objects will be at the
  670. * correct alignment when allocated.
  671. */
  672. if (flags & CFLGS_OFF_SLAB) {
  673. mgmt_size = 0;
  674. nr_objs = slab_size / buffer_size;
  675. if (nr_objs > SLAB_LIMIT)
  676. nr_objs = SLAB_LIMIT;
  677. } else {
  678. /*
  679. * Ignore padding for the initial guess. The padding
  680. * is at most @align-1 bytes, and @buffer_size is at
  681. * least @align. In the worst case, this result will
  682. * be one greater than the number of objects that fit
  683. * into the memory allocation when taking the padding
  684. * into account.
  685. */
  686. nr_objs = (slab_size - sizeof(struct slab)) /
  687. (buffer_size + sizeof(kmem_bufctl_t));
  688. /*
  689. * This calculated number will be either the right
  690. * amount, or one greater than what we want.
  691. */
  692. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  693. > slab_size)
  694. nr_objs--;
  695. if (nr_objs > SLAB_LIMIT)
  696. nr_objs = SLAB_LIMIT;
  697. mgmt_size = slab_mgmt_size(nr_objs, align);
  698. }
  699. *num = nr_objs;
  700. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  701. }
  702. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  703. static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
  704. {
  705. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  706. function, cachep->name, msg);
  707. dump_stack();
  708. }
  709. #ifdef CONFIG_NUMA
  710. /*
  711. * Special reaping functions for NUMA systems called from cache_reap().
  712. * These take care of doing round robin flushing of alien caches (containing
  713. * objects freed on different nodes from which they were allocated) and the
  714. * flushing of remote pcps by calling drain_node_pages.
  715. */
  716. static DEFINE_PER_CPU(unsigned long, reap_node);
  717. static void init_reap_node(int cpu)
  718. {
  719. int node;
  720. node = next_node(cpu_to_node(cpu), node_online_map);
  721. if (node == MAX_NUMNODES)
  722. node = 0;
  723. __get_cpu_var(reap_node) = node;
  724. }
  725. static void next_reap_node(void)
  726. {
  727. int node = __get_cpu_var(reap_node);
  728. /*
  729. * Also drain per cpu pages on remote zones
  730. */
  731. if (node != numa_node_id())
  732. drain_node_pages(node);
  733. node = next_node(node, node_online_map);
  734. if (unlikely(node >= MAX_NUMNODES))
  735. node = first_node(node_online_map);
  736. __get_cpu_var(reap_node) = node;
  737. }
  738. #else
  739. #define init_reap_node(cpu) do { } while (0)
  740. #define next_reap_node(void) do { } while (0)
  741. #endif
  742. /*
  743. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  744. * via the workqueue/eventd.
  745. * Add the CPU number into the expiration time to minimize the possibility of
  746. * the CPUs getting into lockstep and contending for the global cache chain
  747. * lock.
  748. */
  749. static void __devinit start_cpu_timer(int cpu)
  750. {
  751. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  752. /*
  753. * When this gets called from do_initcalls via cpucache_init(),
  754. * init_workqueues() has already run, so keventd will be setup
  755. * at that time.
  756. */
  757. if (keventd_up() && reap_work->func == NULL) {
  758. init_reap_node(cpu);
  759. INIT_WORK(reap_work, cache_reap, NULL);
  760. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  761. }
  762. }
  763. static struct array_cache *alloc_arraycache(int node, int entries,
  764. int batchcount)
  765. {
  766. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  767. struct array_cache *nc = NULL;
  768. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  769. if (nc) {
  770. nc->avail = 0;
  771. nc->limit = entries;
  772. nc->batchcount = batchcount;
  773. nc->touched = 0;
  774. spin_lock_init(&nc->lock);
  775. }
  776. return nc;
  777. }
  778. #ifdef CONFIG_NUMA
  779. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  780. static struct array_cache **alloc_alien_cache(int node, int limit)
  781. {
  782. struct array_cache **ac_ptr;
  783. int memsize = sizeof(void *) * MAX_NUMNODES;
  784. int i;
  785. if (limit > 1)
  786. limit = 12;
  787. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  788. if (ac_ptr) {
  789. for_each_node(i) {
  790. if (i == node || !node_online(i)) {
  791. ac_ptr[i] = NULL;
  792. continue;
  793. }
  794. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  795. if (!ac_ptr[i]) {
  796. for (i--; i <= 0; i--)
  797. kfree(ac_ptr[i]);
  798. kfree(ac_ptr);
  799. return NULL;
  800. }
  801. }
  802. }
  803. return ac_ptr;
  804. }
  805. static void free_alien_cache(struct array_cache **ac_ptr)
  806. {
  807. int i;
  808. if (!ac_ptr)
  809. return;
  810. for_each_node(i)
  811. kfree(ac_ptr[i]);
  812. kfree(ac_ptr);
  813. }
  814. static void __drain_alien_cache(struct kmem_cache *cachep,
  815. struct array_cache *ac, int node)
  816. {
  817. struct kmem_list3 *rl3 = cachep->nodelists[node];
  818. if (ac->avail) {
  819. spin_lock(&rl3->list_lock);
  820. free_block(cachep, ac->entry, ac->avail, node);
  821. ac->avail = 0;
  822. spin_unlock(&rl3->list_lock);
  823. }
  824. }
  825. /*
  826. * Called from cache_reap() to regularly drain alien caches round robin.
  827. */
  828. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  829. {
  830. int node = __get_cpu_var(reap_node);
  831. if (l3->alien) {
  832. struct array_cache *ac = l3->alien[node];
  833. if (ac && ac->avail) {
  834. spin_lock_irq(&ac->lock);
  835. __drain_alien_cache(cachep, ac, node);
  836. spin_unlock_irq(&ac->lock);
  837. }
  838. }
  839. }
  840. static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
  841. {
  842. int i = 0;
  843. struct array_cache *ac;
  844. unsigned long flags;
  845. for_each_online_node(i) {
  846. ac = alien[i];
  847. if (ac) {
  848. spin_lock_irqsave(&ac->lock, flags);
  849. __drain_alien_cache(cachep, ac, i);
  850. spin_unlock_irqrestore(&ac->lock, flags);
  851. }
  852. }
  853. }
  854. #else
  855. #define drain_alien_cache(cachep, alien) do { } while (0)
  856. #define reap_alien(cachep, l3) do { } while (0)
  857. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  858. {
  859. return (struct array_cache **) 0x01020304ul;
  860. }
  861. static inline void free_alien_cache(struct array_cache **ac_ptr)
  862. {
  863. }
  864. #endif
  865. static int __devinit cpuup_callback(struct notifier_block *nfb,
  866. unsigned long action, void *hcpu)
  867. {
  868. long cpu = (long)hcpu;
  869. struct kmem_cache *cachep;
  870. struct kmem_list3 *l3 = NULL;
  871. int node = cpu_to_node(cpu);
  872. int memsize = sizeof(struct kmem_list3);
  873. switch (action) {
  874. case CPU_UP_PREPARE:
  875. mutex_lock(&cache_chain_mutex);
  876. /* we need to do this right in the beginning since
  877. * alloc_arraycache's are going to use this list.
  878. * kmalloc_node allows us to add the slab to the right
  879. * kmem_list3 and not this cpu's kmem_list3
  880. */
  881. list_for_each_entry(cachep, &cache_chain, next) {
  882. /* setup the size64 kmemlist for cpu before we can
  883. * begin anything. Make sure some other cpu on this
  884. * node has not already allocated this
  885. */
  886. if (!cachep->nodelists[node]) {
  887. if (!(l3 = kmalloc_node(memsize,
  888. GFP_KERNEL, node)))
  889. goto bad;
  890. kmem_list3_init(l3);
  891. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  892. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  893. /*
  894. * The l3s don't come and go as CPUs come and
  895. * go. cache_chain_mutex is sufficient
  896. * protection here.
  897. */
  898. cachep->nodelists[node] = l3;
  899. }
  900. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  901. cachep->nodelists[node]->free_limit =
  902. (1 + nr_cpus_node(node)) *
  903. cachep->batchcount + cachep->num;
  904. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  905. }
  906. /* Now we can go ahead with allocating the shared array's
  907. & array cache's */
  908. list_for_each_entry(cachep, &cache_chain, next) {
  909. struct array_cache *nc;
  910. struct array_cache *shared;
  911. struct array_cache **alien;
  912. nc = alloc_arraycache(node, cachep->limit,
  913. cachep->batchcount);
  914. if (!nc)
  915. goto bad;
  916. shared = alloc_arraycache(node,
  917. cachep->shared * cachep->batchcount,
  918. 0xbaadf00d);
  919. if (!shared)
  920. goto bad;
  921. alien = alloc_alien_cache(node, cachep->limit);
  922. if (!alien)
  923. goto bad;
  924. cachep->array[cpu] = nc;
  925. l3 = cachep->nodelists[node];
  926. BUG_ON(!l3);
  927. spin_lock_irq(&l3->list_lock);
  928. if (!l3->shared) {
  929. /*
  930. * We are serialised from CPU_DEAD or
  931. * CPU_UP_CANCELLED by the cpucontrol lock
  932. */
  933. l3->shared = shared;
  934. shared = NULL;
  935. }
  936. #ifdef CONFIG_NUMA
  937. if (!l3->alien) {
  938. l3->alien = alien;
  939. alien = NULL;
  940. }
  941. #endif
  942. spin_unlock_irq(&l3->list_lock);
  943. kfree(shared);
  944. free_alien_cache(alien);
  945. }
  946. mutex_unlock(&cache_chain_mutex);
  947. break;
  948. case CPU_ONLINE:
  949. start_cpu_timer(cpu);
  950. break;
  951. #ifdef CONFIG_HOTPLUG_CPU
  952. case CPU_DEAD:
  953. /*
  954. * Even if all the cpus of a node are down, we don't free the
  955. * kmem_list3 of any cache. This to avoid a race between
  956. * cpu_down, and a kmalloc allocation from another cpu for
  957. * memory from the node of the cpu going down. The list3
  958. * structure is usually allocated from kmem_cache_create() and
  959. * gets destroyed at kmem_cache_destroy().
  960. */
  961. /* fall thru */
  962. case CPU_UP_CANCELED:
  963. mutex_lock(&cache_chain_mutex);
  964. list_for_each_entry(cachep, &cache_chain, next) {
  965. struct array_cache *nc;
  966. struct array_cache *shared;
  967. struct array_cache **alien;
  968. cpumask_t mask;
  969. mask = node_to_cpumask(node);
  970. /* cpu is dead; no one can alloc from it. */
  971. nc = cachep->array[cpu];
  972. cachep->array[cpu] = NULL;
  973. l3 = cachep->nodelists[node];
  974. if (!l3)
  975. goto free_array_cache;
  976. spin_lock_irq(&l3->list_lock);
  977. /* Free limit for this kmem_list3 */
  978. l3->free_limit -= cachep->batchcount;
  979. if (nc)
  980. free_block(cachep, nc->entry, nc->avail, node);
  981. if (!cpus_empty(mask)) {
  982. spin_unlock_irq(&l3->list_lock);
  983. goto free_array_cache;
  984. }
  985. shared = l3->shared;
  986. if (shared) {
  987. free_block(cachep, l3->shared->entry,
  988. l3->shared->avail, node);
  989. l3->shared = NULL;
  990. }
  991. alien = l3->alien;
  992. l3->alien = NULL;
  993. spin_unlock_irq(&l3->list_lock);
  994. kfree(shared);
  995. if (alien) {
  996. drain_alien_cache(cachep, alien);
  997. free_alien_cache(alien);
  998. }
  999. free_array_cache:
  1000. kfree(nc);
  1001. }
  1002. /*
  1003. * In the previous loop, all the objects were freed to
  1004. * the respective cache's slabs, now we can go ahead and
  1005. * shrink each nodelist to its limit.
