hw.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. bool ath9k_get_channel_edges(struct ath_hw *ah,
  128. u16 flags, u16 *low,
  129. u16 *high)
  130. {
  131. struct ath9k_hw_capabilities *pCap = &ah->caps;
  132. if (flags & CHANNEL_5GHZ) {
  133. *low = pCap->low_5ghz_chan;
  134. *high = pCap->high_5ghz_chan;
  135. return true;
  136. }
  137. if ((flags & CHANNEL_2GHZ)) {
  138. *low = pCap->low_2ghz_chan;
  139. *high = pCap->high_2ghz_chan;
  140. return true;
  141. }
  142. return false;
  143. }
  144. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  145. u8 phy, int kbps,
  146. u32 frameLen, u16 rateix,
  147. bool shortPreamble)
  148. {
  149. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  150. if (kbps == 0)
  151. return 0;
  152. switch (phy) {
  153. case WLAN_RC_PHY_CCK:
  154. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  155. if (shortPreamble)
  156. phyTime >>= 1;
  157. numBits = frameLen << 3;
  158. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  159. break;
  160. case WLAN_RC_PHY_OFDM:
  161. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  162. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  163. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  164. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  165. txTime = OFDM_SIFS_TIME_QUARTER
  166. + OFDM_PREAMBLE_TIME_QUARTER
  167. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  168. } else if (ah->curchan &&
  169. IS_CHAN_HALF_RATE(ah->curchan)) {
  170. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  171. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  172. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  173. txTime = OFDM_SIFS_TIME_HALF +
  174. OFDM_PREAMBLE_TIME_HALF
  175. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  176. } else {
  177. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  178. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  179. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  180. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  181. + (numSymbols * OFDM_SYMBOL_TIME);
  182. }
  183. break;
  184. default:
  185. ath_err(ath9k_hw_common(ah),
  186. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  187. txTime = 0;
  188. break;
  189. }
  190. return txTime;
  191. }
  192. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  193. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  194. struct ath9k_channel *chan,
  195. struct chan_centers *centers)
  196. {
  197. int8_t extoff;
  198. if (!IS_CHAN_HT40(chan)) {
  199. centers->ctl_center = centers->ext_center =
  200. centers->synth_center = chan->channel;
  201. return;
  202. }
  203. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  204. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  205. centers->synth_center =
  206. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  207. extoff = 1;
  208. } else {
  209. centers->synth_center =
  210. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  211. extoff = -1;
  212. }
  213. centers->ctl_center =
  214. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  215. /* 25 MHz spacing is supported by hw but not on upper layers */
  216. centers->ext_center =
  217. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  218. }
  219. /******************/
  220. /* Chip Revisions */
  221. /******************/
  222. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  223. {
  224. u32 val;
  225. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  226. if (val == 0xFF) {
  227. val = REG_READ(ah, AR_SREV);
  228. ah->hw_version.macVersion =
  229. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  230. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  231. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  232. } else {
  233. if (!AR_SREV_9100(ah))
  234. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  235. ah->hw_version.macRev = val & AR_SREV_REVISION;
  236. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  237. ah->is_pciexpress = true;
  238. }
  239. }
  240. /************************************/
  241. /* HW Attach, Detach, Init Routines */
  242. /************************************/
  243. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  244. {
  245. if (!AR_SREV_5416(ah))
  246. return;
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  248. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  249. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  250. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  251. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  252. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  253. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  254. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  255. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  256. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  257. }
  258. /* This should work for all families including legacy */
  259. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  260. {
  261. struct ath_common *common = ath9k_hw_common(ah);
  262. u32 regAddr[2] = { AR_STA_ID0 };
  263. u32 regHold[2];
  264. static const u32 patternData[4] = {
  265. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  266. };
  267. int i, j, loop_max;
  268. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  269. loop_max = 2;
  270. regAddr[1] = AR_PHY_BASE + (8 << 2);
  271. } else
  272. loop_max = 1;
  273. for (i = 0; i < loop_max; i++) {
  274. u32 addr = regAddr[i];
  275. u32 wrData, rdData;
  276. regHold[i] = REG_READ(ah, addr);
  277. for (j = 0; j < 0x100; j++) {
  278. wrData = (j << 16) | j;
  279. REG_WRITE(ah, addr, wrData);
  280. rdData = REG_READ(ah, addr);
  281. if (rdData != wrData) {
  282. ath_err(common,
  283. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  284. addr, wrData, rdData);
  285. return false;
  286. }
  287. }
  288. for (j = 0; j < 4; j++) {
  289. wrData = patternData[j];
  290. REG_WRITE(ah, addr, wrData);
  291. rdData = REG_READ(ah, addr);
  292. if (wrData != rdData) {
  293. ath_err(common,
  294. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  295. addr, wrData, rdData);
  296. return false;
  297. }
  298. }
  299. REG_WRITE(ah, regAddr[i], regHold[i]);
  300. }
  301. udelay(100);
  302. return true;
  303. }
  304. static void ath9k_hw_init_config(struct ath_hw *ah)
  305. {
  306. int i;
  307. ah->config.dma_beacon_response_time = 2;
  308. ah->config.sw_beacon_response_time = 10;
  309. ah->config.additional_swba_backoff = 0;
  310. ah->config.ack_6mb = 0x0;
  311. ah->config.cwm_ignore_extcca = 0;
  312. ah->config.pcie_powersave_enable = 0;
  313. ah->config.pcie_clock_req = 0;
  314. ah->config.pcie_waen = 0;
  315. ah->config.analog_shiftreg = 1;
  316. ah->config.enable_ani = true;
  317. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  318. ah->config.spurchans[i][0] = AR_NO_SPUR;
  319. ah->config.spurchans[i][1] = AR_NO_SPUR;
  320. }
  321. /* PAPRD needs some more work to be enabled */
  322. ah->config.paprd_disable = 1;
  323. ah->config.rx_intr_mitigation = true;
  324. ah->config.pcieSerDesWrite = true;
  325. /*
  326. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  327. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  328. * This means we use it for all AR5416 devices, and the few
  329. * minor PCI AR9280 devices out there.
  330. *
  331. * Serialization is required because these devices do not handle
  332. * well the case of two concurrent reads/writes due to the latency
  333. * involved. During one read/write another read/write can be issued
  334. * on another CPU while the previous read/write may still be working
  335. * on our hardware, if we hit this case the hardware poops in a loop.
  336. * We prevent this by serializing reads and writes.
  337. *
  338. * This issue is not present on PCI-Express devices or pre-AR5416
  339. * devices (legacy, 802.11abg).
