sched.c 224 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_FAIR_GROUP_SCHED
  231. /* schedulable entities of this group on each cpu */
  232. struct sched_entity **se;
  233. /* runqueue "owned" by this group on each cpu */
  234. struct cfs_rq **cfs_rq;
  235. unsigned long shares;
  236. #endif
  237. #ifdef CONFIG_RT_GROUP_SCHED
  238. struct sched_rt_entity **rt_se;
  239. struct rt_rq **rt_rq;
  240. struct rt_bandwidth rt_bandwidth;
  241. #endif
  242. struct rcu_head rcu;
  243. struct list_head list;
  244. struct task_group *parent;
  245. struct list_head siblings;
  246. struct list_head children;
  247. };
  248. #ifdef CONFIG_USER_SCHED
  249. /*
  250. * Root task group.
  251. * Every UID task group (including init_task_group aka UID-0) will
  252. * be a child to this group.
  253. */
  254. struct task_group root_task_group;
  255. #ifdef CONFIG_FAIR_GROUP_SCHED
  256. /* Default task group's sched entity on each cpu */
  257. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  258. /* Default task group's cfs_rq on each cpu */
  259. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  260. #endif /* CONFIG_FAIR_GROUP_SCHED */
  261. #ifdef CONFIG_RT_GROUP_SCHED
  262. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  263. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  264. #endif /* CONFIG_RT_GROUP_SCHED */
  265. #else /* !CONFIG_USER_SCHED */
  266. #define root_task_group init_task_group
  267. #endif /* CONFIG_USER_SCHED */
  268. /* task_group_lock serializes add/remove of task groups and also changes to
  269. * a task group's cpu shares.
  270. */
  271. static DEFINE_SPINLOCK(task_group_lock);
  272. #ifdef CONFIG_FAIR_GROUP_SCHED
  273. #ifdef CONFIG_USER_SCHED
  274. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  275. #else /* !CONFIG_USER_SCHED */
  276. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  277. #endif /* CONFIG_USER_SCHED */
  278. /*
  279. * A weight of 0 or 1 can cause arithmetics problems.
  280. * A weight of a cfs_rq is the sum of weights of which entities
  281. * are queued on this cfs_rq, so a weight of a entity should not be
  282. * too large, so as the shares value of a task group.
  283. * (The default weight is 1024 - so there's no practical
  284. * limitation from this.)
  285. */
  286. #define MIN_SHARES 2
  287. #define MAX_SHARES (1UL << 18)
  288. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  289. #endif
  290. /* Default task group.
  291. * Every task in system belong to this group at bootup.
  292. */
  293. struct task_group init_task_group;
  294. /* return group to which a task belongs */
  295. static inline struct task_group *task_group(struct task_struct *p)
  296. {
  297. struct task_group *tg;
  298. #ifdef CONFIG_USER_SCHED
  299. tg = p->user->tg;
  300. #elif defined(CONFIG_CGROUP_SCHED)
  301. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  302. struct task_group, css);
  303. #else
  304. tg = &init_task_group;
  305. #endif
  306. return tg;
  307. }
  308. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  310. {
  311. #ifdef CONFIG_FAIR_GROUP_SCHED
  312. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  313. p->se.parent = task_group(p)->se[cpu];
  314. #endif
  315. #ifdef CONFIG_RT_GROUP_SCHED
  316. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  317. p->rt.parent = task_group(p)->rt_se[cpu];
  318. #endif
  319. }
  320. #else
  321. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  322. static inline struct task_group *task_group(struct task_struct *p)
  323. {
  324. return NULL;
  325. }
  326. #endif /* CONFIG_GROUP_SCHED */
  327. /* CFS-related fields in a runqueue */
  328. struct cfs_rq {
  329. struct load_weight load;
  330. unsigned long nr_running;
  331. u64 exec_clock;
  332. u64 min_vruntime;
  333. struct rb_root tasks_timeline;
  334. struct rb_node *rb_leftmost;
  335. struct list_head tasks;
  336. struct list_head *balance_iterator;
  337. /*
  338. * 'curr' points to currently running entity on this cfs_rq.
  339. * It is set to NULL otherwise (i.e when none are currently running).
  340. */
  341. struct sched_entity *curr, *next, *last;
  342. unsigned int nr_spread_over;
  343. #ifdef CONFIG_FAIR_GROUP_SCHED
  344. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  345. /*
  346. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  347. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  348. * (like users, containers etc.)
  349. *
  350. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  351. * list is used during load balance.
  352. */
  353. struct list_head leaf_cfs_rq_list;
  354. struct task_group *tg; /* group that "owns" this runqueue */
  355. #ifdef CONFIG_SMP
  356. /*
  357. * the part of load.weight contributed by tasks
  358. */
  359. unsigned long task_weight;
  360. /*
  361. * h_load = weight * f(tg)
  362. *
  363. * Where f(tg) is the recursive weight fraction assigned to
  364. * this group.
  365. */
  366. unsigned long h_load;
  367. /*
  368. * this cpu's part of tg->shares
  369. */
  370. unsigned long shares;
  371. /*
  372. * load.weight at the time we set shares
  373. */
  374. unsigned long rq_weight;
  375. #endif
  376. #endif
  377. };
  378. /* Real-Time classes' related field in a runqueue: */
  379. struct rt_rq {
  380. struct rt_prio_array active;
  381. unsigned long rt_nr_running;
  382. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  383. int highest_prio; /* highest queued rt task prio */
  384. #endif
  385. #ifdef CONFIG_SMP
  386. unsigned long rt_nr_migratory;
  387. int overloaded;
  388. #endif
  389. int rt_throttled;
  390. u64 rt_time;
  391. u64 rt_runtime;
  392. /* Nests inside the rq lock: */
  393. spinlock_t rt_runtime_lock;
  394. #ifdef CONFIG_RT_GROUP_SCHED
  395. unsigned long rt_nr_boosted;
  396. struct rq *rq;
  397. struct list_head leaf_rt_rq_list;
  398. struct task_group *tg;
  399. struct sched_rt_entity *rt_se;
  400. #endif
  401. };
  402. #ifdef CONFIG_SMP
  403. /*
  404. * We add the notion of a root-domain which will be used to define per-domain
  405. * variables. Each exclusive cpuset essentially defines an island domain by
  406. * fully partitioning the member cpus from any other cpuset. Whenever a new
  407. * exclusive cpuset is created, we also create and attach a new root-domain
  408. * object.
  409. *
  410. */
  411. struct root_domain {
  412. atomic_t refcount;
  413. cpumask_t span;
  414. cpumask_t online;
  415. /*
  416. * The "RT overload" flag: it gets set if a CPU has more than
  417. * one runnable RT task.
  418. */
  419. cpumask_t rto_mask;
  420. atomic_t rto_count;
  421. #ifdef CONFIG_SMP
  422. struct cpupri cpupri;
  423. #endif
  424. };
  425. /*
  426. * By default the system creates a single root-domain with all cpus as
  427. * members (mimicking the global state we have today).
  428. */
  429. static struct root_domain def_root_domain;
  430. #endif
  431. /*
  432. * This is the main, per-CPU runqueue data structure.
  433. *
  434. * Locking rule: those places that want to lock multiple runqueues
  435. * (such as the load balancing or the thread migration code), lock
  436. * acquire operations must be ordered by ascending &runqueue.
  437. */
  438. struct rq {
  439. /* runqueue lock: */
  440. spinlock_t lock;
  441. /*
  442. * nr_running and cpu_load should be in the same cacheline because
  443. * remote CPUs use both these fields when doing load calculation.
  444. */
  445. unsigned long nr_running;
  446. #define CPU_LOAD_IDX_MAX 5
  447. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  448. unsigned char idle_at_tick;
  449. #ifdef CONFIG_NO_HZ
  450. unsigned long last_tick_seen;
  451. unsigned char in_nohz_recently;
  452. #endif
  453. /* capture load from *all* tasks on this cpu: */
  454. struct load_weight load;
  455. unsigned long nr_load_updates;
  456. u64 nr_switches;
  457. struct cfs_rq cfs;
  458. struct rt_rq rt;
  459. #ifdef CONFIG_FAIR_GROUP_SCHED
  460. /* list of leaf cfs_rq on this cpu: */
  461. struct list_head leaf_cfs_rq_list;
  462. #endif
  463. #ifdef CONFIG_RT_GROUP_SCHED
  464. struct list_head leaf_rt_rq_list;
  465. #endif
  466. /*
  467. * This is part of a global counter where only the total sum
  468. * over all CPUs matters. A task can increase this counter on
  469. * one CPU and if it got migrated afterwards it may decrease
  470. * it on another CPU. Always updated under the runqueue lock:
  471. */
  472. unsigned long nr_uninterruptible;
  473. struct task_struct *curr, *idle;
  474. unsigned long next_balance;
  475. struct mm_struct *prev_mm;
  476. u64 clock;
  477. atomic_t nr_iowait;
  478. #ifdef CONFIG_SMP
  479. struct root_domain *rd;
  480. struct sched_domain *sd;
  481. /* For active balancing */
  482. int active_balance;
  483. int push_cpu;
  484. /* cpu of this runqueue: */
  485. int cpu;
  486. int online;
  487. unsigned long avg_load_per_task;
  488. struct task_struct *migration_thread;
  489. struct list_head migration_queue;
  490. #endif
  491. #ifdef CONFIG_SCHED_HRTICK
  492. #ifdef CONFIG_SMP
  493. int hrtick_csd_pending;
  494. struct call_single_data hrtick_csd;
  495. #endif
  496. struct hrtimer hrtick_timer;
  497. #endif
  498. #ifdef CONFIG_SCHEDSTATS
  499. /* latency stats */
  500. struct sched_info rq_sched_info;
  501. /* sys_sched_yield() stats */
  502. unsigned int yld_exp_empty;
  503. unsigned int yld_act_empty;
  504. unsigned int yld_both_empty;
  505. unsigned int yld_count;
  506. /* schedule() stats */
  507. unsigned int sched_switch;
  508. unsigned int sched_count;
  509. unsigned int sched_goidle;
  510. /* try_to_wake_up() stats */
  511. unsigned int ttwu_count;
  512. unsigned int ttwu_local;
  513. /* BKL stats */
  514. unsigned int bkl_count;
  515. #endif
  516. };
  517. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  518. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  519. {
  520. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  521. }
  522. static inline int cpu_of(struct rq *rq)
  523. {
  524. #ifdef CONFIG_SMP
  525. return rq->cpu;
  526. #else
  527. return 0;
  528. #endif
  529. }
  530. /*
  531. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  532. * See detach_destroy_domains: synchronize_sched for details.
  533. *
  534. * The domain tree of any CPU may only be accessed from within
  535. * preempt-disabled sections.
  536. */
  537. #define for_each_domain(cpu, __sd) \
  538. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  539. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  540. #define this_rq() (&__get_cpu_var(runqueues))
  541. #define task_rq(p) cpu_rq(task_cpu(p))
  542. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  543. static inline void update_rq_clock(struct rq *rq)
  544. {
  545. rq->clock = sched_clock_cpu(cpu_of(rq));
  546. }
  547. /*
  548. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  549. */
  550. #ifdef CONFIG_SCHED_DEBUG
  551. # define const_debug __read_mostly
  552. #else
  553. # define const_debug static const
  554. #endif
  555. /**
  556. * runqueue_is_locked
  557. *
  558. * Returns true if the current cpu runqueue is locked.
  559. * This interface allows printk to be called with the runqueue lock
  560. * held and know whether or not it is OK to wake up the klogd.
  561. */
  562. int runqueue_is_locked(void)
  563. {
  564. int cpu = get_cpu();
  565. struct rq *rq = cpu_rq(cpu);
  566. int ret;
  567. ret = spin_is_locked(&rq->lock);
  568. put_cpu();
  569. return ret;
  570. }
  571. /*
  572. * Debugging: various feature bits
  573. */
  574. #define SCHED_FEAT(name, enabled) \
  575. __SCHED_FEAT_##name ,
  576. enum {
  577. #include "sched_features.h"
  578. };
  579. #undef SCHED_FEAT
  580. #define SCHED_FEAT(name, enabled) \
  581. (1UL << __SCHED_FEAT_##name) * enabled |
  582. const_debug unsigned int sysctl_sched_features =
  583. #include "sched_features.h"
  584. 0;
  585. #undef SCHED_FEAT
  586. #ifdef CONFIG_SCHED_DEBUG
  587. #define SCHED_FEAT(name, enabled) \
  588. #name ,
  589. static __read_mostly char *sched_feat_names[] = {
  590. #include "sched_features.h"
  591. NULL
  592. };
  593. #undef SCHED_FEAT
  594. static int sched_feat_show(struct seq_file *m, void *v)
  595. {
  596. int i;
  597. for (i = 0; sched_feat_names[i]; i++) {
  598. if (!(sysctl_sched_features & (1UL << i)))
  599. seq_puts(m, "NO_");
  600. seq_printf(m, "%s ", sched_feat_names[i]);
  601. }
  602. seq_puts(m, "\n");
  603. return 0;
  604. }
  605. static ssize_t
  606. sched_feat_write(struct file *filp, const char __user *ubuf,
  607. size_t cnt, loff_t *ppos)
  608. {
  609. char buf[64];
  610. char *cmp = buf;
  611. int neg = 0;
  612. int i;
  613. if (cnt > 63)
  614. cnt = 63;
  615. if (copy_from_user(&buf, ubuf, cnt))
  616. return -EFAULT;
  617. buf[cnt] = 0;
  618. if (strncmp(buf, "NO_", 3) == 0) {
  619. neg = 1;
  620. cmp += 3;
  621. }
  622. for (i = 0; sched_feat_names[i]; i++) {
  623. int len = strlen(sched_feat_names[i]);
  624. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  625. if (neg)
  626. sysctl_sched_features &= ~(1UL << i);
  627. else
  628. sysctl_sched_features |= (1UL << i);
  629. break;
  630. }
  631. }
  632. if (!sched_feat_names[i])
  633. return -EINVAL;
  634. filp->f_pos += cnt;
  635. return cnt;
  636. }
  637. static int sched_feat_open(struct inode *inode, struct file *filp)
  638. {
  639. return single_open(filp, sched_feat_show, NULL);
  640. }
  641. static struct file_operations sched_feat_fops = {
  642. .open = sched_feat_open,
  643. .write = sched_feat_write,
  644. .read = seq_read,
  645. .llseek = seq_lseek,
  646. .release = single_release,
  647. };
  648. static __init int sched_init_debug(void)
  649. {
  650. debugfs_create_file("sched_features", 0644, NULL, NULL,
  651. &sched_feat_fops);
  652. return 0;
  653. }
  654. late_initcall(sched_init_debug);
  655. #endif
  656. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  657. /*
  658. * Number of tasks to iterate in a single balance run.
  659. * Limited because this is done with IRQs disabled.
  660. */
  661. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  662. /*
  663. * ratelimit for updating the group shares.
  664. * default: 0.25ms
  665. */
  666. unsigned int sysctl_sched_shares_ratelimit = 250000;
  667. /*
  668. * Inject some fuzzyness into changing the per-cpu group shares
  669. * this avoids remote rq-locks at the expense of fairness.
  670. * default: 4
  671. */
  672. unsigned int sysctl_sched_shares_thresh = 4;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. spin_unlock_irq(&rq->lock);
  747. #else
  748. spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * __task_rq_lock - lock the runqueue a given task resides on.
  769. * Must be called interrupts disabled.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. for (;;) {
  775. struct rq *rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. void task_rq_unlock_wait(struct task_struct *p)
  801. {
  802. struct rq *rq = task_rq(p);
  803. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  804. spin_unlock_wait(&rq->lock);
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. #ifdef CONFIG_SCHED_HRTICK
  829. /*
  830. * Use HR-timers to deliver accurate preemption points.
  831. *
  832. * Its all a bit involved since we cannot program an hrt while holding the
  833. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  834. * reschedule event.
  835. *
  836. * When we get rescheduled we reprogram the hrtick_timer outside of the
  837. * rq->lock.
  838. */
  839. /*
  840. * Use hrtick when:
  841. * - enabled by features
  842. * - hrtimer is actually high res
  843. */
  844. static inline int hrtick_enabled(struct rq *rq)
  845. {
  846. if (!sched_feat(HRTICK))
  847. return 0;
  848. if (!cpu_active(cpu_of(rq)))
  849. return 0;
  850. return hrtimer_is_hres_active(&rq->hrtick_timer);
  851. }
  852. static void hrtick_clear(struct rq *rq)
  853. {
  854. if (hrtimer_active(&rq->hrtick_timer))
  855. hrtimer_cancel(&rq->hrtick_timer);
  856. }
  857. /*
  858. * High-resolution timer tick.
  859. * Runs from hardirq context with interrupts disabled.
  860. */
  861. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  862. {
  863. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  864. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  865. spin_lock(&rq->lock);
  866. update_rq_clock(rq);
  867. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  868. spin_unlock(&rq->lock);
  869. return HRTIMER_NORESTART;
  870. }
  871. #ifdef CONFIG_SMP
  872. /*
  873. * called from hardirq (IPI) context
  874. */
  875. static void __hrtick_start(void *arg)
  876. {
  877. struct rq *rq = arg;
  878. spin_lock(&rq->lock);
  879. hrtimer_restart(&rq->hrtick_timer);
  880. rq->hrtick_csd_pending = 0;
  881. spin_unlock(&rq->lock);
  882. }
  883. /*
  884. * Called to set the hrtick timer state.
  885. *
  886. * called with rq->lock held and irqs disabled
  887. */
  888. static void hrtick_start(struct rq *rq, u64 delay)
  889. {
  890. struct hrtimer *timer = &rq->hrtick_timer;
  891. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  892. hrtimer_set_expires(timer, time);
  893. if (rq == this_rq()) {
  894. hrtimer_restart(timer);
  895. } else if (!rq->hrtick_csd_pending) {
  896. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  897. rq->hrtick_csd_pending = 1;
  898. }
  899. }
  900. static int
  901. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  902. {
  903. int cpu = (int)(long)hcpu;
  904. switch (action) {
  905. case CPU_UP_CANCELED:
  906. case CPU_UP_CANCELED_FROZEN:
  907. case CPU_DOWN_PREPARE:
  908. case CPU_DOWN_PREPARE_FROZEN:
  909. case CPU_DEAD:
  910. case CPU_DEAD_FROZEN:
  911. hrtick_clear(cpu_rq(cpu));
  912. return NOTIFY_OK;
  913. }
  914. return NOTIFY_DONE;
  915. }
  916. static __init void init_hrtick(void)
  917. {
  918. hotcpu_notifier(hotplug_hrtick, 0);
  919. }
  920. #else
  921. /*
  922. * Called to set the hrtick timer state.
  923. *
  924. * called with rq->lock held and irqs disabled
  925. */
  926. static void hrtick_start(struct rq *rq, u64 delay)
  927. {
  928. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  945. }
  946. #else /* CONFIG_SCHED_HRTICK */
  947. static inline void hrtick_clear(struct rq *rq)
  948. {
  949. }
  950. static inline void init_rq_hrtick(struct rq *rq)
  951. {
  952. }
  953. static inline void init_hrtick(void)
  954. {
  955. }
  956. #endif /* CONFIG_SCHED_HRTICK */
  957. /*
  958. * resched_task - mark a task 'to be rescheduled now'.
  959. *
  960. * On UP this means the setting of the need_resched flag, on SMP it
  961. * might also involve a cross-CPU call to trigger the scheduler on
  962. * the target CPU.
  963. */
  964. #ifdef CONFIG_SMP
  965. #ifndef tsk_is_polling
  966. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  967. #endif
  968. static void resched_task(struct task_struct *p)
  969. {
  970. int cpu;
  971. assert_spin_locked(&task_rq(p)->lock);
  972. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  973. return;
  974. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  975. cpu = task_cpu(p);
  976. if (cpu == smp_processor_id())
  977. return;
  978. /* NEED_RESCHED must be visible before we test polling */
  979. smp_mb();
  980. if (!tsk_is_polling(p))
  981. smp_send_reschedule(cpu);
  982. }
  983. static void resched_cpu(int cpu)
  984. {
  985. struct rq *rq = cpu_rq(cpu);
  986. unsigned long flags;
  987. if (!spin_trylock_irqsave(&rq->lock, flags))
  988. return;
  989. resched_task(cpu_curr(cpu));
  990. spin_unlock_irqrestore(&rq->lock, flags);
  991. }
  992. #ifdef CONFIG_NO_HZ
  993. /*
  994. * When add_timer_on() enqueues a timer into the timer wheel of an
  995. * idle CPU then this timer might expire before the next timer event
  996. * which is scheduled to wake up that CPU. In case of a completely
  997. * idle system the next event might even be infinite time into the
  998. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  999. * leaves the inner idle loop so the newly added timer is taken into
  1000. * account when the CPU goes back to idle and evaluates the timer
  1001. * wheel for the next timer event.