  1006. */
  1007. list_for_each_entry(cachep, &cache_chain, next) {
  1008. l3 = cachep->nodelists[node];
  1009. if (!l3)
  1010. continue;
  1011. spin_lock_irq(&l3->list_lock);
  1012. /* free slabs belonging to this node */
  1013. __node_shrink(cachep, node);
  1014. spin_unlock_irq(&l3->list_lock);
  1015. }
  1016. mutex_unlock(&cache_chain_mutex);
  1017. break;
  1018. #endif
  1019. }
  1020. return NOTIFY_OK;
  1021. bad:
  1022. mutex_unlock(&cache_chain_mutex);
  1023. return NOTIFY_BAD;
  1024. }
  1025. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1026. /*
  1027. * swap the static kmem_list3 with kmalloced memory
  1028. */
  1029. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
  1030. {
  1031. struct kmem_list3 *ptr;
  1032. BUG_ON(cachep->nodelists[nodeid] != list);
  1033. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1034. BUG_ON(!ptr);
  1035. local_irq_disable();
  1036. memcpy(ptr, list, sizeof(struct kmem_list3));
  1037. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1038. cachep->nodelists[nodeid] = ptr;
  1039. local_irq_enable();
  1040. }
  1041. /* Initialisation.
  1042. * Called after the gfp() functions have been enabled, and before smp_init().
  1043. */
  1044. void __init kmem_cache_init(void)
  1045. {
  1046. size_t left_over;
  1047. struct cache_sizes *sizes;
  1048. struct cache_names *names;
  1049. int i;
  1050. int order;
  1051. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1052. kmem_list3_init(&initkmem_list3[i]);
  1053. if (i < MAX_NUMNODES)
  1054. cache_cache.nodelists[i] = NULL;
  1055. }
  1056. /*
  1057. * Fragmentation resistance on low memory - only use bigger
  1058. * page orders on machines with more than 32MB of memory.
  1059. */
  1060. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1061. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1062. /* Bootstrap is tricky, because several objects are allocated
  1063. * from caches that do not exist yet:
  1064. * 1) initialize the cache_cache cache: it contains the struct kmem_cache
  1065. * structures of all caches, except cache_cache itself: cache_cache
  1066. * is statically allocated.
  1067. * Initially an __init data area is used for the head array and the
  1068. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1069. * array at the end of the bootstrap.
  1070. * 2) Create the first kmalloc cache.
  1071. * The struct kmem_cache for the new cache is allocated normally.
  1072. * An __init data area is used for the head array.
  1073. * 3) Create the remaining kmalloc caches, with minimally sized
  1074. * head arrays.
  1075. * 4) Replace the __init data head arrays for cache_cache and the first
  1076. * kmalloc cache with kmalloc allocated arrays.
  1077. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1078. * the other cache's with kmalloc allocated memory.
  1079. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1080. */
  1081. /* 1) create the cache_cache */
  1082. INIT_LIST_HEAD(&cache_chain);
  1083. list_add(&cache_cache.next, &cache_chain);
  1084. cache_cache.colour_off = cache_line_size();
  1085. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1086. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1087. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
  1088. for (order = 0; order < MAX_ORDER; order++) {
  1089. cache_estimate(order, cache_cache.buffer_size,
  1090. cache_line_size(), 0, &left_over, &cache_cache.num);
  1091. if (cache_cache.num)
  1092. break;
  1093. }
  1094. if (!cache_cache.num)
  1095. BUG();
  1096. cache_cache.gfporder = order;
  1097. cache_cache.colour = left_over / cache_cache.colour_off;
  1098. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1099. sizeof(struct slab), cache_line_size());
  1100. /* 2+3) create the kmalloc caches */
  1101. sizes = malloc_sizes;
  1102. names = cache_names;
  1103. /* Initialize the caches that provide memory for the array cache
  1104. * and the kmem_list3 structures first.
  1105. * Without this, further allocations will bug
  1106. */
  1107. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1108. sizes[INDEX_AC].cs_size,
  1109. ARCH_KMALLOC_MINALIGN,
  1110. (ARCH_KMALLOC_FLAGS |
  1111. SLAB_PANIC), NULL, NULL);
  1112. if (INDEX_AC != INDEX_L3)
  1113. sizes[INDEX_L3].cs_cachep =
  1114. kmem_cache_create(names[INDEX_L3].name,
  1115. sizes[INDEX_L3].cs_size,
  1116. ARCH_KMALLOC_MINALIGN,
  1117. (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
  1118. NULL);
  1119. while (sizes->cs_size != ULONG_MAX) {
  1120. /*
  1121. * For performance, all the general caches are L1 aligned.
  1122. * This should be particularly beneficial on SMP boxes, as it
  1123. * eliminates "false sharing".
  1124. * Note for systems short on memory removing the alignment will
  1125. * allow tighter packing of the smaller caches.
  1126. */
  1127. if (!sizes->cs_cachep)
  1128. sizes->cs_cachep = kmem_cache_create(names->name,
  1129. sizes->cs_size,
  1130. ARCH_KMALLOC_MINALIGN,
  1131. (ARCH_KMALLOC_FLAGS
  1132. | SLAB_PANIC),
  1133. NULL, NULL);
  1134. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1135. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1136. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1137. offslab_limit /= sizeof(kmem_bufctl_t);
  1138. }
  1139. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1140. sizes->cs_size,
  1141. ARCH_KMALLOC_MINALIGN,
  1142. (ARCH_KMALLOC_FLAGS |
  1143. SLAB_CACHE_DMA |
  1144. SLAB_PANIC), NULL,
  1145. NULL);
  1146. sizes++;
  1147. names++;
  1148. }
  1149. /* 4) Replace the bootstrap head arrays */
  1150. {
  1151. void *ptr;
  1152. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1153. local_irq_disable();
  1154. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1155. memcpy(ptr, cpu_cache_get(&cache_cache),
  1156. sizeof(struct arraycache_init));
  1157. cache_cache.array[smp_processor_id()] = ptr;
  1158. local_irq_enable();
  1159. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1160. local_irq_disable();
  1161. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1162. != &initarray_generic.cache);
  1163. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1164. sizeof(struct arraycache_init));
  1165. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1166. ptr;
  1167. local_irq_enable();
  1168. }
  1169. /* 5) Replace the bootstrap kmem_list3's */
  1170. {
  1171. int node;
  1172. /* Replace the static kmem_list3 structures for the boot cpu */
  1173. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1174. numa_node_id());
  1175. for_each_online_node(node) {
  1176. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1177. &initkmem_list3[SIZE_AC + node], node);
  1178. if (INDEX_AC != INDEX_L3) {
  1179. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1180. &initkmem_list3[SIZE_L3 + node],
  1181. node);
  1182. }
  1183. }
  1184. }
  1185. /* 6) resize the head arrays to their final sizes */
  1186. {
  1187. struct kmem_cache *cachep;
  1188. mutex_lock(&cache_chain_mutex);
  1189. list_for_each_entry(cachep, &cache_chain, next)
  1190. enable_cpucache(cachep);
  1191. mutex_unlock(&cache_chain_mutex);
  1192. }
  1193. /* Done! */
  1194. g_cpucache_up = FULL;
  1195. /* Register a cpu startup notifier callback
  1196. * that initializes cpu_cache_get for all new cpus
  1197. */
  1198. register_cpu_notifier(&cpucache_notifier);
  1199. /* The reap timers are started later, with a module init call:
  1200. * That part of the kernel is not yet operational.
  1201. */
  1202. }
  1203. static int __init cpucache_init(void)
  1204. {
  1205. int cpu;
  1206. /*
  1207. * Register the timers that return unneeded
  1208. * pages to gfp.
  1209. */
  1210. for_each_online_cpu(cpu)
  1211. start_cpu_timer(cpu);
  1212. return 0;
  1213. }
  1214. __initcall(cpucache_init);
  1215. /*
  1216. * Interface to system's page allocator. No need to hold the cache-lock.
  1217. *
  1218. * If we requested dmaable memory, we will get it. Even if we
  1219. * did not request dmaable memory, we might get it, but that
  1220. * would be relatively rare and ignorable.
  1221. */
  1222. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1223. {
  1224. struct page *page;
  1225. void *addr;
  1226. int i;
  1227. flags |= cachep->gfpflags;
  1228. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1229. if (!page)
  1230. return NULL;
  1231. addr = page_address(page);
  1232. i = (1 << cachep->gfporder);
  1233. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1234. atomic_add(i, &slab_reclaim_pages);
  1235. add_page_state(nr_slab, i);
  1236. while (i--) {
  1237. SetPageSlab(page);
  1238. page++;
  1239. }
  1240. return addr;
  1241. }
  1242. /*
  1243. * Interface to system's page release.
  1244. */
  1245. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1246. {
  1247. unsigned long i = (1 << cachep->gfporder);
  1248. struct page *page = virt_to_page(addr);
  1249. const unsigned long nr_freed = i;
  1250. while (i--) {
  1251. if (!TestClearPageSlab(page))
  1252. BUG();
  1253. page++;
  1254. }
  1255. sub_page_state(nr_slab, nr_freed);
  1256. if (current->reclaim_state)
  1257. current->reclaim_state->reclaimed_slab += nr_freed;
  1258. free_pages((unsigned long)addr, cachep->gfporder);
  1259. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1260. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1261. }
  1262. static void kmem_rcu_free(struct rcu_head *head)
  1263. {
  1264. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1265. struct kmem_cache *cachep = slab_rcu->cachep;
  1266. kmem_freepages(cachep, slab_rcu->addr);
  1267. if (OFF_SLAB(cachep))
  1268. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1269. }
  1270. #if DEBUG
  1271. #ifdef CONFIG_DEBUG_PAGEALLOC
  1272. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1273. unsigned long caller)
  1274. {
  1275. int size = obj_size(cachep);
  1276. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1277. if (size < 5 * sizeof(unsigned long))
  1278. return;
  1279. *addr++ = 0x12345678;
  1280. *addr++ = caller;
  1281. *addr++ = smp_processor_id();
  1282. size -= 3 * sizeof(unsigned long);
  1283. {
  1284. unsigned long *sptr = &caller;
  1285. unsigned long svalue;
  1286. while (!kstack_end(sptr)) {
  1287. svalue = *sptr++;
  1288. if (kernel_text_address(svalue)) {
  1289. *addr++ = svalue;
  1290. size -= sizeof(unsigned long);
  1291. if (size <= sizeof(unsigned long))
  1292. break;
  1293. }
  1294. }
  1295. }
  1296. *addr++ = 0x87654321;
  1297. }
  1298. #endif
  1299. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1300. {
  1301. int size = obj_size(cachep);
  1302. addr = &((char *)addr)[obj_offset(cachep)];
  1303. memset(addr, val, size);
  1304. *(unsigned char *)(addr + size - 1) = POISON_END;
  1305. }
  1306. static void dump_line(char *data, int offset, int limit)
  1307. {
  1308. int i;
  1309. printk(KERN_ERR "%03x:", offset);
  1310. for (i = 0; i < limit; i++) {
  1311. printk(" %02x", (unsigned char)data[offset + i]);
  1312. }
  1313. printk("\n");
  1314. }
  1315. #endif
  1316. #if DEBUG
  1317. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1318. {
  1319. int i, size;
  1320. char *realobj;
  1321. if (cachep->flags & SLAB_RED_ZONE) {
  1322. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1323. *dbg_redzone1(cachep, objp),
  1324. *dbg_redzone2(cachep, objp));
  1325. }
  1326. if (cachep->flags & SLAB_STORE_USER) {
  1327. printk(KERN_ERR "Last user: [<%p>]",
  1328. *dbg_userword(cachep, objp));
  1329. print_symbol("(%s)",
  1330. (unsigned long)*dbg_userword(cachep, objp));
  1331. printk("\n");
  1332. }
  1333. realobj = (char *)objp + obj_offset(cachep);
  1334. size = obj_size(cachep);
  1335. for (i = 0; i < size && lines; i += 16, lines--) {
  1336. int limit;
  1337. limit = 16;
  1338. if (i + limit > size)
  1339. limit = size - i;
  1340. dump_line(realobj, i, limit);
  1341. }
  1342. }
  1343. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1344. {
  1345. char *realobj;
  1346. int size, i;
  1347. int lines = 0;
  1348. realobj = (char *)objp + obj_offset(cachep);
  1349. size = obj_size(cachep);
  1350. for (i = 0; i < size; i++) {
  1351. char exp = POISON_FREE;
  1352. if (i == size - 1)
  1353. exp = POISON_END;
  1354. if (realobj[i] != exp) {
  1355. int limit;
  1356. /* Mismatch ! */
  1357. /* Print header */
  1358. if (lines == 0) {
  1359. printk(KERN_ERR
  1360. "Slab corruption: start=%p, len=%d\n",
  1361. realobj, size);
  1362. print_objinfo(cachep, objp, 0);
  1363. }
  1364. /* Hexdump the affected line */
  1365. i = (i / 16) * 16;
  1366. limit = 16;
  1367. if (i + limit > size)
  1368. limit = size - i;
  1369. dump_line(realobj, i, limit);
  1370. i += 16;
  1371. lines++;
  1372. /* Limit to 5 lines */
  1373. if (lines > 5)
  1374. break;
  1375. }
  1376. }
  1377. if (lines != 0) {
  1378. /* Print some data about the neighboring objects, if they
  1379. * exist:
  1380. */
  1381. struct slab *slabp = virt_to_slab(objp);
  1382. int objnr;
  1383. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  1384. if (objnr) {
  1385. objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
  1386. realobj = (char *)objp + obj_offset(cachep);
  1387. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1388. realobj, size);
  1389. print_objinfo(cachep, objp, 2);
  1390. }
  1391. if (objnr + 1 < cachep->num) {
  1392. objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
  1393. realobj = (char *)objp + obj_offset(cachep);
  1394. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1395. realobj, size);
  1396. print_objinfo(cachep, objp, 2);
  1397. }
  1398. }
  1399. }
  1400. #endif
  1401. #if DEBUG
  1402. /**
  1403. * slab_destroy_objs - call the registered destructor for each object in
  1404. * a slab that is to be destroyed.
