pageattr.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <asm/e820.h>
  12. #include <asm/processor.h>
  13. #include <asm/tlbflush.h>
  14. #include <asm/sections.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/pgalloc.h>
  17. struct cpa_data {
  18. unsigned long vaddr;
  19. pgprot_t mask_set;
  20. pgprot_t mask_clr;
  21. int numpages;
  22. int flushtlb;
  23. };
  24. enum {
  25. CPA_NO_SPLIT = 0,
  26. CPA_SPLIT,
  27. };
  28. static inline int
  29. within(unsigned long addr, unsigned long start, unsigned long end)
  30. {
  31. return addr >= start && addr < end;
  32. }
  33. /*
  34. * Flushing functions
  35. */
  36. /**
  37. * clflush_cache_range - flush a cache range with clflush
  38. * @addr: virtual start address
  39. * @size: number of bytes to flush
  40. *
  41. * clflush is an unordered instruction which needs fencing with mfence
  42. * to avoid ordering issues.
  43. */
  44. void clflush_cache_range(void *vaddr, unsigned int size)
  45. {
  46. void *vend = vaddr + size - 1;
  47. mb();
  48. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  49. clflush(vaddr);
  50. /*
  51. * Flush any possible final partial cacheline:
  52. */
  53. clflush(vend);
  54. mb();
  55. }
  56. static void __cpa_flush_all(void *arg)
  57. {
  58. unsigned long cache = (unsigned long)arg;
  59. /*
  60. * Flush all to work around Errata in early athlons regarding
  61. * large page flushing.
  62. */
  63. __flush_tlb_all();
  64. if (cache && boot_cpu_data.x86_model >= 4)
  65. wbinvd();
  66. }
  67. static void cpa_flush_all(unsigned long cache)
  68. {
  69. BUG_ON(irqs_disabled());
  70. on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
  71. }
  72. static void __cpa_flush_range(void *arg)
  73. {
  74. /*
  75. * We could optimize that further and do individual per page
  76. * tlb invalidates for a low number of pages. Caveat: we must
  77. * flush the high aliases on 64bit as well.
  78. */
  79. __flush_tlb_all();
  80. }
  81. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  82. {
  83. unsigned int i, level;
  84. unsigned long addr;
  85. BUG_ON(irqs_disabled());
  86. WARN_ON(PAGE_ALIGN(start) != start);
  87. on_each_cpu(__cpa_flush_range, NULL, 1, 1);
  88. if (!cache)
  89. return;
  90. /*
  91. * We only need to flush on one CPU,
  92. * clflush is a MESI-coherent instruction that
  93. * will cause all other CPUs to flush the same
  94. * cachelines:
  95. */
  96. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  97. pte_t *pte = lookup_address(addr, &level);
  98. /*
  99. * Only flush present addresses:
  100. */
  101. if (pte && pte_present(*pte))
  102. clflush_cache_range((void *) addr, PAGE_SIZE);
  103. }
  104. }
  105. #define HIGH_MAP_START __START_KERNEL_map
  106. #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
  107. /*
  108. * Converts a virtual address to a X86-64 highmap address
  109. */
  110. static unsigned long virt_to_highmap(void *address)
  111. {
  112. #ifdef CONFIG_X86_64
  113. return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
  114. #else
  115. return (unsigned long)address;
  116. #endif
  117. }
  118. /*
  119. * Certain areas of memory on x86 require very specific protection flags,
  120. * for example the BIOS area or kernel text. Callers don't always get this
  121. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  122. * checks and fixes these known static required protection bits.