  340. */
  341. if (num_possible_cpus() > 1)
  342. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  343. }
  344. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  345. {
  346. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  347. regulatory->country_code = CTRY_DEFAULT;
  348. regulatory->power_limit = MAX_RATE_POWER;
  349. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  350. ah->hw_version.magic = AR5416_MAGIC;
  351. ah->hw_version.subvendorid = 0;
  352. ah->atim_window = 0;
  353. ah->sta_id1_defaults =
  354. AR_STA_ID1_CRPT_MIC_ENABLE |
  355. AR_STA_ID1_MCAST_KSRCH;
  356. if (AR_SREV_9100(ah))
  357. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  358. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  359. ah->slottime = 20;
  360. ah->globaltxtimeout = (u32) -1;
  361. ah->power_mode = ATH9K_PM_UNDEFINED;
  362. }
  363. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  364. {
  365. struct ath_common *common = ath9k_hw_common(ah);
  366. u32 sum;
  367. int i;
  368. u16 eeval;
  369. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  370. sum = 0;
  371. for (i = 0; i < 3; i++) {
  372. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  373. sum += eeval;
  374. common->macaddr[2 * i] = eeval >> 8;
  375. common->macaddr[2 * i + 1] = eeval & 0xff;
  376. }
  377. if (sum == 0 || sum == 0xffff * 3)
  378. return -EADDRNOTAVAIL;
  379. return 0;
  380. }
  381. static int ath9k_hw_post_init(struct ath_hw *ah)
  382. {
  383. struct ath_common *common = ath9k_hw_common(ah);
  384. int ecode;
  385. if (common->bus_ops->ath_bus_type != ATH_USB) {
  386. if (!ath9k_hw_chip_test(ah))
  387. return -ENODEV;
  388. }
  389. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  390. ecode = ar9002_hw_rf_claim(ah);
  391. if (ecode != 0)
  392. return ecode;
  393. }
  394. ecode = ath9k_hw_eeprom_init(ah);
  395. if (ecode != 0)
  396. return ecode;
  397. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  398. "Eeprom VER: %d, REV: %d\n",
  399. ah->eep_ops->get_eeprom_ver(ah),
  400. ah->eep_ops->get_eeprom_rev(ah));
  401. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  402. if (ecode) {
  403. ath_err(ath9k_hw_common(ah),
  404. "Failed allocating banks for external radio\n");
  405. ath9k_hw_rf_free_ext_banks(ah);
  406. return ecode;
  407. }
  408. if (!AR_SREV_9100(ah)) {
  409. ath9k_hw_ani_setup(ah);
  410. ath9k_hw_ani_init(ah);
  411. }
  412. return 0;
  413. }
  414. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  415. {
  416. if (AR_SREV_9300_20_OR_LATER(ah))
  417. ar9003_hw_attach_ops(ah);
  418. else
  419. ar9002_hw_attach_ops(ah);
  420. }
  421. /* Called for all hardware families */
  422. static int __ath9k_hw_init(struct ath_hw *ah)
  423. {
  424. struct ath_common *common = ath9k_hw_common(ah);
  425. int r = 0;
  426. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  427. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  428. ath9k_hw_read_revisions(ah);
  429. /*
  430. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  431. * We need to do this to avoid RMW of this register. We cannot
  432. * read the reg when chip is asleep.
  433. */
  434. ah->WARegVal = REG_READ(ah, AR_WA);
  435. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  436. AR_WA_ASPM_TIMER_BASED_DISABLE);
  437. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  438. ath_err(common, "Couldn't reset chip\n");
  439. return -EIO;
  440. }
  441. ath9k_hw_init_defaults(ah);
  442. ath9k_hw_init_config(ah);
  443. ath9k_hw_attach_ops(ah);
  444. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  445. ath_err(common, "Couldn't wakeup chip\n");
  446. return -EIO;
  447. }
  448. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  449. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  450. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  451. !ah->is_pciexpress)) {
  452. ah->config.serialize_regmode =
  453. SER_REG_MODE_ON;
  454. } else {
  455. ah->config.serialize_regmode =
  456. SER_REG_MODE_OFF;
  457. }
  458. }
  459. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  460. ah->config.serialize_regmode);
  461. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  462. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  463. else
  464. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  465. switch (ah->hw_version.macVersion) {
  466. case AR_SREV_VERSION_5416_PCI:
  467. case AR_SREV_VERSION_5416_PCIE:
  468. case AR_SREV_VERSION_9160:
  469. case AR_SREV_VERSION_9100:
  470. case AR_SREV_VERSION_9280:
  471. case AR_SREV_VERSION_9285:
  472. case AR_SREV_VERSION_9287:
  473. case AR_SREV_VERSION_9271:
  474. case AR_SREV_VERSION_9300:
  475. case AR_SREV_VERSION_9485:
  476. break;
  477. default:
  478. ath_err(common,
  479. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  480. ah->hw_version.macVersion, ah->hw_version.macRev);
  481. return -EOPNOTSUPP;
  482. }
  483. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  484. ah->is_pciexpress = false;
  485. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  486. ath9k_hw_init_cal_settings(ah);
  487. ah->ani_function = ATH9K_ANI_ALL;
  488. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  489. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  490. if (!AR_SREV_9300_20_OR_LATER(ah))
  491. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  492. ath9k_hw_init_mode_regs(ah);
  493. if (ah->is_pciexpress)
  494. ath9k_hw_configpcipowersave(ah, 0, 0);
  495. else
  496. ath9k_hw_disablepcie(ah);
  497. if (!AR_SREV_9300_20_OR_LATER(ah))
  498. ar9002_hw_cck_chan14_spread(ah);
  499. r = ath9k_hw_post_init(ah);
  500. if (r)
  501. return r;
  502. ath9k_hw_init_mode_gain_regs(ah);
  503. r = ath9k_hw_fill_cap_info(ah);
  504. if (r)
  505. return r;
  506. r = ath9k_hw_init_macaddr(ah);
  507. if (r) {
  508. ath_err(common, "Failed to initialize MAC address\n");
  509. return r;
  510. }
  511. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  512. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  513. else
  514. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  515. ah->bb_watchdog_timeout_ms = 25;
  516. common->state = ATH_HW_INITIALIZED;
  517. return 0;
  518. }
  519. int ath9k_hw_init(struct ath_hw *ah)
  520. {
  521. int ret;
  522. struct ath_common *common = ath9k_hw_common(ah);
  523. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  524. switch (ah->hw_version.devid) {
  525. case AR5416_DEVID_PCI:
  526. case AR5416_DEVID_PCIE:
  527. case AR5416_AR9100_DEVID:
  528. case AR9160_DEVID_PCI:
  529. case AR9280_DEVID_PCI:
  530. case AR9280_DEVID_PCIE:
  531. case AR9285_DEVID_PCIE:
  532. case AR9287_DEVID_PCI:
  533. case AR9287_DEVID_PCIE:
  534. case AR2427_DEVID_PCIE:
  535. case AR9300_DEVID_PCIE:
  536. case AR9300_DEVID_AR9485_PCIE:
  537. break;
  538. default:
  539. if (common->bus_ops->ath_bus_type == ATH_USB)
  540. break;
  541. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  542. ah->hw_version.devid);
  543. return -EOPNOTSUPP;
  544. }
  545. ret = __ath9k_hw_init(ah);
  546. if (ret) {
  547. ath_err(common,
  548. "Unable to initialize hardware; initialization status: %d\n",
  549. ret);
  550. return ret;
  551. }
  552. return 0;
  553. }
  554. EXPORT_SYMBOL(ath9k_hw_init);
  555. static void ath9k_hw_init_qos(struct ath_hw *ah)
  556. {
  557. ENABLE_REGWRITE_BUFFER(ah);
  558. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  559. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  560. REG_WRITE(ah, AR_QOS_NO_ACK,
  561. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  562. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  563. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  564. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  565. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  566. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  567. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  568. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  569. REGWRITE_BUFFER_FLUSH(ah);
  570. }
  571. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  572. {
  573. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  574. udelay(100);
  575. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  576. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  577. udelay(100);
  578. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  579. }
  580. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  581. #define DPLL2_KD_VAL 0x3D
  582. #define DPLL2_KI_VAL 0x06
  583. #define DPLL3_PHASE_SHIFT_VAL 0x1
  584. static void ath9k_hw_init_pll(struct ath_hw *ah,
  585. struct ath9k_channel *chan)
  586. {
  587. u32 pll;
  588. if (AR_SREV_9485(ah)) {
  589. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  590. REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
  591. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  592. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  593. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  594. udelay(1000);
  595. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  596. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  597. AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
  598. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  599. AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
  600. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  601. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  602. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
  603. udelay(1000);
  604. }
  605. pll = ath9k_hw_compute_pll_control(ah, chan);
  606. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  607. /* Switch the core clock for ar9271 to 117Mhz */