  1002. */
  1003. void wake_up_idle_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. if (cpu == smp_processor_id())
  1007. return;
  1008. /*
  1009. * This is safe, as this function is called with the timer
  1010. * wheel base lock of (cpu) held. When the CPU is on the way
  1011. * to idle and has not yet set rq->curr to idle then it will
  1012. * be serialized on the timer wheel base lock and take the new
  1013. * timer into account automatically.
  1014. */
  1015. if (rq->curr != rq->idle)
  1016. return;
  1017. /*
  1018. * We can set TIF_RESCHED on the idle task of the other CPU
  1019. * lockless. The worst case is that the other CPU runs the
  1020. * idle task through an additional NOOP schedule()
  1021. */
  1022. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1023. /* NEED_RESCHED must be visible before we test polling */
  1024. smp_mb();
  1025. if (!tsk_is_polling(rq->idle))
  1026. smp_send_reschedule(cpu);
  1027. }
  1028. #endif /* CONFIG_NO_HZ */
  1029. #else /* !CONFIG_SMP */
  1030. static void resched_task(struct task_struct *p)
  1031. {
  1032. assert_spin_locked(&task_rq(p)->lock);
  1033. set_tsk_need_resched(p);
  1034. }
  1035. #endif /* CONFIG_SMP */
  1036. #if BITS_PER_LONG == 32
  1037. # define WMULT_CONST (~0UL)
  1038. #else
  1039. # define WMULT_CONST (1UL << 32)
  1040. #endif
  1041. #define WMULT_SHIFT 32
  1042. /*
  1043. * Shift right and round:
  1044. */
  1045. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1046. /*
  1047. * delta *= weight / lw
  1048. */
  1049. static unsigned long
  1050. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1051. struct load_weight *lw)
  1052. {
  1053. u64 tmp;
  1054. if (!lw->inv_weight) {
  1055. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1056. lw->inv_weight = 1;
  1057. else
  1058. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1059. / (lw->weight+1);
  1060. }
  1061. tmp = (u64)delta_exec * weight;
  1062. /*
  1063. * Check whether we'd overflow the 64-bit multiplication:
  1064. */
  1065. if (unlikely(tmp > WMULT_CONST))
  1066. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1067. WMULT_SHIFT/2);
  1068. else
  1069. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1070. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1071. }
  1072. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1073. {
  1074. lw->weight += inc;
  1075. lw->inv_weight = 0;
  1076. }
  1077. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1078. {
  1079. lw->weight -= dec;
  1080. lw->inv_weight = 0;
  1081. }
  1082. /*
  1083. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1084. * of tasks with abnormal "nice" values across CPUs the contribution that
  1085. * each task makes to its run queue's load is weighted according to its
  1086. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1087. * scaled version of the new time slice allocation that they receive on time
  1088. * slice expiry etc.
  1089. */
  1090. #define WEIGHT_IDLEPRIO 2
  1091. #define WMULT_IDLEPRIO (1 << 31)
  1092. /*
  1093. * Nice levels are multiplicative, with a gentle 10% change for every
  1094. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1095. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1096. * that remained on nice 0.
  1097. *
  1098. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1099. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1100. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1101. * If a task goes up by ~10% and another task goes down by ~10% then
  1102. * the relative distance between them is ~25%.)
  1103. */
  1104. static const int prio_to_weight[40] = {
  1105. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1106. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1107. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1108. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1109. /* 0 */ 1024, 820, 655, 526, 423,
  1110. /* 5 */ 335, 272, 215, 172, 137,
  1111. /* 10 */ 110, 87, 70, 56, 45,
  1112. /* 15 */ 36, 29, 23, 18, 15,
  1113. };
  1114. /*
  1115. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1116. *
  1117. * In cases where the weight does not change often, we can use the
  1118. * precalculated inverse to speed up arithmetics by turning divisions
  1119. * into multiplications:
  1120. */
  1121. static const u32 prio_to_wmult[40] = {
  1122. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1123. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1124. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1125. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1126. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1127. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1128. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1129. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1130. };
  1131. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1132. /*
  1133. * runqueue iterator, to support SMP load-balancing between different
  1134. * scheduling classes, without having to expose their internal data
  1135. * structures to the load-balancing proper:
  1136. */
  1137. struct rq_iterator {
  1138. void *arg;
  1139. struct task_struct *(*start)(void *);
  1140. struct task_struct *(*next)(void *);
  1141. };
  1142. #ifdef CONFIG_SMP
  1143. static unsigned long
  1144. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. unsigned long max_load_move, struct sched_domain *sd,
  1146. enum cpu_idle_type idle, int *all_pinned,
  1147. int *this_best_prio, struct rq_iterator *iterator);
  1148. static int
  1149. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1150. struct sched_domain *sd, enum cpu_idle_type idle,
  1151. struct rq_iterator *iterator);
  1152. #endif
  1153. #ifdef CONFIG_CGROUP_CPUACCT
  1154. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1155. #else
  1156. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1157. #endif
  1158. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1159. {
  1160. update_load_add(&rq->load, load);
  1161. }
  1162. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1163. {
  1164. update_load_sub(&rq->load, load);
  1165. }
  1166. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1167. typedef int (*tg_visitor)(struct task_group *, void *);
  1168. /*
  1169. * Iterate the full tree, calling @down when first entering a node and @up when
  1170. * leaving it for the final time.
  1171. */
  1172. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1173. {
  1174. struct task_group *parent, *child;
  1175. int ret;
  1176. rcu_read_lock();
  1177. parent = &root_task_group;
  1178. down:
  1179. ret = (*down)(parent, data);
  1180. if (ret)
  1181. goto out_unlock;
  1182. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1183. parent = child;
  1184. goto down;
  1185. up:
  1186. continue;
  1187. }
  1188. ret = (*up)(parent, data);
  1189. if (ret)
  1190. goto out_unlock;
  1191. child = parent;
  1192. parent = parent->parent;
  1193. if (parent)
  1194. goto up;
  1195. out_unlock:
  1196. rcu_read_unlock();
  1197. return ret;
  1198. }
  1199. static int tg_nop(struct task_group *tg, void *data)
  1200. {
  1201. return 0;
  1202. }
  1203. #endif
  1204. #ifdef CONFIG_SMP
  1205. static unsigned long source_load(int cpu, int type);
  1206. static unsigned long target_load(int cpu, int type);
  1207. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1208. static unsigned long cpu_avg_load_per_task(int cpu)
  1209. {
  1210. struct rq *rq = cpu_rq(cpu);
  1211. if (rq->nr_running)
  1212. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1213. else
  1214. rq->avg_load_per_task = 0;
  1215. return rq->avg_load_per_task;
  1216. }
  1217. #ifdef CONFIG_FAIR_GROUP_SCHED
  1218. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1219. /*
  1220. * Calculate and set the cpu's group shares.
  1221. */
  1222. static void
  1223. update_group_shares_cpu(struct task_group *tg, int cpu,
  1224. unsigned long sd_shares, unsigned long sd_rq_weight)
  1225. {
  1226. unsigned long shares;
  1227. unsigned long rq_weight;
  1228. if (!tg->se[cpu])
  1229. return;
  1230. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1231. /*
  1232. * \Sum shares * rq_weight
  1233. * shares = -----------------------
  1234. * \Sum rq_weight
  1235. *
  1236. */
  1237. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1238. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1239. if (abs(shares - tg->se[cpu]->load.weight) >
  1240. sysctl_sched_shares_thresh) {
  1241. struct rq *rq = cpu_rq(cpu);
  1242. unsigned long flags;
  1243. spin_lock_irqsave(&rq->lock, flags);
  1244. tg->cfs_rq[cpu]->shares = shares;
  1245. __set_se_shares(tg->se[cpu], shares);
  1246. spin_unlock_irqrestore(&rq->lock, flags);
  1247. }
  1248. }
  1249. /*
  1250. * Re-compute the task group their per cpu shares over the given domain.
  1251. * This needs to be done in a bottom-up fashion because the rq weight of a
  1252. * parent group depends on the shares of its child groups.
  1253. */
  1254. static int tg_shares_up(struct task_group *tg, void *data)
  1255. {
  1256. unsigned long weight, rq_weight = 0;
  1257. unsigned long shares = 0;
  1258. struct sched_domain *sd = data;
  1259. int i;
  1260. for_each_cpu_mask(i, sd->span) {
  1261. /*
  1262. * If there are currently no tasks on the cpu pretend there
  1263. * is one of average load so that when a new task gets to
  1264. * run here it will not get delayed by group starvation.
  1265. */
  1266. weight = tg->cfs_rq[i]->load.weight;
  1267. if (!weight)
  1268. weight = NICE_0_LOAD;
  1269. tg->cfs_rq[i]->rq_weight = weight;
  1270. rq_weight += weight;
  1271. shares += tg->cfs_rq[i]->shares;
  1272. }
  1273. if ((!shares && rq_weight) || shares > tg->shares)
  1274. shares = tg->shares;
  1275. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1276. shares = tg->shares;
  1277. for_each_cpu_mask(i, sd->span)
  1278. update_group_shares_cpu(tg, i, shares, rq_weight);
  1279. return 0;
  1280. }
  1281. /*
  1282. * Compute the cpu's hierarchical load factor for each task group.
  1283. * This needs to be done in a top-down fashion because the load of a child
  1284. * group is a fraction of its parents load.
  1285. */
  1286. static int tg_load_down(struct task_group *tg, void *data)
  1287. {
  1288. unsigned long load;
  1289. long cpu = (long)data;
  1290. if (!tg->parent) {
  1291. load = cpu_rq(cpu)->load.weight;
  1292. } else {
  1293. load = tg->parent->cfs_rq[cpu]->h_load;
  1294. load *= tg->cfs_rq[cpu]->shares;
  1295. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1296. }
  1297. tg->cfs_rq[cpu]->h_load = load;
  1298. return 0;
  1299. }
  1300. static void update_shares(struct sched_domain *sd)
  1301. {
  1302. u64 now = cpu_clock(raw_smp_processor_id());
  1303. s64 elapsed = now - sd->last_update;
  1304. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1305. sd->last_update = now;
  1306. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1307. }
  1308. }
  1309. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1310. {
  1311. spin_unlock(&rq->lock);
  1312. update_shares(sd);
  1313. spin_lock(&rq->lock);
  1314. }
  1315. static void update_h_load(long cpu)
  1316. {
  1317. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1318. }
  1319. #else
  1320. static inline void update_shares(struct sched_domain *sd)
  1321. {
  1322. }
  1323. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1324. {
  1325. }
  1326. #endif
  1327. #endif
  1328. #ifdef CONFIG_FAIR_GROUP_SCHED
  1329. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1330. {
  1331. #ifdef CONFIG_SMP
  1332. cfs_rq->shares = shares;
  1333. #endif
  1334. }
  1335. #endif
  1336. #include "sched_stats.h"
  1337. #include "sched_idletask.c"
  1338. #include "sched_fair.c"
  1339. #include "sched_rt.c"
  1340. #ifdef CONFIG_SCHED_DEBUG
  1341. # include "sched_debug.c"
  1342. #endif
  1343. #define sched_class_highest (&rt_sched_class)
  1344. #define for_each_class(class) \
  1345. for (class = sched_class_highest; class; class = class->next)
  1346. static void inc_nr_running(struct rq *rq)
  1347. {
  1348. rq->nr_running++;
  1349. }
  1350. static void dec_nr_running(struct rq *rq)
  1351. {
  1352. rq->nr_running--;
  1353. }
  1354. static void set_load_weight(struct task_struct *p)
  1355. {
  1356. if (task_has_rt_policy(p)) {
  1357. p->se.load.weight = prio_to_weight[0] * 2;
  1358. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1359. return;
  1360. }
  1361. /*
  1362. * SCHED_IDLE tasks get minimal weight:
  1363. */
  1364. if (p->policy == SCHED_IDLE) {
  1365. p->se.load.weight = WEIGHT_IDLEPRIO;
  1366. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1367. return;
  1368. }
  1369. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1370. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1371. }
  1372. static void update_avg(u64 *avg, u64 sample)
  1373. {
  1374. s64 diff = sample - *avg;
  1375. *avg += diff >> 3;
  1376. }
  1377. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1378. {
  1379. sched_info_queued(p);
  1380. p->sched_class->enqueue_task(rq, p, wakeup);
  1381. p->se.on_rq = 1;
  1382. }
  1383. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1384. {
  1385. if (sleep && p->se.last_wakeup) {
  1386. update_avg(&p->se.avg_overlap,
  1387. p->se.sum_exec_runtime - p->se.last_wakeup);
  1388. p->se.last_wakeup = 0;
  1389. }
  1390. sched_info_dequeued(p);
  1391. p->sched_class->dequeue_task(rq, p, sleep);
  1392. p->se.on_rq = 0;
  1393. }
  1394. /*
  1395. * __normal_prio - return the priority that is based on the static prio
  1396. */
  1397. static inline int __normal_prio(struct task_struct *p)
  1398. {
  1399. return p->static_prio;
  1400. }
  1401. /*
  1402. * Calculate the expected normal priority: i.e. priority
  1403. * without taking RT-inheritance into account. Might be
  1404. * boosted by interactivity modifiers. Changes upon fork,
  1405. * setprio syscalls, and whenever the interactivity
  1406. * estimator recalculates.
  1407. */
  1408. static inline int normal_prio(struct task_struct *p)
  1409. {
  1410. int prio;
  1411. if (task_has_rt_policy(p))
  1412. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1413. else
  1414. prio = __normal_prio(p);
  1415. return prio;
  1416. }
  1417. /*
  1418. * Calculate the current priority, i.e. the priority
  1419. * taken into account by the scheduler. This value might
  1420. * be boosted by RT tasks, or might be boosted by
  1421. * interactivity modifiers. Will be RT if the task got
  1422. * RT-boosted. If not then it returns p->normal_prio.
  1423. */
  1424. static int effective_prio(struct task_struct *p)
  1425. {
  1426. p->normal_prio = normal_prio(p);
  1427. /*
  1428. * If we are RT tasks or we were boosted to RT priority,
  1429. * keep the priority unchanged. Otherwise, update priority
  1430. * to the normal priority:
  1431. */
  1432. if (!rt_prio(p->prio))
  1433. return p->normal_prio;
  1434. return p->prio;
  1435. }
  1436. /*
  1437. * activate_task - move a task to the runqueue.
  1438. */
  1439. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1440. {
  1441. if (task_contributes_to_load(p))
  1442. rq->nr_uninterruptible--;
  1443. enqueue_task(rq, p, wakeup);
  1444. inc_nr_running(rq);
  1445. }
  1446. /*
  1447. * deactivate_task - remove a task from the runqueue.
  1448. */
  1449. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1450. {
  1451. if (task_contributes_to_load(p))
  1452. rq->nr_uninterruptible++;
  1453. dequeue_task(rq, p, sleep);
  1454. dec_nr_running(rq);
  1455. }
  1456. /**
  1457. * task_curr - is this task currently executing on a CPU?
  1458. * @p: the task in question.
  1459. */
  1460. inline int task_curr(const struct task_struct *p)
  1461. {
  1462. return cpu_curr(task_cpu(p)) == p;
  1463. }
  1464. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1465. {
  1466. set_task_rq(p, cpu);
  1467. #ifdef CONFIG_SMP
  1468. /*
  1469. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1470. * successfuly executed on another CPU. We must ensure that updates of
  1471. * per-task data have been completed by this moment.
  1472. */
  1473. smp_wmb();
  1474. task_thread_info(p)->cpu = cpu;
  1475. #endif
  1476. }
  1477. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1478. const struct sched_class *prev_class,
  1479. int oldprio, int running)
  1480. {
  1481. if (prev_class != p->sched_class) {
  1482. if (prev_class->switched_from)
  1483. prev_class->switched_from(rq, p, running);
  1484. p->sched_class->switched_to(rq, p, running);
  1485. } else
  1486. p->sched_class->prio_changed(rq, p, oldprio, running);
  1487. }
  1488. #ifdef CONFIG_SMP
  1489. /* Used instead of source_load when we know the type == 0 */
  1490. static unsigned long weighted_cpuload(const int cpu)
  1491. {
  1492. return cpu_rq(cpu)->load.weight;
  1493. }
  1494. /*
  1495. * Is this task likely cache-hot:
  1496. */
  1497. static int
  1498. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1499. {
  1500. s64 delta;
  1501. /*
  1502. * Buddy candidates are cache hot:
  1503. */
  1504. if (sched_feat(CACHE_HOT_BUDDY) &&
  1505. (&p->se == cfs_rq_of(&p->se)->next ||
  1506. &p->se == cfs_rq_of(&p->se)->last))
  1507. return 1;
  1508. if (p->sched_class != &fair_sched_class)
  1509. return 0;
  1510. if (sysctl_sched_migration_cost == -1)
  1511. return 1;
  1512. if (sysctl_sched_migration_cost == 0)
  1513. return 0;
  1514. delta = now - p->se.exec_start;
  1515. return delta < (s64)sysctl_sched_migration_cost;
  1516. }
  1517. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1518. {
  1519. int old_cpu = task_cpu(p);
  1520. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1521. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1522. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1523. u64 clock_offset;
  1524. clock_offset = old_rq->clock - new_rq->clock;
  1525. #ifdef CONFIG_SCHEDSTATS
  1526. if (p->se.wait_start)
  1527. p->se.wait_start -= clock_offset;
  1528. if (p->se.sleep_start)
  1529. p->se.sleep_start -= clock_offset;
  1530. if (p->se.block_start)
  1531. p->se.block_start -= clock_offset;
  1532. if (old_cpu != new_cpu) {
  1533. schedstat_inc(p, se.nr_migrations);
  1534. if (task_hot(p, old_rq->clock, NULL))
  1535. schedstat_inc(p, se.nr_forced2_migrations);
  1536. }
  1537. #endif
  1538. p->se.vruntime -= old_cfsrq->min_vruntime -
  1539. new_cfsrq->min_vruntime;
  1540. __set_task_cpu(p, new_cpu);
  1541. }
  1542. struct migration_req {
  1543. struct list_head list;
  1544. struct task_struct *task;
  1545. int dest_cpu;
  1546. struct completion done;
  1547. };
  1548. /*
  1549. * The task's runqueue lock must be held.
  1550. * Returns true if you have to wait for migration thread.
  1551. */
  1552. static int
  1553. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1554. {
  1555. struct rq *rq = task_rq(p);
  1556. /*
  1557. * If the task is not on a runqueue (and not running), then
  1558. * it is sufficient to simply update the task's cpu field.
  1559. */
  1560. if (!p->se.on_rq && !task_running(rq, p)) {
  1561. set_task_cpu(p, dest_cpu);
  1562. return 0;
  1563. }
  1564. init_completion(&req->done);
  1565. req->task = p;
  1566. req->dest_cpu = dest_cpu;
  1567. list_add(&req->list, &rq->migration_queue);
  1568. return 1;
  1569. }
  1570. /*
  1571. * wait_task_inactive - wait for a thread to unschedule.
  1572. *
  1573. * If @match_state is nonzero, it's the @p->state value just checked and
  1574. * not expected to change. If it changes, i.e. @p might have woken up,
  1575. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1576. * we return a positive number (its total switch count). If a second call
  1577. * a short while later returns the same number, the caller can be sure that
  1578. * @p has remained unscheduled the whole time.
  1579. *
  1580. * The caller must ensure that the task *will* unschedule sometime soon,
  1581. * else this function might spin for a *long* time. This function can't
  1582. * be called with interrupts off, or it may introduce deadlock with
  1583. * smp_call_function() if an IPI is sent by the same process we are
  1584. * waiting to become inactive.
  1585. */
  1586. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1587. {
  1588. unsigned long flags;
  1589. int running, on_rq;
  1590. unsigned long ncsw;
  1591. struct rq *rq;
  1592. for (;;) {
  1593. /*
  1594. * We do the initial early heuristics without holding
  1595. * any task-queue locks at all. We'll only try to get
  1596. * the runqueue lock when things look like they will
  1597. * work out!
  1598. */
  1599. rq = task_rq(p);
  1600. /*
  1601. * If the task is actively running on another CPU
  1602. * still, just relax and busy-wait without holding
  1603. * any locks.
  1604. *
  1605. * NOTE! Since we don't hold any locks, it's not
  1606. * even sure that "rq" stays as the right runqueue!
  1607. * But we don't care, since "task_running()" will
  1608. * return false if the runqueue has changed and p
  1609. * is actually now running somewhere else!
  1610. */
  1611. while (task_running(rq, p)) {
  1612. if (match_state && unlikely(p->state != match_state))
  1613. return 0;
  1614. cpu_relax();
  1615. }
  1616. /*
  1617. * Ok, time to look more closely! We need the rq
  1618. * lock now, to be *sure*. If we're wrong, we'll
  1619. * just go back and repeat.
