vmx.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "irq.h"
  20. #include "vmx.h"
  21. #include "segment_descriptor.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. struct vmcs {
  32. u32 revision_id;
  33. u32 abort;
  34. char data[0];
  35. };
  36. struct vcpu_vmx {
  37. struct kvm_vcpu vcpu;
  38. int launched;
  39. u8 fail;
  40. struct kvm_msr_entry *guest_msrs;
  41. struct kvm_msr_entry *host_msrs;
  42. int nmsrs;
  43. int save_nmsrs;
  44. int msr_offset_efer;
  45. #ifdef CONFIG_X86_64
  46. int msr_offset_kernel_gs_base;
  47. #endif
  48. struct vmcs *vmcs;
  49. struct {
  50. int loaded;
  51. u16 fs_sel, gs_sel, ldt_sel;
  52. int gs_ldt_reload_needed;
  53. int fs_reload_needed;
  54. }host_state;
  55. };
  56. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  57. {
  58. return container_of(vcpu, struct vcpu_vmx, vcpu);
  59. }
  60. static int init_rmode_tss(struct kvm *kvm);
  61. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  62. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  63. static struct page *vmx_io_bitmap_a;
  64. static struct page *vmx_io_bitmap_b;
  65. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  66. static struct vmcs_config {
  67. int size;
  68. int order;
  69. u32 revision_id;
  70. u32 pin_based_exec_ctrl;
  71. u32 cpu_based_exec_ctrl;
  72. u32 vmexit_ctrl;
  73. u32 vmentry_ctrl;
  74. } vmcs_config;
  75. #define VMX_SEGMENT_FIELD(seg) \
  76. [VCPU_SREG_##seg] = { \
  77. .selector = GUEST_##seg##_SELECTOR, \
  78. .base = GUEST_##seg##_BASE, \
  79. .limit = GUEST_##seg##_LIMIT, \
  80. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  81. }
  82. static struct kvm_vmx_segment_field {
  83. unsigned selector;
  84. unsigned base;
  85. unsigned limit;
  86. unsigned ar_bytes;
  87. } kvm_vmx_segment_fields[] = {
  88. VMX_SEGMENT_FIELD(CS),
  89. VMX_SEGMENT_FIELD(DS),
  90. VMX_SEGMENT_FIELD(ES),
  91. VMX_SEGMENT_FIELD(FS),
  92. VMX_SEGMENT_FIELD(GS),
  93. VMX_SEGMENT_FIELD(SS),
  94. VMX_SEGMENT_FIELD(TR),
  95. VMX_SEGMENT_FIELD(LDTR),
  96. };
  97. /*
  98. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  99. * away by decrementing the array size.
  100. */
  101. static const u32 vmx_msr_index[] = {
  102. #ifdef CONFIG_X86_64
  103. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  104. #endif
  105. MSR_EFER, MSR_K6_STAR,
  106. };
  107. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  108. static void load_msrs(struct kvm_msr_entry *e, int n)
  109. {
  110. int i;
  111. for (i = 0; i < n; ++i)
  112. wrmsrl(e[i].index, e[i].data);
  113. }
  114. static void save_msrs(struct kvm_msr_entry *e, int n)
  115. {
  116. int i;
  117. for (i = 0; i < n; ++i)
  118. rdmsrl(e[i].index, e[i].data);
  119. }
  120. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  121. {
  122. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  123. }
  124. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  125. {
  126. int efer_offset = vmx->msr_offset_efer;
  127. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  128. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  129. }
  130. static inline int is_page_fault(u32 intr_info)
  131. {
  132. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  133. INTR_INFO_VALID_MASK)) ==
  134. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  135. }
  136. static inline int is_no_device(u32 intr_info)
  137. {
  138. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  139. INTR_INFO_VALID_MASK)) ==
  140. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  141. }
  142. static inline int is_invalid_opcode(u32 intr_info)
  143. {
  144. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  145. INTR_INFO_VALID_MASK)) ==
  146. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  147. }
  148. static inline int is_external_interrupt(u32 intr_info)
  149. {
  150. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  151. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  152. }
  153. static inline int cpu_has_vmx_tpr_shadow(void)
  154. {
  155. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  156. }
  157. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  158. {
  159. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  160. }
  161. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  162. {
  163. int i;
  164. for (i = 0; i < vmx->nmsrs; ++i)
  165. if (vmx->guest_msrs[i].index == msr)
  166. return i;
  167. return -1;
  168. }
  169. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  170. {
  171. int i;
  172. i = __find_msr_index(vmx, msr);
  173. if (i >= 0)
  174. return &vmx->guest_msrs[i];
  175. return NULL;
  176. }
  177. static void vmcs_clear(struct vmcs *vmcs)
  178. {
  179. u64 phys_addr = __pa(vmcs);
  180. u8 error;
  181. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  182. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  183. : "cc", "memory");
  184. if (error)
  185. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  186. vmcs, phys_addr);
  187. }
  188. static void __vcpu_clear(void *arg)
  189. {
  190. struct vcpu_vmx *vmx = arg;
  191. int cpu = raw_smp_processor_id();
  192. if (vmx->vcpu.cpu == cpu)
  193. vmcs_clear(vmx->vmcs);
  194. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  195. per_cpu(current_vmcs, cpu) = NULL;
  196. rdtscll(vmx->vcpu.host_tsc);
  197. }
  198. static void vcpu_clear(struct vcpu_vmx *vmx)
  199. {
  200. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  201. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  202. vmx, 0, 1);
  203. else
  204. __vcpu_clear(vmx);
  205. vmx->launched = 0;
  206. }
  207. static unsigned long vmcs_readl(unsigned long field)
  208. {
  209. unsigned long value;
  210. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  211. : "=a"(value) : "d"(field) : "cc");
  212. return value;
  213. }
  214. static u16 vmcs_read16(unsigned long field)
  215. {
  216. return vmcs_readl(field);
  217. }
  218. static u32 vmcs_read32(unsigned long field)
  219. {
  220. return vmcs_readl(field);
  221. }
  222. static u64 vmcs_read64(unsigned long field)
  223. {
  224. #ifdef CONFIG_X86_64
  225. return vmcs_readl(field);
  226. #else
  227. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  228. #endif
  229. }
  230. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  231. {
  232. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  233. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  234. dump_stack();
  235. }
  236. static void vmcs_writel(unsigned long field, unsigned long value)
  237. {
  238. u8 error;
  239. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  240. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  241. if (unlikely(error))
  242. vmwrite_error(field, value);
  243. }
  244. static void vmcs_write16(unsigned long field, u16 value)
  245. {
  246. vmcs_writel(field, value);
  247. }
  248. static void vmcs_write32(unsigned long field, u32 value)
  249. {
  250. vmcs_writel(field, value);
  251. }
  252. static void vmcs_write64(unsigned long field, u64 value)
  253. {
  254. #ifdef CONFIG_X86_64
  255. vmcs_writel(field, value);
  256. #else
  257. vmcs_writel(field, value);
  258. asm volatile ("");
  259. vmcs_writel(field+1, value >> 32);
  260. #endif
  261. }
  262. static void vmcs_clear_bits(unsigned long field, u32 mask)
  263. {
  264. vmcs_writel(field, vmcs_readl(field) & ~mask);
  265. }
  266. static void vmcs_set_bits(unsigned long field, u32 mask)
  267. {
  268. vmcs_writel(field, vmcs_readl(field) | mask);
  269. }
  270. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  271. {
  272. u32 eb;
  273. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  274. if (!vcpu->fpu_active)
  275. eb |= 1u << NM_VECTOR;
  276. if (vcpu->guest_debug.enabled)
  277. eb |= 1u << 1;
  278. if (vcpu->rmode.active)
  279. eb = ~0;
  280. vmcs_write32(EXCEPTION_BITMAP, eb);
  281. }
  282. static void reload_tss(void)
  283. {
  284. #ifndef CONFIG_X86_64
  285. /*
  286. * VT restores TR but not its size. Useless.
  287. */
  288. struct descriptor_table gdt;
  289. struct segment_descriptor *descs;
  290. get_gdt(&gdt);
  291. descs = (void *)gdt.base;
  292. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  293. load_TR_desc();
  294. #endif
  295. }
  296. static void load_transition_efer(struct vcpu_vmx *vmx)
  297. {
  298. u64 trans_efer;
  299. int efer_offset = vmx->msr_offset_efer;
  300. trans_efer = vmx->host_msrs[efer_offset].data;
  301. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  302. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  303. wrmsrl(MSR_EFER, trans_efer);
  304. vmx->vcpu.stat.efer_reload++;
  305. }
  306. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  307. {
  308. struct vcpu_vmx *vmx = to_vmx(vcpu);
  309. if (vmx->host_state.loaded)
  310. return;
  311. vmx->host_state.loaded = 1;
  312. /*
  313. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  314. * allow segment selectors with cpl > 0 or ti == 1.