  608. if (AR_SREV_9271(ah)) {
  609. udelay(500);
  610. REG_WRITE(ah, 0x50040, 0x304);
  611. }
  612. udelay(RTC_PLL_SETTLE_DELAY);
  613. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  614. }
  615. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  616. enum nl80211_iftype opmode)
  617. {
  618. u32 imr_reg = AR_IMR_TXERR |
  619. AR_IMR_TXURN |
  620. AR_IMR_RXERR |
  621. AR_IMR_RXORN |
  622. AR_IMR_BCNMISC;
  623. if (AR_SREV_9300_20_OR_LATER(ah)) {
  624. imr_reg |= AR_IMR_RXOK_HP;
  625. if (ah->config.rx_intr_mitigation)
  626. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  627. else
  628. imr_reg |= AR_IMR_RXOK_LP;
  629. } else {
  630. if (ah->config.rx_intr_mitigation)
  631. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  632. else
  633. imr_reg |= AR_IMR_RXOK;
  634. }
  635. if (ah->config.tx_intr_mitigation)
  636. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  637. else
  638. imr_reg |= AR_IMR_TXOK;
  639. if (opmode == NL80211_IFTYPE_AP)
  640. imr_reg |= AR_IMR_MIB;
  641. ENABLE_REGWRITE_BUFFER(ah);
  642. REG_WRITE(ah, AR_IMR, imr_reg);
  643. ah->imrs2_reg |= AR_IMR_S2_GTT;
  644. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  645. if (!AR_SREV_9100(ah)) {
  646. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  647. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  648. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  649. }
  650. REGWRITE_BUFFER_FLUSH(ah);
  651. if (AR_SREV_9300_20_OR_LATER(ah)) {
  652. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  653. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  654. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  655. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  656. }
  657. }
  658. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  659. {
  660. u32 val = ath9k_hw_mac_to_clks(ah, us);
  661. val = min(val, (u32) 0xFFFF);
  662. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  663. }
  664. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  665. {
  666. u32 val = ath9k_hw_mac_to_clks(ah, us);
  667. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  668. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  669. }
  670. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  671. {
  672. u32 val = ath9k_hw_mac_to_clks(ah, us);
  673. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  674. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  675. }
  676. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  677. {
  678. if (tu > 0xFFFF) {
  679. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  680. "bad global tx timeout %u\n", tu);
  681. ah->globaltxtimeout = (u32) -1;
  682. return false;
  683. } else {
  684. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  685. ah->globaltxtimeout = tu;
  686. return true;
  687. }
  688. }
  689. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  690. {
  691. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  692. int acktimeout;
  693. int slottime;
  694. int sifstime;
  695. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  696. ah->misc_mode);
  697. if (ah->misc_mode != 0)
  698. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  699. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  700. sifstime = 16;
  701. else
  702. sifstime = 10;
  703. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  704. slottime = ah->slottime + 3 * ah->coverage_class;
  705. acktimeout = slottime + sifstime;
  706. /*
  707. * Workaround for early ACK timeouts, add an offset to match the
  708. * initval's 64us ack timeout value.
  709. * This was initially only meant to work around an issue with delayed
  710. * BA frames in some implementations, but it has been found to fix ACK
  711. * timeout issues in other cases as well.
  712. */
  713. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  714. acktimeout += 64 - sifstime - ah->slottime;
  715. ath9k_hw_setslottime(ah, ah->slottime);
  716. ath9k_hw_set_ack_timeout(ah, acktimeout);
  717. ath9k_hw_set_cts_timeout(ah, acktimeout);
  718. if (ah->globaltxtimeout != (u32) -1)
  719. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  720. }
  721. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  722. void ath9k_hw_deinit(struct ath_hw *ah)
  723. {
  724. struct ath_common *common = ath9k_hw_common(ah);
  725. if (common->state < ATH_HW_INITIALIZED)
  726. goto free_hw;
  727. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  728. free_hw:
  729. ath9k_hw_rf_free_ext_banks(ah);
  730. }
  731. EXPORT_SYMBOL(ath9k_hw_deinit);
  732. /*******/
  733. /* INI */
  734. /*******/
  735. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  736. {
  737. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  738. if (IS_CHAN_B(chan))
  739. ctl |= CTL_11B;
  740. else if (IS_CHAN_G(chan))
  741. ctl |= CTL_11G;
  742. else
  743. ctl |= CTL_11A;
  744. return ctl;
  745. }
  746. /****************************************/
  747. /* Reset and Channel Switching Routines */
  748. /****************************************/
  749. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  750. {
  751. struct ath_common *common = ath9k_hw_common(ah);
  752. ENABLE_REGWRITE_BUFFER(ah);
  753. /*
  754. * set AHB_MODE not to do cacheline prefetches
  755. */
  756. if (!AR_SREV_9300_20_OR_LATER(ah))
  757. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  758. /*
  759. * let mac dma reads be in 128 byte chunks
  760. */
  761. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  762. REGWRITE_BUFFER_FLUSH(ah);
  763. /*
  764. * Restore TX Trigger Level to its pre-reset value.
  765. * The initial value depends on whether aggregation is enabled, and is
  766. * adjusted whenever underruns are detected.
  767. */
  768. if (!AR_SREV_9300_20_OR_LATER(ah))
  769. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  770. ENABLE_REGWRITE_BUFFER(ah);
  771. /*
  772. * let mac dma writes be in 128 byte chunks
  773. */
  774. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  775. /*
  776. * Setup receive FIFO threshold to hold off TX activities
  777. */
  778. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  779. if (AR_SREV_9300_20_OR_LATER(ah)) {
  780. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  781. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  782. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  783. ah->caps.rx_status_len);
  784. }
  785. /*
  786. * reduce the number of usable entries in PCU TXBUF to avoid
  787. * wrap around issues.
  788. */
  789. if (AR_SREV_9285(ah)) {
  790. /* For AR9285 the number of Fifos are reduced to half.
  791. * So set the usable tx buf size also to half to
  792. * avoid data/delimiter underruns
  793. */
  794. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  795. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  796. } else if (!AR_SREV_9271(ah)) {
  797. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  798. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  799. }
  800. REGWRITE_BUFFER_FLUSH(ah);
  801. if (AR_SREV_9300_20_OR_LATER(ah))
  802. ath9k_hw_reset_txstatus_ring(ah);
  803. }
  804. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  805. {
  806. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  807. u32 set = AR_STA_ID1_KSRCH_MODE;
  808. switch (opmode) {
  809. case NL80211_IFTYPE_ADHOC:
  810. case NL80211_IFTYPE_MESH_POINT:
  811. set |= AR_STA_ID1_ADHOC;
  812. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  813. break;
  814. case NL80211_IFTYPE_AP:
  815. set |= AR_STA_ID1_STA_AP;
  816. /* fall through */
  817. case NL80211_IFTYPE_STATION:
  818. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  819. break;
  820. default:
  821. if (!ah->is_monitoring)
  822. set = 0;
  823. break;
  824. }
  825. REG_RMW(ah, AR_STA_ID1, set, mask);
  826. }
  827. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  828. u32 *coef_mantissa, u32 *coef_exponent)
  829. {
  830. u32 coef_exp, coef_man;
  831. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  832. if ((coef_scaled >> coef_exp) & 0x1)
  833. break;
  834. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  835. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  836. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  837. *coef_exponent = coef_exp - 16;
  838. }
  839. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  840. {
  841. u32 rst_flags;
  842. u32 tmpReg;
  843. if (AR_SREV_9100(ah)) {
  844. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  845. AR_RTC_DERIVED_CLK_PERIOD, 1);
  846. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  847. }
  848. ENABLE_REGWRITE_BUFFER(ah);
  849. if (AR_SREV_9300_20_OR_LATER(ah)) {
  850. REG_WRITE(ah, AR_WA, ah->WARegVal);
  851. udelay(10);
  852. }
  853. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  854. AR_RTC_FORCE_WAKE_ON_INT);
  855. if (AR_SREV_9100(ah)) {
  856. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  857. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  858. } else {
  859. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  860. if (tmpReg &
  861. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  862. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  863. u32 val;
  864. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  865. val = AR_RC_HOSTIF;
  866. if (!AR_SREV_9300_20_OR_LATER(ah))
  867. val |= AR_RC_AHB;
  868. REG_WRITE(ah, AR_RC, val);
  869. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  870. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  871. rst_flags = AR_RTC_RC_MAC_WARM;
  872. if (type == ATH9K_RESET_COLD)
  873. rst_flags |= AR_RTC_RC_MAC_COLD;
  874. }
  875. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  876. REGWRITE_BUFFER_FLUSH(ah);