  1405. */
  1406. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1407. {
  1408. int i;
  1409. for (i = 0; i < cachep->num; i++) {
  1410. void *objp = slabp->s_mem + cachep->buffer_size * i;
  1411. if (cachep->flags & SLAB_POISON) {
  1412. #ifdef CONFIG_DEBUG_PAGEALLOC
  1413. if ((cachep->buffer_size % PAGE_SIZE) == 0
  1414. && OFF_SLAB(cachep))
  1415. kernel_map_pages(virt_to_page(objp),
  1416. cachep->buffer_size / PAGE_SIZE,
  1417. 1);
  1418. else
  1419. check_poison_obj(cachep, objp);
  1420. #else
  1421. check_poison_obj(cachep, objp);
  1422. #endif
  1423. }
  1424. if (cachep->flags & SLAB_RED_ZONE) {
  1425. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1426. slab_error(cachep, "start of a freed object "
  1427. "was overwritten");
  1428. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1429. slab_error(cachep, "end of a freed object "
  1430. "was overwritten");
  1431. }
  1432. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1433. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1434. }
  1435. }
  1436. #else
  1437. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1438. {
  1439. if (cachep->dtor) {
  1440. int i;
  1441. for (i = 0; i < cachep->num; i++) {
  1442. void *objp = slabp->s_mem + cachep->buffer_size * i;
  1443. (cachep->dtor) (objp, cachep, 0);
  1444. }
  1445. }
  1446. }
  1447. #endif
  1448. /**
  1449. * Destroy all the objs in a slab, and release the mem back to the system.
  1450. * Before calling the slab must have been unlinked from the cache.
  1451. * The cache-lock is not held/needed.
  1452. */
  1453. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1454. {
  1455. void *addr = slabp->s_mem - slabp->colouroff;
  1456. slab_destroy_objs(cachep, slabp);
  1457. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1458. struct slab_rcu *slab_rcu;
  1459. slab_rcu = (struct slab_rcu *)slabp;
  1460. slab_rcu->cachep = cachep;
  1461. slab_rcu->addr = addr;
  1462. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1463. } else {
  1464. kmem_freepages(cachep, addr);
  1465. if (OFF_SLAB(cachep))
  1466. kmem_cache_free(cachep->slabp_cache, slabp);
  1467. }
  1468. }
  1469. /* For setting up all the kmem_list3s for cache whose buffer_size is same
  1470. as size of kmem_list3. */
  1471. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1472. {
  1473. int node;
  1474. for_each_online_node(node) {
  1475. cachep->nodelists[node] = &initkmem_list3[index + node];
  1476. cachep->nodelists[node]->next_reap = jiffies +
  1477. REAPTIMEOUT_LIST3 +
  1478. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1479. }
  1480. }
  1481. /**
  1482. * calculate_slab_order - calculate size (page order) of slabs
  1483. * @cachep: pointer to the cache that is being created
  1484. * @size: size of objects to be created in this cache.
  1485. * @align: required alignment for the objects.
  1486. * @flags: slab allocation flags
  1487. *
  1488. * Also calculates the number of objects per slab.
  1489. *
  1490. * This could be made much more intelligent. For now, try to avoid using
  1491. * high order pages for slabs. When the gfp() functions are more friendly
  1492. * towards high-order requests, this should be changed.
  1493. */
  1494. static inline size_t calculate_slab_order(struct kmem_cache *cachep,
  1495. size_t size, size_t align, unsigned long flags)
  1496. {
  1497. size_t left_over = 0;
  1498. int gfporder;
  1499. for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1500. unsigned int num;
  1501. size_t remainder;
  1502. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1503. if (!num)
  1504. continue;
  1505. /* More than offslab_limit objects will cause problems */
  1506. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1507. break;
  1508. /* Found something acceptable - save it away */
  1509. cachep->num = num;
  1510. cachep->gfporder = gfporder;
  1511. left_over = remainder;
  1512. /*
  1513. * A VFS-reclaimable slab tends to have most allocations
  1514. * as GFP_NOFS and we really don't want to have to be allocating
  1515. * higher-order pages when we are unable to shrink dcache.
  1516. */
  1517. if (flags & SLAB_RECLAIM_ACCOUNT)
  1518. break;
  1519. /*
  1520. * Large number of objects is good, but very large slabs are
  1521. * currently bad for the gfp()s.
  1522. */
  1523. if (gfporder >= slab_break_gfp_order)
  1524. break;
  1525. /*
  1526. * Acceptable internal fragmentation?
  1527. */
  1528. if ((left_over * 8) <= (PAGE_SIZE << gfporder))
  1529. break;
  1530. }
  1531. return left_over;
  1532. }
  1533. /**
  1534. * kmem_cache_create - Create a cache.
  1535. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1536. * @size: The size of objects to be created in this cache.
  1537. * @align: The required alignment for the objects.
  1538. * @flags: SLAB flags
  1539. * @ctor: A constructor for the objects.
  1540. * @dtor: A destructor for the objects.
  1541. *
  1542. * Returns a ptr to the cache on success, NULL on failure.
  1543. * Cannot be called within a int, but can be interrupted.
  1544. * The @ctor is run when new pages are allocated by the cache
  1545. * and the @dtor is run before the pages are handed back.
  1546. *
  1547. * @name must be valid until the cache is destroyed. This implies that
  1548. * the module calling this has to destroy the cache before getting
  1549. * unloaded.
  1550. *
  1551. * The flags are
  1552. *
  1553. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1554. * to catch references to uninitialised memory.
  1555. *
  1556. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1557. * for buffer overruns.
  1558. *
  1559. * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
  1560. * memory pressure.
  1561. *
  1562. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1563. * cacheline. This can be beneficial if you're counting cycles as closely
  1564. * as davem.
  1565. */
  1566. struct kmem_cache *
  1567. kmem_cache_create (const char *name, size_t size, size_t align,
  1568. unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1569. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1570. {
  1571. size_t left_over, slab_size, ralign;
  1572. struct kmem_cache *cachep = NULL;
  1573. struct list_head *p;
  1574. /*
  1575. * Sanity checks... these are all serious usage bugs.
  1576. */
  1577. if ((!name) ||
  1578. in_interrupt() ||
  1579. (size < BYTES_PER_WORD) ||
  1580. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1581. printk(KERN_ERR "%s: Early error in slab %s\n",
  1582. __FUNCTION__, name);
  1583. BUG();
  1584. }
  1585. /*
  1586. * Prevent CPUs from coming and going.
  1587. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1588. */
  1589. lock_cpu_hotplug();
  1590. mutex_lock(&cache_chain_mutex);
  1591. list_for_each(p, &cache_chain) {
  1592. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1593. mm_segment_t old_fs = get_fs();
  1594. char tmp;
  1595. int res;
  1596. /*
  1597. * This happens when the module gets unloaded and doesn't
  1598. * destroy its slab cache and no-one else reuses the vmalloc
  1599. * area of the module. Print a warning.
  1600. */
  1601. set_fs(KERNEL_DS);
  1602. res = __get_user(tmp, pc->name);
  1603. set_fs(old_fs);
  1604. if (res) {
  1605. printk("SLAB: cache with size %d has lost its name\n",
  1606. pc->buffer_size);
  1607. continue;
  1608. }
  1609. if (!strcmp(pc->name, name)) {
  1610. printk("kmem_cache_create: duplicate cache %s\n", name);
  1611. dump_stack();
  1612. goto oops;
  1613. }
  1614. }
  1615. #if DEBUG
  1616. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1617. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1618. /* No constructor, but inital state check requested */
  1619. printk(KERN_ERR "%s: No con, but init state check "
  1620. "requested - %s\n", __FUNCTION__, name);
  1621. flags &= ~SLAB_DEBUG_INITIAL;
  1622. }
  1623. #if FORCED_DEBUG
  1624. /*
  1625. * Enable redzoning and last user accounting, except for caches with
  1626. * large objects, if the increased size would increase the object size
  1627. * above the next power of two: caches with object sizes just above a
  1628. * power of two have a significant amount of internal fragmentation.
  1629. */
  1630. if ((size < 4096
  1631. || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
  1632. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1633. if (!(flags & SLAB_DESTROY_BY_RCU))
  1634. flags |= SLAB_POISON;
  1635. #endif
  1636. if (flags & SLAB_DESTROY_BY_RCU)
  1637. BUG_ON(flags & SLAB_POISON);
  1638. #endif
  1639. if (flags & SLAB_DESTROY_BY_RCU)
  1640. BUG_ON(dtor);
  1641. /*
  1642. * Always checks flags, a caller might be expecting debug
  1643. * support which isn't available.
  1644. */
  1645. if (flags & ~CREATE_MASK)
  1646. BUG();
  1647. /* Check that size is in terms of words. This is needed to avoid
  1648. * unaligned accesses for some archs when redzoning is used, and makes
  1649. * sure any on-slab bufctl's are also correctly aligned.
  1650. */
  1651. if (size & (BYTES_PER_WORD - 1)) {
  1652. size += (BYTES_PER_WORD - 1);
  1653. size &= ~(BYTES_PER_WORD - 1);
  1654. }
  1655. /* calculate out the final buffer alignment: */
  1656. /* 1) arch recommendation: can be overridden for debug */
  1657. if (flags & SLAB_HWCACHE_ALIGN) {
  1658. /* Default alignment: as specified by the arch code.
  1659. * Except if an object is really small, then squeeze multiple
  1660. * objects into one cacheline.
  1661. */
  1662. ralign = cache_line_size();
  1663. while (size <= ralign / 2)
  1664. ralign /= 2;
  1665. } else {
  1666. ralign = BYTES_PER_WORD;
  1667. }
  1668. /* 2) arch mandated alignment: disables debug if necessary */
  1669. if (ralign < ARCH_SLAB_MINALIGN) {
  1670. ralign = ARCH_SLAB_MINALIGN;
  1671. if (ralign > BYTES_PER_WORD)
  1672. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1673. }
  1674. /* 3) caller mandated alignment: disables debug if necessary */
  1675. if (ralign < align) {
  1676. ralign = align;
  1677. if (ralign > BYTES_PER_WORD)
  1678. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1679. }
  1680. /* 4) Store it. Note that the debug code below can reduce
  1681. * the alignment to BYTES_PER_WORD.
  1682. */
  1683. align = ralign;
  1684. /* Get cache's description obj. */
  1685. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1686. if (!cachep)
  1687. goto oops;
  1688. memset(cachep, 0, sizeof(struct kmem_cache));
  1689. #if DEBUG
  1690. cachep->obj_size = size;
  1691. if (flags & SLAB_RED_ZONE) {
  1692. /* redzoning only works with word aligned caches */
  1693. align = BYTES_PER_WORD;
  1694. /* add space for red zone words */
  1695. cachep->obj_offset += BYTES_PER_WORD;
  1696. size += 2 * BYTES_PER_WORD;
  1697. }
  1698. if (flags & SLAB_STORE_USER) {
  1699. /* user store requires word alignment and
  1700. * one word storage behind the end of the real
  1701. * object.