  315. */
  316. vmx->host_state.ldt_sel = read_ldt();
  317. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  318. vmx->host_state.fs_sel = read_fs();
  319. if (!(vmx->host_state.fs_sel & 7)) {
  320. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  321. vmx->host_state.fs_reload_needed = 0;
  322. } else {
  323. vmcs_write16(HOST_FS_SELECTOR, 0);
  324. vmx->host_state.fs_reload_needed = 1;
  325. }
  326. vmx->host_state.gs_sel = read_gs();
  327. if (!(vmx->host_state.gs_sel & 7))
  328. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  329. else {
  330. vmcs_write16(HOST_GS_SELECTOR, 0);
  331. vmx->host_state.gs_ldt_reload_needed = 1;
  332. }
  333. #ifdef CONFIG_X86_64
  334. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  335. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  336. #else
  337. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  338. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  339. #endif
  340. #ifdef CONFIG_X86_64
  341. if (is_long_mode(&vmx->vcpu)) {
  342. save_msrs(vmx->host_msrs +
  343. vmx->msr_offset_kernel_gs_base, 1);
  344. }
  345. #endif
  346. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  347. if (msr_efer_need_save_restore(vmx))
  348. load_transition_efer(vmx);
  349. }
  350. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  351. {
  352. unsigned long flags;
  353. if (!vmx->host_state.loaded)
  354. return;
  355. vmx->host_state.loaded = 0;
  356. if (vmx->host_state.fs_reload_needed)
  357. load_fs(vmx->host_state.fs_sel);
  358. if (vmx->host_state.gs_ldt_reload_needed) {
  359. load_ldt(vmx->host_state.ldt_sel);
  360. /*
  361. * If we have to reload gs, we must take care to
  362. * preserve our gs base.
  363. */
  364. local_irq_save(flags);
  365. load_gs(vmx->host_state.gs_sel);
  366. #ifdef CONFIG_X86_64
  367. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  368. #endif
  369. local_irq_restore(flags);
  370. }
  371. reload_tss();
  372. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  373. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  374. if (msr_efer_need_save_restore(vmx))
  375. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  376. }
  377. /*
  378. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  379. * vcpu mutex is already taken.
  380. */
  381. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  382. {
  383. struct vcpu_vmx *vmx = to_vmx(vcpu);
  384. u64 phys_addr = __pa(vmx->vmcs);
  385. u64 tsc_this, delta;
  386. if (vcpu->cpu != cpu) {
  387. vcpu_clear(vmx);
  388. kvm_migrate_apic_timer(vcpu);
  389. }
  390. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  391. u8 error;
  392. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  393. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  394. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  395. : "cc");
  396. if (error)
  397. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  398. vmx->vmcs, phys_addr);
  399. }
  400. if (vcpu->cpu != cpu) {
  401. struct descriptor_table dt;
  402. unsigned long sysenter_esp;
  403. vcpu->cpu = cpu;
  404. /*
  405. * Linux uses per-cpu TSS and GDT, so set these when switching
  406. * processors.
  407. */
  408. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  409. get_gdt(&dt);
  410. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  411. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  412. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  413. /*
  414. * Make sure the time stamp counter is monotonous.
  415. */
  416. rdtscll(tsc_this);
  417. delta = vcpu->host_tsc - tsc_this;
  418. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  419. }
  420. }
  421. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  422. {
  423. vmx_load_host_state(to_vmx(vcpu));
  424. kvm_put_guest_fpu(vcpu);
  425. }
  426. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  427. {
  428. if (vcpu->fpu_active)
  429. return;
  430. vcpu->fpu_active = 1;
  431. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  432. if (vcpu->cr0 & X86_CR0_TS)
  433. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  434. update_exception_bitmap(vcpu);
  435. }
  436. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  437. {
  438. if (!vcpu->fpu_active)
  439. return;
  440. vcpu->fpu_active = 0;
  441. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  442. update_exception_bitmap(vcpu);
  443. }
  444. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  445. {
  446. vcpu_clear(to_vmx(vcpu));
  447. }
  448. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  449. {
  450. return vmcs_readl(GUEST_RFLAGS);
  451. }
  452. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  453. {
  454. if (vcpu->rmode.active)
  455. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  456. vmcs_writel(GUEST_RFLAGS, rflags);
  457. }
  458. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  459. {
  460. unsigned long rip;
  461. u32 interruptibility;
  462. rip = vmcs_readl(GUEST_RIP);
  463. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  464. vmcs_writel(GUEST_RIP, rip);
  465. /*
  466. * We emulated an instruction, so temporary interrupt blocking
  467. * should be removed, if set.
  468. */
  469. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  470. if (interruptibility & 3)
  471. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  472. interruptibility & ~3);
  473. vcpu->interrupt_window_open = 1;
  474. }
  475. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  476. {
  477. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  478. vmcs_readl(GUEST_RIP));
  479. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  480. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  481. GP_VECTOR |
  482. INTR_TYPE_EXCEPTION |
  483. INTR_INFO_DELIEVER_CODE_MASK |
  484. INTR_INFO_VALID_MASK);
  485. }
  486. static void vmx_inject_ud(struct kvm_vcpu *vcpu)
  487. {
  488. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  489. UD_VECTOR |
  490. INTR_TYPE_EXCEPTION |
  491. INTR_INFO_VALID_MASK);
  492. }
  493. /*
  494. * Swap MSR entry in host/guest MSR entry array.
  495. */
  496. #ifdef CONFIG_X86_64
  497. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  498. {
  499. struct kvm_msr_entry tmp;
  500. tmp = vmx->guest_msrs[to];
  501. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  502. vmx->guest_msrs[from] = tmp;
  503. tmp = vmx->host_msrs[to];
  504. vmx->host_msrs[to] = vmx->host_msrs[from];
  505. vmx->host_msrs[from] = tmp;
  506. }
  507. #endif
  508. /*
  509. * Set up the vmcs to automatically save and restore system
  510. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  511. * mode, as fiddling with msrs is very expensive.
  512. */
  513. static void setup_msrs(struct vcpu_vmx *vmx)
  514. {
  515. int save_nmsrs;
  516. save_nmsrs = 0;
  517. #ifdef CONFIG_X86_64
  518. if (is_long_mode(&vmx->vcpu)) {
  519. int index;
  520. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  521. if (index >= 0)
  522. move_msr_up(vmx, index, save_nmsrs++);
  523. index = __find_msr_index(vmx, MSR_LSTAR);
  524. if (index >= 0)
  525. move_msr_up(vmx, index, save_nmsrs++);
  526. index = __find_msr_index(vmx, MSR_CSTAR);
  527. if (index >= 0)
  528. move_msr_up(vmx, index, save_nmsrs++);
  529. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  530. if (index >= 0)
  531. move_msr_up(vmx, index, save_nmsrs++);
  532. /*
  533. * MSR_K6_STAR is only needed on long mode guests, and only
  534. * if efer.sce is enabled.
  535. */
  536. index = __find_msr_index(vmx, MSR_K6_STAR);
  537. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  538. move_msr_up(vmx, index, save_nmsrs++);
  539. }
  540. #endif
  541. vmx->save_nmsrs = save_nmsrs;
  542. #ifdef CONFIG_X86_64
  543. vmx->msr_offset_kernel_gs_base =
  544. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  545. #endif
  546. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  547. }
  548. /*
  549. * reads and returns guest's timestamp counter "register"
  550. * guest_tsc = host_tsc + tsc_offset -- 21.3
  551. */
  552. static u64 guest_read_tsc(void)
  553. {
  554. u64 host_tsc, tsc_offset;
  555. rdtscll(host_tsc);
  556. tsc_offset = vmcs_read64(TSC_OFFSET);
  557. return host_tsc + tsc_offset;
  558. }
  559. /*
  560. * writes 'guest_tsc' into guest's timestamp counter "register"
  561. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  562. */
  563. static void guest_write_tsc(u64 guest_tsc)
  564. {
  565. u64 host_tsc;
  566. rdtscll(host_tsc);
  567. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  568. }
  569. /*
  570. * Reads an msr value (of 'msr_index') into 'pdata'.
  571. * Returns 0 on success, non-0 otherwise.
  572. * Assumes vcpu_load() was already called.