  877. udelay(50);
  878. REG_WRITE(ah, AR_RTC_RC, 0);
  879. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  880. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  881. "RTC stuck in MAC reset\n");
  882. return false;
  883. }
  884. if (!AR_SREV_9100(ah))
  885. REG_WRITE(ah, AR_RC, 0);
  886. if (AR_SREV_9100(ah))
  887. udelay(50);
  888. return true;
  889. }
  890. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  891. {
  892. ENABLE_REGWRITE_BUFFER(ah);
  893. if (AR_SREV_9300_20_OR_LATER(ah)) {
  894. REG_WRITE(ah, AR_WA, ah->WARegVal);
  895. udelay(10);
  896. }
  897. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  898. AR_RTC_FORCE_WAKE_ON_INT);
  899. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  900. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  901. REG_WRITE(ah, AR_RTC_RESET, 0);
  902. REGWRITE_BUFFER_FLUSH(ah);
  903. if (!AR_SREV_9300_20_OR_LATER(ah))
  904. udelay(2);
  905. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  906. REG_WRITE(ah, AR_RC, 0);
  907. REG_WRITE(ah, AR_RTC_RESET, 1);
  908. if (!ath9k_hw_wait(ah,
  909. AR_RTC_STATUS,
  910. AR_RTC_STATUS_M,
  911. AR_RTC_STATUS_ON,
  912. AH_WAIT_TIMEOUT)) {
  913. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  914. "RTC not waking up\n");
  915. return false;
  916. }
  917. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  918. }
  919. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  920. {
  921. if (AR_SREV_9300_20_OR_LATER(ah)) {
  922. REG_WRITE(ah, AR_WA, ah->WARegVal);
  923. udelay(10);
  924. }
  925. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  926. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  927. switch (type) {
  928. case ATH9K_RESET_POWER_ON:
  929. return ath9k_hw_set_reset_power_on(ah);
  930. case ATH9K_RESET_WARM:
  931. case ATH9K_RESET_COLD:
  932. return ath9k_hw_set_reset(ah, type);
  933. default:
  934. return false;
  935. }
  936. }
  937. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  938. struct ath9k_channel *chan)
  939. {
  940. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  941. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  942. return false;
  943. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  944. return false;
  945. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  946. return false;
  947. ah->chip_fullsleep = false;
  948. ath9k_hw_init_pll(ah, chan);
  949. ath9k_hw_set_rfmode(ah, chan);
  950. return true;
  951. }
  952. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  953. struct ath9k_channel *chan)
  954. {
  955. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  956. struct ath_common *common = ath9k_hw_common(ah);
  957. struct ieee80211_channel *channel = chan->chan;
  958. u32 qnum;
  959. int r;
  960. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  961. if (ath9k_hw_numtxpending(ah, qnum)) {
  962. ath_dbg(common, ATH_DBG_QUEUE,
  963. "Transmit frames pending on queue %d\n", qnum);
  964. return false;
  965. }
  966. }
  967. if (!ath9k_hw_rfbus_req(ah)) {
  968. ath_err(common, "Could not kill baseband RX\n");
  969. return false;
  970. }
  971. ath9k_hw_set_channel_regs(ah, chan);
  972. r = ath9k_hw_rf_set_freq(ah, chan);
  973. if (r) {
  974. ath_err(common, "Failed to set channel\n");
  975. return false;
  976. }
  977. ath9k_hw_set_clockrate(ah);
  978. ah->eep_ops->set_txpower(ah, chan,
  979. ath9k_regd_get_ctl(regulatory, chan),
  980. channel->max_antenna_gain * 2,
  981. channel->max_power * 2,
  982. min((u32) MAX_RATE_POWER,
  983. (u32) regulatory->power_limit), false);
  984. ath9k_hw_rfbus_done(ah);
  985. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  986. ath9k_hw_set_delta_slope(ah, chan);
  987. ath9k_hw_spur_mitigate_freq(ah, chan);
  988. return true;
  989. }
  990. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  991. {
  992. u32 gpio_mask = ah->gpio_mask;
  993. int i;
  994. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  995. if (!(gpio_mask & 1))
  996. continue;
  997. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  998. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  999. }
  1000. }
  1001. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1002. {
  1003. int count = 50;
  1004. u32 reg;
  1005. if (AR_SREV_9285_12_OR_LATER(ah))
  1006. return true;
  1007. do {
  1008. reg = REG_READ(ah, AR_OBS_BUS_1);
  1009. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1010. continue;
  1011. switch (reg & 0x7E000B00) {
  1012. case 0x1E000000:
  1013. case 0x52000B00:
  1014. case 0x18000B00:
  1015. continue;
  1016. default:
  1017. return true;
  1018. }
  1019. } while (count-- > 0);
  1020. return false;
  1021. }
  1022. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1023. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1024. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1025. {
  1026. struct ath_common *common = ath9k_hw_common(ah);
  1027. u32 saveLedState;
  1028. struct ath9k_channel *curchan = ah->curchan;
  1029. u32 saveDefAntenna;
  1030. u32 macStaId1;
  1031. u64 tsf = 0;
  1032. int i, r;
  1033. ah->txchainmask = common->tx_chainmask;
  1034. ah->rxchainmask = common->rx_chainmask;
  1035. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1036. ath9k_hw_abortpcurecv(ah);
  1037. if (!ath9k_hw_stopdmarecv(ah)) {
  1038. ath_dbg(common, ATH_DBG_XMIT,
  1039. "Failed to stop receive dma\n");
  1040. bChannelChange = false;
  1041. }
  1042. }
  1043. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1044. return -EIO;
  1045. if (curchan && !ah->chip_fullsleep)
  1046. ath9k_hw_getnf(ah, curchan);
  1047. ah->caldata = caldata;
  1048. if (caldata &&
  1049. (chan->channel != caldata->channel ||
  1050. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1051. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1052. /* Operating channel changed, reset channel calibration data */
  1053. memset(caldata, 0, sizeof(*caldata));
  1054. ath9k_init_nfcal_hist_buffer(ah, chan);
  1055. }
  1056. if (bChannelChange &&
  1057. (ah->chip_fullsleep != true) &&
  1058. (ah->curchan != NULL) &&
  1059. (chan->channel != ah->curchan->channel) &&
  1060. ((chan->channelFlags & CHANNEL_ALL) ==
  1061. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1062. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1063. if (ath9k_hw_channel_change(ah, chan)) {
  1064. ath9k_hw_loadnf(ah, ah->curchan);
  1065. ath9k_hw_start_nfcal(ah, true);
  1066. if (AR_SREV_9271(ah))
  1067. ar9002_hw_load_ani_reg(ah, chan);
  1068. return 0;
  1069. }
  1070. }
  1071. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1072. if (saveDefAntenna == 0)
  1073. saveDefAntenna = 1;
  1074. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1075. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1076. if (AR_SREV_9100(ah) ||
  1077. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1078. tsf = ath9k_hw_gettsf64(ah);
  1079. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1080. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1081. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1082. ath9k_hw_mark_phy_inactive(ah);
  1083. ah->paprd_table_write_done = false;
  1084. /* Only required on the first reset */
  1085. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1086. REG_WRITE(ah,
  1087. AR9271_RESET_POWER_DOWN_CONTROL,
  1088. AR9271_RADIO_RF_RST);
  1089. udelay(50);
  1090. }
  1091. if (!ath9k_hw_chip_reset(ah, chan)) {
  1092. ath_err(common, "Chip reset failed\n");
  1093. return -EINVAL;
  1094. }
  1095. /* Only required on the first reset */
  1096. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1097. ah->htc_reset_init = false;
  1098. REG_WRITE(ah,
  1099. AR9271_RESET_POWER_DOWN_CONTROL,
  1100. AR9271_GATE_MAC_CTL);
  1101. udelay(50);
  1102. }
  1103. /* Restore TSF */
  1104. if (tsf)
  1105. ath9k_hw_settsf64(ah, tsf);
  1106. if (AR_SREV_9280_20_OR_LATER(ah))
  1107. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1108. if (!AR_SREV_9300_20_OR_LATER(ah))
  1109. ar9002_hw_enable_async_fifo(ah);
  1110. r = ath9k_hw_process_ini(ah, chan);
  1111. if (r)
  1112. return r;
  1113. /*
  1114. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1115. * right after the chip reset. When that happens, write a new
  1116. * value after the initvals have been applied, with an offset
  1117. * based on measured time difference
  1118. */
  1119. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1120. tsf += 1500;
  1121. ath9k_hw_settsf64(ah, tsf);
  1122. }
  1123. /* Setup MFP options for CCMP */
  1124. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1125. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1126. * frames when constructing CCMP AAD. */
  1127. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1128. 0xc7ff);
  1129. ah->sw_mgmt_crypto = false;
  1130. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1131. /* Disable hardware crypto for management frames */
  1132. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1133. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1134. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1135. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1136. ah->sw_mgmt_crypto = true;
  1137. } else
  1138. ah->sw_mgmt_crypto = true;
  1139. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1140. ath9k_hw_set_delta_slope(ah, chan);
  1141. ath9k_hw_spur_mitigate_freq(ah, chan);
  1142. ah->eep_ops->set_board_values(ah, chan);
  1143. ENABLE_REGWRITE_BUFFER(ah);
  1144. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1145. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1146. | macStaId1
  1147. | AR_STA_ID1_RTS_USE_DEF
  1148. | (ah->config.