  1620. */
  1621. rq = task_rq_lock(p, &flags);
  1622. trace_sched_wait_task(rq, p);
  1623. running = task_running(rq, p);
  1624. on_rq = p->se.on_rq;
  1625. ncsw = 0;
  1626. if (!match_state || p->state == match_state)
  1627. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1628. task_rq_unlock(rq, &flags);
  1629. /*
  1630. * If it changed from the expected state, bail out now.
  1631. */
  1632. if (unlikely(!ncsw))
  1633. break;
  1634. /*
  1635. * Was it really running after all now that we
  1636. * checked with the proper locks actually held?
  1637. *
  1638. * Oops. Go back and try again..
  1639. */
  1640. if (unlikely(running)) {
  1641. cpu_relax();
  1642. continue;
  1643. }
  1644. /*
  1645. * It's not enough that it's not actively running,
  1646. * it must be off the runqueue _entirely_, and not
  1647. * preempted!
  1648. *
  1649. * So if it wa still runnable (but just not actively
  1650. * running right now), it's preempted, and we should
  1651. * yield - it could be a while.
  1652. */
  1653. if (unlikely(on_rq)) {
  1654. schedule_timeout_uninterruptible(1);
  1655. continue;
  1656. }
  1657. /*
  1658. * Ahh, all good. It wasn't running, and it wasn't
  1659. * runnable, which means that it will never become
  1660. * running in the future either. We're all done!
  1661. */
  1662. break;
  1663. }
  1664. return ncsw;
  1665. }
  1666. /***
  1667. * kick_process - kick a running thread to enter/exit the kernel
  1668. * @p: the to-be-kicked thread
  1669. *
  1670. * Cause a process which is running on another CPU to enter
  1671. * kernel-mode, without any delay. (to get signals handled.)
  1672. *
  1673. * NOTE: this function doesnt have to take the runqueue lock,
  1674. * because all it wants to ensure is that the remote task enters
  1675. * the kernel. If the IPI races and the task has been migrated
  1676. * to another CPU then no harm is done and the purpose has been
  1677. * achieved as well.
  1678. */
  1679. void kick_process(struct task_struct *p)
  1680. {
  1681. int cpu;
  1682. preempt_disable();
  1683. cpu = task_cpu(p);
  1684. if ((cpu != smp_processor_id()) && task_curr(p))
  1685. smp_send_reschedule(cpu);
  1686. preempt_enable();
  1687. }
  1688. /*
  1689. * Return a low guess at the load of a migration-source cpu weighted
  1690. * according to the scheduling class and "nice" value.
  1691. *
  1692. * We want to under-estimate the load of migration sources, to
  1693. * balance conservatively.
  1694. */
  1695. static unsigned long source_load(int cpu, int type)
  1696. {
  1697. struct rq *rq = cpu_rq(cpu);
  1698. unsigned long total = weighted_cpuload(cpu);
  1699. if (type == 0 || !sched_feat(LB_BIAS))
  1700. return total;
  1701. return min(rq->cpu_load[type-1], total);
  1702. }
  1703. /*
  1704. * Return a high guess at the load of a migration-target cpu weighted
  1705. * according to the scheduling class and "nice" value.
  1706. */
  1707. static unsigned long target_load(int cpu, int type)
  1708. {
  1709. struct rq *rq = cpu_rq(cpu);
  1710. unsigned long total = weighted_cpuload(cpu);
  1711. if (type == 0 || !sched_feat(LB_BIAS))
  1712. return total;
  1713. return max(rq->cpu_load[type-1], total);
  1714. }
  1715. /*
  1716. * find_idlest_group finds and returns the least busy CPU group within the
  1717. * domain.
  1718. */
  1719. static struct sched_group *
  1720. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1721. {
  1722. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1723. unsigned long min_load = ULONG_MAX, this_load = 0;
  1724. int load_idx = sd->forkexec_idx;
  1725. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1726. do {
  1727. unsigned long load, avg_load;
  1728. int local_group;
  1729. int i;
  1730. /* Skip over this group if it has no CPUs allowed */
  1731. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1732. continue;
  1733. local_group = cpu_isset(this_cpu, group->cpumask);
  1734. /* Tally up the load of all CPUs in the group */
  1735. avg_load = 0;
  1736. for_each_cpu(i, &group->cpumask) {
  1737. /* Bias balancing toward cpus of our domain */
  1738. if (local_group)
  1739. load = source_load(i, load_idx);
  1740. else
  1741. load = target_load(i, load_idx);
  1742. avg_load += load;
  1743. }
  1744. /* Adjust by relative CPU power of the group */
  1745. avg_load = sg_div_cpu_power(group,
  1746. avg_load * SCHED_LOAD_SCALE);
  1747. if (local_group) {
  1748. this_load = avg_load;
  1749. this = group;
  1750. } else if (avg_load < min_load) {
  1751. min_load = avg_load;
  1752. idlest = group;
  1753. }
  1754. } while (group = group->next, group != sd->groups);
  1755. if (!idlest || 100*this_load < imbalance*min_load)
  1756. return NULL;
  1757. return idlest;
  1758. }
  1759. /*
  1760. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1761. */
  1762. static int
  1763. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1764. cpumask_t *tmp)
  1765. {
  1766. unsigned long load, min_load = ULONG_MAX;
  1767. int idlest = -1;
  1768. int i;
  1769. /* Traverse only the allowed CPUs */
  1770. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1771. for_each_cpu(i, tmp) {
  1772. load = weighted_cpuload(i);
  1773. if (load < min_load || (load == min_load && i == this_cpu)) {
  1774. min_load = load;
  1775. idlest = i;
  1776. }
  1777. }
  1778. return idlest;
  1779. }
  1780. /*
  1781. * sched_balance_self: balance the current task (running on cpu) in domains
  1782. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1783. * SD_BALANCE_EXEC.
  1784. *
  1785. * Balance, ie. select the least loaded group.
  1786. *
  1787. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1788. *
  1789. * preempt must be disabled.
  1790. */
  1791. static int sched_balance_self(int cpu, int flag)
  1792. {
  1793. struct task_struct *t = current;
  1794. struct sched_domain *tmp, *sd = NULL;
  1795. for_each_domain(cpu, tmp) {
  1796. /*
  1797. * If power savings logic is enabled for a domain, stop there.
  1798. */
  1799. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1800. break;
  1801. if (tmp->flags & flag)
  1802. sd = tmp;
  1803. }
  1804. if (sd)
  1805. update_shares(sd);
  1806. while (sd) {
  1807. cpumask_t span, tmpmask;
  1808. struct sched_group *group;
  1809. int new_cpu, weight;
  1810. if (!(sd->flags & flag)) {
  1811. sd = sd->child;
  1812. continue;
  1813. }
  1814. span = sd->span;
  1815. group = find_idlest_group(sd, t, cpu);
  1816. if (!group) {
  1817. sd = sd->child;
  1818. continue;
  1819. }
  1820. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1821. if (new_cpu == -1 || new_cpu == cpu) {
  1822. /* Now try balancing at a lower domain level of cpu */
  1823. sd = sd->child;
  1824. continue;
  1825. }
  1826. /* Now try balancing at a lower domain level of new_cpu */
  1827. cpu = new_cpu;
  1828. sd = NULL;
  1829. weight = cpus_weight(span);
  1830. for_each_domain(cpu, tmp) {
  1831. if (weight <= cpus_weight(tmp->span))
  1832. break;
  1833. if (tmp->flags & flag)
  1834. sd = tmp;
  1835. }
  1836. /* while loop will break here if sd == NULL */
  1837. }
  1838. return cpu;
  1839. }
  1840. #endif /* CONFIG_SMP */
  1841. /***
  1842. * try_to_wake_up - wake up a thread
  1843. * @p: the to-be-woken-up thread
  1844. * @state: the mask of task states that can be woken
  1845. * @sync: do a synchronous wakeup?
  1846. *
  1847. * Put it on the run-queue if it's not already there. The "current"
  1848. * thread is always on the run-queue (except when the actual
  1849. * re-schedule is in progress), and as such you're allowed to do
  1850. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1851. * runnable without the overhead of this.
  1852. *
  1853. * returns failure only if the task is already active.
  1854. */
  1855. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1856. {
  1857. int cpu, orig_cpu, this_cpu, success = 0;
  1858. unsigned long flags;
  1859. long old_state;
  1860. struct rq *rq;
  1861. if (!sched_feat(SYNC_WAKEUPS))
  1862. sync = 0;
  1863. #ifdef CONFIG_SMP
  1864. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1865. struct sched_domain *sd;
  1866. this_cpu = raw_smp_processor_id();
  1867. cpu = task_cpu(p);
  1868. for_each_domain(this_cpu, sd) {
  1869. if (cpu_isset(cpu, sd->span)) {
  1870. update_shares(sd);
  1871. break;
  1872. }
  1873. }
  1874. }
  1875. #endif
  1876. smp_wmb();
  1877. rq = task_rq_lock(p, &flags);
  1878. old_state = p->state;
  1879. if (!(old_state & state))
  1880. goto out;
  1881. if (p->se.on_rq)
  1882. goto out_running;
  1883. cpu = task_cpu(p);
  1884. orig_cpu = cpu;
  1885. this_cpu = smp_processor_id();
  1886. #ifdef CONFIG_SMP
  1887. if (unlikely(task_running(rq, p)))
  1888. goto out_activate;
  1889. cpu = p->sched_class->select_task_rq(p, sync);
  1890. if (cpu != orig_cpu) {
  1891. set_task_cpu(p, cpu);
  1892. task_rq_unlock(rq, &flags);
  1893. /* might preempt at this point */
  1894. rq = task_rq_lock(p, &flags);
  1895. old_state = p->state;
  1896. if (!(old_state & state))
  1897. goto out;
  1898. if (p->se.on_rq)
  1899. goto out_running;
  1900. this_cpu = smp_processor_id();
  1901. cpu = task_cpu(p);
  1902. }
  1903. #ifdef CONFIG_SCHEDSTATS
  1904. schedstat_inc(rq, ttwu_count);
  1905. if (cpu == this_cpu)
  1906. schedstat_inc(rq, ttwu_local);
  1907. else {
  1908. struct sched_domain *sd;
  1909. for_each_domain(this_cpu, sd) {
  1910. if (cpu_isset(cpu, sd->span)) {
  1911. schedstat_inc(sd, ttwu_wake_remote);
  1912. break;
  1913. }
  1914. }
  1915. }
  1916. #endif /* CONFIG_SCHEDSTATS */
  1917. out_activate:
  1918. #endif /* CONFIG_SMP */
  1919. schedstat_inc(p, se.nr_wakeups);
  1920. if (sync)
  1921. schedstat_inc(p, se.nr_wakeups_sync);
  1922. if (orig_cpu != cpu)
  1923. schedstat_inc(p, se.nr_wakeups_migrate);
  1924. if (cpu == this_cpu)
  1925. schedstat_inc(p, se.nr_wakeups_local);
  1926. else
  1927. schedstat_inc(p, se.nr_wakeups_remote);
  1928. update_rq_clock(rq);
  1929. activate_task(rq, p, 1);
  1930. success = 1;
  1931. out_running:
  1932. trace_sched_wakeup(rq, p);
  1933. check_preempt_curr(rq, p, sync);
  1934. p->state = TASK_RUNNING;
  1935. #ifdef CONFIG_SMP
  1936. if (p->sched_class->task_wake_up)
  1937. p->sched_class->task_wake_up(rq, p);
  1938. #endif
  1939. out:
  1940. current->se.last_wakeup = current->se.sum_exec_runtime;
  1941. task_rq_unlock(rq, &flags);
  1942. return success;
  1943. }
  1944. int wake_up_process(struct task_struct *p)
  1945. {
  1946. return try_to_wake_up(p, TASK_ALL, 0);
  1947. }
  1948. EXPORT_SYMBOL(wake_up_process);
  1949. int wake_up_state(struct task_struct *p, unsigned int state)
  1950. {
  1951. return try_to_wake_up(p, state, 0);
  1952. }
  1953. /*
  1954. * Perform scheduler related setup for a newly forked process p.
  1955. * p is forked by current.
  1956. *
  1957. * __sched_fork() is basic setup used by init_idle() too:
  1958. */
  1959. static void __sched_fork(struct task_struct *p)
  1960. {
  1961. p->se.exec_start = 0;
  1962. p->se.sum_exec_runtime = 0;
  1963. p->se.prev_sum_exec_runtime = 0;
  1964. p->se.last_wakeup = 0;
  1965. p->se.avg_overlap = 0;
  1966. #ifdef CONFIG_SCHEDSTATS
  1967. p->se.wait_start = 0;
  1968. p->se.sum_sleep_runtime = 0;
  1969. p->se.sleep_start = 0;
  1970. p->se.block_start = 0;
  1971. p->se.sleep_max = 0;
  1972. p->se.block_max = 0;
  1973. p->se.exec_max = 0;
  1974. p->se.slice_max = 0;
  1975. p->se.wait_max = 0;
  1976. #endif
  1977. INIT_LIST_HEAD(&p->rt.run_list);
  1978. p->se.on_rq = 0;
  1979. INIT_LIST_HEAD(&p->se.group_node);
  1980. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1981. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1982. #endif
  1983. /*
  1984. * We mark the process as running here, but have not actually
  1985. * inserted it onto the runqueue yet. This guarantees that
  1986. * nobody will actually run it, and a signal or other external
  1987. * event cannot wake it up and insert it on the runqueue either.
  1988. */
  1989. p->state = TASK_RUNNING;
  1990. }
  1991. /*
  1992. * fork()/clone()-time setup:
  1993. */
  1994. void sched_fork(struct task_struct *p, int clone_flags)
  1995. {
  1996. int cpu = get_cpu();
  1997. __sched_fork(p);
  1998. #ifdef CONFIG_SMP
  1999. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2000. #endif
  2001. set_task_cpu(p, cpu);
  2002. /*
  2003. * Make sure we do not leak PI boosting priority to the child:
  2004. */
  2005. p->prio = current->normal_prio;
  2006. if (!rt_prio(p->prio))
  2007. p->sched_class = &fair_sched_class;
  2008. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2009. if (likely(sched_info_on()))
  2010. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2011. #endif
  2012. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2013. p->oncpu = 0;
  2014. #endif
  2015. #ifdef CONFIG_PREEMPT
  2016. /* Want to start with kernel preemption disabled. */
  2017. task_thread_info(p)->preempt_count = 1;
  2018. #endif
  2019. put_cpu();
  2020. }
  2021. /*
  2022. * wake_up_new_task - wake up a newly created task for the first time.
  2023. *
  2024. * This function will do some initial scheduler statistics housekeeping
  2025. * that must be done for every newly created context, then puts the task
  2026. * on the runqueue and wakes it.
  2027. */
  2028. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2029. {
  2030. unsigned long flags;
  2031. struct rq *rq;
  2032. rq = task_rq_lock(p, &flags);
  2033. BUG_ON(p->state != TASK_RUNNING);
  2034. update_rq_clock(rq);
  2035. p->prio = effective_prio(p);
  2036. if (!p->sched_class->task_new || !current->se.on_rq) {
  2037. activate_task(rq, p, 0);
  2038. } else {
  2039. /*
  2040. * Let the scheduling class do new task startup
  2041. * management (if any):
  2042. */
  2043. p->sched_class->task_new(rq, p);
  2044. inc_nr_running(rq);
  2045. }
  2046. trace_sched_wakeup_new(rq, p);
  2047. check_preempt_curr(rq, p, 0);
  2048. #ifdef CONFIG_SMP
  2049. if (p->sched_class->task_wake_up)
  2050. p->sched_class->task_wake_up(rq, p);
  2051. #endif
  2052. task_rq_unlock(rq, &flags);
  2053. }
  2054. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2055. /**
  2056. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2057. * @notifier: notifier struct to register
  2058. */
  2059. void preempt_notifier_register(struct preempt_notifier *notifier)
  2060. {
  2061. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2062. }
  2063. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2064. /**
  2065. * preempt_notifier_unregister - no longer interested in preemption notifications
  2066. * @notifier: notifier struct to unregister
  2067. *
  2068. * This is safe to call from within a preemption notifier.
  2069. */
  2070. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2071. {
  2072. hlist_del(&notifier->link);
  2073. }
  2074. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2075. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2076. {
  2077. struct preempt_notifier *notifier;
  2078. struct hlist_node *node;
  2079. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2080. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2081. }
  2082. static void
  2083. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2084. struct task_struct *next)
  2085. {
  2086. struct preempt_notifier *notifier;
  2087. struct hlist_node *node;
  2088. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2089. notifier->ops->sched_out(notifier, next);
  2090. }
  2091. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2092. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2093. {
  2094. }
  2095. static void
  2096. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2097. struct task_struct *next)
  2098. {
  2099. }
  2100. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2101. /**
  2102. * prepare_task_switch - prepare to switch tasks
  2103. * @rq: the runqueue preparing to switch
  2104. * @prev: the current task that is being switched out
  2105. * @next: the task we are going to switch to.
  2106. *
  2107. * This is called with the rq lock held and interrupts off. It must
  2108. * be paired with a subsequent finish_task_switch after the context
  2109. * switch.
  2110. *
  2111. * prepare_task_switch sets up locking and calls architecture specific
  2112. * hooks.
  2113. */
  2114. static inline void
  2115. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2116. struct task_struct *next)
  2117. {
  2118. fire_sched_out_preempt_notifiers(prev, next);
  2119. prepare_lock_switch(rq, next);
  2120. prepare_arch_switch(next);
  2121. }
  2122. /**
  2123. * finish_task_switch - clean up after a task-switch
  2124. * @rq: runqueue associated with task-switch
  2125. * @prev: the thread we just switched away from.
  2126. *
  2127. * finish_task_switch must be called after the context switch, paired
  2128. * with a prepare_task_switch call before the context switch.
  2129. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2130. * and do any other architecture-specific cleanup actions.
  2131. *
  2132. * Note that we may have delayed dropping an mm in context_switch(). If
  2133. * so, we finish that here outside of the runqueue lock. (Doing it
  2134. * with the lock held can cause deadlocks; see schedule() for
  2135. * details.)
  2136. */
  2137. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2138. __releases(rq->lock)
  2139. {
  2140. struct mm_struct *mm = rq->prev_mm;
  2141. long prev_state;
  2142. rq->prev_mm = NULL;
  2143. /*
  2144. * A task struct has one reference for the use as "current".
  2145. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2146. * schedule one last time. The schedule call will never return, and
  2147. * the scheduled task must drop that reference.
  2148. * The test for TASK_DEAD must occur while the runqueue locks are
  2149. * still held, otherwise prev could be scheduled on another cpu, die
  2150. * there before we look at prev->state, and then the reference would
  2151. * be dropped twice.
  2152. * Manfred Spraul <manfred@colorfullife.com>
  2153. */
  2154. prev_state = prev->state;
  2155. finish_arch_switch(prev);
  2156. finish_lock_switch(rq, prev);
  2157. #ifdef CONFIG_SMP
  2158. if (current->sched_class->post_schedule)
  2159. current->sched_class->post_schedule(rq);
  2160. #endif
  2161. fire_sched_in_preempt_notifiers(current);
  2162. if (mm)
  2163. mmdrop(mm);
  2164. if (unlikely(prev_state == TASK_DEAD)) {
  2165. /*
  2166. * Remove function-return probe instances associated with this
  2167. * task and put them back on the free list.
  2168. */
  2169. kprobe_flush_task(prev);
  2170. put_task_struct(prev);
  2171. }
  2172. }
  2173. /**
  2174. * schedule_tail - first thing a freshly forked thread must call.
  2175. * @prev: the thread we just switched away from.
  2176. */
  2177. asmlinkage void schedule_tail(struct task_struct *prev)
  2178. __releases(rq->lock)
  2179. {
  2180. struct rq *rq = this_rq();
  2181. finish_task_switch(rq, prev);
  2182. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2183. /* In this case, finish_task_switch does not reenable preemption */
  2184. preempt_enable();
  2185. #endif
  2186. if (current->set_child_tid)
  2187. put_user(task_pid_vnr(current), current->set_child_tid);
  2188. }
  2189. /*
  2190. * context_switch - switch to the new MM and the new
  2191. * thread's register state.
  2192. */
  2193. static inline void
  2194. context_switch(struct rq *rq, struct task_struct *prev,
  2195. struct task_struct *next)
  2196. {
  2197. struct mm_struct *mm, *oldmm;
  2198. prepare_task_switch(rq, prev, next);
  2199. trace_sched_switch(rq, prev, next);
  2200. mm = next->mm;
  2201. oldmm = prev->active_mm;
  2202. /*
  2203. * For paravirt, this is coupled with an exit in switch_to to
  2204. * combine the page table reload and the switch backend into
  2205. * one hypercall.
