book3s_hv_rm_mmu.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /*
  22. * Since this file is built in even if KVM is a module, we need
  23. * a local copy of this function for the case where kvm_main.c is
  24. * modular.
  25. */
  26. static struct kvm_memory_slot *builtin_gfn_to_memslot(struct kvm *kvm,
  27. gfn_t gfn)
  28. {
  29. struct kvm_memslots *slots;
  30. struct kvm_memory_slot *memslot;
  31. slots = kvm_memslots(kvm);
  32. kvm_for_each_memslot(memslot, slots)
  33. if (gfn >= memslot->base_gfn &&
  34. gfn < memslot->base_gfn + memslot->npages)
  35. return memslot;
  36. return NULL;
  37. }
  38. /* Translate address of a vmalloc'd thing to a linear map address */
  39. static void *real_vmalloc_addr(void *x)
  40. {
  41. unsigned long addr = (unsigned long) x;
  42. pte_t *p;
  43. p = find_linux_pte(swapper_pg_dir, addr);
  44. if (!p || !pte_present(*p))
  45. return NULL;
  46. /* assume we don't have huge pages in vmalloc space... */
  47. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  48. return __va(addr);
  49. }
  50. /*
  51. * Add this HPTE into the chain for the real page.
  52. * Must be called with the chain locked; it unlocks the chain.
  53. */
  54. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  55. unsigned long *rmap, long pte_index, int realmode)
  56. {
  57. struct revmap_entry *head, *tail;
  58. unsigned long i;
  59. if (*rmap & KVMPPC_RMAP_PRESENT) {
  60. i = *rmap & KVMPPC_RMAP_INDEX;
  61. head = &kvm->arch.revmap[i];
  62. if (realmode)
  63. head = real_vmalloc_addr(head);
  64. tail = &kvm->arch.revmap[head->back];
  65. if (realmode)
  66. tail = real_vmalloc_addr(tail);
  67. rev->forw = i;
  68. rev->back = head->back;
  69. tail->forw = pte_index;
  70. head->back = pte_index;
  71. } else {
  72. rev->forw = rev->back = pte_index;
  73. i = pte_index;
  74. }
  75. smp_wmb();
  76. *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
  77. }
  78. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  79. /* Remove this HPTE from the chain for a real page */
  80. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  81. unsigned long hpte_v)
  82. {
  83. struct revmap_entry *rev, *next, *prev;
  84. unsigned long gfn, ptel, head;
  85. struct kvm_memory_slot *memslot;
  86. unsigned long *rmap;
  87. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  88. ptel = rev->guest_rpte;
  89. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  90. memslot = builtin_gfn_to_memslot(kvm, gfn);
  91. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  92. return;
  93. rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
  94. lock_rmap(rmap);
  95. head = *rmap & KVMPPC_RMAP_INDEX;
  96. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  97. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  98. next->back = rev->back;
  99. prev->forw = rev->forw;
  100. if (head == pte_index) {
  101. head = rev->forw;
  102. if (head == pte_index)
  103. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  104. else
  105. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  106. }
  107. unlock_rmap(rmap);
  108. }
  109. static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
  110. unsigned long *pte_sizep)
  111. {
  112. pte_t *ptep;
  113. unsigned long ps = *pte_sizep;
  114. unsigned int shift;
  115. ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
  116. if (!ptep)
  117. return __pte(0);
  118. if (shift)
  119. *pte_sizep = 1ul << shift;
  120. else
  121. *pte_sizep = PAGE_SIZE;
  122. if (ps > *pte_sizep)
  123. return __pte(0);
  124. if (!pte_present(*ptep))
  125. return __pte(0);
  126. return kvmppc_read_update_linux_pte(ptep);
  127. }
  128. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  129. long pte_index, unsigned long pteh, unsigned long ptel)