  1149. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1150. | ah->sta_id1_defaults);
  1151. ath_hw_setbssidmask(common);
  1152. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1153. ath9k_hw_write_associd(ah);
  1154. REG_WRITE(ah, AR_ISR, ~0);
  1155. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1156. REGWRITE_BUFFER_FLUSH(ah);
  1157. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1158. r = ath9k_hw_rf_set_freq(ah, chan);
  1159. if (r)
  1160. return r;
  1161. ath9k_hw_set_clockrate(ah);
  1162. ENABLE_REGWRITE_BUFFER(ah);
  1163. for (i = 0; i < AR_NUM_DCU; i++)
  1164. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1165. REGWRITE_BUFFER_FLUSH(ah);
  1166. ah->intr_txqs = 0;
  1167. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1168. ath9k_hw_resettxqueue(ah, i);
  1169. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1170. ath9k_hw_ani_cache_ini_regs(ah);
  1171. ath9k_hw_init_qos(ah);
  1172. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1173. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1174. ath9k_hw_init_global_settings(ah);
  1175. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1176. ar9002_hw_update_async_fifo(ah);
  1177. ar9002_hw_enable_wep_aggregation(ah);
  1178. }
  1179. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1180. ath9k_hw_set_dma(ah);
  1181. REG_WRITE(ah, AR_OBS, 8);
  1182. if (ah->config.rx_intr_mitigation) {
  1183. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1184. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1185. }
  1186. if (ah->config.tx_intr_mitigation) {
  1187. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1188. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1189. }
  1190. ath9k_hw_init_bb(ah, chan);
  1191. if (!ath9k_hw_init_cal(ah, chan))
  1192. return -EIO;
  1193. ENABLE_REGWRITE_BUFFER(ah);
  1194. ath9k_hw_restore_chainmask(ah);
  1195. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1196. REGWRITE_BUFFER_FLUSH(ah);
  1197. /*
  1198. * For big endian systems turn on swapping for descriptors
  1199. */
  1200. if (AR_SREV_9100(ah)) {
  1201. u32 mask;
  1202. mask = REG_READ(ah, AR_CFG);
  1203. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1204. ath_dbg(common, ATH_DBG_RESET,
  1205. "CFG Byte Swap Set 0x%x\n", mask);
  1206. } else {
  1207. mask =
  1208. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1209. REG_WRITE(ah, AR_CFG, mask);
  1210. ath_dbg(common, ATH_DBG_RESET,
  1211. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1212. }
  1213. } else {
  1214. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1215. /* Configure AR9271 target WLAN */
  1216. if (AR_SREV_9271(ah))
  1217. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1218. else
  1219. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1220. }
  1221. #ifdef __BIG_ENDIAN
  1222. else
  1223. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1224. #endif
  1225. }
  1226. if (ah->btcoex_hw.enabled)
  1227. ath9k_hw_btcoex_enable(ah);
  1228. if (AR_SREV_9300_20_OR_LATER(ah))
  1229. ar9003_hw_bb_watchdog_config(ah);
  1230. ath9k_hw_apply_gpio_override(ah);
  1231. return 0;
  1232. }
  1233. EXPORT_SYMBOL(ath9k_hw_reset);
  1234. /******************************/
  1235. /* Power Management (Chipset) */
  1236. /******************************/
  1237. /*
  1238. * Notify Power Mgt is disabled in self-generated frames.
  1239. * If requested, force chip to sleep.
  1240. */
  1241. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1242. {
  1243. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1244. if (setChip) {
  1245. /*
  1246. * Clear the RTC force wake bit to allow the
  1247. * mac to go to sleep.
  1248. */
  1249. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1250. AR_RTC_FORCE_WAKE_EN);
  1251. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1252. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1253. /* Shutdown chip. Active low */
  1254. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1255. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1256. AR_RTC_RESET_EN);
  1257. }
  1258. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1259. if (AR_SREV_9300_20_OR_LATER(ah))
  1260. REG_WRITE(ah, AR_WA,
  1261. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1262. }
  1263. /*
  1264. * Notify Power Management is enabled in self-generating
  1265. * frames. If request, set power mode of chip to
  1266. * auto/normal. Duration in units of 128us (1/8 TU).
  1267. */
  1268. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1269. {
  1270. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1271. if (setChip) {
  1272. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1273. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1274. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1275. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1276. AR_RTC_FORCE_WAKE_ON_INT);
  1277. } else {
  1278. /*
  1279. * Clear the RTC force wake bit to allow the
  1280. * mac to go to sleep.
  1281. */
  1282. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1283. AR_RTC_FORCE_WAKE_EN);
  1284. }
  1285. }
  1286. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1287. if (AR_SREV_9300_20_OR_LATER(ah))
  1288. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1289. }
  1290. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1291. {
  1292. u32 val;
  1293. int i;
  1294. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1295. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1296. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1297. udelay(10);
  1298. }
  1299. if (setChip) {
  1300. if ((REG_READ(ah, AR_RTC_STATUS) &
  1301. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1302. if (ath9k_hw_set_reset_reg(ah,
  1303. ATH9K_RESET_POWER_ON) != true) {
  1304. return false;
  1305. }
  1306. if (!AR_SREV_9300_20_OR_LATER(ah))
  1307. ath9k_hw_init_pll(ah, NULL);
  1308. }
  1309. if (AR_SREV_9100(ah))
  1310. REG_SET_BIT(ah, AR_RTC_RESET,
  1311. AR_RTC_RESET_EN);
  1312. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1313. AR_RTC_FORCE_WAKE_EN);
  1314. udelay(50);
  1315. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1316. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1317. if (val == AR_RTC_STATUS_ON)
  1318. break;
  1319. udelay(50);
  1320. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1321. AR_RTC_FORCE_WAKE_EN);
  1322. }
  1323. if (i == 0) {
  1324. ath_err(ath9k_hw_common(ah),
  1325. "Failed to wakeup in %uus\n",
  1326. POWER_UP_TIME / 20);
  1327. return false;
  1328. }
  1329. }
  1330. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1331. return true;
  1332. }
  1333. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1334. {
  1335. struct ath_common *common = ath9k_hw_common(ah);
  1336. int status = true, setChip = true;
  1337. static const char *modes[] = {
  1338. "AWAKE",
  1339. "FULL-SLEEP",
  1340. "NETWORK SLEEP",
  1341. "UNDEFINED"
  1342. };
  1343. if (ah->power_mode == mode)
  1344. return status;
  1345. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1346. modes[ah->power_mode], modes[mode]);
  1347. switch (mode) {
  1348. case ATH9K_PM_AWAKE:
  1349. status = ath9k_hw_set_power_awake(ah, setChip);
  1350. break;
  1351. case ATH9K_PM_FULL_SLEEP:
  1352. ath9k_set_power_sleep(ah, setChip);
  1353. ah->chip_fullsleep = true;
  1354. break;
  1355. case ATH9K_PM_NETWORK_SLEEP:
  1356. ath9k_set_power_network_sleep(ah, setChip);
  1357. break;
  1358. default:
  1359. ath_err(common, "Unknown power mode %u\n", mode);
  1360. return false;
  1361. }
  1362. ah->power_mode = mode;
  1363. /*
  1364. * XXX: If this warning never comes up after a while then
  1365. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1366. * ath9k_hw_setpower() return type void.