  123. */
  124. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
  125. {
  126. pgprot_t forbidden = __pgprot(0);
  127. /*
  128. * The BIOS area between 640k and 1Mb needs to be executable for
  129. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  130. */
  131. if (within(__pa(address), BIOS_BEGIN, BIOS_END))
  132. pgprot_val(forbidden) |= _PAGE_NX;
  133. /*
  134. * The kernel text needs to be executable for obvious reasons
  135. * Does not cover __inittext since that is gone later on
  136. */
  137. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  138. pgprot_val(forbidden) |= _PAGE_NX;
  139. /*
  140. * Do the same for the x86-64 high kernel mapping
  141. */
  142. if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
  143. pgprot_val(forbidden) |= _PAGE_NX;
  144. #ifdef CONFIG_DEBUG_RODATA
  145. /* The .rodata section needs to be read-only */
  146. if (within(address, (unsigned long)__start_rodata,
  147. (unsigned long)__end_rodata))
  148. pgprot_val(forbidden) |= _PAGE_RW;
  149. /*
  150. * Do the same for the x86-64 high kernel mapping
  151. */
  152. if (within(address, virt_to_highmap(__start_rodata),
  153. virt_to_highmap(__end_rodata)))
  154. pgprot_val(forbidden) |= _PAGE_RW;
  155. #endif
  156. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  157. return prot;
  158. }
  159. pte_t *lookup_address(unsigned long address, int *level)
  160. {
  161. pgd_t *pgd = pgd_offset_k(address);
  162. pud_t *pud;
  163. pmd_t *pmd;
  164. *level = PG_LEVEL_NONE;
  165. if (pgd_none(*pgd))
  166. return NULL;
  167. pud = pud_offset(pgd, address);
  168. if (pud_none(*pud))
  169. return NULL;
  170. pmd = pmd_offset(pud, address);
  171. if (pmd_none(*pmd))
  172. return NULL;
  173. *level = PG_LEVEL_2M;
  174. if (pmd_large(*pmd))
  175. return (pte_t *)pmd;
  176. *level = PG_LEVEL_4K;
  177. return pte_offset_kernel(pmd, address);
  178. }
  179. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  180. {
  181. /* change init_mm */
  182. set_pte_atomic(kpte, pte);
  183. #ifdef CONFIG_X86_32
  184. if (!SHARED_KERNEL_PMD) {
  185. struct page *page;
  186. list_for_each_entry(page, &pgd_list, lru) {
  187. pgd_t *pgd;
  188. pud_t *pud;
  189. pmd_t *pmd;
  190. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  191. pud = pud_offset(pgd, address);
  192. pmd = pmd_offset(pud, address);
  193. set_pte_atomic((pte_t *)pmd, pte);
  194. }
  195. }
  196. #endif
  197. }
  198. static int try_preserve_large_page(pte_t *kpte, unsigned long address,
  199. struct cpa_data *cpa)
  200. {
  201. unsigned long nextpage_addr, numpages, pmask, psize, flags;
  202. pte_t new_pte, old_pte, *tmp;
  203. pgprot_t old_prot, new_prot;
  204. int level, res = CPA_SPLIT;
  205. /*
  206. * An Athlon 64 X2 showed hard hangs if we tried to preserve
  207. * largepages and changed the PSE entry from RW to RO.
  208. *
  209. * As AMD CPUs have a long series of erratas in this area,
  210. * (and none of the known ones seem to explain this hang),
  211. * disable this code until the hang can be debugged:
  212. */
  213. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
  214. return res;
  215. spin_lock_irqsave(&pgd_lock, flags);
  216. /*
  217. * Check for races, another CPU might have split this page
  218. * up already:
  219. */
  220. tmp = lookup_address(address, &level);
  221. if (tmp != kpte)
  222. goto out_unlock;
  223. switch (level) {
  224. case PG_LEVEL_2M:
  225. psize = LARGE_PAGE_SIZE;
  226. pmask = LARGE_PAGE_MASK;
  227. break;
  228. case PG_LEVEL_1G:
  229. default:
  230. res = -EINVAL;
  231. goto out_unlock;
  232. }
  233. /*
  234. * Calculate the number of pages, which fit into this large
  235. * page starting at address:
  236. */
  237. nextpage_addr = (address + psize) & pmask;
  238. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  239. if (numpages < cpa->numpages)
  240. cpa->numpages = numpages;
  241. /*
  242. * We are safe now. Check whether the new pgprot is the same:
  243. */
  244. old_pte = *kpte;
  245. old_prot = new_prot = pte_pgprot(old_pte);
  246. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  247. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  248. new_prot = static_protections(new_prot, address);
  249. /*
  250. * If there are no changes, return. maxpages has been updated
  251. * above:
  252. */
  253. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  254. res = CPA_NO_SPLIT;
  255. goto out_unlock;
  256. }
  257. /*
  258. * We need to change the attributes. Check, whether we can
  259. * change the large page in one go. We request a split, when
  260. * the address is not aligned and the number of pages is
  261. * smaller than the number of pages in the large page. Note
  262. * that we limited the number of possible pages already to
  263. * the number of pages in the large page.
  264. */
  265. if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
  266. /*
  267. * The address is aligned and the number of pages
  268. * covers the full page.