  2206. */
  2207. arch_enter_lazy_cpu_mode();
  2208. if (unlikely(!mm)) {
  2209. next->active_mm = oldmm;
  2210. atomic_inc(&oldmm->mm_count);
  2211. enter_lazy_tlb(oldmm, next);
  2212. } else
  2213. switch_mm(oldmm, mm, next);
  2214. if (unlikely(!prev->mm)) {
  2215. prev->active_mm = NULL;
  2216. rq->prev_mm = oldmm;
  2217. }
  2218. /*
  2219. * Since the runqueue lock will be released by the next
  2220. * task (which is an invalid locking op but in the case
  2221. * of the scheduler it's an obvious special-case), so we
  2222. * do an early lockdep release here:
  2223. */
  2224. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2225. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2226. #endif
  2227. /* Here we just switch the register state and the stack. */
  2228. switch_to(prev, next, prev);
  2229. barrier();
  2230. /*
  2231. * this_rq must be evaluated again because prev may have moved
  2232. * CPUs since it called schedule(), thus the 'rq' on its stack
  2233. * frame will be invalid.
  2234. */
  2235. finish_task_switch(this_rq(), prev);
  2236. }
  2237. /*
  2238. * nr_running, nr_uninterruptible and nr_context_switches:
  2239. *
  2240. * externally visible scheduler statistics: current number of runnable
  2241. * threads, current number of uninterruptible-sleeping threads, total
  2242. * number of context switches performed since bootup.
  2243. */
  2244. unsigned long nr_running(void)
  2245. {
  2246. unsigned long i, sum = 0;
  2247. for_each_online_cpu(i)
  2248. sum += cpu_rq(i)->nr_running;
  2249. return sum;
  2250. }
  2251. unsigned long nr_uninterruptible(void)
  2252. {
  2253. unsigned long i, sum = 0;
  2254. for_each_possible_cpu(i)
  2255. sum += cpu_rq(i)->nr_uninterruptible;
  2256. /*
  2257. * Since we read the counters lockless, it might be slightly
  2258. * inaccurate. Do not allow it to go below zero though:
  2259. */
  2260. if (unlikely((long)sum < 0))
  2261. sum = 0;
  2262. return sum;
  2263. }
  2264. unsigned long long nr_context_switches(void)
  2265. {
  2266. int i;
  2267. unsigned long long sum = 0;
  2268. for_each_possible_cpu(i)
  2269. sum += cpu_rq(i)->nr_switches;
  2270. return sum;
  2271. }
  2272. unsigned long nr_iowait(void)
  2273. {
  2274. unsigned long i, sum = 0;
  2275. for_each_possible_cpu(i)
  2276. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2277. return sum;
  2278. }
  2279. unsigned long nr_active(void)
  2280. {
  2281. unsigned long i, running = 0, uninterruptible = 0;
  2282. for_each_online_cpu(i) {
  2283. running += cpu_rq(i)->nr_running;
  2284. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2285. }
  2286. if (unlikely((long)uninterruptible < 0))
  2287. uninterruptible = 0;
  2288. return running + uninterruptible;
  2289. }
  2290. /*
  2291. * Update rq->cpu_load[] statistics. This function is usually called every
  2292. * scheduler tick (TICK_NSEC).
  2293. */
  2294. static void update_cpu_load(struct rq *this_rq)
  2295. {
  2296. unsigned long this_load = this_rq->load.weight;
  2297. int i, scale;
  2298. this_rq->nr_load_updates++;
  2299. /* Update our load: */
  2300. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2301. unsigned long old_load, new_load;
  2302. /* scale is effectively 1 << i now, and >> i divides by scale */
  2303. old_load = this_rq->cpu_load[i];
  2304. new_load = this_load;
  2305. /*
  2306. * Round up the averaging division if load is increasing. This
  2307. * prevents us from getting stuck on 9 if the load is 10, for
  2308. * example.
  2309. */
  2310. if (new_load > old_load)
  2311. new_load += scale-1;
  2312. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2313. }
  2314. }
  2315. #ifdef CONFIG_SMP
  2316. /*
  2317. * double_rq_lock - safely lock two runqueues
  2318. *
  2319. * Note this does not disable interrupts like task_rq_lock,
  2320. * you need to do so manually before calling.
  2321. */
  2322. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2323. __acquires(rq1->lock)
  2324. __acquires(rq2->lock)
  2325. {
  2326. BUG_ON(!irqs_disabled());
  2327. if (rq1 == rq2) {
  2328. spin_lock(&rq1->lock);
  2329. __acquire(rq2->lock); /* Fake it out ;) */
  2330. } else {
  2331. if (rq1 < rq2) {
  2332. spin_lock(&rq1->lock);
  2333. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2334. } else {
  2335. spin_lock(&rq2->lock);
  2336. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2337. }
  2338. }
  2339. update_rq_clock(rq1);
  2340. update_rq_clock(rq2);
  2341. }
  2342. /*
  2343. * double_rq_unlock - safely unlock two runqueues
  2344. *
  2345. * Note this does not restore interrupts like task_rq_unlock,
  2346. * you need to do so manually after calling.
  2347. */
  2348. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2349. __releases(rq1->lock)
  2350. __releases(rq2->lock)
  2351. {
  2352. spin_unlock(&rq1->lock);
  2353. if (rq1 != rq2)
  2354. spin_unlock(&rq2->lock);
  2355. else
  2356. __release(rq2->lock);
  2357. }
  2358. /*
  2359. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2360. */
  2361. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2362. __releases(this_rq->lock)
  2363. __acquires(busiest->lock)
  2364. __acquires(this_rq->lock)
  2365. {
  2366. int ret = 0;
  2367. if (unlikely(!irqs_disabled())) {
  2368. /* printk() doesn't work good under rq->lock */
  2369. spin_unlock(&this_rq->lock);
  2370. BUG_ON(1);
  2371. }
  2372. if (unlikely(!spin_trylock(&busiest->lock))) {
  2373. if (busiest < this_rq) {
  2374. spin_unlock(&this_rq->lock);
  2375. spin_lock(&busiest->lock);
  2376. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2377. ret = 1;
  2378. } else
  2379. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2380. }
  2381. return ret;
  2382. }
  2383. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2384. __releases(busiest->lock)
  2385. {
  2386. spin_unlock(&busiest->lock);
  2387. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2388. }
  2389. /*
  2390. * If dest_cpu is allowed for this process, migrate the task to it.
  2391. * This is accomplished by forcing the cpu_allowed mask to only
  2392. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2393. * the cpu_allowed mask is restored.
  2394. */
  2395. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2396. {
  2397. struct migration_req req;
  2398. unsigned long flags;
  2399. struct rq *rq;
  2400. rq = task_rq_lock(p, &flags);
  2401. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2402. || unlikely(!cpu_active(dest_cpu)))
  2403. goto out;
  2404. trace_sched_migrate_task(rq, p, dest_cpu);
  2405. /* force the process onto the specified CPU */
  2406. if (migrate_task(p, dest_cpu, &req)) {
  2407. /* Need to wait for migration thread (might exit: take ref). */
  2408. struct task_struct *mt = rq->migration_thread;
  2409. get_task_struct(mt);
  2410. task_rq_unlock(rq, &flags);
  2411. wake_up_process(mt);
  2412. put_task_struct(mt);
  2413. wait_for_completion(&req.done);
  2414. return;
  2415. }
  2416. out:
  2417. task_rq_unlock(rq, &flags);
  2418. }
  2419. /*
  2420. * sched_exec - execve() is a valuable balancing opportunity, because at
  2421. * this point the task has the smallest effective memory and cache footprint.
  2422. */
  2423. void sched_exec(void)
  2424. {
  2425. int new_cpu, this_cpu = get_cpu();
  2426. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2427. put_cpu();
  2428. if (new_cpu != this_cpu)
  2429. sched_migrate_task(current, new_cpu);
  2430. }
  2431. /*
  2432. * pull_task - move a task from a remote runqueue to the local runqueue.
  2433. * Both runqueues must be locked.
  2434. */
  2435. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2436. struct rq *this_rq, int this_cpu)
  2437. {
  2438. deactivate_task(src_rq, p, 0);
  2439. set_task_cpu(p, this_cpu);
  2440. activate_task(this_rq, p, 0);
  2441. /*
  2442. * Note that idle threads have a prio of MAX_PRIO, for this test
  2443. * to be always true for them.
  2444. */
  2445. check_preempt_curr(this_rq, p, 0);
  2446. }
  2447. /*
  2448. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2449. */
  2450. static
  2451. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2452. struct sched_domain *sd, enum cpu_idle_type idle,
  2453. int *all_pinned)
  2454. {
  2455. /*
  2456. * We do not migrate tasks that are:
  2457. * 1) running (obviously), or
  2458. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2459. * 3) are cache-hot on their current CPU.
  2460. */
  2461. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2462. schedstat_inc(p, se.nr_failed_migrations_affine);
  2463. return 0;
  2464. }
  2465. *all_pinned = 0;
  2466. if (task_running(rq, p)) {
  2467. schedstat_inc(p, se.nr_failed_migrations_running);
  2468. return 0;
  2469. }
  2470. /*
  2471. * Aggressive migration if:
  2472. * 1) task is cache cold, or
  2473. * 2) too many balance attempts have failed.
  2474. */
  2475. if (!task_hot(p, rq->clock, sd) ||
  2476. sd->nr_balance_failed > sd->cache_nice_tries) {
  2477. #ifdef CONFIG_SCHEDSTATS
  2478. if (task_hot(p, rq->clock, sd)) {
  2479. schedstat_inc(sd, lb_hot_gained[idle]);
  2480. schedstat_inc(p, se.nr_forced_migrations);
  2481. }
  2482. #endif
  2483. return 1;
  2484. }
  2485. if (task_hot(p, rq->clock, sd)) {
  2486. schedstat_inc(p, se.nr_failed_migrations_hot);
  2487. return 0;
  2488. }
  2489. return 1;
  2490. }
  2491. static unsigned long
  2492. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2493. unsigned long max_load_move, struct sched_domain *sd,
  2494. enum cpu_idle_type idle, int *all_pinned,
  2495. int *this_best_prio, struct rq_iterator *iterator)
  2496. {
  2497. int loops = 0, pulled = 0, pinned = 0;
  2498. struct task_struct *p;
  2499. long rem_load_move = max_load_move;
  2500. if (max_load_move == 0)
  2501. goto out;
  2502. pinned = 1;
  2503. /*
  2504. * Start the load-balancing iterator:
  2505. */
  2506. p = iterator->start(iterator->arg);
  2507. next:
  2508. if (!p || loops++ > sysctl_sched_nr_migrate)
  2509. goto out;
  2510. if ((p->se.load.weight >> 1) > rem_load_move ||
  2511. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2512. p = iterator->next(iterator->arg);
  2513. goto next;
  2514. }
  2515. pull_task(busiest, p, this_rq, this_cpu);
  2516. pulled++;
  2517. rem_load_move -= p->se.load.weight;
  2518. /*
  2519. * We only want to steal up to the prescribed amount of weighted load.
  2520. */
  2521. if (rem_load_move > 0) {
  2522. if (p->prio < *this_best_prio)
  2523. *this_best_prio = p->prio;
  2524. p = iterator->next(iterator->arg);
  2525. goto next;
  2526. }
  2527. out:
  2528. /*
  2529. * Right now, this is one of only two places pull_task() is called,
  2530. * so we can safely collect pull_task() stats here rather than
  2531. * inside pull_task().
  2532. */
  2533. schedstat_add(sd, lb_gained[idle], pulled);
  2534. if (all_pinned)
  2535. *all_pinned = pinned;
  2536. return max_load_move - rem_load_move;
  2537. }
  2538. /*
  2539. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2540. * this_rq, as part of a balancing operation within domain "sd".
  2541. * Returns 1 if successful and 0 otherwise.
  2542. *
  2543. * Called with both runqueues locked.
  2544. */
  2545. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2546. unsigned long max_load_move,
  2547. struct sched_domain *sd, enum cpu_idle_type idle,
  2548. int *all_pinned)
  2549. {
  2550. const struct sched_class *class = sched_class_highest;
  2551. unsigned long total_load_moved = 0;
  2552. int this_best_prio = this_rq->curr->prio;
  2553. do {
  2554. total_load_moved +=
  2555. class->load_balance(this_rq, this_cpu, busiest,
  2556. max_load_move - total_load_moved,
  2557. sd, idle, all_pinned, &this_best_prio);
  2558. class = class->next;
  2559. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2560. break;
  2561. } while (class && max_load_move > total_load_moved);
  2562. return total_load_moved > 0;
  2563. }
  2564. static int
  2565. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2566. struct sched_domain *sd, enum cpu_idle_type idle,
  2567. struct rq_iterator *iterator)
  2568. {
  2569. struct task_struct *p = iterator->start(iterator->arg);
  2570. int pinned = 0;
  2571. while (p) {
  2572. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2573. pull_task(busiest, p, this_rq, this_cpu);
  2574. /*
  2575. * Right now, this is only the second place pull_task()
  2576. * is called, so we can safely collect pull_task()
  2577. * stats here rather than inside pull_task().
  2578. */
  2579. schedstat_inc(sd, lb_gained[idle]);
  2580. return 1;
  2581. }
  2582. p = iterator->next(iterator->arg);
  2583. }
  2584. return 0;
  2585. }
  2586. /*
  2587. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2588. * part of active balancing operations within "domain".
  2589. * Returns 1 if successful and 0 otherwise.
  2590. *
  2591. * Called with both runqueues locked.
  2592. */
  2593. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2594. struct sched_domain *sd, enum cpu_idle_type idle)
  2595. {
  2596. const struct sched_class *class;
  2597. for (class = sched_class_highest; class; class = class->next)
  2598. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2599. return 1;
  2600. return 0;
  2601. }
  2602. /*
  2603. * find_busiest_group finds and returns the busiest CPU group within the
  2604. * domain. It calculates and returns the amount of weighted load which
  2605. * should be moved to restore balance via the imbalance parameter.
  2606. */
  2607. static struct sched_group *
  2608. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2609. unsigned long *imbalance, enum cpu_idle_type idle,
  2610. int *sd_idle, const cpumask_t *cpus, int *balance)
  2611. {
  2612. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2613. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2614. unsigned long max_pull;
  2615. unsigned long busiest_load_per_task, busiest_nr_running;
  2616. unsigned long this_load_per_task, this_nr_running;
  2617. int load_idx, group_imb = 0;
  2618. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2619. int power_savings_balance = 1;
  2620. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2621. unsigned long min_nr_running = ULONG_MAX;
  2622. struct sched_group *group_min = NULL, *group_leader = NULL;
  2623. #endif
  2624. max_load = this_load = total_load = total_pwr = 0;
  2625. busiest_load_per_task = busiest_nr_running = 0;
  2626. this_load_per_task = this_nr_running = 0;
  2627. if (idle == CPU_NOT_IDLE)
  2628. load_idx = sd->busy_idx;
  2629. else if (idle == CPU_NEWLY_IDLE)
  2630. load_idx = sd->newidle_idx;
  2631. else
  2632. load_idx = sd->idle_idx;
  2633. do {
  2634. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2635. int local_group;
  2636. int i;
  2637. int __group_imb = 0;
  2638. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2639. unsigned long sum_nr_running, sum_weighted_load;
  2640. unsigned long sum_avg_load_per_task;
  2641. unsigned long avg_load_per_task;
  2642. local_group = cpu_isset(this_cpu, group->cpumask);
  2643. if (local_group)
  2644. balance_cpu = first_cpu(group->cpumask);
  2645. /* Tally up the load of all CPUs in the group */
  2646. sum_weighted_load = sum_nr_running = avg_load = 0;
  2647. sum_avg_load_per_task = avg_load_per_task = 0;
  2648. max_cpu_load = 0;
  2649. min_cpu_load = ~0UL;
  2650. for_each_cpu(i, &group->cpumask) {
  2651. struct rq *rq;
  2652. if (!cpu_isset(i, *cpus))
  2653. continue;
  2654. rq = cpu_rq(i);
  2655. if (*sd_idle && rq->nr_running)
  2656. *sd_idle = 0;
  2657. /* Bias balancing toward cpus of our domain */
  2658. if (local_group) {
  2659. if (idle_cpu(i) && !first_idle_cpu) {
  2660. first_idle_cpu = 1;
  2661. balance_cpu = i;
  2662. }
  2663. load = target_load(i, load_idx);
  2664. } else {
  2665. load = source_load(i, load_idx);
  2666. if (load > max_cpu_load)
  2667. max_cpu_load = load;
  2668. if (min_cpu_load > load)
  2669. min_cpu_load = load;
  2670. }
  2671. avg_load += load;
  2672. sum_nr_running += rq->nr_running;
  2673. sum_weighted_load += weighted_cpuload(i);
  2674. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2675. }
  2676. /*
  2677. * First idle cpu or the first cpu(busiest) in this sched group
  2678. * is eligible for doing load balancing at this and above
  2679. * domains. In the newly idle case, we will allow all the cpu's
  2680. * to do the newly idle load balance.
  2681. */
  2682. if (idle != CPU_NEWLY_IDLE && local_group &&
  2683. balance_cpu != this_cpu && balance) {
  2684. *balance = 0;
  2685. goto ret;
  2686. }
  2687. total_load += avg_load;
  2688. total_pwr += group->__cpu_power;
  2689. /* Adjust by relative CPU power of the group */
  2690. avg_load = sg_div_cpu_power(group,
  2691. avg_load * SCHED_LOAD_SCALE);
  2692. /*
  2693. * Consider the group unbalanced when the imbalance is larger
  2694. * than the average weight of two tasks.
  2695. *
  2696. * APZ: with cgroup the avg task weight can vary wildly and
  2697. * might not be a suitable number - should we keep a
  2698. * normalized nr_running number somewhere that negates
  2699. * the hierarchy?
  2700. */
  2701. avg_load_per_task = sg_div_cpu_power(group,
  2702. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2703. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2704. __group_imb = 1;
  2705. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2706. if (local_group) {
  2707. this_load = avg_load;
  2708. this = group;
  2709. this_nr_running = sum_nr_running;
  2710. this_load_per_task = sum_weighted_load;
  2711. } else if (avg_load > max_load &&
  2712. (sum_nr_running > group_capacity || __group_imb)) {
  2713. max_load = avg_load;
  2714. busiest = group;
  2715. busiest_nr_running = sum_nr_running;
  2716. busiest_load_per_task = sum_weighted_load;
  2717. group_imb = __group_imb;
  2718. }
  2719. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2720. /*
  2721. * Busy processors will not participate in power savings
  2722. * balance.
  2723. */
  2724. if (idle == CPU_NOT_IDLE ||
  2725. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2726. goto group_next;
  2727. /*
  2728. * If the local group is idle or completely loaded
  2729. * no need to do power savings balance at this domain
  2730. */
  2731. if (local_group && (this_nr_running >= group_capacity ||
  2732. !this_nr_running))
  2733. power_savings_balance = 0;
  2734. /*
  2735. * If a group is already running at full capacity or idle,
  2736. * don't include that group in power savings calculations
  2737. */
  2738. if (!power_savings_balance || sum_nr_running >= group_capacity
  2739. || !sum_nr_running)
  2740. goto group_next;
  2741. /*
  2742. * Calculate the group which has the least non-idle load.
  2743. * This is the group from where we need to pick up the load
  2744. * for saving power
  2745. */
  2746. if ((sum_nr_running < min_nr_running) ||
  2747. (sum_nr_running == min_nr_running &&
  2748. first_cpu(group->cpumask) <
  2749. first_cpu(group_min->cpumask))) {
  2750. group_min = group;
  2751. min_nr_running = sum_nr_running;
  2752. min_load_per_task = sum_weighted_load /
  2753. sum_nr_running;
  2754. }
  2755. /*
  2756. * Calculate the group which is almost near its
  2757. * capacity but still has some space to pick up some load
  2758. * from other group and save more power
  2759. */
  2760. if (sum_nr_running <= group_capacity - 1) {
  2761. if (sum_nr_running > leader_nr_running ||
  2762. (sum_nr_running == leader_nr_running &&
  2763. first_cpu(group->cpumask) >
  2764. first_cpu(group_leader->cpumask))) {
  2765. group_leader = group;
  2766. leader_nr_running = sum_nr_running;
  2767. }
  2768. }
  2769. group_next:
  2770. #endif
  2771. group = group->next;
  2772. } while (group != sd->groups);
  2773. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2774. goto out_balanced;
  2775. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2776. if (this_load >= avg_load ||
  2777. 100*max_load <= sd->imbalance_pct*this_load)
  2778. goto out_balanced;
  2779. busiest_load_per_task /= busiest_nr_running;
  2780. if (group_imb)
  2781. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2782. /*
  2783. * We're trying to get all the cpus to the average_load, so we don't
  2784. * want to push ourselves above the average load, nor do we wish to
  2785. * reduce the max loaded cpu below the average load, as either of these
  2786. * actions would just result in more rebalancing later, and ping-pong
  2787. * tasks around. Thus we look for the minimum possible imbalance.