  1367. */
  1368. if (!(ah->ah_flags & AH_UNPLUGGED))
  1369. ATH_DBG_WARN_ON_ONCE(!status);
  1370. return status;
  1371. }
  1372. EXPORT_SYMBOL(ath9k_hw_setpower);
  1373. /*******************/
  1374. /* Beacon Handling */
  1375. /*******************/
  1376. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1377. {
  1378. int flags = 0;
  1379. ENABLE_REGWRITE_BUFFER(ah);
  1380. switch (ah->opmode) {
  1381. case NL80211_IFTYPE_ADHOC:
  1382. case NL80211_IFTYPE_MESH_POINT:
  1383. REG_SET_BIT(ah, AR_TXCFG,
  1384. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1385. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1386. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1387. flags |= AR_NDP_TIMER_EN;
  1388. case NL80211_IFTYPE_AP:
  1389. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1390. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1391. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1392. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1393. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1394. flags |=
  1395. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1396. break;
  1397. default:
  1398. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1399. "%s: unsupported opmode: %d\n",
  1400. __func__, ah->opmode);
  1401. return;
  1402. break;
  1403. }
  1404. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1405. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1406. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1407. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1408. REGWRITE_BUFFER_FLUSH(ah);
  1409. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1410. }
  1411. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1412. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1413. const struct ath9k_beacon_state *bs)
  1414. {
  1415. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1416. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1417. struct ath_common *common = ath9k_hw_common(ah);
  1418. ENABLE_REGWRITE_BUFFER(ah);
  1419. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1420. REG_WRITE(ah, AR_BEACON_PERIOD,
  1421. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1422. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1423. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1424. REGWRITE_BUFFER_FLUSH(ah);
  1425. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1426. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1427. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1428. if (bs->bs_sleepduration > beaconintval)
  1429. beaconintval = bs->bs_sleepduration;
  1430. dtimperiod = bs->bs_dtimperiod;
  1431. if (bs->bs_sleepduration > dtimperiod)
  1432. dtimperiod = bs->bs_sleepduration;
  1433. if (beaconintval == dtimperiod)
  1434. nextTbtt = bs->bs_nextdtim;
  1435. else
  1436. nextTbtt = bs->bs_nexttbtt;
  1437. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1438. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1439. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1440. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1441. ENABLE_REGWRITE_BUFFER(ah);
  1442. REG_WRITE(ah, AR_NEXT_DTIM,
  1443. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1444. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1445. REG_WRITE(ah, AR_SLEEP1,
  1446. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1447. | AR_SLEEP1_ASSUME_DTIM);
  1448. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1449. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1450. else
  1451. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1452. REG_WRITE(ah, AR_SLEEP2,
  1453. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1454. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1455. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1456. REGWRITE_BUFFER_FLUSH(ah);
  1457. REG_SET_BIT(ah, AR_TIMER_MODE,
  1458. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1459. AR_DTIM_TIMER_EN);
  1460. /* TSF Out of Range Threshold */
  1461. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1462. }
  1463. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1464. /*******************/
  1465. /* HW Capabilities */
  1466. /*******************/
  1467. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1468. {
  1469. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1470. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1471. struct ath_common *common = ath9k_hw_common(ah);
  1472. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1473. u16 capField = 0, eeval;
  1474. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1475. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1476. regulatory->current_rd = eeval;
  1477. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1478. if (AR_SREV_9285_12_OR_LATER(ah))
  1479. eeval |= AR9285_RDEXT_DEFAULT;
  1480. regulatory->current_rd_ext = eeval;
  1481. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1482. if (ah->opmode != NL80211_IFTYPE_AP &&
  1483. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1484. if (regulatory->current_rd == 0x64 ||
  1485. regulatory->current_rd == 0x65)
  1486. regulatory->current_rd += 5;
  1487. else if (regulatory->current_rd == 0x41)
  1488. regulatory->current_rd = 0x43;
  1489. ath_dbg(common, ATH_DBG_REGULATORY,
  1490. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1491. }
  1492. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1493. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1494. ath_err(common,
  1495. "no band has been marked as supported in EEPROM\n");
  1496. return -EINVAL;
  1497. }
  1498. if (eeval & AR5416_OPFLAGS_11A)
  1499. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1500. if (eeval & AR5416_OPFLAGS_11G)
  1501. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1502. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1503. /*
  1504. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1505. * the EEPROM.
  1506. */
  1507. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1508. !(eeval & AR5416_OPFLAGS_11A) &&
  1509. !(AR_SREV_9271(ah)))
  1510. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1511. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1512. else if (AR_SREV_9100(ah))
  1513. pCap->rx_chainmask = 0x7;
  1514. else
  1515. /* Use rx_chainmask from EEPROM. */
  1516. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1517. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1518. /* enable key search for every frame in an aggregate */
  1519. if (AR_SREV_9300_20_OR_LATER(ah))
  1520. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1521. pCap->low_2ghz_chan = 2312;
  1522. pCap->high_2ghz_chan = 2732;
  1523. pCap->low_5ghz_chan = 4920;
  1524. pCap->high_5ghz_chan = 6100;
  1525. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1526. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1527. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1528. else
  1529. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1530. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1531. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1532. else
  1533. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1534. if (AR_SREV_9271(ah))
  1535. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1536. else if (AR_DEVID_7010(ah))
  1537. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1538. else if (AR_SREV_9285_12_OR_LATER(ah))
  1539. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1540. else if (AR_SREV_9280_20_OR_LATER(ah))
  1541. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1542. else
  1543. pCap->num_gpio_pins = AR_NUM_GPIO;
  1544. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1545. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1546. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1547. } else {
  1548. pCap->rts_aggr_limit = (8 * 1024);
  1549. }
  1550. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1551. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1552. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1553. ah->rfkill_gpio =
  1554. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1555. ah->rfkill_polarity =
  1556. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1557. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1558. }
  1559. #endif
  1560. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1561. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1562. else
  1563. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1564. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1565. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1566. else
  1567. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1568. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1569. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1570. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1571. if (AR_SREV_9285(ah)) {
  1572. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1573. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1574. } else {
  1575. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1576. }
  1577. } else {
  1578. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1579. }
  1580. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1581. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1582. if (!AR_SREV_9485(ah))
  1583. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1584. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1585. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1586. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1587. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1588. pCap->txs_len = sizeof(struct ar9003_txs);
  1589. if (!ah->config.paprd_disable &&
  1590. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1591. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1592. } else {
  1593. pCap->tx_desc_len = sizeof(struct ath_desc);