  1702. */
  1703. align = BYTES_PER_WORD;
  1704. size += BYTES_PER_WORD;
  1705. }
  1706. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1707. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1708. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1709. cachep->obj_offset += PAGE_SIZE - size;
  1710. size = PAGE_SIZE;
  1711. }
  1712. #endif
  1713. #endif
  1714. /* Determine if the slab management is 'on' or 'off' slab. */
  1715. if (size >= (PAGE_SIZE >> 3))
  1716. /*
  1717. * Size is large, assume best to place the slab management obj
  1718. * off-slab (should allow better packing of objs).
  1719. */
  1720. flags |= CFLGS_OFF_SLAB;
  1721. size = ALIGN(size, align);
  1722. left_over = calculate_slab_order(cachep, size, align, flags);
  1723. if (!cachep->num) {
  1724. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1725. kmem_cache_free(&cache_cache, cachep);
  1726. cachep = NULL;
  1727. goto oops;
  1728. }
  1729. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1730. + sizeof(struct slab), align);
  1731. /*
  1732. * If the slab has been placed off-slab, and we have enough space then
  1733. * move it on-slab. This is at the expense of any extra colouring.
  1734. */
  1735. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1736. flags &= ~CFLGS_OFF_SLAB;
  1737. left_over -= slab_size;
  1738. }
  1739. if (flags & CFLGS_OFF_SLAB) {
  1740. /* really off slab. No need for manual alignment */
  1741. slab_size =
  1742. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1743. }
  1744. cachep->colour_off = cache_line_size();
  1745. /* Offset must be a multiple of the alignment. */
  1746. if (cachep->colour_off < align)
  1747. cachep->colour_off = align;
  1748. cachep->colour = left_over / cachep->colour_off;
  1749. cachep->slab_size = slab_size;
  1750. cachep->flags = flags;
  1751. cachep->gfpflags = 0;
  1752. if (flags & SLAB_CACHE_DMA)
  1753. cachep->gfpflags |= GFP_DMA;
  1754. spin_lock_init(&cachep->spinlock);
  1755. cachep->buffer_size = size;
  1756. if (flags & CFLGS_OFF_SLAB)
  1757. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1758. cachep->ctor = ctor;
  1759. cachep->dtor = dtor;
  1760. cachep->name = name;
  1761. if (g_cpucache_up == FULL) {
  1762. enable_cpucache(cachep);
  1763. } else {
  1764. if (g_cpucache_up == NONE) {
  1765. /* Note: the first kmem_cache_create must create
  1766. * the cache that's used by kmalloc(24), otherwise
  1767. * the creation of further caches will BUG().
  1768. */
  1769. cachep->array[smp_processor_id()] =
  1770. &initarray_generic.cache;
  1771. /* If the cache that's used by
  1772. * kmalloc(sizeof(kmem_list3)) is the first cache,
  1773. * then we need to set up all its list3s, otherwise
  1774. * the creation of further caches will BUG().
  1775. */
  1776. set_up_list3s(cachep, SIZE_AC);
  1777. if (INDEX_AC == INDEX_L3)
  1778. g_cpucache_up = PARTIAL_L3;
  1779. else
  1780. g_cpucache_up = PARTIAL_AC;
  1781. } else {
  1782. cachep->array[smp_processor_id()] =
  1783. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1784. if (g_cpucache_up == PARTIAL_AC) {
  1785. set_up_list3s(cachep, SIZE_L3);
  1786. g_cpucache_up = PARTIAL_L3;
  1787. } else {
  1788. int node;
  1789. for_each_online_node(node) {
  1790. cachep->nodelists[node] =
  1791. kmalloc_node(sizeof
  1792. (struct kmem_list3),
  1793. GFP_KERNEL, node);
  1794. BUG_ON(!cachep->nodelists[node]);
  1795. kmem_list3_init(cachep->
  1796. nodelists[node]);
  1797. }
  1798. }
  1799. }
  1800. cachep->nodelists[numa_node_id()]->next_reap =
  1801. jiffies + REAPTIMEOUT_LIST3 +
  1802. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1803. BUG_ON(!cpu_cache_get(cachep));
  1804. cpu_cache_get(cachep)->avail = 0;
  1805. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1806. cpu_cache_get(cachep)->batchcount = 1;
  1807. cpu_cache_get(cachep)->touched = 0;
  1808. cachep->batchcount = 1;
  1809. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1810. }
  1811. /* cache setup completed, link it into the list */
  1812. list_add(&cachep->next, &cache_chain);
  1813. oops:
  1814. if (!cachep && (flags & SLAB_PANIC))
  1815. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1816. name);
  1817. mutex_unlock(&cache_chain_mutex);
  1818. unlock_cpu_hotplug();
  1819. return cachep;
  1820. }
  1821. EXPORT_SYMBOL(kmem_cache_create);
  1822. #if DEBUG
  1823. static void check_irq_off(void)
  1824. {
  1825. BUG_ON(!irqs_disabled());
  1826. }
  1827. static void check_irq_on(void)
  1828. {
  1829. BUG_ON(irqs_disabled());
  1830. }
  1831. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1832. {
  1833. #ifdef CONFIG_SMP
  1834. check_irq_off();
  1835. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1836. #endif
  1837. }
  1838. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1839. {
  1840. #ifdef CONFIG_SMP
  1841. check_irq_off();
  1842. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1843. #endif
  1844. }
  1845. #else
  1846. #define check_irq_off() do { } while(0)
  1847. #define check_irq_on() do { } while(0)
  1848. #define check_spinlock_acquired(x) do { } while(0)
  1849. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1850. #endif
  1851. /*
  1852. * Waits for all CPUs to execute func().
  1853. */
  1854. static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
  1855. {
  1856. check_irq_on();
  1857. preempt_disable();
  1858. local_irq_disable();
  1859. func(arg);
  1860. local_irq_enable();
  1861. if (smp_call_function(func, arg, 1, 1))
  1862. BUG();
  1863. preempt_enable();
  1864. }
  1865. static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
  1866. int force, int node);
  1867. static void do_drain(void *arg)
  1868. {
  1869. struct kmem_cache *cachep = (struct kmem_cache *) arg;
  1870. struct array_cache *ac;
  1871. int node = numa_node_id();
  1872. check_irq_off();
  1873. ac = cpu_cache_get(cachep);
  1874. spin_lock(&cachep->nodelists[node]->list_lock);
  1875. free_block(cachep, ac->entry, ac->avail, node);
  1876. spin_unlock(&cachep->nodelists[node]->list_lock);
  1877. ac->avail = 0;
  1878. }
  1879. static void drain_cpu_caches(struct kmem_cache *cachep)
  1880. {
  1881. struct kmem_list3 *l3;
  1882. int node;
  1883. smp_call_function_all_cpus(do_drain, cachep);
  1884. check_irq_on();
  1885. for_each_online_node(node) {
  1886. l3 = cachep->nodelists[node];
  1887. if (l3) {
  1888. spin_lock_irq(&l3->list_lock);
  1889. drain_array_locked(cachep, l3->shared, 1, node);
  1890. spin_unlock_irq(&l3->list_lock);
  1891. if (l3->alien)
  1892. drain_alien_cache(cachep, l3->alien);
  1893. }
  1894. }
  1895. }
  1896. static int __node_shrink(struct kmem_cache *cachep, int node)
  1897. {
  1898. struct slab *slabp;
  1899. struct kmem_list3 *l3 = cachep->nodelists[node];
  1900. int ret;
  1901. for (;;) {
  1902. struct list_head *p;
  1903. p = l3->slabs_free.prev;
  1904. if (p == &l3->slabs_free)
  1905. break;
  1906. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1907. #if DEBUG
  1908. if (slabp->inuse)
  1909. BUG();
  1910. #endif
  1911. list_del(&slabp->list);
  1912. l3->free_objects -= cachep->num;
  1913. spin_unlock_irq(&l3->list_lock);
  1914. slab_destroy(cachep, slabp);
  1915. spin_lock_irq(&l3->list_lock);
  1916. }
  1917. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1918. return ret;
  1919. }
  1920. static int __cache_shrink(struct kmem_cache *cachep)
  1921. {
  1922. int ret = 0, i = 0;
  1923. struct kmem_list3 *l3;
  1924. drain_cpu_caches(cachep);
  1925. check_irq_on();
  1926. for_each_online_node(i) {
  1927. l3 = cachep->nodelists[i];
  1928. if (l3) {
  1929. spin_lock_irq(&l3->list_lock);
  1930. ret += __node_shrink(cachep, i);
  1931. spin_unlock_irq(&l3->list_lock);
  1932. }
  1933. }
  1934. return (ret ? 1 : 0);
  1935. }
  1936. /**
  1937. * kmem_cache_shrink - Shrink a cache.
  1938. * @cachep: The cache to shrink.
  1939. *
  1940. * Releases as many slabs as possible for a cache.
  1941. * To help debugging, a zero exit status indicates all slabs were released.
  1942. */
  1943. int kmem_cache_shrink(struct kmem_cache *cachep)
  1944. {
  1945. if (!cachep || in_interrupt())
  1946. BUG();
  1947. return __cache_shrink(cachep);
  1948. }
  1949. EXPORT_SYMBOL(kmem_cache_shrink);
  1950. /**
  1951. * kmem_cache_destroy - delete a cache
  1952. * @cachep: the cache to destroy
  1953. *
  1954. * Remove a struct kmem_cache object from the slab cache.
  1955. * Returns 0 on success.
  1956. *
  1957. * It is expected this function will be called by a module when it is
  1958. * unloaded. This will remove the cache completely, and avoid a duplicate
  1959. * cache being allocated each time a module is loaded and unloaded, if the
  1960. * module doesn't have persistent in-kernel storage across loads and unloads.
  1961. *
  1962. * The cache must be empty before calling this function.
  1963. *
  1964. * The caller must guarantee that noone will allocate memory from the cache
  1965. * during the kmem_cache_destroy().
  1966. */
  1967. int kmem_cache_destroy(struct kmem_cache *cachep)
  1968. {
  1969. int i;
  1970. struct kmem_list3 *l3;
  1971. if (!cachep || in_interrupt())
  1972. BUG();
  1973. /* Don't let CPUs to come and go */
  1974. lock_cpu_hotplug();
  1975. /* Find the cache in the chain of caches. */
  1976. mutex_lock(&cache_chain_mutex);
  1977. /*
  1978. * the chain is never empty, cache_cache is never destroyed
  1979. */
  1980. list_del(&cachep->next);
  1981. mutex_unlock(&cache_chain_mutex);
  1982. if (__cache_shrink(cachep)) {
  1983. slab_error(cachep, "Can't free all objects");
  1984. mutex_lock(&cache_chain_mutex);
  1985. list_add(&cachep->next, &cache_chain);
  1986. mutex_unlock(&cache_chain_mutex);
  1987. unlock_cpu_hotplug();
  1988. return 1;
  1989. }
  1990. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  1991. synchronize_rcu();
  1992. for_each_online_cpu(i)
  1993. kfree(cachep->array[i]);
  1994. /* NUMA: free the list3 structures */
  1995. for_each_online_node(i) {
  1996. if ((l3 = cachep->nodelists[i])) {
  1997. kfree(l3->shared);
  1998. free_alien_cache(l3->alien);
  1999. kfree(l3);
  2000. }
  2001. }
  2002. kmem_cache_free(&cache_cache, cachep);
  2003. unlock_cpu_hotplug();
  2004. return 0;
  2005. }
  2006. EXPORT_SYMBOL(kmem_cache_destroy);
  2007. /* Get the memory for a slab management obj. */
  2008. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2009. int colour_off, gfp_t local_flags)
  2010. {
  2011. struct slab *slabp;
  2012. if (OFF_SLAB(cachep)) {
  2013. /* Slab management obj is off-slab. */
  2014. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2015. if (!slabp)
  2016. return NULL;
  2017. } else {
  2018. slabp = objp + colour_off;
  2019. colour_off += cachep->slab_size;
  2020. }
  2021. slabp->inuse = 0;
  2022. slabp->colouroff = colour_off;
  2023. slabp->s_mem = objp + colour_off;
  2024. return slabp;
  2025. }
  2026. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2027. {
  2028. return (kmem_bufctl_t *) (slabp + 1);
  2029. }
  2030. static void cache_init_objs(struct kmem_cache *cachep,
  2031. struct slab *slabp, unsigned long ctor_flags)
  2032. {
  2033. int i;
  2034. for (i = 0; i < cachep->num; i++) {
  2035. void *objp = slabp->s_mem + cachep->buffer_size * i;
  2036. #if DEBUG
  2037. /* need to poison the objs? */
  2038. if (cachep->flags & SLAB_POISON)
  2039. poison_obj(cachep, objp, POISON_FREE);
  2040. if (cachep->flags & SLAB_STORE_USER)
  2041. *dbg_userword(cachep, objp) = NULL;
  2042. if (cachep->flags & SLAB_RED_ZONE) {
  2043. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2044. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2045. }
  2046. /*
  2047. * Constructors are not allowed to allocate memory from
  2048. * the same cache which they are a constructor for.