  573. */
  574. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  575. {
  576. u64 data;
  577. struct kvm_msr_entry *msr;
  578. if (!pdata) {
  579. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  580. return -EINVAL;
  581. }
  582. switch (msr_index) {
  583. #ifdef CONFIG_X86_64
  584. case MSR_FS_BASE:
  585. data = vmcs_readl(GUEST_FS_BASE);
  586. break;
  587. case MSR_GS_BASE:
  588. data = vmcs_readl(GUEST_GS_BASE);
  589. break;
  590. case MSR_EFER:
  591. return kvm_get_msr_common(vcpu, msr_index, pdata);
  592. #endif
  593. case MSR_IA32_TIME_STAMP_COUNTER:
  594. data = guest_read_tsc();
  595. break;
  596. case MSR_IA32_SYSENTER_CS:
  597. data = vmcs_read32(GUEST_SYSENTER_CS);
  598. break;
  599. case MSR_IA32_SYSENTER_EIP:
  600. data = vmcs_readl(GUEST_SYSENTER_EIP);
  601. break;
  602. case MSR_IA32_SYSENTER_ESP:
  603. data = vmcs_readl(GUEST_SYSENTER_ESP);
  604. break;
  605. default:
  606. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  607. if (msr) {
  608. data = msr->data;
  609. break;
  610. }
  611. return kvm_get_msr_common(vcpu, msr_index, pdata);
  612. }
  613. *pdata = data;
  614. return 0;
  615. }
  616. /*
  617. * Writes msr value into into the appropriate "register".
  618. * Returns 0 on success, non-0 otherwise.
  619. * Assumes vcpu_load() was already called.
  620. */
  621. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  622. {
  623. struct vcpu_vmx *vmx = to_vmx(vcpu);
  624. struct kvm_msr_entry *msr;
  625. int ret = 0;
  626. switch (msr_index) {
  627. #ifdef CONFIG_X86_64
  628. case MSR_EFER:
  629. ret = kvm_set_msr_common(vcpu, msr_index, data);
  630. if (vmx->host_state.loaded)
  631. load_transition_efer(vmx);
  632. break;
  633. case MSR_FS_BASE:
  634. vmcs_writel(GUEST_FS_BASE, data);
  635. break;
  636. case MSR_GS_BASE:
  637. vmcs_writel(GUEST_GS_BASE, data);
  638. break;
  639. #endif
  640. case MSR_IA32_SYSENTER_CS:
  641. vmcs_write32(GUEST_SYSENTER_CS, data);
  642. break;
  643. case MSR_IA32_SYSENTER_EIP:
  644. vmcs_writel(GUEST_SYSENTER_EIP, data);
  645. break;
  646. case MSR_IA32_SYSENTER_ESP:
  647. vmcs_writel(GUEST_SYSENTER_ESP, data);
  648. break;
  649. case MSR_IA32_TIME_STAMP_COUNTER:
  650. guest_write_tsc(data);
  651. break;
  652. default:
  653. msr = find_msr_entry(vmx, msr_index);
  654. if (msr) {
  655. msr->data = data;
  656. if (vmx->host_state.loaded)
  657. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  658. break;
  659. }
  660. ret = kvm_set_msr_common(vcpu, msr_index, data);
  661. }
  662. return ret;
  663. }
  664. /*
  665. * Sync the rsp and rip registers into the vcpu structure. This allows
  666. * registers to be accessed by indexing vcpu->regs.
  667. */
  668. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  669. {
  670. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  671. vcpu->rip = vmcs_readl(GUEST_RIP);
  672. }
  673. /*
  674. * Syncs rsp and rip back into the vmcs. Should be called after possible
  675. * modification.
  676. */
  677. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  678. {
  679. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  680. vmcs_writel(GUEST_RIP, vcpu->rip);
  681. }
  682. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  683. {
  684. unsigned long dr7 = 0x400;
  685. int old_singlestep;
  686. old_singlestep = vcpu->guest_debug.singlestep;
  687. vcpu->guest_debug.enabled = dbg->enabled;
  688. if (vcpu->guest_debug.enabled) {
  689. int i;
  690. dr7 |= 0x200; /* exact */
  691. for (i = 0; i < 4; ++i) {
  692. if (!dbg->breakpoints[i].enabled)
  693. continue;
  694. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  695. dr7 |= 2 << (i*2); /* global enable */
  696. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  697. }
  698. vcpu->guest_debug.singlestep = dbg->singlestep;
  699. } else
  700. vcpu->guest_debug.singlestep = 0;
  701. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  702. unsigned long flags;
  703. flags = vmcs_readl(GUEST_RFLAGS);
  704. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  705. vmcs_writel(GUEST_RFLAGS, flags);
  706. }
  707. update_exception_bitmap(vcpu);
  708. vmcs_writel(GUEST_DR7, dr7);
  709. return 0;
  710. }
  711. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  712. {
  713. u32 idtv_info_field;
  714. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  715. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  716. if (is_external_interrupt(idtv_info_field))
  717. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  718. else
  719. printk("pending exception: not handled yet\n");
  720. }
  721. return -1;
  722. }
  723. static __init int cpu_has_kvm_support(void)
  724. {
  725. unsigned long ecx = cpuid_ecx(1);
  726. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  727. }
  728. static __init int vmx_disabled_by_bios(void)
  729. {
  730. u64 msr;
  731. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  732. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  733. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  734. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  735. /* locked but not enabled */
  736. }
  737. static void hardware_enable(void *garbage)
  738. {
  739. int cpu = raw_smp_processor_id();
  740. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  741. u64 old;
  742. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  743. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  744. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  745. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  746. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  747. /* enable and lock */
  748. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  749. MSR_IA32_FEATURE_CONTROL_LOCKED |
  750. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  751. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  752. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  753. : "memory", "cc");
  754. }
  755. static void hardware_disable(void *garbage)
  756. {
  757. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  758. }
  759. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  760. u32 msr, u32* result)
  761. {
  762. u32 vmx_msr_low, vmx_msr_high;
  763. u32 ctl = ctl_min | ctl_opt;
  764. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  765. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  766. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  767. /* Ensure minimum (required) set of control bits are supported. */
  768. if (ctl_min & ~ctl)
  769. return -EIO;
  770. *result = ctl;
  771. return 0;
  772. }
  773. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  774. {
  775. u32 vmx_msr_low, vmx_msr_high;
  776. u32 min, opt;
  777. u32 _pin_based_exec_control = 0;
  778. u32 _cpu_based_exec_control = 0;
  779. u32 _vmexit_control = 0;
  780. u32 _vmentry_control = 0;
  781. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  782. opt = 0;
  783. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  784. &_pin_based_exec_control) < 0)
  785. return -EIO;
  786. min = CPU_BASED_HLT_EXITING |
  787. #ifdef CONFIG_X86_64
  788. CPU_BASED_CR8_LOAD_EXITING |
  789. CPU_BASED_CR8_STORE_EXITING |
  790. #endif
  791. CPU_BASED_USE_IO_BITMAPS |
  792. CPU_BASED_MOV_DR_EXITING |
  793. CPU_BASED_USE_TSC_OFFSETING;
  794. #ifdef CONFIG_X86_64
  795. opt = CPU_BASED_TPR_SHADOW;
  796. #else
  797. opt = 0;
  798. #endif
  799. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  800. &_cpu_based_exec_control) < 0)
  801. return -EIO;
  802. #ifdef CONFIG_X86_64
  803. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  804. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  805. ~CPU_BASED_CR8_STORE_EXITING;
  806. #endif
  807. min = 0;
  808. #ifdef CONFIG_X86_64
  809. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  810. #endif
  811. opt = 0;
  812. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  813. &_vmexit_control) < 0)
  814. return -EIO;
  815. min = opt = 0;
  816. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  817. &_vmentry_control) < 0)
  818. return -EIO;
  819. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  820. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  821. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  822. return -EIO;
  823. #ifdef CONFIG_X86_64
  824. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  825. if (vmx_msr_high & (1u<<16))
  826. return -EIO;
  827. #endif
  828. /* Require Write-Back (WB) memory type for VMCS accesses. */
  829. if (((vmx_msr_high >> 18) & 15) != 6)
  830. return -EIO;
  831. vmcs_conf->size = vmx_msr_high & 0x1fff;
  832. vmcs_conf->order = get_order(vmcs_config.size);
  833. vmcs_conf->revision_id = vmx_msr_low;
  834. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  835. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  836. vmcs_conf->vmexit_ctrl = _vmexit_control;
  837. vmcs_conf->vmentry_ctrl = _vmentry_control;
  838. return 0;
  839. }
  840. static struct vmcs *alloc_vmcs_cpu(int cpu)
  841. {
  842. int node = cpu_to_node(cpu);
  843. struct page *pages;
  844. struct vmcs *vmcs;
  845. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  846. if (!pages)
  847. return NULL;
  848. vmcs = page_address(pages);
  849. memset(vmcs, 0, vmcs_config.size);
  850. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  851. return vmcs;
  852. }
  853. static struct vmcs *alloc_vmcs(void)
  854. {
  855. return alloc_vmcs_cpu(raw_smp_processor_id());
  856. }
  857. static void free_vmcs(struct vmcs *vmcs)
  858. {
  859. free_pages((unsigned long)vmcs, vmcs_config.order);
  860. }