  269. */
  270. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  271. __set_pmd_pte(kpte, address, new_pte);
  272. cpa->flushtlb = 1;
  273. res = CPA_NO_SPLIT;
  274. }
  275. out_unlock:
  276. spin_unlock_irqrestore(&pgd_lock, flags);
  277. return res;
  278. }
  279. static int split_large_page(pte_t *kpte, unsigned long address)
  280. {
  281. pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  282. gfp_t gfp_flags = GFP_KERNEL;
  283. unsigned long flags, addr, pfn;
  284. pte_t *pbase, *tmp;
  285. struct page *base;
  286. unsigned int i, level;
  287. #ifdef CONFIG_DEBUG_PAGEALLOC
  288. gfp_flags = __GFP_HIGH | __GFP_NOFAIL | __GFP_NOWARN;
  289. gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
  290. #endif
  291. base = alloc_pages(gfp_flags, 0);
  292. if (!base)
  293. return -ENOMEM;
  294. spin_lock_irqsave(&pgd_lock, flags);
  295. /*
  296. * Check for races, another CPU might have split this page
  297. * up for us already:
  298. */
  299. tmp = lookup_address(address, &level);
  300. if (tmp != kpte) {
  301. WARN_ON_ONCE(1);
  302. goto out_unlock;
  303. }
  304. address = __pa(address);
  305. addr = address & LARGE_PAGE_MASK;
  306. pbase = (pte_t *)page_address(base);
  307. #ifdef CONFIG_X86_32
  308. paravirt_alloc_pt(&init_mm, page_to_pfn(base));
  309. #endif
  310. /*
  311. * Get the target pfn from the original entry:
  312. */
  313. pfn = pte_pfn(*kpte);
  314. for (i = 0; i < PTRS_PER_PTE; i++, pfn++)
  315. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  316. /*
  317. * Install the new, split up pagetable. Important detail here:
  318. *
  319. * On Intel the NX bit of all levels must be cleared to make a
  320. * page executable. See section 4.13.2 of Intel 64 and IA-32
  321. * Architectures Software Developer's Manual).
  322. */
  323. ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
  324. __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
  325. base = NULL;
  326. out_unlock:
  327. spin_unlock_irqrestore(&pgd_lock, flags);
  328. if (base)
  329. __free_pages(base, 0);
  330. return 0;
  331. }
  332. static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
  333. {
  334. struct page *kpte_page;
  335. int level, res;
  336. pte_t *kpte;
  337. repeat:
  338. kpte = lookup_address(address, &level);
  339. if (!kpte)
  340. return -EINVAL;
  341. kpte_page = virt_to_page(kpte);
  342. BUG_ON(PageLRU(kpte_page));
  343. BUG_ON(PageCompound(kpte_page));
  344. if (level == PG_LEVEL_4K) {
  345. pte_t new_pte, old_pte = *kpte;
  346. pgprot_t new_prot = pte_pgprot(old_pte);
  347. if(!pte_val(old_pte)) {
  348. printk(KERN_WARNING "CPA: called for zero pte. "
  349. "vaddr = %lx cpa->vaddr = %lx\n", address,
  350. cpa->vaddr);
  351. WARN_ON(1);
  352. return -EINVAL;
  353. }
  354. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  355. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  356. new_prot = static_protections(new_prot, address);
  357. /*
  358. * We need to keep the pfn from the existing PTE,
  359. * after all we're only going to change it's attributes
  360. * not the memory it points to
  361. */
  362. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  363. /*
  364. * Do we really change anything ?
  365. */
  366. if (pte_val(old_pte) != pte_val(new_pte)) {
  367. set_pte_atomic(kpte, new_pte);
  368. cpa->flushtlb = 1;
  369. }
  370. cpa->numpages = 1;
  371. return 0;
  372. }
  373. /*
  374. * Check, whether we can keep the large page intact
  375. * and just change the pte:
  376. */
  377. res = try_preserve_large_page(kpte, address, cpa);
  378. if (res < 0)
  379. return res;
  380. /*
  381. * When the range fits into the existing large page,
  382. * return. cp->numpages and cpa->tlbflush have been updated in
  383. * try_large_page:
  384. */
  385. if (res == CPA_NO_SPLIT)
  386. return 0;
  387. /*
  388. * We have to split the large page:
  389. */
  390. res = split_large_page(kpte, address);
  391. if (res)
  392. return res;
  393. cpa->flushtlb = 1;
  394. goto repeat;
  395. }
  396. /**
  397. * change_page_attr_addr - Change page table attributes in linear mapping
  398. * @address: Virtual address in linear mapping.