  2049. * Otherwise, deadlock. They must also be threaded.
  2050. */
  2051. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2052. cachep->ctor(objp + obj_offset(cachep), cachep,
  2053. ctor_flags);
  2054. if (cachep->flags & SLAB_RED_ZONE) {
  2055. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2056. slab_error(cachep, "constructor overwrote the"
  2057. " end of an object");
  2058. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2059. slab_error(cachep, "constructor overwrote the"
  2060. " start of an object");
  2061. }
  2062. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
  2063. && cachep->flags & SLAB_POISON)
  2064. kernel_map_pages(virt_to_page(objp),
  2065. cachep->buffer_size / PAGE_SIZE, 0);
  2066. #else
  2067. if (cachep->ctor)
  2068. cachep->ctor(objp, cachep, ctor_flags);
  2069. #endif
  2070. slab_bufctl(slabp)[i] = i + 1;
  2071. }
  2072. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2073. slabp->free = 0;
  2074. }
  2075. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2076. {
  2077. if (flags & SLAB_DMA) {
  2078. if (!(cachep->gfpflags & GFP_DMA))
  2079. BUG();
  2080. } else {
  2081. if (cachep->gfpflags & GFP_DMA)
  2082. BUG();
  2083. }
  2084. }
  2085. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
  2086. {
  2087. void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
  2088. kmem_bufctl_t next;
  2089. slabp->inuse++;
  2090. next = slab_bufctl(slabp)[slabp->free];
  2091. #if DEBUG
  2092. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2093. WARN_ON(slabp->nodeid != nodeid);
  2094. #endif
  2095. slabp->free = next;
  2096. return objp;
  2097. }
  2098. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
  2099. int nodeid)
  2100. {
  2101. unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
  2102. #if DEBUG
  2103. /* Verify that the slab belongs to the intended node */
  2104. WARN_ON(slabp->nodeid != nodeid);
  2105. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2106. printk(KERN_ERR "slab: double free detected in cache "
  2107. "'%s', objp %p\n", cachep->name, objp);
  2108. BUG();
  2109. }
  2110. #endif
  2111. slab_bufctl(slabp)[objnr] = slabp->free;
  2112. slabp->free = objnr;
  2113. slabp->inuse--;
  2114. }
  2115. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
  2116. {
  2117. int i;
  2118. struct page *page;
  2119. /* Nasty!!!!!! I hope this is OK. */
  2120. i = 1 << cachep->gfporder;
  2121. page = virt_to_page(objp);
  2122. do {
  2123. page_set_cache(page, cachep);
  2124. page_set_slab(page, slabp);
  2125. page++;
  2126. } while (--i);
  2127. }
  2128. /*
  2129. * Grow (by 1) the number of slabs within a cache. This is called by
  2130. * kmem_cache_alloc() when there are no active objs left in a cache.
  2131. */
  2132. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2133. {
  2134. struct slab *slabp;
  2135. void *objp;
  2136. size_t offset;
  2137. gfp_t local_flags;
  2138. unsigned long ctor_flags;
  2139. struct kmem_list3 *l3;
  2140. /* Be lazy and only check for valid flags here,
  2141. * keeping it out of the critical path in kmem_cache_alloc().
  2142. */
  2143. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2144. BUG();
  2145. if (flags & SLAB_NO_GROW)
  2146. return 0;
  2147. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2148. local_flags = (flags & SLAB_LEVEL_MASK);
  2149. if (!(local_flags & __GFP_WAIT))
  2150. /*
  2151. * Not allowed to sleep. Need to tell a constructor about
  2152. * this - it might need to know...
  2153. */
  2154. ctor_flags |= SLAB_CTOR_ATOMIC;
  2155. /* Take the l3 list lock to change the colour_next on this node */
  2156. check_irq_off();
  2157. l3 = cachep->nodelists[nodeid];
  2158. spin_lock(&l3->list_lock);
  2159. /* Get colour for the slab, and cal the next value. */
  2160. offset = l3->colour_next;
  2161. l3->colour_next++;
  2162. if (l3->colour_next >= cachep->colour)
  2163. l3->colour_next = 0;
  2164. spin_unlock(&l3->list_lock);
  2165. offset *= cachep->colour_off;
  2166. if (local_flags & __GFP_WAIT)
  2167. local_irq_enable();
  2168. /*
  2169. * The test for missing atomic flag is performed here, rather than
  2170. * the more obvious place, simply to reduce the critical path length
  2171. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2172. * will eventually be caught here (where it matters).
  2173. */
  2174. kmem_flagcheck(cachep, flags);
  2175. /* Get mem for the objs.
  2176. * Attempt to allocate a physical page from 'nodeid',
  2177. */
  2178. if (!(objp = kmem_getpages(cachep, flags, nodeid)))
  2179. goto failed;
  2180. /* Get slab management. */
  2181. if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
  2182. goto opps1;
  2183. slabp->nodeid = nodeid;
  2184. set_slab_attr(cachep, slabp, objp);
  2185. cache_init_objs(cachep, slabp, ctor_flags);
  2186. if (local_flags & __GFP_WAIT)
  2187. local_irq_disable();
  2188. check_irq_off();
  2189. spin_lock(&l3->list_lock);
  2190. /* Make slab active. */
  2191. list_add_tail(&slabp->list, &(l3->slabs_free));
  2192. STATS_INC_GROWN(cachep);
  2193. l3->free_objects += cachep->num;
  2194. spin_unlock(&l3->list_lock);
  2195. return 1;
  2196. opps1:
  2197. kmem_freepages(cachep, objp);
  2198. failed:
  2199. if (local_flags & __GFP_WAIT)
  2200. local_irq_disable();
  2201. return 0;
  2202. }
  2203. #if DEBUG
  2204. /*
  2205. * Perform extra freeing checks:
  2206. * - detect bad pointers.
  2207. * - POISON/RED_ZONE checking
  2208. * - destructor calls, for caches with POISON+dtor
  2209. */
  2210. static void kfree_debugcheck(const void *objp)
  2211. {
  2212. struct page *page;
  2213. if (!virt_addr_valid(objp)) {
  2214. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2215. (unsigned long)objp);
  2216. BUG();
  2217. }
  2218. page = virt_to_page(objp);
  2219. if (!PageSlab(page)) {
  2220. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2221. (unsigned long)objp);
  2222. BUG();
  2223. }
  2224. }
  2225. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2226. void *caller)
  2227. {
  2228. struct page *page;
  2229. unsigned int objnr;
  2230. struct slab *slabp;
  2231. objp -= obj_offset(cachep);
  2232. kfree_debugcheck(objp);
  2233. page = virt_to_page(objp);
  2234. if (page_get_cache(page) != cachep) {
  2235. printk(KERN_ERR
  2236. "mismatch in kmem_cache_free: expected cache %p, got %p\n",
  2237. page_get_cache(page), cachep);
  2238. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2239. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2240. page_get_cache(page)->name);
  2241. WARN_ON(1);
  2242. }
  2243. slabp = page_get_slab(page);
  2244. if (cachep->flags & SLAB_RED_ZONE) {
  2245. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
  2246. || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2247. slab_error(cachep,
  2248. "double free, or memory outside"
  2249. " object was overwritten");
  2250. printk(KERN_ERR
  2251. "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
  2252. objp, *dbg_redzone1(cachep, objp),
  2253. *dbg_redzone2(cachep, objp));
  2254. }
  2255. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2256. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2257. }
  2258. if (cachep->flags & SLAB_STORE_USER)
  2259. *dbg_userword(cachep, objp) = caller;
  2260. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2261. BUG_ON(objnr >= cachep->num);
  2262. BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
  2263. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2264. /* Need to call the slab's constructor so the
  2265. * caller can perform a verify of its state (debugging).
  2266. * Called without the cache-lock held.
  2267. */
  2268. cachep->ctor(objp + obj_offset(cachep),
  2269. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2270. }
  2271. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2272. /* we want to cache poison the object,
  2273. * call the destruction callback
  2274. */
  2275. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2276. }
  2277. if (cachep->flags & SLAB_POISON) {
  2278. #ifdef CONFIG_DEBUG_PAGEALLOC
  2279. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
  2280. store_stackinfo(cachep, objp, (unsigned long)caller);
  2281. kernel_map_pages(virt_to_page(objp),
  2282. cachep->buffer_size / PAGE_SIZE, 0);
  2283. } else {
  2284. poison_obj(cachep, objp, POISON_FREE);
  2285. }
  2286. #else
  2287. poison_obj(cachep, objp, POISON_FREE);
  2288. #endif
  2289. }
  2290. return objp;
  2291. }
  2292. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2293. {
  2294. kmem_bufctl_t i;
  2295. int entries = 0;
  2296. /* Check slab's freelist to see if this obj is there. */
  2297. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2298. entries++;
  2299. if (entries > cachep->num || i >= cachep->num)
  2300. goto bad;
  2301. }
  2302. if (entries != cachep->num - slabp->inuse) {
  2303. bad:
  2304. printk(KERN_ERR
  2305. "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2306. cachep->name, cachep->num, slabp, slabp->inuse);
  2307. for (i = 0;
  2308. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2309. i++) {
  2310. if ((i % 16) == 0)
  2311. printk("\n%03x:", i);
  2312. printk(" %02x", ((unsigned char *)slabp)[i]);
  2313. }
  2314. printk("\n");
  2315. BUG();
  2316. }
  2317. }
  2318. #else
  2319. #define kfree_debugcheck(x) do { } while(0)
  2320. #define cache_free_debugcheck(x,objp,z) (objp)
  2321. #define check_slabp(x,y) do { } while(0)
  2322. #endif
  2323. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2324. {
  2325. int batchcount;
  2326. struct kmem_list3 *l3;
  2327. struct array_cache *ac;
  2328. check_irq_off();
  2329. ac = cpu_cache_get(cachep);
  2330. retry:
  2331. batchcount = ac->batchcount;
  2332. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2333. /* if there was little recent activity on this
  2334. * cache, then perform only a partial refill.
  2335. * Otherwise we could generate refill bouncing.
  2336. */
  2337. batchcount = BATCHREFILL_LIMIT;
  2338. }
  2339. l3 = cachep->nodelists[numa_node_id()];
  2340. BUG_ON(ac->avail > 0 || !l3);
  2341. spin_lock(&l3->list_lock);
  2342. if (l3->shared) {
  2343. struct array_cache *shared_array = l3->shared;
  2344. if (shared_array->avail) {
  2345. if (batchcount > shared_array->avail)
  2346. batchcount = shared_array->avail;
  2347. shared_array->avail -= batchcount;
  2348. ac->avail = batchcount;
  2349. memcpy(ac->entry,
  2350. &(shared_array->entry[shared_array->avail]),
  2351. sizeof(void *) * batchcount);
  2352. shared_array->touched = 1;
  2353. goto alloc_done;
  2354. }
  2355. }
  2356. while (batchcount > 0) {
  2357. struct list_head *entry;
  2358. struct slab *slabp;
  2359. /* Get slab alloc is to come from. */
  2360. entry = l3->slabs_partial.next;
  2361. if (entry == &l3->slabs_partial) {
  2362. l3->free_touched = 1;
  2363. entry = l3->slabs_free.next;
  2364. if (entry == &l3->slabs_free)
  2365. goto must_grow;
  2366. }
  2367. slabp = list_entry(entry, struct slab, list);
  2368. check_slabp(cachep, slabp);
  2369. check_spinlock_acquired(cachep);
  2370. while (slabp->inuse < cachep->num && batchcount--) {
  2371. STATS_INC_ALLOCED(cachep);
  2372. STATS_INC_ACTIVE(cachep);
  2373. STATS_SET_HIGH(cachep);
  2374. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2375. numa_node_id());
  2376. }
  2377. check_slabp(cachep, slabp);
  2378. /* move slabp to correct slabp list: */
  2379. list_del(&slabp->list);
  2380. if (slabp->free == BUFCTL_END)
  2381. list_add(&slabp->list, &l3->slabs_full);
  2382. else
  2383. list_add(&slabp->list, &l3->slabs_partial);
  2384. }
  2385. must_grow:
  2386. l3->free_objects -= ac->avail;
  2387. alloc_done:
  2388. spin_unlock(&l3->list_lock);
  2389. if (unlikely(!ac->avail)) {
  2390. int x;
  2391. x = cache_grow(cachep, flags, numa_node_id());
  2392. // cache_grow can reenable interrupts, then ac could change.