  861. static void free_kvm_area(void)
  862. {
  863. int cpu;
  864. for_each_online_cpu(cpu)
  865. free_vmcs(per_cpu(vmxarea, cpu));
  866. }
  867. static __init int alloc_kvm_area(void)
  868. {
  869. int cpu;
  870. for_each_online_cpu(cpu) {
  871. struct vmcs *vmcs;
  872. vmcs = alloc_vmcs_cpu(cpu);
  873. if (!vmcs) {
  874. free_kvm_area();
  875. return -ENOMEM;
  876. }
  877. per_cpu(vmxarea, cpu) = vmcs;
  878. }
  879. return 0;
  880. }
  881. static __init int hardware_setup(void)
  882. {
  883. if (setup_vmcs_config(&vmcs_config) < 0)
  884. return -EIO;
  885. return alloc_kvm_area();
  886. }
  887. static __exit void hardware_unsetup(void)
  888. {
  889. free_kvm_area();
  890. }
  891. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  892. {
  893. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  894. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  895. vmcs_write16(sf->selector, save->selector);
  896. vmcs_writel(sf->base, save->base);
  897. vmcs_write32(sf->limit, save->limit);
  898. vmcs_write32(sf->ar_bytes, save->ar);
  899. } else {
  900. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  901. << AR_DPL_SHIFT;
  902. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  903. }
  904. }
  905. static void enter_pmode(struct kvm_vcpu *vcpu)
  906. {
  907. unsigned long flags;
  908. vcpu->rmode.active = 0;
  909. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  910. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  911. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  912. flags = vmcs_readl(GUEST_RFLAGS);
  913. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  914. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  915. vmcs_writel(GUEST_RFLAGS, flags);
  916. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  917. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  918. update_exception_bitmap(vcpu);
  919. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  920. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  921. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  922. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  923. vmcs_write16(GUEST_SS_SELECTOR, 0);
  924. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  925. vmcs_write16(GUEST_CS_SELECTOR,
  926. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  927. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  928. }
  929. static gva_t rmode_tss_base(struct kvm* kvm)
  930. {
  931. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  932. return base_gfn << PAGE_SHIFT;
  933. }
  934. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  935. {
  936. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  937. save->selector = vmcs_read16(sf->selector);
  938. save->base = vmcs_readl(sf->base);
  939. save->limit = vmcs_read32(sf->limit);
  940. save->ar = vmcs_read32(sf->ar_bytes);
  941. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  942. vmcs_write32(sf->limit, 0xffff);
  943. vmcs_write32(sf->ar_bytes, 0xf3);
  944. }
  945. static void enter_rmode(struct kvm_vcpu *vcpu)
  946. {
  947. unsigned long flags;
  948. vcpu->rmode.active = 1;
  949. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  950. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  951. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  952. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  953. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  954. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  955. flags = vmcs_readl(GUEST_RFLAGS);
  956. vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  957. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  958. vmcs_writel(GUEST_RFLAGS, flags);
  959. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  960. update_exception_bitmap(vcpu);
  961. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  962. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  963. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  964. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  965. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  966. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  967. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  968. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  969. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  970. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  971. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  972. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  973. kvm_mmu_reset_context(vcpu);
  974. init_rmode_tss(vcpu->kvm);
  975. }
  976. #ifdef CONFIG_X86_64
  977. static void enter_lmode(struct kvm_vcpu *vcpu)
  978. {
  979. u32 guest_tr_ar;
  980. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  981. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  982. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  983. __FUNCTION__);
  984. vmcs_write32(GUEST_TR_AR_BYTES,
  985. (guest_tr_ar & ~AR_TYPE_MASK)
  986. | AR_TYPE_BUSY_64_TSS);
  987. }
  988. vcpu->shadow_efer |= EFER_LMA;
  989. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  990. vmcs_write32(VM_ENTRY_CONTROLS,
  991. vmcs_read32(VM_ENTRY_CONTROLS)
  992. | VM_ENTRY_IA32E_MODE);
  993. }
  994. static void exit_lmode(struct kvm_vcpu *vcpu)
  995. {
  996. vcpu->shadow_efer &= ~EFER_LMA;
  997. vmcs_write32(VM_ENTRY_CONTROLS,
  998. vmcs_read32(VM_ENTRY_CONTROLS)
  999. & ~VM_ENTRY_IA32E_MODE);
  1000. }
  1001. #endif
  1002. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1003. {
  1004. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  1005. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1006. }
  1007. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1008. {
  1009. vmx_fpu_deactivate(vcpu);
  1010. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  1011. enter_pmode(vcpu);
  1012. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  1013. enter_rmode(vcpu);
  1014. #ifdef CONFIG_X86_64
  1015. if (vcpu->shadow_efer & EFER_LME) {
  1016. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1017. enter_lmode(vcpu);
  1018. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1019. exit_lmode(vcpu);
  1020. }
  1021. #endif
  1022. vmcs_writel(CR0_READ_SHADOW, cr0);
  1023. vmcs_writel(GUEST_CR0,
  1024. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1025. vcpu->cr0 = cr0;
  1026. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1027. vmx_fpu_activate(vcpu);
  1028. }
  1029. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1030. {
  1031. vmcs_writel(GUEST_CR3, cr3);
  1032. if (vcpu->cr0 & X86_CR0_PE)
  1033. vmx_fpu_deactivate(vcpu);
  1034. }
  1035. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1036. {
  1037. vmcs_writel(CR4_READ_SHADOW, cr4);
  1038. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1039. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1040. vcpu->cr4 = cr4;
  1041. }
  1042. #ifdef CONFIG_X86_64
  1043. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1044. {
  1045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1046. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1047. vcpu->shadow_efer = efer;
  1048. if (efer & EFER_LMA) {
  1049. vmcs_write32(VM_ENTRY_CONTROLS,
  1050. vmcs_read32(VM_ENTRY_CONTROLS) |
  1051. VM_ENTRY_IA32E_MODE);
  1052. msr->data = efer;
  1053. } else {
  1054. vmcs_write32(VM_ENTRY_CONTROLS,
  1055. vmcs_read32(VM_ENTRY_CONTROLS) &
  1056. ~VM_ENTRY_IA32E_MODE);
  1057. msr->data = efer & ~EFER_LME;
  1058. }
  1059. setup_msrs(vmx);
  1060. }
  1061. #endif
  1062. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1063. {
  1064. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1065. return vmcs_readl(sf->base);
  1066. }
  1067. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1068. struct kvm_segment *var, int seg)
  1069. {
  1070. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1071. u32 ar;
  1072. var->base = vmcs_readl(sf->base);
  1073. var->limit = vmcs_read32(sf->limit);
  1074. var->selector = vmcs_read16(sf->selector);
  1075. ar = vmcs_read32(sf->ar_bytes);
  1076. if (ar & AR_UNUSABLE_MASK)
  1077. ar = 0;
  1078. var->type = ar & 15;
  1079. var->s = (ar >> 4) & 1;
  1080. var->dpl = (ar >> 5) & 3;
  1081. var->present = (ar >> 7) & 1;
  1082. var->avl = (ar >> 12) & 1;
  1083. var->l = (ar >> 13) & 1;
  1084. var->db = (ar >> 14) & 1;
  1085. var->g = (ar >> 15) & 1;
  1086. var->unusable = (ar >> 16) & 1;
  1087. }
  1088. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1089. {
  1090. u32 ar;
  1091. if (var->unusable)
  1092. ar = 1 << 16;
  1093. else {
  1094. ar = var->type & 15;
  1095. ar |= (var->s & 1) << 4;
  1096. ar |= (var->dpl & 3) << 5;
  1097. ar |= (var->present & 1) << 7;
  1098. ar |= (var->avl & 1) << 12;
  1099. ar |= (var->l & 1) << 13;
  1100. ar |= (var->db & 1) << 14;
  1101. ar |= (var->g & 1) << 15;
  1102. }
  1103. if (ar == 0) /* a 0 value means unusable */
  1104. ar = AR_UNUSABLE_MASK;
  1105. return ar;
  1106. }
  1107. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1108. struct kvm_segment *var, int seg)
  1109. {
  1110. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1111. u32 ar;
  1112. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1113. vcpu->rmode.tr.selector = var->selector;
  1114. vcpu->rmode.tr.base = var->base;
  1115. vcpu->rmode.tr.limit = var->limit;
  1116. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1117. return;
  1118. }
  1119. vmcs_writel(sf->base, var->base);
  1120. vmcs_write32(sf->limit, var->limit);
  1121. vmcs_write16(sf->selector, var->selector);
  1122. if (vcpu->rmode.active && var->s) {
  1123. /*
  1124. * Hack real-mode segments into vm86 compatibility.