  130. {
  131. struct kvm *kvm = vcpu->kvm;
  132. unsigned long i, pa, gpa, gfn, psize;
  133. unsigned long slot_fn, hva;
  134. unsigned long *hpte;
  135. struct revmap_entry *rev;
  136. unsigned long g_ptel = ptel;
  137. struct kvm_memory_slot *memslot;
  138. unsigned long *physp, pte_size;
  139. unsigned long is_io;
  140. unsigned long *rmap;
  141. pte_t pte;
  142. unsigned long mmu_seq;
  143. bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;
  144. psize = hpte_page_size(pteh, ptel);
  145. if (!psize)
  146. return H_PARAMETER;
  147. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  148. /* used later to detect if we might have been invalidated */
  149. mmu_seq = kvm->mmu_notifier_seq;
  150. smp_rmb();
  151. /* Find the memslot (if any) for this address */
  152. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  153. gfn = gpa >> PAGE_SHIFT;
  154. memslot = builtin_gfn_to_memslot(kvm, gfn);
  155. pa = 0;
  156. is_io = ~0ul;
  157. rmap = NULL;
  158. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  159. /* PPC970 can't do emulated MMIO */
  160. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  161. return H_PARAMETER;
  162. /* Emulated MMIO - mark this with key=31 */
  163. pteh |= HPTE_V_ABSENT;
  164. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  165. goto do_insert;
  166. }
  167. /* Check if the requested page fits entirely in the memslot. */
  168. if (!slot_is_aligned(memslot, psize))
  169. return H_PARAMETER;
  170. slot_fn = gfn - memslot->base_gfn;
  171. rmap = &memslot->rmap[slot_fn];
  172. if (!kvm->arch.using_mmu_notifiers) {
  173. physp = kvm->arch.slot_phys[memslot->id];
  174. if (!physp)
  175. return H_PARAMETER;
  176. physp += slot_fn;
  177. if (realmode)
  178. physp = real_vmalloc_addr(physp);
  179. pa = *physp;
  180. if (!pa)
  181. return H_TOO_HARD;
  182. is_io = pa & (HPTE_R_I | HPTE_R_W);
  183. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  184. pa &= PAGE_MASK;
  185. } else {
  186. /* Translate to host virtual address */
  187. hva = gfn_to_hva_memslot(memslot, gfn);
  188. /* Look up the Linux PTE for the backing page */
  189. pte_size = psize;
  190. pte = lookup_linux_pte(vcpu, hva, &pte_size);
  191. if (pte_present(pte)) {
  192. is_io = hpte_cache_bits(pte_val(pte));
  193. pa = pte_pfn(pte) << PAGE_SHIFT;
  194. }
  195. }
  196. if (pte_size < psize)
  197. return H_PARAMETER;
  198. if (pa && pte_size > psize)
  199. pa |= gpa & (pte_size - 1);
  200. ptel &= ~(HPTE_R_PP0 - psize);
  201. ptel |= pa;
  202. if (pa)
  203. pteh |= HPTE_V_VALID;
  204. else
  205. pteh |= HPTE_V_ABSENT;
  206. /* Check WIMG */
  207. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  208. if (is_io)
  209. return H_PARAMETER;
  210. /*
  211. * Allow guest to map emulated device memory as
  212. * uncacheable, but actually make it cacheable.
  213. */
  214. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  215. ptel |= HPTE_R_M;
  216. }
  217. /* Find and lock the HPTEG slot to use */
  218. do_insert:
  219. if (pte_index >= HPT_NPTE)
  220. return H_PARAMETER;
  221. if (likely((flags & H_EXACT) == 0)) {
  222. pte_index &= ~7UL;
  223. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  224. for (i = 0; i < 8; ++i) {
  225. if ((*hpte & HPTE_V_VALID) == 0 &&
  226. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  227. HPTE_V_ABSENT))
  228. break;
  229. hpte += 2;
  230. }
  231. if (i == 8) {
  232. /*
  233. * Since try_lock_hpte doesn't retry (not even stdcx.
  234. * failures), it could be that there is a free slot
  235. * but we transiently failed to lock it. Try again,
  236. * actually locking each slot and checking it.