  399. * @prot: New page table attribute (PAGE_*)
  400. *
  401. * Change page attributes of a page in the direct mapping. This is a variant
  402. * of change_page_attr() that also works on memory holes that do not have
  403. * mem_map entry (pfn_valid() is false).
  404. *
  405. * See change_page_attr() documentation for more details.
  406. *
  407. * Modules and drivers should use the set_memory_* APIs instead.
  408. */
  409. static int change_page_attr_addr(struct cpa_data *cpa)
  410. {
  411. int err;
  412. unsigned long address = cpa->vaddr;
  413. #ifdef CONFIG_X86_64
  414. unsigned long phys_addr = __pa(address);
  415. /*
  416. * If we are inside the high mapped kernel range, then we
  417. * fixup the low mapping first. __va() returns the virtual
  418. * address in the linear mapping:
  419. */
  420. if (within(address, HIGH_MAP_START, HIGH_MAP_END))
  421. address = (unsigned long) __va(phys_addr);
  422. #endif
  423. err = __change_page_attr(address, cpa);
  424. if (err)
  425. return err;
  426. #ifdef CONFIG_X86_64
  427. /*
  428. * If the physical address is inside the kernel map, we need
  429. * to touch the high mapped kernel as well:
  430. */
  431. if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
  432. /*
  433. * Calc the high mapping address. See __phys_addr()
  434. * for the non obvious details.
  435. *
  436. * Note that NX and other required permissions are
  437. * checked in static_protections().
  438. */
  439. address = phys_addr + HIGH_MAP_START - phys_base;
  440. /*
  441. * Our high aliases are imprecise, because we check
  442. * everything between 0 and KERNEL_TEXT_SIZE, so do
  443. * not propagate lookup failures back to users:
  444. */
  445. __change_page_attr(address, cpa);
  446. }
  447. #endif
  448. return err;
  449. }
  450. static int __change_page_attr_set_clr(struct cpa_data *cpa)
  451. {
  452. int ret, numpages = cpa->numpages;
  453. while (numpages) {
  454. /*
  455. * Store the remaining nr of pages for the large page
  456. * preservation check.
  457. */
  458. cpa->numpages = numpages;
  459. ret = change_page_attr_addr(cpa);
  460. if (ret)
  461. return ret;
  462. /*
  463. * Adjust the number of pages with the result of the
  464. * CPA operation. Either a large page has been
  465. * preserved or a single page update happened.
  466. */
  467. BUG_ON(cpa->numpages > numpages);
  468. numpages -= cpa->numpages;
  469. cpa->vaddr += cpa->numpages * PAGE_SIZE;
  470. }
  471. return 0;
  472. }
  473. static inline int cache_attr(pgprot_t attr)
  474. {
  475. return pgprot_val(attr) &
  476. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  477. }
  478. static int change_page_attr_set_clr(unsigned long addr, int numpages,
  479. pgprot_t mask_set, pgprot_t mask_clr)
  480. {
  481. struct cpa_data cpa;
  482. int ret, cache;
  483. /*
  484. * Check, if we are requested to change a not supported
  485. * feature:
  486. */
  487. mask_set = canon_pgprot(mask_set);
  488. mask_clr = canon_pgprot(mask_clr);
  489. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
  490. return 0;
  491. cpa.vaddr = addr;
  492. cpa.numpages = numpages;
  493. cpa.mask_set = mask_set;
  494. cpa.mask_clr = mask_clr;
  495. cpa.flushtlb = 0;
  496. ret = __change_page_attr_set_clr(&cpa);
  497. /*
  498. * Check whether we really changed something:
  499. */
  500. if (!cpa.flushtlb)
  501. return ret;
  502. /*
  503. * No need to flush, when we did not set any of the caching
  504. * attributes:
  505. */
  506. cache = cache_attr(mask_set);
  507. /*
  508. * On success we use clflush, when the CPU supports it to
  509. * avoid the wbindv. If the CPU does not support it and in the
  510. * error case we fall back to cpa_flush_all (which uses
  511. * wbindv):
  512. */
  513. if (!ret && cpu_has_clflush)
  514. cpa_flush_range(addr, numpages, cache);
  515. else
  516. cpa_flush_all(cache);
  517. return ret;
  518. }
  519. static inline int change_page_attr_set(unsigned long addr, int numpages,
  520. pgprot_t mask)
  521. {
  522. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
  523. }
  524. static inline int change_page_attr_clear(unsigned long addr, int numpages,