  2788. * Negative imbalances (*we* are more loaded than anyone else) will
  2789. * be counted as no imbalance for these purposes -- we can't fix that
  2790. * by pulling tasks to us. Be careful of negative numbers as they'll
  2791. * appear as very large values with unsigned longs.
  2792. */
  2793. if (max_load <= busiest_load_per_task)
  2794. goto out_balanced;
  2795. /*
  2796. * In the presence of smp nice balancing, certain scenarios can have
  2797. * max load less than avg load(as we skip the groups at or below
  2798. * its cpu_power, while calculating max_load..)
  2799. */
  2800. if (max_load < avg_load) {
  2801. *imbalance = 0;
  2802. goto small_imbalance;
  2803. }
  2804. /* Don't want to pull so many tasks that a group would go idle */
  2805. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2806. /* How much load to actually move to equalise the imbalance */
  2807. *imbalance = min(max_pull * busiest->__cpu_power,
  2808. (avg_load - this_load) * this->__cpu_power)
  2809. / SCHED_LOAD_SCALE;
  2810. /*
  2811. * if *imbalance is less than the average load per runnable task
  2812. * there is no gaurantee that any tasks will be moved so we'll have
  2813. * a think about bumping its value to force at least one task to be
  2814. * moved
  2815. */
  2816. if (*imbalance < busiest_load_per_task) {
  2817. unsigned long tmp, pwr_now, pwr_move;
  2818. unsigned int imbn;
  2819. small_imbalance:
  2820. pwr_move = pwr_now = 0;
  2821. imbn = 2;
  2822. if (this_nr_running) {
  2823. this_load_per_task /= this_nr_running;
  2824. if (busiest_load_per_task > this_load_per_task)
  2825. imbn = 1;
  2826. } else
  2827. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2828. if (max_load - this_load + busiest_load_per_task >=
  2829. busiest_load_per_task * imbn) {
  2830. *imbalance = busiest_load_per_task;
  2831. return busiest;
  2832. }
  2833. /*
  2834. * OK, we don't have enough imbalance to justify moving tasks,
  2835. * however we may be able to increase total CPU power used by
  2836. * moving them.
  2837. */
  2838. pwr_now += busiest->__cpu_power *
  2839. min(busiest_load_per_task, max_load);
  2840. pwr_now += this->__cpu_power *
  2841. min(this_load_per_task, this_load);
  2842. pwr_now /= SCHED_LOAD_SCALE;
  2843. /* Amount of load we'd subtract */
  2844. tmp = sg_div_cpu_power(busiest,
  2845. busiest_load_per_task * SCHED_LOAD_SCALE);
  2846. if (max_load > tmp)
  2847. pwr_move += busiest->__cpu_power *
  2848. min(busiest_load_per_task, max_load - tmp);
  2849. /* Amount of load we'd add */
  2850. if (max_load * busiest->__cpu_power <
  2851. busiest_load_per_task * SCHED_LOAD_SCALE)
  2852. tmp = sg_div_cpu_power(this,
  2853. max_load * busiest->__cpu_power);
  2854. else
  2855. tmp = sg_div_cpu_power(this,
  2856. busiest_load_per_task * SCHED_LOAD_SCALE);
  2857. pwr_move += this->__cpu_power *
  2858. min(this_load_per_task, this_load + tmp);
  2859. pwr_move /= SCHED_LOAD_SCALE;
  2860. /* Move if we gain throughput */
  2861. if (pwr_move > pwr_now)
  2862. *imbalance = busiest_load_per_task;
  2863. }
  2864. return busiest;
  2865. out_balanced:
  2866. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2867. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2868. goto ret;
  2869. if (this == group_leader && group_leader != group_min) {
  2870. *imbalance = min_load_per_task;
  2871. return group_min;
  2872. }
  2873. #endif
  2874. ret:
  2875. *imbalance = 0;
  2876. return NULL;
  2877. }
  2878. /*
  2879. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2880. */
  2881. static struct rq *
  2882. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2883. unsigned long imbalance, const cpumask_t *cpus)
  2884. {
  2885. struct rq *busiest = NULL, *rq;
  2886. unsigned long max_load = 0;
  2887. int i;
  2888. for_each_cpu(i, &group->cpumask) {
  2889. unsigned long wl;
  2890. if (!cpu_isset(i, *cpus))
  2891. continue;
  2892. rq = cpu_rq(i);
  2893. wl = weighted_cpuload(i);
  2894. if (rq->nr_running == 1 && wl > imbalance)
  2895. continue;
  2896. if (wl > max_load) {
  2897. max_load = wl;
  2898. busiest = rq;
  2899. }
  2900. }
  2901. return busiest;
  2902. }
  2903. /*
  2904. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2905. * so long as it is large enough.
  2906. */
  2907. #define MAX_PINNED_INTERVAL 512
  2908. /*
  2909. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2910. * tasks if there is an imbalance.
  2911. */
  2912. static int load_balance(int this_cpu, struct rq *this_rq,
  2913. struct sched_domain *sd, enum cpu_idle_type idle,
  2914. int *balance, cpumask_t *cpus)
  2915. {
  2916. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2917. struct sched_group *group;
  2918. unsigned long imbalance;
  2919. struct rq *busiest;
  2920. unsigned long flags;
  2921. cpus_setall(*cpus);
  2922. /*
  2923. * When power savings policy is enabled for the parent domain, idle
  2924. * sibling can pick up load irrespective of busy siblings. In this case,
  2925. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2926. * portraying it as CPU_NOT_IDLE.
  2927. */
  2928. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2929. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2930. sd_idle = 1;
  2931. schedstat_inc(sd, lb_count[idle]);
  2932. redo:
  2933. update_shares(sd);
  2934. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2935. cpus, balance);
  2936. if (*balance == 0)
  2937. goto out_balanced;
  2938. if (!group) {
  2939. schedstat_inc(sd, lb_nobusyg[idle]);
  2940. goto out_balanced;
  2941. }
  2942. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2943. if (!busiest) {
  2944. schedstat_inc(sd, lb_nobusyq[idle]);
  2945. goto out_balanced;
  2946. }
  2947. BUG_ON(busiest == this_rq);
  2948. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2949. ld_moved = 0;
  2950. if (busiest->nr_running > 1) {
  2951. /*
  2952. * Attempt to move tasks. If find_busiest_group has found
  2953. * an imbalance but busiest->nr_running <= 1, the group is
  2954. * still unbalanced. ld_moved simply stays zero, so it is
  2955. * correctly treated as an imbalance.
  2956. */
  2957. local_irq_save(flags);
  2958. double_rq_lock(this_rq, busiest);
  2959. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2960. imbalance, sd, idle, &all_pinned);
  2961. double_rq_unlock(this_rq, busiest);
  2962. local_irq_restore(flags);
  2963. /*
  2964. * some other cpu did the load balance for us.
  2965. */
  2966. if (ld_moved && this_cpu != smp_processor_id())
  2967. resched_cpu(this_cpu);
  2968. /* All tasks on this runqueue were pinned by CPU affinity */
  2969. if (unlikely(all_pinned)) {
  2970. cpu_clear(cpu_of(busiest), *cpus);
  2971. if (!cpus_empty(*cpus))
  2972. goto redo;
  2973. goto out_balanced;
  2974. }
  2975. }
  2976. if (!ld_moved) {
  2977. schedstat_inc(sd, lb_failed[idle]);
  2978. sd->nr_balance_failed++;
  2979. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2980. spin_lock_irqsave(&busiest->lock, flags);
  2981. /* don't kick the migration_thread, if the curr
  2982. * task on busiest cpu can't be moved to this_cpu
  2983. */
  2984. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2985. spin_unlock_irqrestore(&busiest->lock, flags);
  2986. all_pinned = 1;
  2987. goto out_one_pinned;
  2988. }
  2989. if (!busiest->active_balance) {
  2990. busiest->active_balance = 1;
  2991. busiest->push_cpu = this_cpu;
  2992. active_balance = 1;
  2993. }
  2994. spin_unlock_irqrestore(&busiest->lock, flags);
  2995. if (active_balance)
  2996. wake_up_process(busiest->migration_thread);
  2997. /*
  2998. * We've kicked active balancing, reset the failure
  2999. * counter.
  3000. */
  3001. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3002. }
  3003. } else
  3004. sd->nr_balance_failed = 0;
  3005. if (likely(!active_balance)) {
  3006. /* We were unbalanced, so reset the balancing interval */
  3007. sd->balance_interval = sd->min_interval;
  3008. } else {
  3009. /*
  3010. * If we've begun active balancing, start to back off. This
  3011. * case may not be covered by the all_pinned logic if there
  3012. * is only 1 task on the busy runqueue (because we don't call
  3013. * move_tasks).
  3014. */
  3015. if (sd->balance_interval < sd->max_interval)
  3016. sd->balance_interval *= 2;
  3017. }
  3018. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3019. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3020. ld_moved = -1;
  3021. goto out;
  3022. out_balanced:
  3023. schedstat_inc(sd, lb_balanced[idle]);
  3024. sd->nr_balance_failed = 0;
  3025. out_one_pinned:
  3026. /* tune up the balancing interval */
  3027. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3028. (sd->balance_interval < sd->max_interval))
  3029. sd->balance_interval *= 2;
  3030. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3031. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3032. ld_moved = -1;
  3033. else
  3034. ld_moved = 0;
  3035. out:
  3036. if (ld_moved)
  3037. update_shares(sd);
  3038. return ld_moved;
  3039. }
  3040. /*
  3041. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3042. * tasks if there is an imbalance.
  3043. *
  3044. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3045. * this_rq is locked.
  3046. */
  3047. static int
  3048. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3049. cpumask_t *cpus)
  3050. {
  3051. struct sched_group *group;
  3052. struct rq *busiest = NULL;
  3053. unsigned long imbalance;
  3054. int ld_moved = 0;
  3055. int sd_idle = 0;
  3056. int all_pinned = 0;
  3057. cpus_setall(*cpus);
  3058. /*
  3059. * When power savings policy is enabled for the parent domain, idle
  3060. * sibling can pick up load irrespective of busy siblings. In this case,
  3061. * let the state of idle sibling percolate up as IDLE, instead of
  3062. * portraying it as CPU_NOT_IDLE.
  3063. */
  3064. if (sd->flags & SD_SHARE_CPUPOWER &&
  3065. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3066. sd_idle = 1;
  3067. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3068. redo:
  3069. update_shares_locked(this_rq, sd);
  3070. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3071. &sd_idle, cpus, NULL);
  3072. if (!group) {
  3073. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3074. goto out_balanced;
  3075. }
  3076. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3077. if (!busiest) {
  3078. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3079. goto out_balanced;
  3080. }
  3081. BUG_ON(busiest == this_rq);
  3082. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3083. ld_moved = 0;
  3084. if (busiest->nr_running > 1) {
  3085. /* Attempt to move tasks */
  3086. double_lock_balance(this_rq, busiest);
  3087. /* this_rq->clock is already updated */
  3088. update_rq_clock(busiest);
  3089. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3090. imbalance, sd, CPU_NEWLY_IDLE,
  3091. &all_pinned);
  3092. double_unlock_balance(this_rq, busiest);
  3093. if (unlikely(all_pinned)) {
  3094. cpu_clear(cpu_of(busiest), *cpus);
  3095. if (!cpus_empty(*cpus))
  3096. goto redo;
  3097. }
  3098. }
  3099. if (!ld_moved) {
  3100. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3101. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3102. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3103. return -1;
  3104. } else
  3105. sd->nr_balance_failed = 0;
  3106. update_shares_locked(this_rq, sd);
  3107. return ld_moved;
  3108. out_balanced:
  3109. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3110. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3111. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3112. return -1;
  3113. sd->nr_balance_failed = 0;
  3114. return 0;
  3115. }
  3116. /*
  3117. * idle_balance is called by schedule() if this_cpu is about to become
  3118. * idle. Attempts to pull tasks from other CPUs.
  3119. */
  3120. static void idle_balance(int this_cpu, struct rq *this_rq)
  3121. {
  3122. struct sched_domain *sd;
  3123. int pulled_task = -1;
  3124. unsigned long next_balance = jiffies + HZ;
  3125. cpumask_t tmpmask;
  3126. for_each_domain(this_cpu, sd) {
  3127. unsigned long interval;
  3128. if (!(sd->flags & SD_LOAD_BALANCE))
  3129. continue;
  3130. if (sd->flags & SD_BALANCE_NEWIDLE)
  3131. /* If we've pulled tasks over stop searching: */
  3132. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3133. sd, &tmpmask);
  3134. interval = msecs_to_jiffies(sd->balance_interval);
  3135. if (time_after(next_balance, sd->last_balance + interval))
  3136. next_balance = sd->last_balance + interval;
  3137. if (pulled_task)
  3138. break;
  3139. }
  3140. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3141. /*
  3142. * We are going idle. next_balance may be set based on
  3143. * a busy processor. So reset next_balance.
  3144. */
  3145. this_rq->next_balance = next_balance;
  3146. }
  3147. }
  3148. /*
  3149. * active_load_balance is run by migration threads. It pushes running tasks
  3150. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3151. * running on each physical CPU where possible, and avoids physical /
  3152. * logical imbalances.
  3153. *
  3154. * Called with busiest_rq locked.
  3155. */
  3156. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3157. {
  3158. int target_cpu = busiest_rq->push_cpu;
  3159. struct sched_domain *sd;
  3160. struct rq *target_rq;
  3161. /* Is there any task to move? */
  3162. if (busiest_rq->nr_running <= 1)
  3163. return;
  3164. target_rq = cpu_rq(target_cpu);
  3165. /*
  3166. * This condition is "impossible", if it occurs
  3167. * we need to fix it. Originally reported by
  3168. * Bjorn Helgaas on a 128-cpu setup.
  3169. */
  3170. BUG_ON(busiest_rq == target_rq);
  3171. /* move a task from busiest_rq to target_rq */
  3172. double_lock_balance(busiest_rq, target_rq);
  3173. update_rq_clock(busiest_rq);
  3174. update_rq_clock(target_rq);
  3175. /* Search for an sd spanning us and the target CPU. */
  3176. for_each_domain(target_cpu, sd) {
  3177. if ((sd->flags & SD_LOAD_BALANCE) &&
  3178. cpu_isset(busiest_cpu, sd->span))
  3179. break;
  3180. }
  3181. if (likely(sd)) {
  3182. schedstat_inc(sd, alb_count);
  3183. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3184. sd, CPU_IDLE))
  3185. schedstat_inc(sd, alb_pushed);
  3186. else
  3187. schedstat_inc(sd, alb_failed);
  3188. }
  3189. double_unlock_balance(busiest_rq, target_rq);
  3190. }
  3191. #ifdef CONFIG_NO_HZ
  3192. static struct {
  3193. atomic_t load_balancer;
  3194. cpumask_t cpu_mask;
  3195. } nohz ____cacheline_aligned = {
  3196. .load_balancer = ATOMIC_INIT(-1),
  3197. .cpu_mask = CPU_MASK_NONE,
  3198. };
  3199. /*
  3200. * This routine will try to nominate the ilb (idle load balancing)
  3201. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3202. * load balancing on behalf of all those cpus. If all the cpus in the system
  3203. * go into this tickless mode, then there will be no ilb owner (as there is
  3204. * no need for one) and all the cpus will sleep till the next wakeup event
  3205. * arrives...
  3206. *
  3207. * For the ilb owner, tick is not stopped. And this tick will be used
  3208. * for idle load balancing. ilb owner will still be part of
  3209. * nohz.cpu_mask..
  3210. *
  3211. * While stopping the tick, this cpu will become the ilb owner if there
  3212. * is no other owner. And will be the owner till that cpu becomes busy
  3213. * or if all cpus in the system stop their ticks at which point
  3214. * there is no need for ilb owner.
  3215. *
  3216. * When the ilb owner becomes busy, it nominates another owner, during the
  3217. * next busy scheduler_tick()
  3218. */
  3219. int select_nohz_load_balancer(int stop_tick)
  3220. {
  3221. int cpu = smp_processor_id();
  3222. if (stop_tick) {
  3223. cpu_set(cpu, nohz.cpu_mask);
  3224. cpu_rq(cpu)->in_nohz_recently = 1;
  3225. /*
  3226. * If we are going offline and still the leader, give up!
  3227. */
  3228. if (!cpu_active(cpu) &&
  3229. atomic_read(&nohz.load_balancer) == cpu) {
  3230. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3231. BUG();
  3232. return 0;
  3233. }
  3234. /* time for ilb owner also to sleep */
  3235. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3236. if (atomic_read(&nohz.load_balancer) == cpu)
  3237. atomic_set(&nohz.load_balancer, -1);
  3238. return 0;
  3239. }
  3240. if (atomic_read(&nohz.load_balancer) == -1) {
  3241. /* make me the ilb owner */
  3242. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3243. return 1;
  3244. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3245. return 1;
  3246. } else {
  3247. if (!cpu_isset(cpu, nohz.cpu_mask))
  3248. return 0;
  3249. cpu_clear(cpu, nohz.cpu_mask);
  3250. if (atomic_read(&nohz.load_balancer) == cpu)
  3251. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3252. BUG();
  3253. }
  3254. return 0;
  3255. }
  3256. #endif
  3257. static DEFINE_SPINLOCK(balancing);
  3258. /*
  3259. * It checks each scheduling domain to see if it is due to be balanced,
  3260. * and initiates a balancing operation if so.
  3261. *
  3262. * Balancing parameters are set up in arch_init_sched_domains.
  3263. */
  3264. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3265. {
  3266. int balance = 1;
  3267. struct rq *rq = cpu_rq(cpu);
  3268. unsigned long interval;
  3269. struct sched_domain *sd;
  3270. /* Earliest time when we have to do rebalance again */
  3271. unsigned long next_balance = jiffies + 60*HZ;
  3272. int update_next_balance = 0;
  3273. int need_serialize;
  3274. cpumask_t tmp;
  3275. for_each_domain(cpu, sd) {
  3276. if (!(sd->flags & SD_LOAD_BALANCE))
  3277. continue;
  3278. interval = sd->balance_interval;
  3279. if (idle != CPU_IDLE)
  3280. interval *= sd->busy_factor;
  3281. /* scale ms to jiffies */
  3282. interval = msecs_to_jiffies(interval);
  3283. if (unlikely(!interval))
  3284. interval = 1;
  3285. if (interval > HZ*NR_CPUS/10)
  3286. interval = HZ*NR_CPUS/10;
  3287. need_serialize = sd->flags & SD_SERIALIZE;
  3288. if (need_serialize) {
  3289. if (!spin_trylock(&balancing))
  3290. goto out;
  3291. }
  3292. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3293. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3294. /*
  3295. * We've pulled tasks over so either we're no
  3296. * longer idle, or one of our SMT siblings is
  3297. * not idle.
  3298. */
  3299. idle = CPU_NOT_IDLE;
  3300. }
  3301. sd->last_balance = jiffies;
  3302. }
  3303. if (need_serialize)
  3304. spin_unlock(&balancing);
  3305. out:
  3306. if (time_after(next_balance, sd->last_balance + interval)) {
  3307. next_balance = sd->last_balance + interval;
  3308. update_next_balance = 1;
  3309. }
  3310. /*
  3311. * Stop the load balance at this level. There is another
  3312. * CPU in our sched group which is doing load balancing more
  3313. * actively.
  3314. */
  3315. if (!balance)
  3316. break;
  3317. }
  3318. /*
  3319. * next_balance will be updated only when there is a need.
  3320. * When the cpu is attached to null domain for ex, it will not be
  3321. * updated.
  3322. */
  3323. if (likely(update_next_balance))
  3324. rq->next_balance = next_balance;
  3325. }
  3326. /*
  3327. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3328. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3329. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3330. */
  3331. static void run_rebalance_domains(struct softirq_action *h)
  3332. {
  3333. int this_cpu = smp_processor_id();
  3334. struct rq *this_rq = cpu_rq(this_cpu);
  3335. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3336. CPU_IDLE : CPU_NOT_IDLE;
  3337. rebalance_domains(this_cpu, idle);
  3338. #ifdef CONFIG_NO_HZ
  3339. /*
  3340. * If this cpu is the owner for idle load balancing, then do the
  3341. * balancing on behalf of the other idle cpus whose ticks are
  3342. * stopped.
  3343. */
  3344. if (this_rq->idle_at_tick &&
  3345. atomic_read(&nohz.load_balancer) == this_cpu) {
  3346. cpumask_t cpus = nohz.cpu_mask;
  3347. struct rq *rq;
  3348. int balance_cpu;
  3349. cpu_clear(this_cpu, cpus);
  3350. for_each_cpu(balance_cpu, &cpus) {
  3351. /*
  3352. * If this cpu gets work to do, stop the load balancing
  3353. * work being done for other cpus. Next load
  3354. * balancing owner will pick it up.