  1594. if (AR_SREV_9280_20(ah) &&
  1595. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1596. AR5416_EEP_MINOR_VER_16) ||
  1597. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1598. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1599. }
  1600. if (AR_SREV_9300_20_OR_LATER(ah))
  1601. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1602. if (AR_SREV_9300_20_OR_LATER(ah))
  1603. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1604. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1605. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1606. if (AR_SREV_9285(ah))
  1607. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1608. ant_div_ctl1 =
  1609. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1610. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1611. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1612. }
  1613. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1614. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1615. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1616. }
  1617. if (AR_SREV_9485_10(ah)) {
  1618. pCap->pcie_lcr_extsync_en = true;
  1619. pCap->pcie_lcr_offset = 0x80;
  1620. }
  1621. tx_chainmask = pCap->tx_chainmask;
  1622. rx_chainmask = pCap->rx_chainmask;
  1623. while (tx_chainmask || rx_chainmask) {
  1624. if (tx_chainmask & BIT(0))
  1625. pCap->max_txchains++;
  1626. if (rx_chainmask & BIT(0))
  1627. pCap->max_rxchains++;
  1628. tx_chainmask >>= 1;
  1629. rx_chainmask >>= 1;
  1630. }
  1631. return 0;
  1632. }
  1633. /****************************/
  1634. /* GPIO / RFKILL / Antennae */
  1635. /****************************/
  1636. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1637. u32 gpio, u32 type)
  1638. {
  1639. int addr;
  1640. u32 gpio_shift, tmp;
  1641. if (gpio > 11)
  1642. addr = AR_GPIO_OUTPUT_MUX3;
  1643. else if (gpio > 5)
  1644. addr = AR_GPIO_OUTPUT_MUX2;
  1645. else
  1646. addr = AR_GPIO_OUTPUT_MUX1;
  1647. gpio_shift = (gpio % 6) * 5;
  1648. if (AR_SREV_9280_20_OR_LATER(ah)
  1649. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1650. REG_RMW(ah, addr, (type << gpio_shift),
  1651. (0x1f << gpio_shift));
  1652. } else {
  1653. tmp = REG_READ(ah, addr);
  1654. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1655. tmp &= ~(0x1f << gpio_shift);
  1656. tmp |= (type << gpio_shift);
  1657. REG_WRITE(ah, addr, tmp);
  1658. }
  1659. }
  1660. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1661. {
  1662. u32 gpio_shift;
  1663. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1664. if (AR_DEVID_7010(ah)) {
  1665. gpio_shift = gpio;
  1666. REG_RMW(ah, AR7010_GPIO_OE,
  1667. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1668. (AR7010_GPIO_OE_MASK << gpio_shift));
  1669. return;
  1670. }
  1671. gpio_shift = gpio << 1;
  1672. REG_RMW(ah,
  1673. AR_GPIO_OE_OUT,
  1674. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1675. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1676. }
  1677. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1678. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1679. {
  1680. #define MS_REG_READ(x, y) \
  1681. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1682. if (gpio >= ah->caps.num_gpio_pins)
  1683. return 0xffffffff;
  1684. if (AR_DEVID_7010(ah)) {
  1685. u32 val;
  1686. val = REG_READ(ah, AR7010_GPIO_IN);
  1687. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1688. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1689. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1690. AR_GPIO_BIT(gpio)) != 0;
  1691. else if (AR_SREV_9271(ah))
  1692. return MS_REG_READ(AR9271, gpio) != 0;
  1693. else if (AR_SREV_9287_11_OR_LATER(ah))
  1694. return MS_REG_READ(AR9287, gpio) != 0;
  1695. else if (AR_SREV_9285_12_OR_LATER(ah))
  1696. return MS_REG_READ(AR9285, gpio) != 0;
  1697. else if (AR_SREV_9280_20_OR_LATER(ah))
  1698. return MS_REG_READ(AR928X, gpio) != 0;
  1699. else
  1700. return MS_REG_READ(AR, gpio) != 0;
  1701. }
  1702. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1703. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1704. u32 ah_signal_type)
  1705. {
  1706. u32 gpio_shift;
  1707. if (AR_DEVID_7010(ah)) {
  1708. gpio_shift = gpio;
  1709. REG_RMW(ah, AR7010_GPIO_OE,
  1710. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1711. (AR7010_GPIO_OE_MASK << gpio_shift));
  1712. return;
  1713. }
  1714. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1715. gpio_shift = 2 * gpio;
  1716. REG_RMW(ah,
  1717. AR_GPIO_OE_OUT,
  1718. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1719. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1720. }
  1721. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1722. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1723. {
  1724. if (AR_DEVID_7010(ah)) {
  1725. val = val ? 0 : 1;
  1726. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1727. AR_GPIO_BIT(gpio));
  1728. return;
  1729. }
  1730. if (AR_SREV_9271(ah))
  1731. val = ~val;
  1732. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1733. AR_GPIO_BIT(gpio));
  1734. }
  1735. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1736. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1737. {
  1738. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1739. }
  1740. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1741. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1742. {
  1743. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1744. }
  1745. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1746. /*********************/
  1747. /* General Operation */
  1748. /*********************/
  1749. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1750. {
  1751. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1752. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1753. if (phybits & AR_PHY_ERR_RADAR)
  1754. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1755. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1756. bits |= ATH9K_RX_FILTER_PHYERR;
  1757. return bits;
  1758. }
  1759. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1760. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1761. {
  1762. u32 phybits;
  1763. ENABLE_REGWRITE_BUFFER(ah);
  1764. REG_WRITE(ah, AR_RX_FILTER, bits);
  1765. phybits = 0;
  1766. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1767. phybits |= AR_PHY_ERR_RADAR;
  1768. if (bits & ATH9K_RX_FILTER_PHYERR)
  1769. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1770. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1771. if (phybits)
  1772. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1773. else
  1774. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1775. REGWRITE_BUFFER_FLUSH(ah);
  1776. }
  1777. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1778. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1779. {
  1780. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1781. return false;
  1782. ath9k_hw_init_pll(ah, NULL);
  1783. return true;
  1784. }
  1785. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1786. bool ath9k_hw_disable(struct ath_hw *ah)
  1787. {
  1788. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1789. return false;
  1790. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1791. return false;
  1792. ath9k_hw_init_pll(ah, NULL);
  1793. return true;
  1794. }
  1795. EXPORT_SYMBOL(ath9k_hw_disable);
  1796. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1797. {
  1798. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1799. struct ath9k_channel *chan = ah->curchan;
  1800. struct ieee80211_channel *channel = chan->chan;
  1801. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1802. ah->eep_ops->set_txpower(ah, chan,
  1803. ath9k_regd_get_ctl(regulatory, chan),
  1804. channel->max_antenna_gain * 2,
  1805. channel->max_power * 2,
  1806. min((u32) MAX_RATE_POWER,
  1807. (u32) regulatory->power_limit), test);
  1808. }
  1809. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1810. void ath9k_hw_setopmode(struct ath_hw *ah)
  1811. {
  1812. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1813. }
  1814. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1815. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1816. {
  1817. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1818. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1819. }
  1820. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1821. void ath9k_hw_write_associd(struct ath_hw *ah)
  1822. {
  1823. struct ath_common *common = ath9k_hw_common(ah);
  1824. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1825. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1826. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1827. }
  1828. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1829. #define ATH9K_MAX_TSF_READ 10
  1830. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1831. {
  1832. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1833. int i;
  1834. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1835. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1836. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1837. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1838. if (tsf_upper2 == tsf_upper1)
  1839. break;
  1840. tsf_upper1 = tsf_upper2;
  1841. }
  1842. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1843. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1844. }
  1845. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1846. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1847. {
  1848. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1849. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1850. }
  1851. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1852. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1853. {
  1854. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1855. AH_TSF_WRITE_TIMEOUT))