  525. pgprot_t mask)
  526. {
  527. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
  528. }
  529. int set_memory_uc(unsigned long addr, int numpages)
  530. {
  531. return change_page_attr_set(addr, numpages,
  532. __pgprot(_PAGE_PCD | _PAGE_PWT));
  533. }
  534. EXPORT_SYMBOL(set_memory_uc);
  535. int set_memory_wb(unsigned long addr, int numpages)
  536. {
  537. return change_page_attr_clear(addr, numpages,
  538. __pgprot(_PAGE_PCD | _PAGE_PWT));
  539. }
  540. EXPORT_SYMBOL(set_memory_wb);
  541. int set_memory_x(unsigned long addr, int numpages)
  542. {
  543. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
  544. }
  545. EXPORT_SYMBOL(set_memory_x);
  546. int set_memory_nx(unsigned long addr, int numpages)
  547. {
  548. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
  549. }
  550. EXPORT_SYMBOL(set_memory_nx);
  551. int set_memory_ro(unsigned long addr, int numpages)
  552. {
  553. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
  554. }
  555. int set_memory_rw(unsigned long addr, int numpages)
  556. {
  557. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
  558. }
  559. int set_memory_np(unsigned long addr, int numpages)
  560. {
  561. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
  562. }
  563. int set_pages_uc(struct page *page, int numpages)
  564. {
  565. unsigned long addr = (unsigned long)page_address(page);
  566. return set_memory_uc(addr, numpages);
  567. }
  568. EXPORT_SYMBOL(set_pages_uc);
  569. int set_pages_wb(struct page *page, int numpages)
  570. {
  571. unsigned long addr = (unsigned long)page_address(page);
  572. return set_memory_wb(addr, numpages);
  573. }
  574. EXPORT_SYMBOL(set_pages_wb);
  575. int set_pages_x(struct page *page, int numpages)
  576. {
  577. unsigned long addr = (unsigned long)page_address(page);
  578. return set_memory_x(addr, numpages);
  579. }
  580. EXPORT_SYMBOL(set_pages_x);
  581. int set_pages_nx(struct page *page, int numpages)
  582. {
  583. unsigned long addr = (unsigned long)page_address(page);
  584. return set_memory_nx(addr, numpages);
  585. }
  586. EXPORT_SYMBOL(set_pages_nx);
  587. int set_pages_ro(struct page *page, int numpages)
  588. {
  589. unsigned long addr = (unsigned long)page_address(page);
  590. return set_memory_ro(addr, numpages);
  591. }
  592. int set_pages_rw(struct page *page, int numpages)
  593. {
  594. unsigned long addr = (unsigned long)page_address(page);
  595. return set_memory_rw(addr, numpages);
  596. }
  597. #ifdef CONFIG_DEBUG_PAGEALLOC
  598. static int __set_pages_p(struct page *page, int numpages)
  599. {
  600. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  601. .numpages = numpages,
  602. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  603. .mask_clr = __pgprot(0)};
  604. return __change_page_attr_set_clr(&cpa);
  605. }
  606. static int __set_pages_np(struct page *page, int numpages)
  607. {
  608. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  609. .numpages = numpages,
  610. .mask_set = __pgprot(0),
  611. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
  612. return __change_page_attr_set_clr(&cpa);
  613. }
  614. void kernel_map_pages(struct page *page, int numpages, int enable)
  615. {
  616. if (PageHighMem(page))
  617. return;
  618. if (!enable) {
  619. debug_check_no_locks_freed(page_address(page),
  620. numpages * PAGE_SIZE);
  621. }
  622. /*
  623. * If page allocator is not up yet then do not call c_p_a():
  624. */
  625. if (!debug_pagealloc_enabled)
  626. return;
  627. /*
  628. * The return value is ignored - the calls cannot fail,
  629. * large pages are disabled at boot time:
  630. */
  631. if (enable)
  632. __set_pages_p(page, numpages);
  633. else
  634. __set_pages_np(page, numpages);
  635. /*
  636. * We should perform an IPI and flush all tlbs,
  637. * but that can deadlock->flush only current cpu:
  638. */
  639. __flush_tlb_all();
  640. }
  641. #endif
  642. /*
  643. * The testcases use internal knowledge of the implementation that shouldn't
  644. * be exposed to the rest of the kernel. Include these directly here.
  645. */
  646. #ifdef CONFIG_CPA_DEBUG
  647. #include "pageattr-test.c"
  648. #endif