  3355. */
  3356. if (need_resched())
  3357. break;
  3358. rebalance_domains(balance_cpu, CPU_IDLE);
  3359. rq = cpu_rq(balance_cpu);
  3360. if (time_after(this_rq->next_balance, rq->next_balance))
  3361. this_rq->next_balance = rq->next_balance;
  3362. }
  3363. }
  3364. #endif
  3365. }
  3366. /*
  3367. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3368. *
  3369. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3370. * idle load balancing owner or decide to stop the periodic load balancing,
  3371. * if the whole system is idle.
  3372. */
  3373. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3374. {
  3375. #ifdef CONFIG_NO_HZ
  3376. /*
  3377. * If we were in the nohz mode recently and busy at the current
  3378. * scheduler tick, then check if we need to nominate new idle
  3379. * load balancer.
  3380. */
  3381. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3382. rq->in_nohz_recently = 0;
  3383. if (atomic_read(&nohz.load_balancer) == cpu) {
  3384. cpu_clear(cpu, nohz.cpu_mask);
  3385. atomic_set(&nohz.load_balancer, -1);
  3386. }
  3387. if (atomic_read(&nohz.load_balancer) == -1) {
  3388. /*
  3389. * simple selection for now: Nominate the
  3390. * first cpu in the nohz list to be the next
  3391. * ilb owner.
  3392. *
  3393. * TBD: Traverse the sched domains and nominate
  3394. * the nearest cpu in the nohz.cpu_mask.
  3395. */
  3396. int ilb = first_cpu(nohz.cpu_mask);
  3397. if (ilb < nr_cpu_ids)
  3398. resched_cpu(ilb);
  3399. }
  3400. }
  3401. /*
  3402. * If this cpu is idle and doing idle load balancing for all the
  3403. * cpus with ticks stopped, is it time for that to stop?
  3404. */
  3405. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3406. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3407. resched_cpu(cpu);
  3408. return;
  3409. }
  3410. /*
  3411. * If this cpu is idle and the idle load balancing is done by
  3412. * someone else, then no need raise the SCHED_SOFTIRQ
  3413. */
  3414. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3415. cpu_isset(cpu, nohz.cpu_mask))
  3416. return;
  3417. #endif
  3418. if (time_after_eq(jiffies, rq->next_balance))
  3419. raise_softirq(SCHED_SOFTIRQ);
  3420. }
  3421. #else /* CONFIG_SMP */
  3422. /*
  3423. * on UP we do not need to balance between CPUs:
  3424. */
  3425. static inline void idle_balance(int cpu, struct rq *rq)
  3426. {
  3427. }
  3428. #endif
  3429. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3430. EXPORT_PER_CPU_SYMBOL(kstat);
  3431. /*
  3432. * Return any ns on the sched_clock that have not yet been banked in
  3433. * @p in case that task is currently running.
  3434. */
  3435. unsigned long long task_delta_exec(struct task_struct *p)
  3436. {
  3437. unsigned long flags;
  3438. struct rq *rq;
  3439. u64 ns = 0;
  3440. rq = task_rq_lock(p, &flags);
  3441. if (task_current(rq, p)) {
  3442. u64 delta_exec;
  3443. update_rq_clock(rq);
  3444. delta_exec = rq->clock - p->se.exec_start;
  3445. if ((s64)delta_exec > 0)
  3446. ns = delta_exec;
  3447. }
  3448. task_rq_unlock(rq, &flags);
  3449. return ns;
  3450. }
  3451. /*
  3452. * Account user cpu time to a process.
  3453. * @p: the process that the cpu time gets accounted to
  3454. * @cputime: the cpu time spent in user space since the last update
  3455. */
  3456. void account_user_time(struct task_struct *p, cputime_t cputime)
  3457. {
  3458. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3459. cputime64_t tmp;
  3460. p->utime = cputime_add(p->utime, cputime);
  3461. account_group_user_time(p, cputime);
  3462. /* Add user time to cpustat. */
  3463. tmp = cputime_to_cputime64(cputime);
  3464. if (TASK_NICE(p) > 0)
  3465. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3466. else
  3467. cpustat->user = cputime64_add(cpustat->user, tmp);
  3468. /* Account for user time used */
  3469. acct_update_integrals(p);
  3470. }
  3471. /*
  3472. * Account guest cpu time to a process.
  3473. * @p: the process that the cpu time gets accounted to
  3474. * @cputime: the cpu time spent in virtual machine since the last update
  3475. */
  3476. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3477. {
  3478. cputime64_t tmp;
  3479. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3480. tmp = cputime_to_cputime64(cputime);
  3481. p->utime = cputime_add(p->utime, cputime);
  3482. account_group_user_time(p, cputime);
  3483. p->gtime = cputime_add(p->gtime, cputime);
  3484. cpustat->user = cputime64_add(cpustat->user, tmp);
  3485. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3486. }
  3487. /*
  3488. * Account scaled user cpu time to a process.
  3489. * @p: the process that the cpu time gets accounted to
  3490. * @cputime: the cpu time spent in user space since the last update
  3491. */
  3492. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3493. {
  3494. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3495. }
  3496. /*
  3497. * Account system cpu time to a process.
  3498. * @p: the process that the cpu time gets accounted to
  3499. * @hardirq_offset: the offset to subtract from hardirq_count()
  3500. * @cputime: the cpu time spent in kernel space since the last update
  3501. */
  3502. void account_system_time(struct task_struct *p, int hardirq_offset,
  3503. cputime_t cputime)
  3504. {
  3505. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3506. struct rq *rq = this_rq();
  3507. cputime64_t tmp;
  3508. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3509. account_guest_time(p, cputime);
  3510. return;
  3511. }
  3512. p->stime = cputime_add(p->stime, cputime);
  3513. account_group_system_time(p, cputime);
  3514. /* Add system time to cpustat. */
  3515. tmp = cputime_to_cputime64(cputime);
  3516. if (hardirq_count() - hardirq_offset)
  3517. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3518. else if (softirq_count())
  3519. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3520. else if (p != rq->idle)
  3521. cpustat->system = cputime64_add(cpustat->system, tmp);
  3522. else if (atomic_read(&rq->nr_iowait) > 0)
  3523. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3524. else
  3525. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3526. /* Account for system time used */
  3527. acct_update_integrals(p);
  3528. }
  3529. /*
  3530. * Account scaled system cpu time to a process.
  3531. * @p: the process that the cpu time gets accounted to
  3532. * @hardirq_offset: the offset to subtract from hardirq_count()
  3533. * @cputime: the cpu time spent in kernel space since the last update
  3534. */
  3535. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3536. {
  3537. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3538. }
  3539. /*
  3540. * Account for involuntary wait time.
  3541. * @p: the process from which the cpu time has been stolen
  3542. * @steal: the cpu time spent in involuntary wait
  3543. */
  3544. void account_steal_time(struct task_struct *p, cputime_t steal)
  3545. {
  3546. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3547. cputime64_t tmp = cputime_to_cputime64(steal);
  3548. struct rq *rq = this_rq();
  3549. if (p == rq->idle) {
  3550. p->stime = cputime_add(p->stime, steal);
  3551. if (atomic_read(&rq->nr_iowait) > 0)
  3552. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3553. else
  3554. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3555. } else
  3556. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3557. }
  3558. /*
  3559. * Use precise platform statistics if available:
  3560. */
  3561. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3562. cputime_t task_utime(struct task_struct *p)
  3563. {
  3564. return p->utime;
  3565. }
  3566. cputime_t task_stime(struct task_struct *p)
  3567. {
  3568. return p->stime;
  3569. }
  3570. #else
  3571. cputime_t task_utime(struct task_struct *p)
  3572. {
  3573. clock_t utime = cputime_to_clock_t(p->utime),
  3574. total = utime + cputime_to_clock_t(p->stime);
  3575. u64 temp;
  3576. /*
  3577. * Use CFS's precise accounting:
  3578. */
  3579. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3580. if (total) {
  3581. temp *= utime;
  3582. do_div(temp, total);
  3583. }
  3584. utime = (clock_t)temp;
  3585. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3586. return p->prev_utime;
  3587. }
  3588. cputime_t task_stime(struct task_struct *p)
  3589. {
  3590. clock_t stime;
  3591. /*
  3592. * Use CFS's precise accounting. (we subtract utime from
  3593. * the total, to make sure the total observed by userspace
  3594. * grows monotonically - apps rely on that):
  3595. */
  3596. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3597. cputime_to_clock_t(task_utime(p));
  3598. if (stime >= 0)
  3599. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3600. return p->prev_stime;
  3601. }
  3602. #endif
  3603. inline cputime_t task_gtime(struct task_struct *p)
  3604. {
  3605. return p->gtime;
  3606. }
  3607. /*
  3608. * This function gets called by the timer code, with HZ frequency.
  3609. * We call it with interrupts disabled.
  3610. *
  3611. * It also gets called by the fork code, when changing the parent's
  3612. * timeslices.
  3613. */
  3614. void scheduler_tick(void)
  3615. {
  3616. int cpu = smp_processor_id();
  3617. struct rq *rq = cpu_rq(cpu);
  3618. struct task_struct *curr = rq->curr;
  3619. sched_clock_tick();
  3620. spin_lock(&rq->lock);
  3621. update_rq_clock(rq);
  3622. update_cpu_load(rq);
  3623. curr->sched_class->task_tick(rq, curr, 0);
  3624. spin_unlock(&rq->lock);
  3625. #ifdef CONFIG_SMP
  3626. rq->idle_at_tick = idle_cpu(cpu);
  3627. trigger_load_balance(rq, cpu);
  3628. #endif
  3629. }
  3630. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3631. defined(CONFIG_PREEMPT_TRACER))
  3632. static inline unsigned long get_parent_ip(unsigned long addr)
  3633. {
  3634. if (in_lock_functions(addr)) {
  3635. addr = CALLER_ADDR2;
  3636. if (in_lock_functions(addr))
  3637. addr = CALLER_ADDR3;
  3638. }
  3639. return addr;
  3640. }
  3641. void __kprobes add_preempt_count(int val)
  3642. {
  3643. #ifdef CONFIG_DEBUG_PREEMPT
  3644. /*
  3645. * Underflow?
  3646. */
  3647. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3648. return;
  3649. #endif
  3650. preempt_count() += val;
  3651. #ifdef CONFIG_DEBUG_PREEMPT
  3652. /*
  3653. * Spinlock count overflowing soon?
  3654. */
  3655. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3656. PREEMPT_MASK - 10);
  3657. #endif
  3658. if (preempt_count() == val)
  3659. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3660. }
  3661. EXPORT_SYMBOL(add_preempt_count);
  3662. void __kprobes sub_preempt_count(int val)
  3663. {
  3664. #ifdef CONFIG_DEBUG_PREEMPT
  3665. /*
  3666. * Underflow?
  3667. */
  3668. if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
  3669. return;
  3670. /*
  3671. * Is the spinlock portion underflowing?
  3672. */
  3673. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3674. !(preempt_count() & PREEMPT_MASK)))
  3675. return;
  3676. #endif
  3677. if (preempt_count() == val)
  3678. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3679. preempt_count() -= val;
  3680. }
  3681. EXPORT_SYMBOL(sub_preempt_count);
  3682. #endif
  3683. /*
  3684. * Print scheduling while atomic bug:
  3685. */
  3686. static noinline void __schedule_bug(struct task_struct *prev)
  3687. {
  3688. struct pt_regs *regs = get_irq_regs();
  3689. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3690. prev->comm, prev->pid, preempt_count());
  3691. debug_show_held_locks(prev);
  3692. print_modules();
  3693. if (irqs_disabled())
  3694. print_irqtrace_events(prev);
  3695. if (regs)
  3696. show_regs(regs);
  3697. else
  3698. dump_stack();
  3699. }
  3700. /*
  3701. * Various schedule()-time debugging checks and statistics:
  3702. */
  3703. static inline void schedule_debug(struct task_struct *prev)
  3704. {
  3705. /*
  3706. * Test if we are atomic. Since do_exit() needs to call into
  3707. * schedule() atomically, we ignore that path for now.
  3708. * Otherwise, whine if we are scheduling when we should not be.
  3709. */
  3710. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3711. __schedule_bug(prev);
  3712. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3713. schedstat_inc(this_rq(), sched_count);
  3714. #ifdef CONFIG_SCHEDSTATS
  3715. if (unlikely(prev->lock_depth >= 0)) {
  3716. schedstat_inc(this_rq(), bkl_count);
  3717. schedstat_inc(prev, sched_info.bkl_count);
  3718. }
  3719. #endif
  3720. }
  3721. /*
  3722. * Pick up the highest-prio task:
  3723. */
  3724. static inline struct task_struct *
  3725. pick_next_task(struct rq *rq, struct task_struct *prev)
  3726. {
  3727. const struct sched_class *class;
  3728. struct task_struct *p;
  3729. /*
  3730. * Optimization: we know that if all tasks are in
  3731. * the fair class we can call that function directly:
  3732. */
  3733. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3734. p = fair_sched_class.pick_next_task(rq);
  3735. if (likely(p))
  3736. return p;
  3737. }
  3738. class = sched_class_highest;
  3739. for ( ; ; ) {
  3740. p = class->pick_next_task(rq);
  3741. if (p)
  3742. return p;
  3743. /*
  3744. * Will never be NULL as the idle class always
  3745. * returns a non-NULL p:
  3746. */
  3747. class = class->next;
  3748. }
  3749. }
  3750. /*
  3751. * schedule() is the main scheduler function.
  3752. */
  3753. asmlinkage void __sched schedule(void)
  3754. {
  3755. struct task_struct *prev, *next;
  3756. unsigned long *switch_count;
  3757. struct rq *rq;
  3758. int cpu;
  3759. need_resched:
  3760. preempt_disable();
  3761. cpu = smp_processor_id();
  3762. rq = cpu_rq(cpu);
  3763. rcu_qsctr_inc(cpu);
  3764. prev = rq->curr;
  3765. switch_count = &prev->nivcsw;
  3766. release_kernel_lock(prev);
  3767. need_resched_nonpreemptible:
  3768. schedule_debug(prev);
  3769. if (sched_feat(HRTICK))
  3770. hrtick_clear(rq);
  3771. spin_lock_irq(&rq->lock);
  3772. update_rq_clock(rq);
  3773. clear_tsk_need_resched(prev);
  3774. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3775. if (unlikely(signal_pending_state(prev->state, prev)))
  3776. prev->state = TASK_RUNNING;
  3777. else
  3778. deactivate_task(rq, prev, 1);
  3779. switch_count = &prev->nvcsw;
  3780. }
  3781. #ifdef CONFIG_SMP
  3782. if (prev->sched_class->pre_schedule)
  3783. prev->sched_class->pre_schedule(rq, prev);
  3784. #endif
  3785. if (unlikely(!rq->nr_running))
  3786. idle_balance(cpu, rq);
  3787. prev->sched_class->put_prev_task(rq, prev);
  3788. next = pick_next_task(rq, prev);
  3789. if (likely(prev != next)) {
  3790. sched_info_switch(prev, next);
  3791. rq->nr_switches++;
  3792. rq->curr = next;
  3793. ++*switch_count;
  3794. context_switch(rq, prev, next); /* unlocks the rq */
  3795. /*
  3796. * the context switch might have flipped the stack from under
  3797. * us, hence refresh the local variables.
  3798. */
  3799. cpu = smp_processor_id();
  3800. rq = cpu_rq(cpu);
  3801. } else
  3802. spin_unlock_irq(&rq->lock);
  3803. if (unlikely(reacquire_kernel_lock(current) < 0))
  3804. goto need_resched_nonpreemptible;
  3805. preempt_enable_no_resched();
  3806. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3807. goto need_resched;
  3808. }
  3809. EXPORT_SYMBOL(schedule);
  3810. #ifdef CONFIG_PREEMPT
  3811. /*
  3812. * this is the entry point to schedule() from in-kernel preemption
  3813. * off of preempt_enable. Kernel preemptions off return from interrupt
  3814. * occur there and call schedule directly.
  3815. */
  3816. asmlinkage void __sched preempt_schedule(void)
  3817. {
  3818. struct thread_info *ti = current_thread_info();
  3819. /*
  3820. * If there is a non-zero preempt_count or interrupts are disabled,
  3821. * we do not want to preempt the current task. Just return..
  3822. */
  3823. if (likely(ti->preempt_count || irqs_disabled()))
  3824. return;
  3825. do {
  3826. add_preempt_count(PREEMPT_ACTIVE);
  3827. schedule();
  3828. sub_preempt_count(PREEMPT_ACTIVE);
  3829. /*
  3830. * Check again in case we missed a preemption opportunity
  3831. * between schedule and now.
  3832. */
  3833. barrier();
  3834. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3835. }
  3836. EXPORT_SYMBOL(preempt_schedule);
  3837. /*
  3838. * this is the entry point to schedule() from kernel preemption
  3839. * off of irq context.
  3840. * Note, that this is called and return with irqs disabled. This will
  3841. * protect us against recursive calling from irq.
  3842. */
  3843. asmlinkage void __sched preempt_schedule_irq(void)
  3844. {
  3845. struct thread_info *ti = current_thread_info();
  3846. /* Catch callers which need to be fixed */
  3847. BUG_ON(ti->preempt_count || !irqs_disabled());
  3848. do {
  3849. add_preempt_count(PREEMPT_ACTIVE);
  3850. local_irq_enable();
  3851. schedule();
  3852. local_irq_disable();
  3853. sub_preempt_count(PREEMPT_ACTIVE);
  3854. /*
  3855. * Check again in case we missed a preemption opportunity
  3856. * between schedule and now.
  3857. */
  3858. barrier();
  3859. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3860. }
  3861. #endif /* CONFIG_PREEMPT */
  3862. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3863. void *key)
  3864. {
  3865. return try_to_wake_up(curr->private, mode, sync);
  3866. }
  3867. EXPORT_SYMBOL(default_wake_function);
  3868. /*
  3869. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3870. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3871. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3872. *
  3873. * There are circumstances in which we can try to wake a task which has already
  3874. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3875. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3876. */
  3877. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3878. int nr_exclusive, int sync, void *key)
  3879. {
  3880. wait_queue_t *curr, *next;
  3881. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3882. unsigned flags = curr->flags;
  3883. if (curr->func(curr, mode, sync, key) &&
  3884. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3885. break;
  3886. }
  3887. }
  3888. /**
  3889. * __wake_up - wake up threads blocked on a waitqueue.
  3890. * @q: the waitqueue
  3891. * @mode: which threads
  3892. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3893. * @key: is directly passed to the wakeup function
  3894. */
  3895. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3896. int nr_exclusive, void *key)
  3897. {
  3898. unsigned long flags;
  3899. spin_lock_irqsave(&q->lock, flags);
  3900. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3901. spin_unlock_irqrestore(&q->lock, flags);
  3902. }
  3903. EXPORT_SYMBOL(__wake_up);
  3904. /*
  3905. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3906. */
  3907. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3908. {
  3909. __wake_up_common(q, mode, 1, 0, NULL);
  3910. }
  3911. /**
  3912. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3913. * @q: the waitqueue
  3914. * @mode: which threads
  3915. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3916. *
  3917. * The sync wakeup differs that the waker knows that it will schedule
  3918. * away soon, so while the target thread will be woken up, it will not
  3919. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3920. * with each other. This can prevent needless bouncing between CPUs.
  3921. *
  3922. * On UP it can prevent extra preemption.
  3923. */
  3924. void
  3925. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3926. {
  3927. unsigned long flags;
  3928. int sync = 1;
  3929. if (unlikely(!q))
  3930. return;
  3931. if (unlikely(!nr_exclusive))
  3932. sync = 0;
  3933. spin_lock_irqsave(&q->lock, flags);
  3934. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3935. spin_unlock_irqrestore(&q->lock, flags);
  3936. }
  3937. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3938. /**
  3939. * complete: - signals a single thread waiting on this completion
  3940. * @x: holds the state of this particular completion
  3941. *
  3942. * This will wake up a single thread waiting on this completion. Threads will be
  3943. * awakened in the same order in which they were queued.
  3944. *
  3945. * See also complete_all(), wait_for_completion() and related routines.
  3946. */
  3947. void complete(struct completion *x)
  3948. {
  3949. unsigned long flags;
  3950. spin_lock_irqsave(&x->wait.lock, flags);
  3951. x->done++;
  3952. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3953. spin_unlock_irqrestore(&x->wait.lock, flags);
  3954. }
  3955. EXPORT_SYMBOL(complete);
  3956. /**
  3957. * complete_all: - signals all threads waiting on this completion
  3958. * @x: holds the state of this particular completion
  3959. *
  3960. * This will wake up all threads waiting on this particular completion event.