  1125. */
  1126. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1127. vmcs_writel(sf->base, 0xf0000);
  1128. ar = 0xf3;
  1129. } else
  1130. ar = vmx_segment_access_rights(var);
  1131. vmcs_write32(sf->ar_bytes, ar);
  1132. }
  1133. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1134. {
  1135. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1136. *db = (ar >> 14) & 1;
  1137. *l = (ar >> 13) & 1;
  1138. }
  1139. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1140. {
  1141. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1142. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1143. }
  1144. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1145. {
  1146. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1147. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1148. }
  1149. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1150. {
  1151. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1152. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1153. }
  1154. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1155. {
  1156. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1157. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1158. }
  1159. static int init_rmode_tss(struct kvm* kvm)
  1160. {
  1161. struct page *p1, *p2, *p3;
  1162. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1163. char *page;
  1164. p1 = gfn_to_page(kvm, fn++);
  1165. p2 = gfn_to_page(kvm, fn++);
  1166. p3 = gfn_to_page(kvm, fn);
  1167. if (!p1 || !p2 || !p3) {
  1168. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1169. return 0;
  1170. }
  1171. page = kmap_atomic(p1, KM_USER0);
  1172. clear_page(page);
  1173. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1174. kunmap_atomic(page, KM_USER0);
  1175. page = kmap_atomic(p2, KM_USER0);
  1176. clear_page(page);
  1177. kunmap_atomic(page, KM_USER0);
  1178. page = kmap_atomic(p3, KM_USER0);
  1179. clear_page(page);
  1180. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1181. kunmap_atomic(page, KM_USER0);
  1182. return 1;
  1183. }
  1184. static void seg_setup(int seg)
  1185. {
  1186. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1187. vmcs_write16(sf->selector, 0);
  1188. vmcs_writel(sf->base, 0);
  1189. vmcs_write32(sf->limit, 0xffff);
  1190. vmcs_write32(sf->ar_bytes, 0x93);
  1191. }
  1192. /*
  1193. * Sets up the vmcs for emulated real mode.
  1194. */
  1195. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1196. {
  1197. u32 host_sysenter_cs;
  1198. u32 junk;
  1199. unsigned long a;
  1200. struct descriptor_table dt;
  1201. int i;
  1202. int ret = 0;
  1203. unsigned long kvm_vmx_return;
  1204. u64 msr;
  1205. u32 exec_control;
  1206. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1207. ret = -ENOMEM;
  1208. goto out;
  1209. }
  1210. vmx->vcpu.rmode.active = 0;
  1211. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1212. set_cr8(&vmx->vcpu, 0);
  1213. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1214. if (vmx->vcpu.vcpu_id == 0)
  1215. msr |= MSR_IA32_APICBASE_BSP;
  1216. kvm_set_apic_base(&vmx->vcpu, msr);
  1217. fx_init(&vmx->vcpu);
  1218. /*
  1219. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1220. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1221. */
  1222. if (vmx->vcpu.vcpu_id == 0) {
  1223. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1224. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1225. } else {
  1226. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1227. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1228. }
  1229. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1230. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1231. seg_setup(VCPU_SREG_DS);
  1232. seg_setup(VCPU_SREG_ES);
  1233. seg_setup(VCPU_SREG_FS);
  1234. seg_setup(VCPU_SREG_GS);
  1235. seg_setup(VCPU_SREG_SS);
  1236. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1237. vmcs_writel(GUEST_TR_BASE, 0);
  1238. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1239. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1240. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1241. vmcs_writel(GUEST_LDTR_BASE, 0);
  1242. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1243. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1244. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1245. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1246. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1247. vmcs_writel(GUEST_RFLAGS, 0x02);
  1248. if (vmx->vcpu.vcpu_id == 0)
  1249. vmcs_writel(GUEST_RIP, 0xfff0);
  1250. else
  1251. vmcs_writel(GUEST_RIP, 0);
  1252. vmcs_writel(GUEST_RSP, 0);
  1253. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1254. vmcs_writel(GUEST_DR7, 0x400);
  1255. vmcs_writel(GUEST_GDTR_BASE, 0);
  1256. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1257. vmcs_writel(GUEST_IDTR_BASE, 0);
  1258. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1259. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1260. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1261. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1262. /* I/O */
  1263. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1264. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1265. guest_write_tsc(0);
  1266. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1267. /* Special registers */
  1268. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1269. /* Control */
  1270. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1271. vmcs_config.pin_based_exec_ctrl);
  1272. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1273. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1274. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1275. #ifdef CONFIG_X86_64
  1276. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1277. CPU_BASED_CR8_LOAD_EXITING;
  1278. #endif
  1279. }
  1280. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1281. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1282. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1283. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1284. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1285. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1286. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1287. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1288. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1289. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1290. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1291. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1292. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1293. #ifdef CONFIG_X86_64
  1294. rdmsrl(MSR_FS_BASE, a);
  1295. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1296. rdmsrl(MSR_GS_BASE, a);
  1297. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1298. #else
  1299. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1300. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1301. #endif
  1302. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1303. get_idt(&dt);
  1304. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1305. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1306. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1307. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1308. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1309. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1310. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1311. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1312. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1313. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1314. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1315. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1316. for (i = 0; i < NR_VMX_MSR; ++i) {
  1317. u32 index = vmx_msr_index[i];
  1318. u32 data_low, data_high;
  1319. u64 data;
  1320. int j = vmx->nmsrs;
  1321. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1322. continue;
  1323. if (wrmsr_safe(index, data_low, data_high) < 0)
  1324. continue;
  1325. data = data_low | ((u64)data_high << 32);
  1326. vmx->host_msrs[j].index = index;
  1327. vmx->host_msrs[j].reserved = 0;
  1328. vmx->host_msrs[j].data = data;
  1329. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1330. ++vmx->nmsrs;
  1331. }
  1332. setup_msrs(vmx);
  1333. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1334. /* 22.2.1, 20.8.1 */
  1335. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1336. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1337. #ifdef CONFIG_X86_64
  1338. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1339. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1340. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1341. page_to_phys(vmx->vcpu.apic->regs_page));
  1342. vmcs_write32(TPR_THRESHOLD, 0);
  1343. #endif
  1344. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1345. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1346. vmx->vcpu.cr0 = 0x60000010;
  1347. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1348. vmx_set_cr4(&vmx->vcpu, 0);
  1349. #ifdef CONFIG_X86_64
  1350. vmx_set_efer(&vmx->vcpu, 0);
  1351. #endif
  1352. vmx_fpu_activate(&vmx->vcpu);
  1353. update_exception_bitmap(&vmx->vcpu);
  1354. return 0;
  1355. out:
  1356. return ret;
  1357. }
  1358. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1359. {
  1360. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1361. vmx_vcpu_setup(vmx);
  1362. }
  1363. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1364. {
  1365. u16 ent[2];
  1366. u16 cs;
  1367. u16 ip;
  1368. unsigned long flags;
  1369. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1370. u16 sp = vmcs_readl(GUEST_RSP);
  1371. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1372. if (sp > ss_limit || sp < 6 ) {
  1373. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1374. __FUNCTION__,
  1375. vmcs_readl(GUEST_RSP),
  1376. vmcs_readl(GUEST_SS_BASE),
  1377. vmcs_read32(GUEST_SS_LIMIT));
  1378. return;
  1379. }
  1380. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1381. X86EMUL_CONTINUE) {
  1382. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1383. return;
  1384. }
  1385. flags = vmcs_readl(GUEST_RFLAGS);
  1386. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1387. ip = vmcs_readl(GUEST_RIP);
  1388. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1389. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1390. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1391. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1392. return;
  1393. }
  1394. vmcs_writel(GUEST_RFLAGS, flags &
  1395. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1396. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1397. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1398. vmcs_writel(GUEST_RIP, ent[0]);
  1399. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1400. }
  1401. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1402. {
  1403. if (vcpu->rmode.active) {
  1404. inject_rmode_irq(vcpu, irq);
  1405. return;
  1406. }
  1407. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1408. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1409. }
  1410. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1411. {
  1412. int word_index = __ffs(vcpu->irq_summary);
  1413. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1414. int irq = word_index * BITS_PER_LONG + bit_index;
  1415. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1416. if (!vcpu->irq_pending[word_index])
  1417. clear_bit(word_index, &vcpu->irq_summary);
  1418. vmx_inject_irq(vcpu, irq);
  1419. }
  1420. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1421. struct kvm_run *kvm_run)
  1422. {
  1423. u32 cpu_based_vm_exec_control;
  1424. vcpu->interrupt_window_open =
  1425. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1426. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1427. if (vcpu->interrupt_window_open &&
  1428. vcpu->irq_summary &&
  1429. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1430. /*
  1431. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1432. */
  1433. kvm_do_inject_irq(vcpu);
  1434. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1435. if (!vcpu->interrupt_window_open &&
  1436. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1437. /*
  1438. * Interrupts blocked. Wait for unblock.