  2393. ac = cpu_cache_get(cachep);
  2394. if (!x && ac->avail == 0) // no objects in sight? abort
  2395. return NULL;
  2396. if (!ac->avail) // objects refilled by interrupt?
  2397. goto retry;
  2398. }
  2399. ac->touched = 1;
  2400. return ac->entry[--ac->avail];
  2401. }
  2402. static inline void
  2403. cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
  2404. {
  2405. might_sleep_if(flags & __GFP_WAIT);
  2406. #if DEBUG
  2407. kmem_flagcheck(cachep, flags);
  2408. #endif
  2409. }
  2410. #if DEBUG
  2411. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
  2412. void *objp, void *caller)
  2413. {
  2414. if (!objp)
  2415. return objp;
  2416. if (cachep->flags & SLAB_POISON) {
  2417. #ifdef CONFIG_DEBUG_PAGEALLOC
  2418. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2419. kernel_map_pages(virt_to_page(objp),
  2420. cachep->buffer_size / PAGE_SIZE, 1);
  2421. else
  2422. check_poison_obj(cachep, objp);
  2423. #else
  2424. check_poison_obj(cachep, objp);
  2425. #endif
  2426. poison_obj(cachep, objp, POISON_INUSE);
  2427. }
  2428. if (cachep->flags & SLAB_STORE_USER)
  2429. *dbg_userword(cachep, objp) = caller;
  2430. if (cachep->flags & SLAB_RED_ZONE) {
  2431. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
  2432. || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2433. slab_error(cachep,
  2434. "double free, or memory outside"
  2435. " object was overwritten");
  2436. printk(KERN_ERR
  2437. "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
  2438. objp, *dbg_redzone1(cachep, objp),
  2439. *dbg_redzone2(cachep, objp));
  2440. }
  2441. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2442. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2443. }
  2444. objp += obj_offset(cachep);
  2445. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2446. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2447. if (!(flags & __GFP_WAIT))
  2448. ctor_flags |= SLAB_CTOR_ATOMIC;
  2449. cachep->ctor(objp, cachep, ctor_flags);
  2450. }
  2451. return objp;
  2452. }
  2453. #else
  2454. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2455. #endif
  2456. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2457. {
  2458. void *objp;
  2459. struct array_cache *ac;
  2460. #ifdef CONFIG_NUMA
  2461. if (unlikely(current->mempolicy && !in_interrupt())) {
  2462. int nid = slab_node(current->mempolicy);
  2463. if (nid != numa_node_id())
  2464. return __cache_alloc_node(cachep, flags, nid);
  2465. }
  2466. #endif
  2467. check_irq_off();
  2468. ac = cpu_cache_get(cachep);
  2469. if (likely(ac->avail)) {
  2470. STATS_INC_ALLOCHIT(cachep);
  2471. ac->touched = 1;
  2472. objp = ac->entry[--ac->avail];
  2473. } else {
  2474. STATS_INC_ALLOCMISS(cachep);
  2475. objp = cache_alloc_refill(cachep, flags);
  2476. }
  2477. return objp;
  2478. }
  2479. static __always_inline void *
  2480. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2481. {
  2482. unsigned long save_flags;
  2483. void *objp;
  2484. cache_alloc_debugcheck_before(cachep, flags);
  2485. local_irq_save(save_flags);
  2486. objp = ____cache_alloc(cachep, flags);
  2487. local_irq_restore(save_flags);
  2488. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2489. caller);
  2490. prefetchw(objp);
  2491. return objp;
  2492. }
  2493. #ifdef CONFIG_NUMA
  2494. /*
  2495. * A interface to enable slab creation on nodeid
  2496. */
  2497. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2498. {
  2499. struct list_head *entry;
  2500. struct slab *slabp;
  2501. struct kmem_list3 *l3;
  2502. void *obj;
  2503. int x;
  2504. l3 = cachep->nodelists[nodeid];
  2505. BUG_ON(!l3);
  2506. retry:
  2507. check_irq_off();
  2508. spin_lock(&l3->list_lock);
  2509. entry = l3->slabs_partial.next;
  2510. if (entry == &l3->slabs_partial) {
  2511. l3->free_touched = 1;
  2512. entry = l3->slabs_free.next;
  2513. if (entry == &l3->slabs_free)
  2514. goto must_grow;
  2515. }
  2516. slabp = list_entry(entry, struct slab, list);
  2517. check_spinlock_acquired_node(cachep, nodeid);
  2518. check_slabp(cachep, slabp);
  2519. STATS_INC_NODEALLOCS(cachep);
  2520. STATS_INC_ACTIVE(cachep);
  2521. STATS_SET_HIGH(cachep);
  2522. BUG_ON(slabp->inuse == cachep->num);
  2523. obj = slab_get_obj(cachep, slabp, nodeid);
  2524. check_slabp(cachep, slabp);
  2525. l3->free_objects--;
  2526. /* move slabp to correct slabp list: */
  2527. list_del(&slabp->list);
  2528. if (slabp->free == BUFCTL_END) {
  2529. list_add(&slabp->list, &l3->slabs_full);
  2530. } else {
  2531. list_add(&slabp->list, &l3->slabs_partial);
  2532. }
  2533. spin_unlock(&l3->list_lock);
  2534. goto done;
  2535. must_grow:
  2536. spin_unlock(&l3->list_lock);
  2537. x = cache_grow(cachep, flags, nodeid);
  2538. if (!x)
  2539. return NULL;
  2540. goto retry;
  2541. done:
  2542. return obj;
  2543. }
  2544. #endif
  2545. /*
  2546. * Caller needs to acquire correct kmem_list's list_lock
  2547. */
  2548. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2549. int node)
  2550. {
  2551. int i;
  2552. struct kmem_list3 *l3;
  2553. for (i = 0; i < nr_objects; i++) {
  2554. void *objp = objpp[i];
  2555. struct slab *slabp;
  2556. slabp = virt_to_slab(objp);
  2557. l3 = cachep->nodelists[node];
  2558. list_del(&slabp->list);
  2559. check_spinlock_acquired_node(cachep, node);
  2560. check_slabp(cachep, slabp);
  2561. slab_put_obj(cachep, slabp, objp, node);
  2562. STATS_DEC_ACTIVE(cachep);
  2563. l3->free_objects++;
  2564. check_slabp(cachep, slabp);
  2565. /* fixup slab chains */
  2566. if (slabp->inuse == 0) {
  2567. if (l3->free_objects > l3->free_limit) {
  2568. l3->free_objects -= cachep->num;
  2569. slab_destroy(cachep, slabp);
  2570. } else {
  2571. list_add(&slabp->list, &l3->slabs_free);
  2572. }
  2573. } else {
  2574. /* Unconditionally move a slab to the end of the
  2575. * partial list on free - maximum time for the
  2576. * other objects to be freed, too.
  2577. */
  2578. list_add_tail(&slabp->list, &l3->slabs_partial);
  2579. }
  2580. }
  2581. }
  2582. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2583. {
  2584. int batchcount;
  2585. struct kmem_list3 *l3;
  2586. int node = numa_node_id();
  2587. batchcount = ac->batchcount;
  2588. #if DEBUG
  2589. BUG_ON(!batchcount || batchcount > ac->avail);
  2590. #endif
  2591. check_irq_off();
  2592. l3 = cachep->nodelists[node];
  2593. spin_lock(&l3->list_lock);
  2594. if (l3->shared) {
  2595. struct array_cache *shared_array = l3->shared;
  2596. int max = shared_array->limit - shared_array->avail;
  2597. if (max) {
  2598. if (batchcount > max)
  2599. batchcount = max;
  2600. memcpy(&(shared_array->entry[shared_array->avail]),
  2601. ac->entry, sizeof(void *) * batchcount);
  2602. shared_array->avail += batchcount;
  2603. goto free_done;
  2604. }
  2605. }
  2606. free_block(cachep, ac->entry, batchcount, node);
  2607. free_done:
  2608. #if STATS
  2609. {
  2610. int i = 0;
  2611. struct list_head *p;
  2612. p = l3->slabs_free.next;
  2613. while (p != &(l3->slabs_free)) {
  2614. struct slab *slabp;
  2615. slabp = list_entry(p, struct slab, list);
  2616. BUG_ON(slabp->inuse);
  2617. i++;
  2618. p = p->next;
  2619. }
  2620. STATS_SET_FREEABLE(cachep, i);
  2621. }
  2622. #endif
  2623. spin_unlock(&l3->list_lock);
  2624. ac->avail -= batchcount;
  2625. memmove(ac->entry, &(ac->entry[batchcount]),
  2626. sizeof(void *) * ac->avail);
  2627. }
  2628. /*
  2629. * __cache_free
  2630. * Release an obj back to its cache. If the obj has a constructed
  2631. * state, it must be in this state _before_ it is released.
  2632. *
  2633. * Called with disabled ints.
  2634. */
  2635. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2636. {
  2637. struct array_cache *ac = cpu_cache_get(cachep);
  2638. check_irq_off();
  2639. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2640. /* Make sure we are not freeing a object from another
  2641. * node to the array cache on this cpu.
  2642. */
  2643. #ifdef CONFIG_NUMA
  2644. {
  2645. struct slab *slabp;
  2646. slabp = virt_to_slab(objp);
  2647. if (unlikely(slabp->nodeid != numa_node_id())) {
  2648. struct array_cache *alien = NULL;
  2649. int nodeid = slabp->nodeid;
  2650. struct kmem_list3 *l3 =
  2651. cachep->nodelists[numa_node_id()];
  2652. STATS_INC_NODEFREES(cachep);
  2653. if (l3->alien && l3->alien[nodeid]) {
  2654. alien = l3->alien[nodeid];
  2655. spin_lock(&alien->lock);
  2656. if (unlikely(alien->avail == alien->limit))
  2657. __drain_alien_cache(cachep,
  2658. alien, nodeid);
  2659. alien->entry[alien->avail++] = objp;
  2660. spin_unlock(&alien->lock);
  2661. } else {
  2662. spin_lock(&(cachep->nodelists[nodeid])->
  2663. list_lock);
  2664. free_block(cachep, &objp, 1, nodeid);
  2665. spin_unlock(&(cachep->nodelists[nodeid])->
  2666. list_lock);
  2667. }
  2668. return;
  2669. }
  2670. }
  2671. #endif
  2672. if (likely(ac->avail < ac->limit)) {
  2673. STATS_INC_FREEHIT(cachep);
  2674. ac->entry[ac->avail++] = objp;
  2675. return;
  2676. } else {
  2677. STATS_INC_FREEMISS(cachep);
  2678. cache_flusharray(cachep, ac);
  2679. ac->entry[ac->avail++] = objp;
  2680. }
  2681. }
  2682. /**
  2683. * kmem_cache_alloc - Allocate an object
  2684. * @cachep: The cache to allocate from.
  2685. * @flags: See kmalloc().
  2686. *
  2687. * Allocate an object from this cache. The flags are only relevant
  2688. * if the cache has no available objects.
  2689. */
  2690. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2691. {
  2692. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2693. }
  2694. EXPORT_SYMBOL(kmem_cache_alloc);
  2695. /**
  2696. * kmem_ptr_validate - check if an untrusted pointer might
  2697. * be a slab entry.
  2698. * @cachep: the cache we're checking against
  2699. * @ptr: pointer to validate
  2700. *
  2701. * This verifies that the untrusted pointer looks sane:
  2702. * it is _not_ a guarantee that the pointer is actually
  2703. * part of the slab cache in question, but it at least
  2704. * validates that the pointer can be dereferenced and
  2705. * looks half-way sane.
  2706. *
  2707. * Currently only used for dentry validation.