  237. */
  238. hpte -= 16;
  239. for (i = 0; i < 8; ++i) {
  240. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  241. cpu_relax();
  242. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  243. break;
  244. *hpte &= ~HPTE_V_HVLOCK;
  245. hpte += 2;
  246. }
  247. if (i == 8)
  248. return H_PTEG_FULL;
  249. }
  250. pte_index += i;
  251. } else {
  252. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  253. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  254. HPTE_V_ABSENT)) {
  255. /* Lock the slot and check again */
  256. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  257. cpu_relax();
  258. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  259. *hpte &= ~HPTE_V_HVLOCK;
  260. return H_PTEG_FULL;
  261. }
  262. }
  263. }
  264. /* Save away the guest's idea of the second HPTE dword */
  265. rev = &kvm->arch.revmap[pte_index];
  266. if (realmode)
  267. rev = real_vmalloc_addr(rev);
  268. if (rev)
  269. rev->guest_rpte = g_ptel;
  270. /* Link HPTE into reverse-map chain */
  271. if (pteh & HPTE_V_VALID) {
  272. if (realmode)
  273. rmap = real_vmalloc_addr(rmap);
  274. lock_rmap(rmap);
  275. /* Check for pending invalidations under the rmap chain lock */
  276. if (kvm->arch.using_mmu_notifiers &&
  277. mmu_notifier_retry(vcpu, mmu_seq)) {
  278. /* inval in progress, write a non-present HPTE */
  279. pteh |= HPTE_V_ABSENT;
  280. pteh &= ~HPTE_V_VALID;
  281. unlock_rmap(rmap);
  282. } else {
  283. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  284. realmode);
  285. }
  286. }
  287. hpte[1] = ptel;
  288. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  289. eieio();
  290. hpte[0] = pteh;
  291. asm volatile("ptesync" : : : "memory");
  292. vcpu->arch.gpr[4] = pte_index;
  293. return H_SUCCESS;
  294. }
  295. EXPORT_SYMBOL_GPL(kvmppc_h_enter);
  296. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  297. static inline int try_lock_tlbie(unsigned int *lock)
  298. {
  299. unsigned int tmp, old;
  300. unsigned int token = LOCK_TOKEN;
  301. asm volatile("1:lwarx %1,0,%2\n"
  302. " cmpwi cr0,%1,0\n"
  303. " bne 2f\n"
  304. " stwcx. %3,0,%2\n"
  305. " bne- 1b\n"
  306. " isync\n"
  307. "2:"
  308. : "=&r" (tmp), "=&r" (old)
  309. : "r" (lock), "r" (token)
  310. : "cc", "memory");
  311. return old == 0;
  312. }
  313. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  314. unsigned long pte_index, unsigned long avpn,
  315. unsigned long va)
  316. {
  317. struct kvm *kvm = vcpu->kvm;
  318. unsigned long *hpte;
  319. unsigned long v, r, rb;
  320. if (pte_index >= HPT_NPTE)
  321. return H_PARAMETER;
  322. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  323. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  324. cpu_relax();
  325. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  326. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  327. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  328. hpte[0] &= ~HPTE_V_HVLOCK;
  329. return H_NOT_FOUND;
  330. }
  331. if (atomic_read(&kvm->online_vcpus) == 1)
  332. flags |= H_LOCAL;
  333. vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
  334. vcpu->arch.gpr[5] = r = hpte[1];
  335. rb = compute_tlbie_rb(v, r, pte_index);
  336. if (v & HPTE_V_VALID)
  337. remove_revmap_chain(kvm, pte_index, v);
  338. smp_wmb();
  339. hpte[0] = 0;
  340. if (!(v & HPTE_V_VALID))
  341. return H_SUCCESS;
  342. if (!(flags & H_LOCAL)) {
  343. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  344. cpu_relax();
  345. asm volatile("ptesync" : : : "memory");
  346. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  347. : : "r" (rb), "r" (kvm->arch.lpid));
  348. asm volatile("ptesync" : : : "memory");
  349. kvm->arch.tlbie_lock = 0;
  350. } else {
  351. asm volatile("ptesync" : : : "memory");
  352. asm volatile("tlbiel %0" : : "r" (rb));
  353. asm volatile("ptesync" : : : "memory");
  354. }
  355. return H_SUCCESS;
  356. }
  357. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  358. {
  359. struct kvm *kvm = vcpu->kvm;