  1439. */
  1440. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1441. else
  1442. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1443. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1444. }
  1445. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1446. {
  1447. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1448. set_debugreg(dbg->bp[0], 0);
  1449. set_debugreg(dbg->bp[1], 1);
  1450. set_debugreg(dbg->bp[2], 2);
  1451. set_debugreg(dbg->bp[3], 3);
  1452. if (dbg->singlestep) {
  1453. unsigned long flags;
  1454. flags = vmcs_readl(GUEST_RFLAGS);
  1455. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1456. vmcs_writel(GUEST_RFLAGS, flags);
  1457. }
  1458. }
  1459. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1460. int vec, u32 err_code)
  1461. {
  1462. if (!vcpu->rmode.active)
  1463. return 0;
  1464. /*
  1465. * Instruction with address size override prefix opcode 0x67
  1466. * Cause the #SS fault with 0 error code in VM86 mode.
  1467. */
  1468. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1469. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1470. return 1;
  1471. return 0;
  1472. }
  1473. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1474. {
  1475. u32 intr_info, error_code;
  1476. unsigned long cr2, rip;
  1477. u32 vect_info;
  1478. enum emulation_result er;
  1479. int r;
  1480. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1481. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1482. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1483. !is_page_fault(intr_info)) {
  1484. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1485. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1486. }
  1487. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1488. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1489. set_bit(irq, vcpu->irq_pending);
  1490. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1491. }
  1492. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1493. return 1; /* already handled by vmx_vcpu_run() */
  1494. if (is_no_device(intr_info)) {
  1495. vmx_fpu_activate(vcpu);
  1496. return 1;
  1497. }
  1498. if (is_invalid_opcode(intr_info)) {
  1499. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1500. if (er != EMULATE_DONE)
  1501. vmx_inject_ud(vcpu);
  1502. return 1;
  1503. }
  1504. error_code = 0;
  1505. rip = vmcs_readl(GUEST_RIP);
  1506. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1507. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1508. if (is_page_fault(intr_info)) {
  1509. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1510. mutex_lock(&vcpu->kvm->lock);
  1511. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1512. if (r < 0) {
  1513. mutex_unlock(&vcpu->kvm->lock);
  1514. return r;
  1515. }
  1516. if (!r) {
  1517. mutex_unlock(&vcpu->kvm->lock);
  1518. return 1;
  1519. }
  1520. er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0);
  1521. mutex_unlock(&vcpu->kvm->lock);
  1522. switch (er) {
  1523. case EMULATE_DONE:
  1524. return 1;
  1525. case EMULATE_DO_MMIO:
  1526. ++vcpu->stat.mmio_exits;
  1527. return 0;
  1528. case EMULATE_FAIL:
  1529. kvm_report_emulation_failure(vcpu, "pagetable");
  1530. break;
  1531. default:
  1532. BUG();
  1533. }
  1534. }
  1535. if (vcpu->rmode.active &&
  1536. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1537. error_code)) {
  1538. if (vcpu->halt_request) {
  1539. vcpu->halt_request = 0;
  1540. return kvm_emulate_halt(vcpu);
  1541. }
  1542. return 1;
  1543. }
  1544. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1545. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1546. return 0;
  1547. }
  1548. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1549. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1550. kvm_run->ex.error_code = error_code;
  1551. return 0;
  1552. }
  1553. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1554. struct kvm_run *kvm_run)
  1555. {
  1556. ++vcpu->stat.irq_exits;
  1557. return 1;
  1558. }
  1559. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1560. {
  1561. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1562. return 0;
  1563. }
  1564. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1565. {
  1566. unsigned long exit_qualification;
  1567. int size, down, in, string, rep;
  1568. unsigned port;
  1569. ++vcpu->stat.io_exits;
  1570. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1571. string = (exit_qualification & 16) != 0;
  1572. if (string) {
  1573. if (emulate_instruction(vcpu,
  1574. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1575. return 0;
  1576. return 1;
  1577. }
  1578. size = (exit_qualification & 7) + 1;
  1579. in = (exit_qualification & 8) != 0;
  1580. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1581. rep = (exit_qualification & 32) != 0;
  1582. port = exit_qualification >> 16;
  1583. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1584. }
  1585. static void
  1586. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1587. {
  1588. /*
  1589. * Patch in the VMCALL instruction:
  1590. */
  1591. hypercall[0] = 0x0f;
  1592. hypercall[1] = 0x01;
  1593. hypercall[2] = 0xc1;
  1594. }
  1595. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1596. {
  1597. unsigned long exit_qualification;
  1598. int cr;
  1599. int reg;
  1600. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1601. cr = exit_qualification & 15;
  1602. reg = (exit_qualification >> 8) & 15;
  1603. switch ((exit_qualification >> 4) & 3) {
  1604. case 0: /* mov to cr */
  1605. switch (cr) {
  1606. case 0:
  1607. vcpu_load_rsp_rip(vcpu);
  1608. set_cr0(vcpu, vcpu->regs[reg]);
  1609. skip_emulated_instruction(vcpu);
  1610. return 1;
  1611. case 3:
  1612. vcpu_load_rsp_rip(vcpu);
  1613. set_cr3(vcpu, vcpu->regs[reg]);
  1614. skip_emulated_instruction(vcpu);
  1615. return 1;
  1616. case 4:
  1617. vcpu_load_rsp_rip(vcpu);
  1618. set_cr4(vcpu, vcpu->regs[reg]);
  1619. skip_emulated_instruction(vcpu);
  1620. return 1;
  1621. case 8:
  1622. vcpu_load_rsp_rip(vcpu);
  1623. set_cr8(vcpu, vcpu->regs[reg]);
  1624. skip_emulated_instruction(vcpu);
  1625. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1626. return 0;
  1627. };
  1628. break;
  1629. case 2: /* clts */
  1630. vcpu_load_rsp_rip(vcpu);
  1631. vmx_fpu_deactivate(vcpu);
  1632. vcpu->cr0 &= ~X86_CR0_TS;
  1633. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1634. vmx_fpu_activate(vcpu);
  1635. skip_emulated_instruction(vcpu);
  1636. return 1;
  1637. case 1: /*mov from cr*/
  1638. switch (cr) {
  1639. case 3:
  1640. vcpu_load_rsp_rip(vcpu);
  1641. vcpu->regs[reg] = vcpu->cr3;
  1642. vcpu_put_rsp_rip(vcpu);
  1643. skip_emulated_instruction(vcpu);
  1644. return 1;
  1645. case 8:
  1646. vcpu_load_rsp_rip(vcpu);
  1647. vcpu->regs[reg] = get_cr8(vcpu);
  1648. vcpu_put_rsp_rip(vcpu);
  1649. skip_emulated_instruction(vcpu);
  1650. return 1;
  1651. }
  1652. break;
  1653. case 3: /* lmsw */
  1654. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1655. skip_emulated_instruction(vcpu);
  1656. return 1;
  1657. default:
  1658. break;
  1659. }
  1660. kvm_run->exit_reason = 0;
  1661. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1662. (int)(exit_qualification >> 4) & 3, cr);
  1663. return 0;
  1664. }
  1665. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1666. {
  1667. unsigned long exit_qualification;
  1668. unsigned long val;
  1669. int dr, reg;
  1670. /*
  1671. * FIXME: this code assumes the host is debugging the guest.
  1672. * need to deal with guest debugging itself too.