  2708. */
  2709. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2710. {
  2711. unsigned long addr = (unsigned long)ptr;
  2712. unsigned long min_addr = PAGE_OFFSET;
  2713. unsigned long align_mask = BYTES_PER_WORD - 1;
  2714. unsigned long size = cachep->buffer_size;
  2715. struct page *page;
  2716. if (unlikely(addr < min_addr))
  2717. goto out;
  2718. if (unlikely(addr > (unsigned long)high_memory - size))
  2719. goto out;
  2720. if (unlikely(addr & align_mask))
  2721. goto out;
  2722. if (unlikely(!kern_addr_valid(addr)))
  2723. goto out;
  2724. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2725. goto out;
  2726. page = virt_to_page(ptr);
  2727. if (unlikely(!PageSlab(page)))
  2728. goto out;
  2729. if (unlikely(page_get_cache(page) != cachep))
  2730. goto out;
  2731. return 1;
  2732. out:
  2733. return 0;
  2734. }
  2735. #ifdef CONFIG_NUMA
  2736. /**
  2737. * kmem_cache_alloc_node - Allocate an object on the specified node
  2738. * @cachep: The cache to allocate from.
  2739. * @flags: See kmalloc().
  2740. * @nodeid: node number of the target node.
  2741. *
  2742. * Identical to kmem_cache_alloc, except that this function is slow
  2743. * and can sleep. And it will allocate memory on the given node, which
  2744. * can improve the performance for cpu bound structures.
  2745. * New and improved: it will now make sure that the object gets
  2746. * put on the correct node list so that there is no false sharing.
  2747. */
  2748. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2749. {
  2750. unsigned long save_flags;
  2751. void *ptr;
  2752. cache_alloc_debugcheck_before(cachep, flags);
  2753. local_irq_save(save_flags);
  2754. if (nodeid == -1 || nodeid == numa_node_id() ||
  2755. !cachep->nodelists[nodeid])
  2756. ptr = ____cache_alloc(cachep, flags);
  2757. else
  2758. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2759. local_irq_restore(save_flags);
  2760. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2761. __builtin_return_address(0));
  2762. return ptr;
  2763. }
  2764. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2765. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2766. {
  2767. struct kmem_cache *cachep;
  2768. cachep = kmem_find_general_cachep(size, flags);
  2769. if (unlikely(cachep == NULL))
  2770. return NULL;
  2771. return kmem_cache_alloc_node(cachep, flags, node);
  2772. }
  2773. EXPORT_SYMBOL(kmalloc_node);
  2774. #endif
  2775. /**
  2776. * kmalloc - allocate memory
  2777. * @size: how many bytes of memory are required.
  2778. * @flags: the type of memory to allocate.
  2779. *
  2780. * kmalloc is the normal method of allocating memory
  2781. * in the kernel.
  2782. *
  2783. * The @flags argument may be one of:
  2784. *
  2785. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2786. *
  2787. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2788. *
  2789. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2790. *
  2791. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2792. * must be suitable for DMA. This can mean different things on different
  2793. * platforms. For example, on i386, it means that the memory must come
  2794. * from the first 16MB.
  2795. */
  2796. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2797. void *caller)
  2798. {
  2799. struct kmem_cache *cachep;
  2800. /* If you want to save a few bytes .text space: replace
  2801. * __ with kmem_.
  2802. * Then kmalloc uses the uninlined functions instead of the inline
  2803. * functions.
  2804. */
  2805. cachep = __find_general_cachep(size, flags);
  2806. if (unlikely(cachep == NULL))
  2807. return NULL;
  2808. return __cache_alloc(cachep, flags, caller);
  2809. }
  2810. #ifndef CONFIG_DEBUG_SLAB
  2811. void *__kmalloc(size_t size, gfp_t flags)
  2812. {
  2813. return __do_kmalloc(size, flags, NULL);
  2814. }
  2815. EXPORT_SYMBOL(__kmalloc);
  2816. #else
  2817. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2818. {
  2819. return __do_kmalloc(size, flags, caller);
  2820. }
  2821. EXPORT_SYMBOL(__kmalloc_track_caller);
  2822. #endif
  2823. #ifdef CONFIG_SMP
  2824. /**
  2825. * __alloc_percpu - allocate one copy of the object for every present
  2826. * cpu in the system, zeroing them.
  2827. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2828. *
  2829. * @size: how many bytes of memory are required.
  2830. */
  2831. void *__alloc_percpu(size_t size)
  2832. {
  2833. int i;
  2834. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2835. if (!pdata)
  2836. return NULL;
  2837. /*
  2838. * Cannot use for_each_online_cpu since a cpu may come online
  2839. * and we have no way of figuring out how to fix the array
  2840. * that we have allocated then....
  2841. */
  2842. for_each_cpu(i) {
  2843. int node = cpu_to_node(i);
  2844. if (node_online(node))
  2845. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2846. else
  2847. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2848. if (!pdata->ptrs[i])
  2849. goto unwind_oom;
  2850. memset(pdata->ptrs[i], 0, size);
  2851. }
  2852. /* Catch derefs w/o wrappers */
  2853. return (void *)(~(unsigned long)pdata);
  2854. unwind_oom:
  2855. while (--i >= 0) {
  2856. if (!cpu_possible(i))
  2857. continue;
  2858. kfree(pdata->ptrs[i]);
  2859. }
  2860. kfree(pdata);
  2861. return NULL;
  2862. }
  2863. EXPORT_SYMBOL(__alloc_percpu);
  2864. #endif
  2865. /**
  2866. * kmem_cache_free - Deallocate an object
  2867. * @cachep: The cache the allocation was from.
  2868. * @objp: The previously allocated object.
  2869. *
  2870. * Free an object which was previously allocated from this
  2871. * cache.
  2872. */
  2873. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2874. {
  2875. unsigned long flags;
  2876. local_irq_save(flags);
  2877. __cache_free(cachep, objp);
  2878. local_irq_restore(flags);
  2879. }
  2880. EXPORT_SYMBOL(kmem_cache_free);
  2881. /**
  2882. * kfree - free previously allocated memory
  2883. * @objp: pointer returned by kmalloc.
  2884. *
  2885. * If @objp is NULL, no operation is performed.
  2886. *
  2887. * Don't free memory not originally allocated by kmalloc()
  2888. * or you will run into trouble.
  2889. */
  2890. void kfree(const void *objp)
  2891. {
  2892. struct kmem_cache *c;
  2893. unsigned long flags;
  2894. if (unlikely(!objp))
  2895. return;
  2896. local_irq_save(flags);
  2897. kfree_debugcheck(objp);
  2898. c = virt_to_cache(objp);
  2899. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2900. __cache_free(c, (void *)objp);
  2901. local_irq_restore(flags);
  2902. }
  2903. EXPORT_SYMBOL(kfree);
  2904. #ifdef CONFIG_SMP
  2905. /**
  2906. * free_percpu - free previously allocated percpu memory
  2907. * @objp: pointer returned by alloc_percpu.
  2908. *
  2909. * Don't free memory not originally allocated by alloc_percpu()
  2910. * The complemented objp is to check for that.
  2911. */
  2912. void free_percpu(const void *objp)
  2913. {
  2914. int i;
  2915. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2916. /*
  2917. * We allocate for all cpus so we cannot use for online cpu here.
  2918. */
  2919. for_each_cpu(i)
  2920. kfree(p->ptrs[i]);
  2921. kfree(p);
  2922. }
  2923. EXPORT_SYMBOL(free_percpu);
  2924. #endif
  2925. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2926. {
  2927. return obj_size(cachep);
  2928. }
  2929. EXPORT_SYMBOL(kmem_cache_size);
  2930. const char *kmem_cache_name(struct kmem_cache *cachep)
  2931. {
  2932. return cachep->name;
  2933. }
  2934. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2935. /*
  2936. * This initializes kmem_list3 for all nodes.
  2937. */
  2938. static int alloc_kmemlist(struct kmem_cache *cachep)
  2939. {
  2940. int node;
  2941. struct kmem_list3 *l3;
  2942. int err = 0;
  2943. for_each_online_node(node) {
  2944. struct array_cache *nc = NULL, *new;
  2945. struct array_cache **new_alien = NULL;
  2946. #ifdef CONFIG_NUMA
  2947. if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
  2948. goto fail;
  2949. #endif
  2950. if (!(new = alloc_arraycache(node, (cachep->shared *
  2951. cachep->batchcount),
  2952. 0xbaadf00d)))
  2953. goto fail;
  2954. if ((l3 = cachep->nodelists[node])) {
  2955. spin_lock_irq(&l3->list_lock);
  2956. if ((nc = cachep->nodelists[node]->shared))
  2957. free_block(cachep, nc->entry, nc->avail, node);
  2958. l3->shared = new;
  2959. if (!cachep->nodelists[node]->alien) {
  2960. l3->alien = new_alien;
  2961. new_alien = NULL;
  2962. }
  2963. l3->free_limit = (1 + nr_cpus_node(node)) *
  2964. cachep->batchcount + cachep->num;
  2965. spin_unlock_irq(&l3->list_lock);
  2966. kfree(nc);
  2967. free_alien_cache(new_alien);
  2968. continue;
  2969. }
  2970. if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
  2971. GFP_KERNEL, node)))
  2972. goto fail;
  2973. kmem_list3_init(l3);
  2974. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  2975. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  2976. l3->shared = new;
  2977. l3->alien = new_alien;
  2978. l3->free_limit = (1 + nr_cpus_node(node)) *
  2979. cachep->batchcount + cachep->num;
  2980. cachep->nodelists[node] = l3;
  2981. }
  2982. return err;
  2983. fail:
  2984. err = -ENOMEM;
  2985. return err;
  2986. }
  2987. struct ccupdate_struct {
  2988. struct kmem_cache *cachep;
  2989. struct array_cache *new[NR_CPUS];
  2990. };
  2991. static void do_ccupdate_local(void *info)
  2992. {
  2993. struct ccupdate_struct *new = (struct ccupdate_struct *)info;
  2994. struct array_cache *old;
  2995. check_irq_off();
  2996. old = cpu_cache_get(new->cachep);
  2997. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  2998. new->new[smp_processor_id()] = old;
  2999. }
  3000. static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
  3001. int shared)
  3002. {
  3003. struct ccupdate_struct new;
  3004. int i, err;
  3005. memset(&new.new, 0, sizeof(new.new));
  3006. for_each_online_cpu(i) {
  3007. new.new[i] =
  3008. alloc_arraycache(cpu_to_node(i), limit, batchcount);
  3009. if (!new.new[i]) {
  3010. for (i--; i >= 0; i--)
  3011. kfree(new.new[i]);
  3012. return -ENOMEM;
  3013. }
  3014. }
  3015. new.cachep = cachep;
  3016. smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
  3017. check_irq_on();
  3018. spin_lock(&cachep->spinlock);
  3019. cachep->batchcount = batchcount;
  3020. cachep->limit = limit;
  3021. cachep->shared = shared;
  3022. spin_unlock(&cachep->spinlock);
  3023. for_each_online_cpu(i) {
  3024. struct array_cache *ccold = new.new[i];
  3025. if (!ccold)
  3026. continue;
  3027. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3028. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3029. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3030. kfree(ccold);
  3031. }
  3032. err = alloc_kmemlist(cachep);
  3033. if (err) {
  3034. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3035. cachep->name, -err);
  3036. BUG();
  3037. }
  3038. return 0;
  3039. }
  3040. static void enable_cpucache(struct kmem_cache *cachep)
  3041. {
  3042. int err;
  3043. int limit, shared;
  3044. /* The head array serves three purposes:
  3045. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3046. * - reduce the number of spinlock operations.
  3047. * - reduce the number of linked list operations on the slab and
  3048. * bufctl chains: array operations are cheaper.
  3049. * The numbers are guessed, we should auto-tune as described by
  3050. * Bonwick.
  3051. */
  3052. if (cachep->buffer_size > 131072)
  3053. limit = 1;
  3054. else if (cachep->buffer_size > PAGE_SIZE)
  3055. limit = 8;
  3056. else if (cachep->buffer_size > 1024)
  3057. limit = 24;
  3058. else if (cachep->buffer_size > 256)
  3059. limit = 54;
  3060. else
  3061. limit = 120;
  3062. /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
  3063. * allocation behaviour: Most allocs on one cpu, most free operations
  3064. * on another cpu. For these cases, an efficient object passing between
  3065. * cpus is necessary. This is provided by a shared array. The array
  3066. * replaces Bonwick's magazine layer.
  3067. * On uniprocessor, it's functionally equivalent (but less efficient)
  3068. * to a larger limit. Thus disabled by default.