  360. unsigned long *args = &vcpu->arch.gpr[4];
  361. unsigned long *hp, tlbrb[4];
  362. long int i, found;
  363. long int n_inval = 0;
  364. unsigned long flags, req, pte_index;
  365. long int local = 0;
  366. long int ret = H_SUCCESS;
  367. if (atomic_read(&kvm->online_vcpus) == 1)
  368. local = 1;
  369. for (i = 0; i < 4; ++i) {
  370. pte_index = args[i * 2];
  371. flags = pte_index >> 56;
  372. pte_index &= ((1ul << 56) - 1);
  373. req = flags >> 6;
  374. flags &= 3;
  375. if (req == 3)
  376. break;
  377. if (req != 1 || flags == 3 ||
  378. pte_index >= HPT_NPTE) {
  379. /* parameter error */
  380. args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
  381. ret = H_PARAMETER;
  382. break;
  383. }
  384. hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  385. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  386. cpu_relax();
  387. found = 0;
  388. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  389. switch (flags & 3) {
  390. case 0: /* absolute */
  391. found = 1;
  392. break;
  393. case 1: /* andcond */
  394. if (!(hp[0] & args[i * 2 + 1]))
  395. found = 1;
  396. break;
  397. case 2: /* AVPN */
  398. if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
  399. found = 1;
  400. break;
  401. }
  402. }
  403. if (!found) {
  404. hp[0] &= ~HPTE_V_HVLOCK;
  405. args[i * 2] = ((0x90 | flags) << 56) + pte_index;
  406. continue;
  407. }
  408. /* insert R and C bits from PTE */
  409. flags |= (hp[1] >> 5) & 0x0c;
  410. args[i * 2] = ((0x80 | flags) << 56) + pte_index;
  411. if (hp[0] & HPTE_V_VALID) {
  412. tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  413. remove_revmap_chain(kvm, pte_index, hp[0]);
  414. }
  415. smp_wmb();
  416. hp[0] = 0;
  417. }
  418. if (n_inval == 0)
  419. return ret;
  420. if (!local) {
  421. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  422. cpu_relax();
  423. asm volatile("ptesync" : : : "memory");
  424. for (i = 0; i < n_inval; ++i)
  425. asm volatile(PPC_TLBIE(%1,%0)
  426. : : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
  427. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  428. kvm->arch.tlbie_lock = 0;
  429. } else {
  430. asm volatile("ptesync" : : : "memory");
  431. for (i = 0; i < n_inval; ++i)
  432. asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
  433. asm volatile("ptesync" : : : "memory");
  434. }
  435. return ret;
  436. }
  437. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  438. unsigned long pte_index, unsigned long avpn,
  439. unsigned long va)
  440. {
  441. struct kvm *kvm = vcpu->kvm;
  442. unsigned long *hpte;
  443. struct revmap_entry *rev;
  444. unsigned long v, r, rb, mask, bits;
  445. if (pte_index >= HPT_NPTE)
  446. return H_PARAMETER;
  447. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  448. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  449. cpu_relax();
  450. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  451. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  452. hpte[0] &= ~HPTE_V_HVLOCK;
  453. return H_NOT_FOUND;
  454. }
  455. if (atomic_read(&kvm->online_vcpus) == 1)
  456. flags |= H_LOCAL;
  457. v = hpte[0];
  458. bits = (flags << 55) & HPTE_R_PP0;
  459. bits |= (flags << 48) & HPTE_R_KEY_HI;
  460. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  461. /* Update guest view of 2nd HPTE dword */
  462. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  463. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  464. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  465. if (rev) {
  466. r = (rev->guest_rpte & ~mask) | bits;
  467. rev->guest_rpte = r;
  468. }
  469. r = (hpte[1] & ~mask) | bits;
  470. /* Update HPTE */
  471. if (v & HPTE_V_VALID) {
  472. rb = compute_tlbie_rb(v, r, pte_index);
  473. hpte[0] = v & ~HPTE_V_VALID;
  474. if (!(flags & H_LOCAL)) {
  475. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  476. cpu_relax();
  477. asm volatile("ptesync" : : : "memory");
  478. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  479. : : "r" (rb), "r" (kvm->arch.lpid));