  1673. */
  1674. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1675. dr = exit_qualification & 7;
  1676. reg = (exit_qualification >> 8) & 15;
  1677. vcpu_load_rsp_rip(vcpu);
  1678. if (exit_qualification & 16) {
  1679. /* mov from dr */
  1680. switch (dr) {
  1681. case 6:
  1682. val = 0xffff0ff0;
  1683. break;
  1684. case 7:
  1685. val = 0x400;
  1686. break;
  1687. default:
  1688. val = 0;
  1689. }
  1690. vcpu->regs[reg] = val;
  1691. } else {
  1692. /* mov to dr */
  1693. }
  1694. vcpu_put_rsp_rip(vcpu);
  1695. skip_emulated_instruction(vcpu);
  1696. return 1;
  1697. }
  1698. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1699. {
  1700. kvm_emulate_cpuid(vcpu);
  1701. return 1;
  1702. }
  1703. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1704. {
  1705. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1706. u64 data;
  1707. if (vmx_get_msr(vcpu, ecx, &data)) {
  1708. vmx_inject_gp(vcpu, 0);
  1709. return 1;
  1710. }
  1711. /* FIXME: handling of bits 32:63 of rax, rdx */
  1712. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1713. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1714. skip_emulated_instruction(vcpu);
  1715. return 1;
  1716. }
  1717. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1718. {
  1719. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1720. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1721. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1722. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1723. vmx_inject_gp(vcpu, 0);
  1724. return 1;
  1725. }
  1726. skip_emulated_instruction(vcpu);
  1727. return 1;
  1728. }
  1729. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1730. struct kvm_run *kvm_run)
  1731. {
  1732. return 1;
  1733. }
  1734. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1735. struct kvm_run *kvm_run)
  1736. {
  1737. u32 cpu_based_vm_exec_control;
  1738. /* clear pending irq */
  1739. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1740. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1741. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1742. /*
  1743. * If the user space waits to inject interrupts, exit as soon as
  1744. * possible
  1745. */
  1746. if (kvm_run->request_interrupt_window &&
  1747. !vcpu->irq_summary) {
  1748. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1749. ++vcpu->stat.irq_window_exits;
  1750. return 0;
  1751. }
  1752. return 1;
  1753. }
  1754. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1755. {
  1756. skip_emulated_instruction(vcpu);
  1757. return kvm_emulate_halt(vcpu);
  1758. }
  1759. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1760. {
  1761. skip_emulated_instruction(vcpu);
  1762. kvm_emulate_hypercall(vcpu);
  1763. return 1;
  1764. }
  1765. /*
  1766. * The exit handlers return 1 if the exit was handled fully and guest execution
  1767. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1768. * to be done to userspace and return 0.
  1769. */
  1770. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1771. struct kvm_run *kvm_run) = {
  1772. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1773. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1774. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1775. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1776. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1777. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1778. [EXIT_REASON_CPUID] = handle_cpuid,
  1779. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1780. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1781. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1782. [EXIT_REASON_HLT] = handle_halt,
  1783. [EXIT_REASON_VMCALL] = handle_vmcall,
  1784. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
  1785. };
  1786. static const int kvm_vmx_max_exit_handlers =
  1787. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1788. /*
  1789. * The guest has exited. See if we can fix it or if we need userspace
  1790. * assistance.
  1791. */
  1792. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1793. {
  1794. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1795. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1796. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1797. if (unlikely(vmx->fail)) {
  1798. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1799. kvm_run->fail_entry.hardware_entry_failure_reason
  1800. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1801. return 0;
  1802. }
  1803. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1804. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1805. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1806. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1807. if (exit_reason < kvm_vmx_max_exit_handlers
  1808. && kvm_vmx_exit_handlers[exit_reason])
  1809. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1810. else {
  1811. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1812. kvm_run->hw.hardware_exit_reason = exit_reason;
  1813. }
  1814. return 0;
  1815. }
  1816. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1817. {
  1818. }
  1819. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1820. {
  1821. int max_irr, tpr;
  1822. if (!vm_need_tpr_shadow(vcpu->kvm))
  1823. return;
  1824. if (!kvm_lapic_enabled(vcpu) ||
  1825. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1826. vmcs_write32(TPR_THRESHOLD, 0);
  1827. return;
  1828. }
  1829. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1830. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1831. }
  1832. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1833. {
  1834. u32 cpu_based_vm_exec_control;
  1835. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1836. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1837. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1838. }
  1839. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1840. {
  1841. u32 idtv_info_field, intr_info_field;
  1842. int has_ext_irq, interrupt_window_open;
  1843. int vector;
  1844. kvm_inject_pending_timer_irqs(vcpu);
  1845. update_tpr_threshold(vcpu);
  1846. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1847. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1848. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1849. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1850. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1851. /* TODO: fault when IDT_Vectoring */
  1852. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1853. }
  1854. if (has_ext_irq)
  1855. enable_irq_window(vcpu);
  1856. return;
  1857. }
  1858. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1859. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1860. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1861. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1862. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1863. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1864. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1865. if (unlikely(has_ext_irq))
  1866. enable_irq_window(vcpu);
  1867. return;
  1868. }
  1869. if (!has_ext_irq)
  1870. return;
  1871. interrupt_window_open =
  1872. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1873. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1874. if (interrupt_window_open) {
  1875. vector = kvm_cpu_get_interrupt(vcpu);
  1876. vmx_inject_irq(vcpu, vector);
  1877. kvm_timer_intr_post(vcpu, vector);
  1878. } else
  1879. enable_irq_window(vcpu);
  1880. }
  1881. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1882. {
  1883. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1884. u32 intr_info;
  1885. /*
  1886. * Loading guest fpu may have cleared host cr0.ts
  1887. */
  1888. vmcs_writel(HOST_CR0, read_cr0());
  1889. asm (
  1890. /* Store host registers */
  1891. #ifdef CONFIG_X86_64
  1892. "push %%rax; push %%rbx; push %%rdx;"
  1893. "push %%rsi; push %%rdi; push %%rbp;"
  1894. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1895. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1896. "push %%rcx \n\t"
  1897. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1898. #else
  1899. "pusha; push %%ecx \n\t"
  1900. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1901. #endif
  1902. /* Check if vmlaunch of vmresume is needed */
  1903. "cmp $0, %1 \n\t"
  1904. /* Load guest registers. Don't clobber flags. */
  1905. #ifdef CONFIG_X86_64
  1906. "mov %c[cr2](%3), %%rax \n\t"
  1907. "mov %%rax, %%cr2 \n\t"
  1908. "mov %c[rax](%3), %%rax \n\t"
  1909. "mov %c[rbx](%3), %%rbx \n\t"
  1910. "mov %c[rdx](%3), %%rdx \n\t"
  1911. "mov %c[rsi](%3), %%rsi \n\t"
  1912. "mov %c[rdi](%3), %%rdi \n\t"
  1913. "mov %c[rbp](%3), %%rbp \n\t"
  1914. "mov %c[r8](%3), %%r8 \n\t"
  1915. "mov %c[r9](%3), %%r9 \n\t"
  1916. "mov %c[r10](%3), %%r10 \n\t"
  1917. "mov %c[r11](%3), %%r11 \n\t"
  1918. "mov %c[r12](%3), %%r12 \n\t"
  1919. "mov %c[r13](%3), %%r13 \n\t"
  1920. "mov %c[r14](%3), %%r14 \n\t"
  1921. "mov %c[r15](%3), %%r15 \n\t"
  1922. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1923. #else
  1924. "mov %c[cr2](%3), %%eax \n\t"
  1925. "mov %%eax, %%cr2 \n\t"
  1926. "mov %c[rax](%3), %%eax \n\t"
  1927. "mov %c[rbx](%3), %%ebx \n\t"
  1928. "mov %c[rdx](%3), %%edx \n\t"
  1929. "mov %c[rsi](%3), %%esi \n\t"
  1930. "mov %c[rdi](%3), %%edi \n\t"
  1931. "mov %c[rbp](%3), %%ebp \n\t"
  1932. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1933. #endif
  1934. /* Enter guest mode */
  1935. "jne .Llaunched \n\t"
  1936. ASM_VMX_VMLAUNCH "\n\t"