  3069. */
  3070. shared = 0;
  3071. #ifdef CONFIG_SMP
  3072. if (cachep->buffer_size <= PAGE_SIZE)
  3073. shared = 8;
  3074. #endif
  3075. #if DEBUG
  3076. /* With debugging enabled, large batchcount lead to excessively
  3077. * long periods with disabled local interrupts. Limit the
  3078. * batchcount
  3079. */
  3080. if (limit > 32)
  3081. limit = 32;
  3082. #endif
  3083. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3084. if (err)
  3085. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3086. cachep->name, -err);
  3087. }
  3088. static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
  3089. int force, int node)
  3090. {
  3091. int tofree;
  3092. check_spinlock_acquired_node(cachep, node);
  3093. if (ac->touched && !force) {
  3094. ac->touched = 0;
  3095. } else if (ac->avail) {
  3096. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3097. if (tofree > ac->avail) {
  3098. tofree = (ac->avail + 1) / 2;
  3099. }
  3100. free_block(cachep, ac->entry, tofree, node);
  3101. ac->avail -= tofree;
  3102. memmove(ac->entry, &(ac->entry[tofree]),
  3103. sizeof(void *) * ac->avail);
  3104. }
  3105. }
  3106. /**
  3107. * cache_reap - Reclaim memory from caches.
  3108. * @unused: unused parameter
  3109. *
  3110. * Called from workqueue/eventd every few seconds.
  3111. * Purpose:
  3112. * - clear the per-cpu caches for this CPU.
  3113. * - return freeable pages to the main free memory pool.
  3114. *
  3115. * If we cannot acquire the cache chain mutex then just give up - we'll
  3116. * try again on the next iteration.
  3117. */
  3118. static void cache_reap(void *unused)
  3119. {
  3120. struct list_head *walk;
  3121. struct kmem_list3 *l3;
  3122. if (!mutex_trylock(&cache_chain_mutex)) {
  3123. /* Give up. Setup the next iteration. */
  3124. schedule_delayed_work(&__get_cpu_var(reap_work),
  3125. REAPTIMEOUT_CPUC);
  3126. return;
  3127. }
  3128. list_for_each(walk, &cache_chain) {
  3129. struct kmem_cache *searchp;
  3130. struct list_head *p;
  3131. int tofree;
  3132. struct slab *slabp;
  3133. searchp = list_entry(walk, struct kmem_cache, next);
  3134. if (searchp->flags & SLAB_NO_REAP)
  3135. goto next;
  3136. check_irq_on();
  3137. l3 = searchp->nodelists[numa_node_id()];
  3138. reap_alien(searchp, l3);
  3139. spin_lock_irq(&l3->list_lock);
  3140. drain_array_locked(searchp, cpu_cache_get(searchp), 0,
  3141. numa_node_id());
  3142. if (time_after(l3->next_reap, jiffies))
  3143. goto next_unlock;
  3144. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3145. if (l3->shared)
  3146. drain_array_locked(searchp, l3->shared, 0,
  3147. numa_node_id());
  3148. if (l3->free_touched) {
  3149. l3->free_touched = 0;
  3150. goto next_unlock;
  3151. }
  3152. tofree =
  3153. (l3->free_limit + 5 * searchp->num -
  3154. 1) / (5 * searchp->num);
  3155. do {
  3156. p = l3->slabs_free.next;
  3157. if (p == &(l3->slabs_free))
  3158. break;
  3159. slabp = list_entry(p, struct slab, list);
  3160. BUG_ON(slabp->inuse);
  3161. list_del(&slabp->list);
  3162. STATS_INC_REAPED(searchp);
  3163. /* Safe to drop the lock. The slab is no longer
  3164. * linked to the cache.
  3165. * searchp cannot disappear, we hold
  3166. * cache_chain_lock
  3167. */
  3168. l3->free_objects -= searchp->num;
  3169. spin_unlock_irq(&l3->list_lock);
  3170. slab_destroy(searchp, slabp);
  3171. spin_lock_irq(&l3->list_lock);
  3172. } while (--tofree > 0);
  3173. next_unlock:
  3174. spin_unlock_irq(&l3->list_lock);
  3175. next:
  3176. cond_resched();
  3177. }
  3178. check_irq_on();
  3179. mutex_unlock(&cache_chain_mutex);
  3180. next_reap_node();
  3181. /* Setup the next iteration */
  3182. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3183. }
  3184. #ifdef CONFIG_PROC_FS
  3185. static void print_slabinfo_header(struct seq_file *m)
  3186. {
  3187. /*
  3188. * Output format version, so at least we can change it
  3189. * without _too_ many complaints.
  3190. */
  3191. #if STATS
  3192. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3193. #else
  3194. seq_puts(m, "slabinfo - version: 2.1\n");
  3195. #endif
  3196. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3197. "<objperslab> <pagesperslab>");
  3198. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3199. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3200. #if STATS
  3201. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3202. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3203. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3204. #endif
  3205. seq_putc(m, '\n');
  3206. }
  3207. static void *s_start(struct seq_file *m, loff_t *pos)
  3208. {
  3209. loff_t n = *pos;
  3210. struct list_head *p;
  3211. mutex_lock(&cache_chain_mutex);
  3212. if (!n)
  3213. print_slabinfo_header(m);
  3214. p = cache_chain.next;
  3215. while (n--) {
  3216. p = p->next;
  3217. if (p == &cache_chain)
  3218. return NULL;
  3219. }
  3220. return list_entry(p, struct kmem_cache, next);
  3221. }
  3222. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3223. {
  3224. struct kmem_cache *cachep = p;
  3225. ++*pos;
  3226. return cachep->next.next == &cache_chain ? NULL
  3227. : list_entry(cachep->next.next, struct kmem_cache, next);
  3228. }
  3229. static void s_stop(struct seq_file *m, void *p)
  3230. {
  3231. mutex_unlock(&cache_chain_mutex);
  3232. }
  3233. static int s_show(struct seq_file *m, void *p)
  3234. {
  3235. struct kmem_cache *cachep = p;
  3236. struct list_head *q;
  3237. struct slab *slabp;
  3238. unsigned long active_objs;
  3239. unsigned long num_objs;
  3240. unsigned long active_slabs = 0;
  3241. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3242. const char *name;
  3243. char *error = NULL;
  3244. int node;
  3245. struct kmem_list3 *l3;
  3246. spin_lock(&cachep->spinlock);
  3247. active_objs = 0;
  3248. num_slabs = 0;
  3249. for_each_online_node(node) {
  3250. l3 = cachep->nodelists[node];
  3251. if (!l3)
  3252. continue;
  3253. check_irq_on();
  3254. spin_lock_irq(&l3->list_lock);
  3255. list_for_each(q, &l3->slabs_full) {
  3256. slabp = list_entry(q, struct slab, list);
  3257. if (slabp->inuse != cachep->num && !error)
  3258. error = "slabs_full accounting error";
  3259. active_objs += cachep->num;
  3260. active_slabs++;
  3261. }
  3262. list_for_each(q, &l3->slabs_partial) {
  3263. slabp = list_entry(q, struct slab, list);
  3264. if (slabp->inuse == cachep->num && !error)
  3265. error = "slabs_partial inuse accounting error";
  3266. if (!slabp->inuse && !error)
  3267. error = "slabs_partial/inuse accounting error";
  3268. active_objs += slabp->inuse;
  3269. active_slabs++;
  3270. }
  3271. list_for_each(q, &l3->slabs_free) {
  3272. slabp = list_entry(q, struct slab, list);
  3273. if (slabp->inuse && !error)
  3274. error = "slabs_free/inuse accounting error";
  3275. num_slabs++;
  3276. }
  3277. free_objects += l3->free_objects;
  3278. if (l3->shared)
  3279. shared_avail += l3->shared->avail;
  3280. spin_unlock_irq(&l3->list_lock);
  3281. }
  3282. num_slabs += active_slabs;
  3283. num_objs = num_slabs * cachep->num;
  3284. if (num_objs - active_objs != free_objects && !error)
  3285. error = "free_objects accounting error";
  3286. name = cachep->name;
  3287. if (error)
  3288. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3289. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3290. name, active_objs, num_objs, cachep->buffer_size,
  3291. cachep->num, (1 << cachep->gfporder));
  3292. seq_printf(m, " : tunables %4u %4u %4u",
  3293. cachep->limit, cachep->batchcount, cachep->shared);
  3294. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3295. active_slabs, num_slabs, shared_avail);
  3296. #if STATS
  3297. { /* list3 stats */
  3298. unsigned long high = cachep->high_mark;
  3299. unsigned long allocs = cachep->num_allocations;
  3300. unsigned long grown = cachep->grown;
  3301. unsigned long reaped = cachep->reaped;
  3302. unsigned long errors = cachep->errors;
  3303. unsigned long max_freeable = cachep->max_freeable;
  3304. unsigned long node_allocs = cachep->node_allocs;
  3305. unsigned long node_frees = cachep->node_frees;
  3306. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3307. %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
  3308. }
  3309. /* cpu stats */
  3310. {
  3311. unsigned long allochit = atomic_read(&cachep->allochit);
  3312. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3313. unsigned long freehit = atomic_read(&cachep->freehit);
  3314. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3315. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3316. allochit, allocmiss, freehit, freemiss);
  3317. }
  3318. #endif
  3319. seq_putc(m, '\n');
  3320. spin_unlock(&cachep->spinlock);
  3321. return 0;
  3322. }
  3323. /*
  3324. * slabinfo_op - iterator that generates /proc/slabinfo
  3325. *
  3326. * Output layout:
  3327. * cache-name
  3328. * num-active-objs
  3329. * total-objs
  3330. * object size
  3331. * num-active-slabs
  3332. * total-slabs
  3333. * num-pages-per-slab
  3334. * + further values on SMP and with statistics enabled
  3335. */
  3336. struct seq_operations slabinfo_op = {
  3337. .start = s_start,
  3338. .next = s_next,
  3339. .stop = s_stop,
  3340. .show = s_show,
  3341. };
  3342. #define MAX_SLABINFO_WRITE 128
  3343. /**
  3344. * slabinfo_write - Tuning for the slab allocator
  3345. * @file: unused
  3346. * @buffer: user buffer
  3347. * @count: data length
  3348. * @ppos: unused
  3349. */
  3350. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3351. size_t count, loff_t *ppos)
  3352. {
  3353. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3354. int limit, batchcount, shared, res;
  3355. struct list_head *p;
  3356. if (count > MAX_SLABINFO_WRITE)
  3357. return -EINVAL;
  3358. if (copy_from_user(&kbuf, buffer, count))
  3359. return -EFAULT;
  3360. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3361. tmp = strchr(kbuf, ' ');
  3362. if (!tmp)
  3363. return -EINVAL;
  3364. *tmp = '\0';
  3365. tmp++;
  3366. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3367. return -EINVAL;
  3368. /* Find the cache in the chain of caches. */
  3369. mutex_lock(&cache_chain_mutex);
  3370. res = -EINVAL;
  3371. list_for_each(p, &cache_chain) {
  3372. struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
  3373. next);
  3374. if (!strcmp(cachep->name, kbuf)) {
  3375. if (limit < 1 ||
  3376. batchcount < 1 ||
  3377. batchcount > limit || shared < 0) {
  3378. res = 0;
  3379. } else {
  3380. res = do_tune_cpucache(cachep, limit,
  3381. batchcount, shared);
  3382. }
  3383. break;
  3384. }
  3385. }
  3386. mutex_unlock(&cache_chain_mutex);
  3387. if (res >= 0)
  3388. res = count;
  3389. return res;
  3390. }
  3391. #endif
  3392. /**
  3393. * ksize - get the actual amount of memory allocated for a given object
  3394. * @objp: Pointer to the object
  3395. *
  3396. * kmalloc may internally round up allocations and return more memory
  3397. * than requested. ksize() can be used to determine the actual amount of
  3398. * memory allocated. The caller may use this additional memory, even though
  3399. * a smaller amount of memory was initially specified with the kmalloc call.
  3400. * The caller must guarantee that objp points to a valid object previously
  3401. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3402. * must not be freed during the duration of the call.
  3403. */
  3404. unsigned int ksize(const void *objp)
  3405. {
  3406. if (unlikely(objp == NULL))
  3407. return 0;
  3408. return obj_size(virt_to_cache(objp));
  3409. }