  480. asm volatile("ptesync" : : : "memory");
  481. kvm->arch.tlbie_lock = 0;
  482. } else {
  483. asm volatile("ptesync" : : : "memory");
  484. asm volatile("tlbiel %0" : : "r" (rb));
  485. asm volatile("ptesync" : : : "memory");
  486. }
  487. }
  488. hpte[1] = r;
  489. eieio();
  490. hpte[0] = v & ~HPTE_V_HVLOCK;
  491. asm volatile("ptesync" : : : "memory");
  492. return H_SUCCESS;
  493. }
  494. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  495. unsigned long pte_index)
  496. {
  497. struct kvm *kvm = vcpu->kvm;
  498. unsigned long *hpte, v, r;
  499. int i, n = 1;
  500. struct revmap_entry *rev = NULL;
  501. if (pte_index >= HPT_NPTE)
  502. return H_PARAMETER;
  503. if (flags & H_READ_4) {
  504. pte_index &= ~3;
  505. n = 4;
  506. }
  507. if (flags & H_R_XLATE)
  508. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  509. for (i = 0; i < n; ++i, ++pte_index) {
  510. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  511. v = hpte[0] & ~HPTE_V_HVLOCK;
  512. r = hpte[1];
  513. if (v & HPTE_V_ABSENT) {
  514. v &= ~HPTE_V_ABSENT;
  515. v |= HPTE_V_VALID;
  516. }
  517. if (v & HPTE_V_VALID) {
  518. if (rev)
  519. r = rev[i].guest_rpte;
  520. else
  521. r = hpte[1] | HPTE_R_RPN;
  522. }
  523. vcpu->arch.gpr[4 + i * 2] = v;
  524. vcpu->arch.gpr[5 + i * 2] = r;
  525. }
  526. return H_SUCCESS;
  527. }
  528. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  529. unsigned long pte_index)
  530. {
  531. unsigned long rb;
  532. hptep[0] &= ~HPTE_V_VALID;
  533. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  534. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  535. cpu_relax();
  536. asm volatile("ptesync" : : : "memory");
  537. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  538. : : "r" (rb), "r" (kvm->arch.lpid));
  539. asm volatile("ptesync" : : : "memory");
  540. kvm->arch.tlbie_lock = 0;
  541. }
  542. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  543. static int slb_base_page_shift[4] = {
  544. 24, /* 16M */
  545. 16, /* 64k */
  546. 34, /* 16G */
  547. 20, /* 1M, unsupported */
  548. };
  549. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  550. unsigned long valid)
  551. {
  552. unsigned int i;
  553. unsigned int pshift;
  554. unsigned long somask;
  555. unsigned long vsid, hash;
  556. unsigned long avpn;
  557. unsigned long *hpte;
  558. unsigned long mask, val;
  559. unsigned long v, r;
  560. /* Get page shift, work out hash and AVPN etc. */
  561. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  562. val = 0;
  563. pshift = 12;
  564. if (slb_v & SLB_VSID_L) {
  565. mask |= HPTE_V_LARGE;
  566. val |= HPTE_V_LARGE;
  567. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  568. }
  569. if (slb_v & SLB_VSID_B_1T) {
  570. somask = (1UL << 40) - 1;
  571. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  572. vsid ^= vsid << 25;
  573. } else {
  574. somask = (1UL << 28) - 1;
  575. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  576. }
  577. hash = (vsid ^ ((eaddr & somask) >> pshift)) & HPT_HASH_MASK;
  578. avpn = slb_v & ~(somask >> 16); /* also includes B */
  579. avpn |= (eaddr & somask) >> 16;
  580. if (pshift >= 24)
  581. avpn &= ~((1UL << (pshift - 16)) - 1);
  582. else
  583. avpn &= ~0x7fUL;
  584. val |= avpn;
  585. for (;;) {
  586. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  587. for (i = 0; i < 16; i += 2) {
  588. /* Read the PTE racily */
  589. v = hpte[i] & ~HPTE_V_HVLOCK;
  590. /* Check valid/absent, hash, segment size and AVPN */
  591. if (!(v & valid) || (v & mask) != val)
  592. continue;
  593. /* Lock the PTE and read it under the lock */
  594. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  595. cpu_relax();
  596. v = hpte[i] & ~HPTE_V_HVLOCK;
  597. r = hpte[i+1];
  598. /*
  599. * Check the HPTE again, including large page size
  600. * Since we don't currently allow any MPSS (mixed
  601. * page-size segment) page sizes, it is sufficient
  602. * to check against the actual page size.