  3961. */
  3962. void complete_all(struct completion *x)
  3963. {
  3964. unsigned long flags;
  3965. spin_lock_irqsave(&x->wait.lock, flags);
  3966. x->done += UINT_MAX/2;
  3967. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3968. spin_unlock_irqrestore(&x->wait.lock, flags);
  3969. }
  3970. EXPORT_SYMBOL(complete_all);
  3971. static inline long __sched
  3972. do_wait_for_common(struct completion *x, long timeout, int state)
  3973. {
  3974. if (!x->done) {
  3975. DECLARE_WAITQUEUE(wait, current);
  3976. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3977. __add_wait_queue_tail(&x->wait, &wait);
  3978. do {
  3979. if (signal_pending_state(state, current)) {
  3980. timeout = -ERESTARTSYS;
  3981. break;
  3982. }
  3983. __set_current_state(state);
  3984. spin_unlock_irq(&x->wait.lock);
  3985. timeout = schedule_timeout(timeout);
  3986. spin_lock_irq(&x->wait.lock);
  3987. } while (!x->done && timeout);
  3988. __remove_wait_queue(&x->wait, &wait);
  3989. if (!x->done)
  3990. return timeout;
  3991. }
  3992. x->done--;
  3993. return timeout ?: 1;
  3994. }
  3995. static long __sched
  3996. wait_for_common(struct completion *x, long timeout, int state)
  3997. {
  3998. might_sleep();
  3999. spin_lock_irq(&x->wait.lock);
  4000. timeout = do_wait_for_common(x, timeout, state);
  4001. spin_unlock_irq(&x->wait.lock);
  4002. return timeout;
  4003. }
  4004. /**
  4005. * wait_for_completion: - waits for completion of a task
  4006. * @x: holds the state of this particular completion
  4007. *
  4008. * This waits to be signaled for completion of a specific task. It is NOT
  4009. * interruptible and there is no timeout.
  4010. *
  4011. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4012. * and interrupt capability. Also see complete().
  4013. */
  4014. void __sched wait_for_completion(struct completion *x)
  4015. {
  4016. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4017. }
  4018. EXPORT_SYMBOL(wait_for_completion);
  4019. /**
  4020. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4021. * @x: holds the state of this particular completion
  4022. * @timeout: timeout value in jiffies
  4023. *
  4024. * This waits for either a completion of a specific task to be signaled or for a
  4025. * specified timeout to expire. The timeout is in jiffies. It is not
  4026. * interruptible.
  4027. */
  4028. unsigned long __sched
  4029. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4030. {
  4031. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4032. }
  4033. EXPORT_SYMBOL(wait_for_completion_timeout);
  4034. /**
  4035. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4036. * @x: holds the state of this particular completion
  4037. *
  4038. * This waits for completion of a specific task to be signaled. It is
  4039. * interruptible.
  4040. */
  4041. int __sched wait_for_completion_interruptible(struct completion *x)
  4042. {
  4043. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4044. if (t == -ERESTARTSYS)
  4045. return t;
  4046. return 0;
  4047. }
  4048. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4049. /**
  4050. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4051. * @x: holds the state of this particular completion
  4052. * @timeout: timeout value in jiffies
  4053. *
  4054. * This waits for either a completion of a specific task to be signaled or for a
  4055. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4056. */
  4057. unsigned long __sched
  4058. wait_for_completion_interruptible_timeout(struct completion *x,
  4059. unsigned long timeout)
  4060. {
  4061. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4062. }
  4063. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4064. /**
  4065. * wait_for_completion_killable: - waits for completion of a task (killable)
  4066. * @x: holds the state of this particular completion
  4067. *
  4068. * This waits to be signaled for completion of a specific task. It can be
  4069. * interrupted by a kill signal.
  4070. */
  4071. int __sched wait_for_completion_killable(struct completion *x)
  4072. {
  4073. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4074. if (t == -ERESTARTSYS)
  4075. return t;
  4076. return 0;
  4077. }
  4078. EXPORT_SYMBOL(wait_for_completion_killable);
  4079. /**
  4080. * try_wait_for_completion - try to decrement a completion without blocking
  4081. * @x: completion structure
  4082. *
  4083. * Returns: 0 if a decrement cannot be done without blocking
  4084. * 1 if a decrement succeeded.
  4085. *
  4086. * If a completion is being used as a counting completion,
  4087. * attempt to decrement the counter without blocking. This
  4088. * enables us to avoid waiting if the resource the completion
  4089. * is protecting is not available.
  4090. */
  4091. bool try_wait_for_completion(struct completion *x)
  4092. {
  4093. int ret = 1;
  4094. spin_lock_irq(&x->wait.lock);
  4095. if (!x->done)
  4096. ret = 0;
  4097. else
  4098. x->done--;
  4099. spin_unlock_irq(&x->wait.lock);
  4100. return ret;
  4101. }
  4102. EXPORT_SYMBOL(try_wait_for_completion);
  4103. /**
  4104. * completion_done - Test to see if a completion has any waiters
  4105. * @x: completion structure
  4106. *
  4107. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4108. * 1 if there are no waiters.
  4109. *
  4110. */
  4111. bool completion_done(struct completion *x)
  4112. {
  4113. int ret = 1;
  4114. spin_lock_irq(&x->wait.lock);
  4115. if (!x->done)
  4116. ret = 0;
  4117. spin_unlock_irq(&x->wait.lock);
  4118. return ret;
  4119. }
  4120. EXPORT_SYMBOL(completion_done);
  4121. static long __sched
  4122. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4123. {
  4124. unsigned long flags;
  4125. wait_queue_t wait;
  4126. init_waitqueue_entry(&wait, current);
  4127. __set_current_state(state);
  4128. spin_lock_irqsave(&q->lock, flags);
  4129. __add_wait_queue(q, &wait);
  4130. spin_unlock(&q->lock);
  4131. timeout = schedule_timeout(timeout);
  4132. spin_lock_irq(&q->lock);
  4133. __remove_wait_queue(q, &wait);
  4134. spin_unlock_irqrestore(&q->lock, flags);
  4135. return timeout;
  4136. }
  4137. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4138. {
  4139. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4140. }
  4141. EXPORT_SYMBOL(interruptible_sleep_on);
  4142. long __sched
  4143. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4144. {
  4145. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4146. }
  4147. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4148. void __sched sleep_on(wait_queue_head_t *q)
  4149. {
  4150. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4151. }
  4152. EXPORT_SYMBOL(sleep_on);
  4153. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4154. {
  4155. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4156. }
  4157. EXPORT_SYMBOL(sleep_on_timeout);
  4158. #ifdef CONFIG_RT_MUTEXES
  4159. /*
  4160. * rt_mutex_setprio - set the current priority of a task
  4161. * @p: task
  4162. * @prio: prio value (kernel-internal form)
  4163. *
  4164. * This function changes the 'effective' priority of a task. It does
  4165. * not touch ->normal_prio like __setscheduler().
  4166. *
  4167. * Used by the rt_mutex code to implement priority inheritance logic.
  4168. */
  4169. void rt_mutex_setprio(struct task_struct *p, int prio)
  4170. {
  4171. unsigned long flags;
  4172. int oldprio, on_rq, running;
  4173. struct rq *rq;
  4174. const struct sched_class *prev_class = p->sched_class;
  4175. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4176. rq = task_rq_lock(p, &flags);
  4177. update_rq_clock(rq);
  4178. oldprio = p->prio;
  4179. on_rq = p->se.on_rq;
  4180. running = task_current(rq, p);
  4181. if (on_rq)
  4182. dequeue_task(rq, p, 0);
  4183. if (running)
  4184. p->sched_class->put_prev_task(rq, p);
  4185. if (rt_prio(prio))
  4186. p->sched_class = &rt_sched_class;
  4187. else
  4188. p->sched_class = &fair_sched_class;
  4189. p->prio = prio;
  4190. if (running)
  4191. p->sched_class->set_curr_task(rq);
  4192. if (on_rq) {
  4193. enqueue_task(rq, p, 0);
  4194. check_class_changed(rq, p, prev_class, oldprio, running);
  4195. }
  4196. task_rq_unlock(rq, &flags);
  4197. }
  4198. #endif
  4199. void set_user_nice(struct task_struct *p, long nice)
  4200. {
  4201. int old_prio, delta, on_rq;
  4202. unsigned long flags;
  4203. struct rq *rq;
  4204. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4205. return;
  4206. /*
  4207. * We have to be careful, if called from sys_setpriority(),
  4208. * the task might be in the middle of scheduling on another CPU.
  4209. */
  4210. rq = task_rq_lock(p, &flags);
  4211. update_rq_clock(rq);
  4212. /*
  4213. * The RT priorities are set via sched_setscheduler(), but we still
  4214. * allow the 'normal' nice value to be set - but as expected
  4215. * it wont have any effect on scheduling until the task is
  4216. * SCHED_FIFO/SCHED_RR:
  4217. */
  4218. if (task_has_rt_policy(p)) {
  4219. p->static_prio = NICE_TO_PRIO(nice);
  4220. goto out_unlock;
  4221. }
  4222. on_rq = p->se.on_rq;
  4223. if (on_rq)
  4224. dequeue_task(rq, p, 0);
  4225. p->static_prio = NICE_TO_PRIO(nice);
  4226. set_load_weight(p);
  4227. old_prio = p->prio;
  4228. p->prio = effective_prio(p);
  4229. delta = p->prio - old_prio;
  4230. if (on_rq) {
  4231. enqueue_task(rq, p, 0);
  4232. /*
  4233. * If the task increased its priority or is running and
  4234. * lowered its priority, then reschedule its CPU:
  4235. */
  4236. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4237. resched_task(rq->curr);
  4238. }
  4239. out_unlock:
  4240. task_rq_unlock(rq, &flags);
  4241. }
  4242. EXPORT_SYMBOL(set_user_nice);
  4243. /*
  4244. * can_nice - check if a task can reduce its nice value
  4245. * @p: task
  4246. * @nice: nice value
  4247. */
  4248. int can_nice(const struct task_struct *p, const int nice)
  4249. {
  4250. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4251. int nice_rlim = 20 - nice;
  4252. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4253. capable(CAP_SYS_NICE));
  4254. }
  4255. #ifdef __ARCH_WANT_SYS_NICE
  4256. /*
  4257. * sys_nice - change the priority of the current process.
  4258. * @increment: priority increment
  4259. *
  4260. * sys_setpriority is a more generic, but much slower function that
  4261. * does similar things.
  4262. */
  4263. asmlinkage long sys_nice(int increment)
  4264. {
  4265. long nice, retval;
  4266. /*
  4267. * Setpriority might change our priority at the same moment.
  4268. * We don't have to worry. Conceptually one call occurs first
  4269. * and we have a single winner.
  4270. */
  4271. if (increment < -40)
  4272. increment = -40;
  4273. if (increment > 40)
  4274. increment = 40;
  4275. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4276. if (nice < -20)
  4277. nice = -20;
  4278. if (nice > 19)
  4279. nice = 19;
  4280. if (increment < 0 && !can_nice(current, nice))
  4281. return -EPERM;
  4282. retval = security_task_setnice(current, nice);
  4283. if (retval)
  4284. return retval;
  4285. set_user_nice(current, nice);
  4286. return 0;
  4287. }
  4288. #endif
  4289. /**
  4290. * task_prio - return the priority value of a given task.
  4291. * @p: the task in question.
  4292. *
  4293. * This is the priority value as seen by users in /proc.
  4294. * RT tasks are offset by -200. Normal tasks are centered
  4295. * around 0, value goes from -16 to +15.
  4296. */
  4297. int task_prio(const struct task_struct *p)
  4298. {
  4299. return p->prio - MAX_RT_PRIO;
  4300. }
  4301. /**
  4302. * task_nice - return the nice value of a given task.
  4303. * @p: the task in question.
  4304. */
  4305. int task_nice(const struct task_struct *p)
  4306. {
  4307. return TASK_NICE(p);
  4308. }
  4309. EXPORT_SYMBOL(task_nice);
  4310. /**
  4311. * idle_cpu - is a given cpu idle currently?
  4312. * @cpu: the processor in question.
  4313. */
  4314. int idle_cpu(int cpu)
  4315. {
  4316. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4317. }
  4318. /**
  4319. * idle_task - return the idle task for a given cpu.
  4320. * @cpu: the processor in question.
  4321. */
  4322. struct task_struct *idle_task(int cpu)
  4323. {
  4324. return cpu_rq(cpu)->idle;
  4325. }
  4326. /**
  4327. * find_process_by_pid - find a process with a matching PID value.
  4328. * @pid: the pid in question.
  4329. */
  4330. static struct task_struct *find_process_by_pid(pid_t pid)
  4331. {
  4332. return pid ? find_task_by_vpid(pid) : current;
  4333. }
  4334. /* Actually do priority change: must hold rq lock. */
  4335. static void
  4336. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4337. {
  4338. BUG_ON(p->se.on_rq);
  4339. p->policy = policy;
  4340. switch (p->policy) {
  4341. case SCHED_NORMAL:
  4342. case SCHED_BATCH:
  4343. case SCHED_IDLE:
  4344. p->sched_class = &fair_sched_class;
  4345. break;
  4346. case SCHED_FIFO:
  4347. case SCHED_RR:
  4348. p->sched_class = &rt_sched_class;
  4349. break;
  4350. }
  4351. p->rt_priority = prio;
  4352. p->normal_prio = normal_prio(p);
  4353. /* we are holding p->pi_lock already */
  4354. p->prio = rt_mutex_getprio(p);
  4355. set_load_weight(p);
  4356. }
  4357. static int __sched_setscheduler(struct task_struct *p, int policy,
  4358. struct sched_param *param, bool user)
  4359. {
  4360. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4361. unsigned long flags;
  4362. const struct sched_class *prev_class = p->sched_class;
  4363. struct rq *rq;
  4364. /* may grab non-irq protected spin_locks */
  4365. BUG_ON(in_interrupt());
  4366. recheck:
  4367. /* double check policy once rq lock held */
  4368. if (policy < 0)
  4369. policy = oldpolicy = p->policy;
  4370. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4371. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4372. policy != SCHED_IDLE)
  4373. return -EINVAL;
  4374. /*
  4375. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4376. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4377. * SCHED_BATCH and SCHED_IDLE is 0.
  4378. */
  4379. if (param->sched_priority < 0 ||
  4380. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4381. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4382. return -EINVAL;
  4383. if (rt_policy(policy) != (param->sched_priority != 0))
  4384. return -EINVAL;
  4385. /*
  4386. * Allow unprivileged RT tasks to decrease priority:
  4387. */
  4388. if (user && !capable(CAP_SYS_NICE)) {
  4389. if (rt_policy(policy)) {
  4390. unsigned long rlim_rtprio;
  4391. if (!lock_task_sighand(p, &flags))
  4392. return -ESRCH;
  4393. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4394. unlock_task_sighand(p, &flags);
  4395. /* can't set/change the rt policy */
  4396. if (policy != p->policy && !rlim_rtprio)
  4397. return -EPERM;
  4398. /* can't increase priority */
  4399. if (param->sched_priority > p->rt_priority &&
  4400. param->sched_priority > rlim_rtprio)
  4401. return -EPERM;
  4402. }
  4403. /*
  4404. * Like positive nice levels, dont allow tasks to
  4405. * move out of SCHED_IDLE either:
  4406. */
  4407. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4408. return -EPERM;
  4409. /* can't change other user's priorities */
  4410. if ((current->euid != p->euid) &&
  4411. (current->euid != p->uid))
  4412. return -EPERM;
  4413. }
  4414. if (user) {
  4415. #ifdef CONFIG_RT_GROUP_SCHED
  4416. /*
  4417. * Do not allow realtime tasks into groups that have no runtime
  4418. * assigned.
  4419. */
  4420. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4421. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4422. return -EPERM;
  4423. #endif
  4424. retval = security_task_setscheduler(p, policy, param);
  4425. if (retval)
  4426. return retval;
  4427. }
  4428. /*
  4429. * make sure no PI-waiters arrive (or leave) while we are
  4430. * changing the priority of the task:
  4431. */
  4432. spin_lock_irqsave(&p->pi_lock, flags);
  4433. /*
  4434. * To be able to change p->policy safely, the apropriate
  4435. * runqueue lock must be held.
  4436. */
  4437. rq = __task_rq_lock(p);
  4438. /* recheck policy now with rq lock held */
  4439. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4440. policy = oldpolicy = -1;
  4441. __task_rq_unlock(rq);
  4442. spin_unlock_irqrestore(&p->pi_lock, flags);
  4443. goto recheck;
  4444. }
  4445. update_rq_clock(rq);
  4446. on_rq = p->se.on_rq;
  4447. running = task_current(rq, p);
  4448. if (on_rq)
  4449. deactivate_task(rq, p, 0);
  4450. if (running)
  4451. p->sched_class->put_prev_task(rq, p);
  4452. oldprio = p->prio;
  4453. __setscheduler(rq, p, policy, param->sched_priority);
  4454. if (running)
  4455. p->sched_class->set_curr_task(rq);
  4456. if (on_rq) {
  4457. activate_task(rq, p, 0);
  4458. check_class_changed(rq, p, prev_class, oldprio, running);
  4459. }
  4460. __task_rq_unlock(rq);
  4461. spin_unlock_irqrestore(&p->pi_lock, flags);
  4462. rt_mutex_adjust_pi(p);
  4463. return 0;
  4464. }
  4465. /**
  4466. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4467. * @p: the task in question.
  4468. * @policy: new policy.
  4469. * @param: structure containing the new RT priority.
  4470. *
  4471. * NOTE that the task may be already dead.
  4472. */
  4473. int sched_setscheduler(struct task_struct *p, int policy,
  4474. struct sched_param *param)
  4475. {
  4476. return __sched_setscheduler(p, policy, param, true);
  4477. }
  4478. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4479. /**
  4480. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4481. * @p: the task in question.
  4482. * @policy: new policy.
  4483. * @param: structure containing the new RT priority.
  4484. *
  4485. * Just like sched_setscheduler, only don't bother checking if the
  4486. * current context has permission. For example, this is needed in
  4487. * stop_machine(): we create temporary high priority worker threads,
  4488. * but our caller might not have that capability.
  4489. */
  4490. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4491. struct sched_param *param)
  4492. {
  4493. return __sched_setscheduler(p, policy, param, false);
  4494. }
  4495. static int
  4496. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4497. {
  4498. struct sched_param lparam;
  4499. struct task_struct *p;
  4500. int retval;
  4501. if (!param || pid < 0)
  4502. return -EINVAL;
  4503. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4504. return -EFAULT;
  4505. rcu_read_lock();
  4506. retval = -ESRCH;
  4507. p = find_process_by_pid(pid);
  4508. if (p != NULL)
  4509. retval = sched_setscheduler(p, policy, &lparam);
  4510. rcu_read_unlock();
  4511. return retval;
  4512. }
  4513. /**
  4514. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4515. * @pid: the pid in question.
  4516. * @policy: new policy.
  4517. * @param: structure containing the new RT priority.
  4518. */
  4519. asmlinkage long
  4520. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4521. {
  4522. /* negative values for policy are not valid */
  4523. if (policy < 0)
  4524. return -EINVAL;
  4525. return do_sched_setscheduler(pid, policy, param);
  4526. }
  4527. /**
  4528. * sys_sched_setparam - set/change the RT priority of a thread
  4529. * @pid: the pid in question.
  4530. * @param: structure containing the new RT priority.
  4531. */
  4532. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4533. {
  4534. return do_sched_setscheduler(pid, -1, param);
  4535. }
  4536. /**
  4537. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4538. * @pid: the pid in question.
  4539. */
  4540. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4541. {
  4542. struct task_struct *p;
  4543. int retval;
  4544. if (pid < 0)
  4545. return -EINVAL;
  4546. retval = -ESRCH;
  4547. read_lock(&tasklist_lock);
  4548. p = find_process_by_pid(pid);
  4549. if (p) {
  4550. retval = security_task_getscheduler(p);
  4551. if (!retval)
  4552. retval = p->policy;
  4553. }
  4554. read_unlock(&tasklist_lock);
  4555. return retval;
  4556. }
  4557. /**
  4558. * sys_sched_getscheduler - get the RT priority of a thread
  4559. * @pid: the pid in question.
  4560. * @param: structure containing the RT priority.
  4561. */
  4562. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4563. {
  4564. struct sched_param lp;
  4565. struct task_struct *p;
  4566. int retval;
  4567. if (!param || pid < 0)
  4568. return -EINVAL;
  4569. read_lock(&tasklist_lock);
  4570. p = find_process_by_pid(pid);
  4571. retval = -ESRCH;
  4572. if (!p)
  4573. goto out_unlock;
  4574. retval = security_task_getscheduler(p);
  4575. if (retval)
  4576. goto out_unlock;
  4577. lp.sched_priority = p->rt_priority;
  4578. read_unlock(&tasklist_lock);
  4579. /*
  4580. * This one might sleep, we cannot do it with a spinlock held ...