  1856. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1857. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1858. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1859. }
  1860. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1861. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1862. {
  1863. if (setting)
  1864. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1865. else
  1866. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1867. }
  1868. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1869. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1870. {
  1871. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1872. u32 macmode;
  1873. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1874. macmode = AR_2040_JOINED_RX_CLEAR;
  1875. else
  1876. macmode = 0;
  1877. REG_WRITE(ah, AR_2040_MODE, macmode);
  1878. }
  1879. /* HW Generic timers configuration */
  1880. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1881. {
  1882. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1883. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1884. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1885. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1886. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1887. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1888. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1889. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1890. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1891. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1892. AR_NDP2_TIMER_MODE, 0x0002},
  1893. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1894. AR_NDP2_TIMER_MODE, 0x0004},
  1895. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1896. AR_NDP2_TIMER_MODE, 0x0008},
  1897. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1898. AR_NDP2_TIMER_MODE, 0x0010},
  1899. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1900. AR_NDP2_TIMER_MODE, 0x0020},
  1901. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1902. AR_NDP2_TIMER_MODE, 0x0040},
  1903. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1904. AR_NDP2_TIMER_MODE, 0x0080}
  1905. };
  1906. /* HW generic timer primitives */
  1907. /* compute and clear index of rightmost 1 */
  1908. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1909. {
  1910. u32 b;
  1911. b = *mask;
  1912. b &= (0-b);
  1913. *mask &= ~b;
  1914. b *= debruijn32;
  1915. b >>= 27;
  1916. return timer_table->gen_timer_index[b];
  1917. }
  1918. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1919. {
  1920. return REG_READ(ah, AR_TSF_L32);
  1921. }
  1922. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1923. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1924. void (*trigger)(void *),
  1925. void (*overflow)(void *),
  1926. void *arg,
  1927. u8 timer_index)
  1928. {
  1929. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1930. struct ath_gen_timer *timer;
  1931. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1932. if (timer == NULL) {
  1933. ath_err(ath9k_hw_common(ah),
  1934. "Failed to allocate memory for hw timer[%d]\n",
  1935. timer_index);
  1936. return NULL;
  1937. }
  1938. /* allocate a hardware generic timer slot */
  1939. timer_table->timers[timer_index] = timer;
  1940. timer->index = timer_index;
  1941. timer->trigger = trigger;
  1942. timer->overflow = overflow;
  1943. timer->arg = arg;
  1944. return timer;
  1945. }
  1946. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1947. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1948. struct ath_gen_timer *timer,
  1949. u32 timer_next,
  1950. u32 timer_period)
  1951. {
  1952. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1953. u32 tsf;
  1954. BUG_ON(!timer_period);
  1955. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1956. tsf = ath9k_hw_gettsf32(ah);
  1957. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1958. "current tsf %x period %x timer_next %x\n",
  1959. tsf, timer_period, timer_next);
  1960. /*
  1961. * Pull timer_next forward if the current TSF already passed it
  1962. * because of software latency
  1963. */
  1964. if (timer_next < tsf)
  1965. timer_next = tsf + timer_period;
  1966. /*
  1967. * Program generic timer registers
  1968. */
  1969. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1970. timer_next);
  1971. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1972. timer_period);
  1973. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1974. gen_tmr_configuration[timer->index].mode_mask);
  1975. /* Enable both trigger and thresh interrupt masks */
  1976. REG_SET_BIT(ah, AR_IMR_S5,
  1977. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1978. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1979. }
  1980. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  1981. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  1982. {
  1983. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1984. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  1985. (timer->index >= ATH_MAX_GEN_TIMER)) {
  1986. return;
  1987. }
  1988. /* Clear generic timer enable bits. */
  1989. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1990. gen_tmr_configuration[timer->index].mode_mask);
  1991. /* Disable both trigger and thresh interrupt masks */
  1992. REG_CLR_BIT(ah, AR_IMR_S5,
  1993. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1994. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1995. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1996. }
  1997. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  1998. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  1999. {
  2000. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2001. /* free the hardware generic timer slot */
  2002. timer_table->timers[timer->index] = NULL;
  2003. kfree(timer);
  2004. }
  2005. EXPORT_SYMBOL(ath_gen_timer_free);
  2006. /*
  2007. * Generic Timer Interrupts handling
  2008. */
  2009. void ath_gen_timer_isr(struct ath_hw *ah)
  2010. {
  2011. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2012. struct ath_gen_timer *timer;
  2013. struct ath_common *common = ath9k_hw_common(ah);
  2014. u32 trigger_mask, thresh_mask, index;
  2015. /* get hardware generic timer interrupt status */
  2016. trigger_mask = ah->intr_gen_timer_trigger;
  2017. thresh_mask = ah->intr_gen_timer_thresh;
  2018. trigger_mask &= timer_table->timer_mask.val;
  2019. thresh_mask &= timer_table->timer_mask.val;
  2020. trigger_mask &= ~thresh_mask;
  2021. while (thresh_mask) {
  2022. index = rightmost_index(timer_table, &thresh_mask);
  2023. timer = timer_table->timers[index];
  2024. BUG_ON(!timer);
  2025. ath_dbg(common, ATH_DBG_HWTIMER,
  2026. "TSF overflow for Gen timer %d\n", index);
  2027. timer->overflow(timer->arg);
  2028. }
  2029. while (trigger_mask) {
  2030. index = rightmost_index(timer_table, &trigger_mask);
  2031. timer = timer_table->timers[index];
  2032. BUG_ON(!timer);
  2033. ath_dbg(common, ATH_DBG_HWTIMER,
  2034. "Gen timer[%d] trigger\n", index);
  2035. timer->trigger(timer->arg);
  2036. }
  2037. }
  2038. EXPORT_SYMBOL(ath_gen_timer_isr);
  2039. /********/
  2040. /* HTC */
  2041. /********/
  2042. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2043. {
  2044. ah->htc_reset_init = true;
  2045. }
  2046. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2047. static struct {
  2048. u32 version;
  2049. const char * name;
  2050. } ath_mac_bb_names[] = {
  2051. /* Devices with external radios */
  2052. { AR_SREV_VERSION_5416_PCI, "5416" },
  2053. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2054. { AR_SREV_VERSION_9100, "9100" },
  2055. { AR_SREV_VERSION_9160, "9160" },
  2056. /* Single-chip solutions */
  2057. { AR_SREV_VERSION_9280, "9280" },
  2058. { AR_SREV_VERSION_9285, "9285" },
  2059. { AR_SREV_VERSION_9287, "9287" },
  2060. { AR_SREV_VERSION_9271, "9271" },
  2061. { AR_SREV_VERSION_9300, "9300" },
  2062. };
  2063. /* For devices with external radios */
  2064. static struct {
  2065. u16 version;
  2066. const char * name;
  2067. } ath_rf_names[] = {
  2068. { 0, "5133" },
  2069. { AR_RAD5133_SREV_MAJOR, "5133" },
  2070. { AR_RAD5122_SREV_MAJOR, "5122" },
  2071. { AR_RAD2133_SREV_MAJOR, "2133" },
  2072. { AR_RAD2122_SREV_MAJOR, "2122" }
  2073. };
  2074. /*
  2075. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2076. */
  2077. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2078. {
  2079. int i;
  2080. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2081. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2082. return ath_mac_bb_names[i].name;
  2083. }
  2084. }
  2085. return "????";
  2086. }
  2087. /*
  2088. * Return the RF name. "????" is returned if the RF is unknown.
  2089. * Used for devices with external radios.
  2090. */
  2091. static const char *ath9k_hw_rf_name(u16 rf_version)
  2092. {
  2093. int i;
  2094. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2095. if (ath_rf_names[i].version == rf_version) {
  2096. return ath_rf_names[i].name;
  2097. }
  2098. }
  2099. return "????";
  2100. }
  2101. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2102. {
  2103. int used;
  2104. /* chipsets >= AR9280 are single-chip */
  2105. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2106. used = snprintf(hw_name, len,
  2107. "Atheros AR%s Rev:%x",
  2108. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2109. ah->hw_version.macRev);
  2110. }
  2111. else {
  2112. used = snprintf(hw_name, len,
  2113. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2114. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2115. ah->hw_version.macRev,
  2116. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2117. AR_RADIO_SREV_MAJOR)),
  2118. ah->hw_version.phyRev);
  2119. }
  2120. hw_name[used] = '\0';
  2121. }
  2122. EXPORT_SYMBOL(ath9k_hw_name);