  1937. "jmp .Lkvm_vmx_return \n\t"
  1938. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1939. ".Lkvm_vmx_return: "
  1940. /* Save guest registers, load host registers, keep flags */
  1941. #ifdef CONFIG_X86_64
  1942. "xchg %3, (%%rsp) \n\t"
  1943. "mov %%rax, %c[rax](%3) \n\t"
  1944. "mov %%rbx, %c[rbx](%3) \n\t"
  1945. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1946. "mov %%rdx, %c[rdx](%3) \n\t"
  1947. "mov %%rsi, %c[rsi](%3) \n\t"
  1948. "mov %%rdi, %c[rdi](%3) \n\t"
  1949. "mov %%rbp, %c[rbp](%3) \n\t"
  1950. "mov %%r8, %c[r8](%3) \n\t"
  1951. "mov %%r9, %c[r9](%3) \n\t"
  1952. "mov %%r10, %c[r10](%3) \n\t"
  1953. "mov %%r11, %c[r11](%3) \n\t"
  1954. "mov %%r12, %c[r12](%3) \n\t"
  1955. "mov %%r13, %c[r13](%3) \n\t"
  1956. "mov %%r14, %c[r14](%3) \n\t"
  1957. "mov %%r15, %c[r15](%3) \n\t"
  1958. "mov %%cr2, %%rax \n\t"
  1959. "mov %%rax, %c[cr2](%3) \n\t"
  1960. "mov (%%rsp), %3 \n\t"
  1961. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1962. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1963. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1964. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1965. #else
  1966. "xchg %3, (%%esp) \n\t"
  1967. "mov %%eax, %c[rax](%3) \n\t"
  1968. "mov %%ebx, %c[rbx](%3) \n\t"
  1969. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1970. "mov %%edx, %c[rdx](%3) \n\t"
  1971. "mov %%esi, %c[rsi](%3) \n\t"
  1972. "mov %%edi, %c[rdi](%3) \n\t"
  1973. "mov %%ebp, %c[rbp](%3) \n\t"
  1974. "mov %%cr2, %%eax \n\t"
  1975. "mov %%eax, %c[cr2](%3) \n\t"
  1976. "mov (%%esp), %3 \n\t"
  1977. "pop %%ecx; popa \n\t"
  1978. #endif
  1979. "setbe %0 \n\t"
  1980. : "=q" (vmx->fail)
  1981. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1982. "c"(vcpu),
  1983. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1984. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1985. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1986. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1987. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1988. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1989. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1990. #ifdef CONFIG_X86_64
  1991. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1992. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1993. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1994. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1995. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1996. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1997. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1998. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1999. #endif
  2000. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  2001. : "cc", "memory" );
  2002. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2003. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2004. vmx->launched = 1;
  2005. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2006. /* We need to handle NMIs before interrupts are enabled */
  2007. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2008. asm("int $2");
  2009. }
  2010. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2011. unsigned long addr,
  2012. u32 err_code)
  2013. {
  2014. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2015. ++vcpu->stat.pf_guest;
  2016. if (is_page_fault(vect_info)) {
  2017. printk(KERN_DEBUG "inject_page_fault: "
  2018. "double fault 0x%lx @ 0x%lx\n",
  2019. addr, vmcs_readl(GUEST_RIP));
  2020. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2021. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2022. DF_VECTOR |
  2023. INTR_TYPE_EXCEPTION |
  2024. INTR_INFO_DELIEVER_CODE_MASK |
  2025. INTR_INFO_VALID_MASK);
  2026. return;
  2027. }
  2028. vcpu->cr2 = addr;
  2029. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2030. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2031. PF_VECTOR |
  2032. INTR_TYPE_EXCEPTION |
  2033. INTR_INFO_DELIEVER_CODE_MASK |
  2034. INTR_INFO_VALID_MASK);
  2035. }
  2036. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2037. {
  2038. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2039. if (vmx->vmcs) {
  2040. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2041. free_vmcs(vmx->vmcs);
  2042. vmx->vmcs = NULL;
  2043. }
  2044. }
  2045. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2046. {
  2047. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2048. vmx_free_vmcs(vcpu);
  2049. kfree(vmx->host_msrs);
  2050. kfree(vmx->guest_msrs);
  2051. kvm_vcpu_uninit(vcpu);
  2052. kmem_cache_free(kvm_vcpu_cache, vmx);
  2053. }
  2054. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2055. {
  2056. int err;
  2057. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2058. int cpu;
  2059. if (!vmx)
  2060. return ERR_PTR(-ENOMEM);
  2061. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2062. if (err)
  2063. goto free_vcpu;
  2064. if (irqchip_in_kernel(kvm)) {
  2065. err = kvm_create_lapic(&vmx->vcpu);
  2066. if (err < 0)
  2067. goto free_vcpu;
  2068. }
  2069. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2070. if (!vmx->guest_msrs) {
  2071. err = -ENOMEM;
  2072. goto uninit_vcpu;
  2073. }
  2074. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2075. if (!vmx->host_msrs)
  2076. goto free_guest_msrs;
  2077. vmx->vmcs = alloc_vmcs();
  2078. if (!vmx->vmcs)
  2079. goto free_msrs;
  2080. vmcs_clear(vmx->vmcs);
  2081. cpu = get_cpu();
  2082. vmx_vcpu_load(&vmx->vcpu, cpu);
  2083. err = vmx_vcpu_setup(vmx);
  2084. vmx_vcpu_put(&vmx->vcpu);
  2085. put_cpu();
  2086. if (err)
  2087. goto free_vmcs;
  2088. return &vmx->vcpu;
  2089. free_vmcs:
  2090. free_vmcs(vmx->vmcs);
  2091. free_msrs:
  2092. kfree(vmx->host_msrs);
  2093. free_guest_msrs:
  2094. kfree(vmx->guest_msrs);
  2095. uninit_vcpu:
  2096. kvm_vcpu_uninit(&vmx->vcpu);
  2097. free_vcpu:
  2098. kmem_cache_free(kvm_vcpu_cache, vmx);
  2099. return ERR_PTR(err);
  2100. }
  2101. static void __init vmx_check_processor_compat(void *rtn)
  2102. {
  2103. struct vmcs_config vmcs_conf;
  2104. *(int *)rtn = 0;
  2105. if (setup_vmcs_config(&vmcs_conf) < 0)
  2106. *(int *)rtn = -EIO;
  2107. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2108. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2109. smp_processor_id());
  2110. *(int *)rtn = -EIO;
  2111. }
  2112. }
  2113. static struct kvm_x86_ops vmx_x86_ops = {
  2114. .cpu_has_kvm_support = cpu_has_kvm_support,
  2115. .disabled_by_bios = vmx_disabled_by_bios,
  2116. .hardware_setup = hardware_setup,
  2117. .hardware_unsetup = hardware_unsetup,
  2118. .check_processor_compatibility = vmx_check_processor_compat,
  2119. .hardware_enable = hardware_enable,
  2120. .hardware_disable = hardware_disable,
  2121. .vcpu_create = vmx_create_vcpu,
  2122. .vcpu_free = vmx_free_vcpu,
  2123. .vcpu_reset = vmx_vcpu_reset,
  2124. .prepare_guest_switch = vmx_save_host_state,
  2125. .vcpu_load = vmx_vcpu_load,
  2126. .vcpu_put = vmx_vcpu_put,
  2127. .vcpu_decache = vmx_vcpu_decache,
  2128. .set_guest_debug = set_guest_debug,
  2129. .guest_debug_pre = kvm_guest_debug_pre,
  2130. .get_msr = vmx_get_msr,
  2131. .set_msr = vmx_set_msr,
  2132. .get_segment_base = vmx_get_segment_base,
  2133. .get_segment = vmx_get_segment,
  2134. .set_segment = vmx_set_segment,
  2135. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2136. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2137. .set_cr0 = vmx_set_cr0,
  2138. .set_cr3 = vmx_set_cr3,
  2139. .set_cr4 = vmx_set_cr4,
  2140. #ifdef CONFIG_X86_64
  2141. .set_efer = vmx_set_efer,
  2142. #endif
  2143. .get_idt = vmx_get_idt,
  2144. .set_idt = vmx_set_idt,
  2145. .get_gdt = vmx_get_gdt,
  2146. .set_gdt = vmx_set_gdt,
  2147. .cache_regs = vcpu_load_rsp_rip,
  2148. .decache_regs = vcpu_put_rsp_rip,
  2149. .get_rflags = vmx_get_rflags,
  2150. .set_rflags = vmx_set_rflags,
  2151. .tlb_flush = vmx_flush_tlb,
  2152. .inject_page_fault = vmx_inject_page_fault,
  2153. .inject_gp = vmx_inject_gp,
  2154. .run = vmx_vcpu_run,
  2155. .handle_exit = kvm_handle_exit,
  2156. .skip_emulated_instruction = skip_emulated_instruction,
  2157. .patch_hypercall = vmx_patch_hypercall,
  2158. .get_irq = vmx_get_irq,
  2159. .set_irq = vmx_inject_irq,
  2160. .inject_pending_irq = vmx_intr_assist,
  2161. .inject_pending_vectors = do_interrupt_requests,
  2162. };
  2163. static int __init vmx_init(void)
  2164. {
  2165. void *iova;
  2166. int r;
  2167. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2168. if (!vmx_io_bitmap_a)
  2169. return -ENOMEM;
  2170. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2171. if (!vmx_io_bitmap_b) {
  2172. r = -ENOMEM;
  2173. goto out;
  2174. }
  2175. /*
  2176. * Allow direct access to the PC debug port (it is often used for I/O
  2177. * delays, but the vmexits simply slow things down).
  2178. */
  2179. iova = kmap(vmx_io_bitmap_a);
  2180. memset(iova, 0xff, PAGE_SIZE);
  2181. clear_bit(0x80, iova);
  2182. kunmap(vmx_io_bitmap_a);
  2183. iova = kmap(vmx_io_bitmap_b);
  2184. memset(iova, 0xff, PAGE_SIZE);
  2185. kunmap(vmx_io_bitmap_b);
  2186. r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2187. if (r)
  2188. goto out1;
  2189. return 0;
  2190. out1:
  2191. __free_page(vmx_io_bitmap_b);
  2192. out:
  2193. __free_page(vmx_io_bitmap_a);
  2194. return r;
  2195. }
  2196. static void __exit vmx_exit(void)
  2197. {
  2198. __free_page(vmx_io_bitmap_b);
  2199. __free_page(vmx_io_bitmap_a);
  2200. kvm_exit_x86();
  2201. }
  2202. module_init(vmx_init)
  2203. module_exit(vmx_exit)