  603. */
  604. if ((v & valid) && (v & mask) == val &&
  605. hpte_page_size(v, r) == (1ul << pshift))
  606. /* Return with the HPTE still locked */
  607. return (hash << 3) + (i >> 1);
  608. /* Unlock and move on */
  609. hpte[i] = v;
  610. }
  611. if (val & HPTE_V_SECONDARY)
  612. break;
  613. val |= HPTE_V_SECONDARY;
  614. hash = hash ^ HPT_HASH_MASK;
  615. }
  616. return -1;
  617. }
  618. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  619. /*
  620. * Called in real mode to check whether an HPTE not found fault
  621. * is due to accessing a paged-out page or an emulated MMIO page.
  622. * Returns a possibly modified status (DSISR) value if not
  623. * (i.e. pass the interrupt to the guest),
  624. * -1 to pass the fault up to host kernel mode code, -2 to do that
  625. * and also load the instruction word (for MMIO emulation),
  626. * or 0 if we should make the guest retry the access.
  627. */
  628. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  629. unsigned long slb_v, unsigned int status, bool data)
  630. {
  631. struct kvm *kvm = vcpu->kvm;
  632. long int index;
  633. unsigned long v, r, gr;
  634. unsigned long *hpte;
  635. unsigned long valid;
  636. struct revmap_entry *rev;
  637. unsigned long pp, key;
  638. valid = HPTE_V_VALID | HPTE_V_ABSENT;
  639. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  640. if (index < 0)
  641. return status; /* there really was no HPTE */
  642. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  643. v = hpte[0] & ~HPTE_V_HVLOCK;
  644. r = hpte[1];
  645. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  646. gr = rev->guest_rpte;
  647. /* Unlock the HPTE */
  648. asm volatile("lwsync" : : : "memory");
  649. hpte[0] = v;
  650. /* If the HPTE is valid by now, retry the instruction */
  651. if (v & HPTE_V_VALID)
  652. return 0;
  653. /* Check access permissions to the page */
  654. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  655. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  656. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  657. if (!data) {
  658. if (gr & (HPTE_R_N | HPTE_R_G))
  659. return status | SRR1_ISI_N_OR_G;
  660. if (!hpte_read_permission(pp, slb_v & key))
  661. return status | SRR1_ISI_PROT;
  662. } else if (status & DSISR_ISSTORE) {
  663. /* check write permission */
  664. if (!hpte_write_permission(pp, slb_v & key))
  665. return status | DSISR_PROTFAULT;
  666. } else {
  667. if (!hpte_read_permission(pp, slb_v & key))
  668. return status | DSISR_PROTFAULT;
  669. }
  670. /* Check storage key, if applicable */
  671. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  672. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  673. if (status & DSISR_ISSTORE)
  674. perm >>= 1;
  675. if (perm & 1)
  676. return status | DSISR_KEYFAULT;
  677. }
  678. /* Save HPTE info for virtual-mode handler */
  679. vcpu->arch.pgfault_addr = addr;
  680. vcpu->arch.pgfault_index = index;
  681. vcpu->arch.pgfault_hpte[0] = v;
  682. vcpu->arch.pgfault_hpte[1] = r;
  683. /* Check the storage key to see if it is possibly emulated MMIO */
  684. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  685. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  686. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  687. return -2; /* MMIO emulation - load instr word */
  688. return -1; /* send fault up to host kernel mode */
  689. }