  4581. */
  4582. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4583. return retval;
  4584. out_unlock:
  4585. read_unlock(&tasklist_lock);
  4586. return retval;
  4587. }
  4588. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4589. {
  4590. cpumask_t cpus_allowed;
  4591. cpumask_t new_mask = *in_mask;
  4592. struct task_struct *p;
  4593. int retval;
  4594. get_online_cpus();
  4595. read_lock(&tasklist_lock);
  4596. p = find_process_by_pid(pid);
  4597. if (!p) {
  4598. read_unlock(&tasklist_lock);
  4599. put_online_cpus();
  4600. return -ESRCH;
  4601. }
  4602. /*
  4603. * It is not safe to call set_cpus_allowed with the
  4604. * tasklist_lock held. We will bump the task_struct's
  4605. * usage count and then drop tasklist_lock.
  4606. */
  4607. get_task_struct(p);
  4608. read_unlock(&tasklist_lock);
  4609. retval = -EPERM;
  4610. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4611. !capable(CAP_SYS_NICE))
  4612. goto out_unlock;
  4613. retval = security_task_setscheduler(p, 0, NULL);
  4614. if (retval)
  4615. goto out_unlock;
  4616. cpuset_cpus_allowed(p, &cpus_allowed);
  4617. cpus_and(new_mask, new_mask, cpus_allowed);
  4618. again:
  4619. retval = set_cpus_allowed_ptr(p, &new_mask);
  4620. if (!retval) {
  4621. cpuset_cpus_allowed(p, &cpus_allowed);
  4622. if (!cpus_subset(new_mask, cpus_allowed)) {
  4623. /*
  4624. * We must have raced with a concurrent cpuset
  4625. * update. Just reset the cpus_allowed to the
  4626. * cpuset's cpus_allowed
  4627. */
  4628. new_mask = cpus_allowed;
  4629. goto again;
  4630. }
  4631. }
  4632. out_unlock:
  4633. put_task_struct(p);
  4634. put_online_cpus();
  4635. return retval;
  4636. }
  4637. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4638. cpumask_t *new_mask)
  4639. {
  4640. if (len < sizeof(cpumask_t)) {
  4641. memset(new_mask, 0, sizeof(cpumask_t));
  4642. } else if (len > sizeof(cpumask_t)) {
  4643. len = sizeof(cpumask_t);
  4644. }
  4645. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4646. }
  4647. /**
  4648. * sys_sched_setaffinity - set the cpu affinity of a process
  4649. * @pid: pid of the process
  4650. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4651. * @user_mask_ptr: user-space pointer to the new cpu mask
  4652. */
  4653. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4654. unsigned long __user *user_mask_ptr)
  4655. {
  4656. cpumask_t new_mask;
  4657. int retval;
  4658. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4659. if (retval)
  4660. return retval;
  4661. return sched_setaffinity(pid, &new_mask);
  4662. }
  4663. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4664. {
  4665. struct task_struct *p;
  4666. int retval;
  4667. get_online_cpus();
  4668. read_lock(&tasklist_lock);
  4669. retval = -ESRCH;
  4670. p = find_process_by_pid(pid);
  4671. if (!p)
  4672. goto out_unlock;
  4673. retval = security_task_getscheduler(p);
  4674. if (retval)
  4675. goto out_unlock;
  4676. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4677. out_unlock:
  4678. read_unlock(&tasklist_lock);
  4679. put_online_cpus();
  4680. return retval;
  4681. }
  4682. /**
  4683. * sys_sched_getaffinity - get the cpu affinity of a process
  4684. * @pid: pid of the process
  4685. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4686. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4687. */
  4688. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4689. unsigned long __user *user_mask_ptr)
  4690. {
  4691. int ret;
  4692. cpumask_t mask;
  4693. if (len < sizeof(cpumask_t))
  4694. return -EINVAL;
  4695. ret = sched_getaffinity(pid, &mask);
  4696. if (ret < 0)
  4697. return ret;
  4698. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4699. return -EFAULT;
  4700. return sizeof(cpumask_t);
  4701. }
  4702. /**
  4703. * sys_sched_yield - yield the current processor to other threads.
  4704. *
  4705. * This function yields the current CPU to other tasks. If there are no
  4706. * other threads running on this CPU then this function will return.
  4707. */
  4708. asmlinkage long sys_sched_yield(void)
  4709. {
  4710. struct rq *rq = this_rq_lock();
  4711. schedstat_inc(rq, yld_count);
  4712. current->sched_class->yield_task(rq);
  4713. /*
  4714. * Since we are going to call schedule() anyway, there's
  4715. * no need to preempt or enable interrupts:
  4716. */
  4717. __release(rq->lock);
  4718. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4719. _raw_spin_unlock(&rq->lock);
  4720. preempt_enable_no_resched();
  4721. schedule();
  4722. return 0;
  4723. }
  4724. static void __cond_resched(void)
  4725. {
  4726. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4727. __might_sleep(__FILE__, __LINE__);
  4728. #endif
  4729. /*
  4730. * The BKS might be reacquired before we have dropped
  4731. * PREEMPT_ACTIVE, which could trigger a second
  4732. * cond_resched() call.
  4733. */
  4734. do {
  4735. add_preempt_count(PREEMPT_ACTIVE);
  4736. schedule();
  4737. sub_preempt_count(PREEMPT_ACTIVE);
  4738. } while (need_resched());
  4739. }
  4740. int __sched _cond_resched(void)
  4741. {
  4742. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4743. system_state == SYSTEM_RUNNING) {
  4744. __cond_resched();
  4745. return 1;
  4746. }
  4747. return 0;
  4748. }
  4749. EXPORT_SYMBOL(_cond_resched);
  4750. /*
  4751. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4752. * call schedule, and on return reacquire the lock.
  4753. *
  4754. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4755. * operations here to prevent schedule() from being called twice (once via
  4756. * spin_unlock(), once by hand).
  4757. */
  4758. int cond_resched_lock(spinlock_t *lock)
  4759. {
  4760. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4761. int ret = 0;
  4762. if (spin_needbreak(lock) || resched) {
  4763. spin_unlock(lock);
  4764. if (resched && need_resched())
  4765. __cond_resched();
  4766. else
  4767. cpu_relax();
  4768. ret = 1;
  4769. spin_lock(lock);
  4770. }
  4771. return ret;
  4772. }
  4773. EXPORT_SYMBOL(cond_resched_lock);
  4774. int __sched cond_resched_softirq(void)
  4775. {
  4776. BUG_ON(!in_softirq());
  4777. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4778. local_bh_enable();
  4779. __cond_resched();
  4780. local_bh_disable();
  4781. return 1;
  4782. }
  4783. return 0;
  4784. }
  4785. EXPORT_SYMBOL(cond_resched_softirq);
  4786. /**
  4787. * yield - yield the current processor to other threads.
  4788. *
  4789. * This is a shortcut for kernel-space yielding - it marks the
  4790. * thread runnable and calls sys_sched_yield().
  4791. */
  4792. void __sched yield(void)
  4793. {
  4794. set_current_state(TASK_RUNNING);
  4795. sys_sched_yield();
  4796. }
  4797. EXPORT_SYMBOL(yield);
  4798. /*
  4799. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4800. * that process accounting knows that this is a task in IO wait state.
  4801. *
  4802. * But don't do that if it is a deliberate, throttling IO wait (this task
  4803. * has set its backing_dev_info: the queue against which it should throttle)
  4804. */
  4805. void __sched io_schedule(void)
  4806. {
  4807. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4808. delayacct_blkio_start();
  4809. atomic_inc(&rq->nr_iowait);
  4810. schedule();
  4811. atomic_dec(&rq->nr_iowait);
  4812. delayacct_blkio_end();
  4813. }
  4814. EXPORT_SYMBOL(io_schedule);
  4815. long __sched io_schedule_timeout(long timeout)
  4816. {
  4817. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4818. long ret;
  4819. delayacct_blkio_start();
  4820. atomic_inc(&rq->nr_iowait);
  4821. ret = schedule_timeout(timeout);
  4822. atomic_dec(&rq->nr_iowait);
  4823. delayacct_blkio_end();
  4824. return ret;
  4825. }
  4826. /**
  4827. * sys_sched_get_priority_max - return maximum RT priority.
  4828. * @policy: scheduling class.
  4829. *
  4830. * this syscall returns the maximum rt_priority that can be used
  4831. * by a given scheduling class.
  4832. */
  4833. asmlinkage long sys_sched_get_priority_max(int policy)
  4834. {
  4835. int ret = -EINVAL;
  4836. switch (policy) {
  4837. case SCHED_FIFO:
  4838. case SCHED_RR:
  4839. ret = MAX_USER_RT_PRIO-1;
  4840. break;
  4841. case SCHED_NORMAL:
  4842. case SCHED_BATCH:
  4843. case SCHED_IDLE:
  4844. ret = 0;
  4845. break;
  4846. }
  4847. return ret;
  4848. }
  4849. /**
  4850. * sys_sched_get_priority_min - return minimum RT priority.
  4851. * @policy: scheduling class.
  4852. *
  4853. * this syscall returns the minimum rt_priority that can be used
  4854. * by a given scheduling class.
  4855. */
  4856. asmlinkage long sys_sched_get_priority_min(int policy)
  4857. {
  4858. int ret = -EINVAL;
  4859. switch (policy) {
  4860. case SCHED_FIFO:
  4861. case SCHED_RR:
  4862. ret = 1;
  4863. break;
  4864. case SCHED_NORMAL:
  4865. case SCHED_BATCH:
  4866. case SCHED_IDLE:
  4867. ret = 0;
  4868. }
  4869. return ret;
  4870. }
  4871. /**
  4872. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4873. * @pid: pid of the process.
  4874. * @interval: userspace pointer to the timeslice value.
  4875. *
  4876. * this syscall writes the default timeslice value of a given process
  4877. * into the user-space timespec buffer. A value of '0' means infinity.
  4878. */
  4879. asmlinkage
  4880. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4881. {
  4882. struct task_struct *p;
  4883. unsigned int time_slice;
  4884. int retval;
  4885. struct timespec t;
  4886. if (pid < 0)
  4887. return -EINVAL;
  4888. retval = -ESRCH;
  4889. read_lock(&tasklist_lock);
  4890. p = find_process_by_pid(pid);
  4891. if (!p)
  4892. goto out_unlock;
  4893. retval = security_task_getscheduler(p);
  4894. if (retval)
  4895. goto out_unlock;
  4896. /*
  4897. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4898. * tasks that are on an otherwise idle runqueue:
  4899. */
  4900. time_slice = 0;
  4901. if (p->policy == SCHED_RR) {
  4902. time_slice = DEF_TIMESLICE;
  4903. } else if (p->policy != SCHED_FIFO) {
  4904. struct sched_entity *se = &p->se;
  4905. unsigned long flags;
  4906. struct rq *rq;
  4907. rq = task_rq_lock(p, &flags);
  4908. if (rq->cfs.load.weight)
  4909. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4910. task_rq_unlock(rq, &flags);
  4911. }
  4912. read_unlock(&tasklist_lock);
  4913. jiffies_to_timespec(time_slice, &t);
  4914. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4915. return retval;
  4916. out_unlock:
  4917. read_unlock(&tasklist_lock);
  4918. return retval;
  4919. }
  4920. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4921. void sched_show_task(struct task_struct *p)
  4922. {
  4923. unsigned long free = 0;
  4924. unsigned state;
  4925. state = p->state ? __ffs(p->state) + 1 : 0;
  4926. printk(KERN_INFO "%-13.13s %c", p->comm,
  4927. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4928. #if BITS_PER_LONG == 32
  4929. if (state == TASK_RUNNING)
  4930. printk(KERN_CONT " running ");
  4931. else
  4932. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4933. #else
  4934. if (state == TASK_RUNNING)
  4935. printk(KERN_CONT " running task ");
  4936. else
  4937. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4938. #endif
  4939. #ifdef CONFIG_DEBUG_STACK_USAGE
  4940. {
  4941. unsigned long *n = end_of_stack(p);
  4942. while (!*n)
  4943. n++;
  4944. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4945. }
  4946. #endif
  4947. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4948. task_pid_nr(p), task_pid_nr(p->real_parent));
  4949. show_stack(p, NULL);
  4950. }
  4951. void show_state_filter(unsigned long state_filter)
  4952. {
  4953. struct task_struct *g, *p;
  4954. #if BITS_PER_LONG == 32
  4955. printk(KERN_INFO
  4956. " task PC stack pid father\n");
  4957. #else
  4958. printk(KERN_INFO
  4959. " task PC stack pid father\n");
  4960. #endif
  4961. read_lock(&tasklist_lock);
  4962. do_each_thread(g, p) {
  4963. /*
  4964. * reset the NMI-timeout, listing all files on a slow
  4965. * console might take alot of time:
  4966. */
  4967. touch_nmi_watchdog();
  4968. if (!state_filter || (p->state & state_filter))
  4969. sched_show_task(p);
  4970. } while_each_thread(g, p);
  4971. touch_all_softlockup_watchdogs();
  4972. #ifdef CONFIG_SCHED_DEBUG
  4973. sysrq_sched_debug_show();
  4974. #endif
  4975. read_unlock(&tasklist_lock);
  4976. /*
  4977. * Only show locks if all tasks are dumped:
  4978. */
  4979. if (state_filter == -1)
  4980. debug_show_all_locks();
  4981. }
  4982. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4983. {
  4984. idle->sched_class = &idle_sched_class;
  4985. }
  4986. /**
  4987. * init_idle - set up an idle thread for a given CPU
  4988. * @idle: task in question
  4989. * @cpu: cpu the idle task belongs to
  4990. *
  4991. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4992. * flag, to make booting more robust.
  4993. */
  4994. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4995. {
  4996. struct rq *rq = cpu_rq(cpu);
  4997. unsigned long flags;
  4998. spin_lock_irqsave(&rq->lock, flags);
  4999. __sched_fork(idle);
  5000. idle->se.exec_start = sched_clock();
  5001. idle->prio = idle->normal_prio = MAX_PRIO;
  5002. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5003. __set_task_cpu(idle, cpu);
  5004. rq->curr = rq->idle = idle;
  5005. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5006. idle->oncpu = 1;
  5007. #endif
  5008. spin_unlock_irqrestore(&rq->lock, flags);
  5009. /* Set the preempt count _outside_ the spinlocks! */
  5010. #if defined(CONFIG_PREEMPT)
  5011. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5012. #else
  5013. task_thread_info(idle)->preempt_count = 0;
  5014. #endif
  5015. /*
  5016. * The idle tasks have their own, simple scheduling class:
  5017. */
  5018. idle->sched_class = &idle_sched_class;
  5019. ftrace_retfunc_init_task(idle);
  5020. }
  5021. /*
  5022. * In a system that switches off the HZ timer nohz_cpu_mask
  5023. * indicates which cpus entered this state. This is used
  5024. * in the rcu update to wait only for active cpus. For system
  5025. * which do not switch off the HZ timer nohz_cpu_mask should
  5026. * always be CPU_MASK_NONE.
  5027. */
  5028. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5029. /*
  5030. * Increase the granularity value when there are more CPUs,
  5031. * because with more CPUs the 'effective latency' as visible
  5032. * to users decreases. But the relationship is not linear,
  5033. * so pick a second-best guess by going with the log2 of the
  5034. * number of CPUs.
  5035. *
  5036. * This idea comes from the SD scheduler of Con Kolivas:
  5037. */
  5038. static inline void sched_init_granularity(void)
  5039. {
  5040. unsigned int factor = 1 + ilog2(num_online_cpus());
  5041. const unsigned long limit = 200000000;
  5042. sysctl_sched_min_granularity *= factor;
  5043. if (sysctl_sched_min_granularity > limit)
  5044. sysctl_sched_min_granularity = limit;
  5045. sysctl_sched_latency *= factor;
  5046. if (sysctl_sched_latency > limit)
  5047. sysctl_sched_latency = limit;
  5048. sysctl_sched_wakeup_granularity *= factor;
  5049. sysctl_sched_shares_ratelimit *= factor;
  5050. }
  5051. #ifdef CONFIG_SMP
  5052. /*
  5053. * This is how migration works:
  5054. *
  5055. * 1) we queue a struct migration_req structure in the source CPU's
  5056. * runqueue and wake up that CPU's migration thread.
  5057. * 2) we down() the locked semaphore => thread blocks.
  5058. * 3) migration thread wakes up (implicitly it forces the migrated
  5059. * thread off the CPU)
  5060. * 4) it gets the migration request and checks whether the migrated
  5061. * task is still in the wrong runqueue.
  5062. * 5) if it's in the wrong runqueue then the migration thread removes
  5063. * it and puts it into the right queue.
  5064. * 6) migration thread up()s the semaphore.
  5065. * 7) we wake up and the migration is done.
  5066. */
  5067. /*
  5068. * Change a given task's CPU affinity. Migrate the thread to a
  5069. * proper CPU and schedule it away if the CPU it's executing on
  5070. * is removed from the allowed bitmask.
  5071. *
  5072. * NOTE: the caller must have a valid reference to the task, the
  5073. * task must not exit() & deallocate itself prematurely. The
  5074. * call is not atomic; no spinlocks may be held.
  5075. */
  5076. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5077. {
  5078. struct migration_req req;
  5079. unsigned long flags;
  5080. struct rq *rq;
  5081. int ret = 0;
  5082. rq = task_rq_lock(p, &flags);
  5083. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5084. ret = -EINVAL;
  5085. goto out;
  5086. }
  5087. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5088. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5089. ret = -EINVAL;
  5090. goto out;
  5091. }
  5092. if (p->sched_class->set_cpus_allowed)
  5093. p->sched_class->set_cpus_allowed(p, new_mask);
  5094. else {
  5095. p->cpus_allowed = *new_mask;
  5096. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5097. }
  5098. /* Can the task run on the task's current CPU? If so, we're done */
  5099. if (cpu_isset(task_cpu(p), *new_mask))
  5100. goto out;
  5101. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5102. /* Need help from migration thread: drop lock and wait. */
  5103. task_rq_unlock(rq, &flags);
  5104. wake_up_process(rq->migration_thread);
  5105. wait_for_completion(&req.done);
  5106. tlb_migrate_finish(p->mm);
  5107. return 0;
  5108. }
  5109. out:
  5110. task_rq_unlock(rq, &flags);
  5111. return ret;
  5112. }
  5113. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5114. /*
  5115. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5116. * this because either it can't run here any more (set_cpus_allowed()
  5117. * away from this CPU, or CPU going down), or because we're
  5118. * attempting to rebalance this task on exec (sched_exec).
  5119. *
  5120. * So we race with normal scheduler movements, but that's OK, as long
  5121. * as the task is no longer on this CPU.
  5122. *
  5123. * Returns non-zero if task was successfully migrated.
  5124. */
  5125. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5126. {
  5127. struct rq *rq_dest, *rq_src;
  5128. int ret = 0, on_rq;
  5129. if (unlikely(!cpu_active(dest_cpu)))
  5130. return ret;
  5131. rq_src = cpu_rq(src_cpu);
  5132. rq_dest = cpu_rq(dest_cpu);
  5133. double_rq_lock(rq_src, rq_dest);
  5134. /* Already moved. */
  5135. if (task_cpu(p) != src_cpu)
  5136. goto done;
  5137. /* Affinity changed (again). */
  5138. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5139. goto fail;
  5140. on_rq = p->se.on_rq;
  5141. if (on_rq)
  5142. deactivate_task(rq_src, p, 0);
  5143. set_task_cpu(p, dest_cpu);
  5144. if (on_rq) {
  5145. activate_task(rq_dest, p, 0);
  5146. check_preempt_curr(rq_dest, p, 0);
  5147. }
  5148. done:
  5149. ret = 1;
  5150. fail:
  5151. double_rq_unlock(rq_src, rq_dest);
  5152. return ret;
  5153. }
  5154. /*
  5155. * migration_thread - this is a highprio system thread that performs
  5156. * thread migration by bumping thread off CPU then 'pushing' onto
  5157. * another runqueue.
  5158. */
  5159. static int migration_thread(void *data)
  5160. {
  5161. int cpu = (long)data;
  5162. struct rq *rq;
  5163. rq = cpu_rq(cpu);
  5164. BUG_ON(rq->migration_thread != current);
  5165. set_current_state(TASK_INTERRUPTIBLE);
  5166. while (!kthread_should_stop()) {
  5167. struct migration_req *req;
  5168. struct list_head *head;
  5169. spin_lock_irq(&rq->lock);
  5170. if (cpu_is_offline(cpu)) {
  5171. spin_unlock_irq(&rq->lock);
  5172. goto wait_to_die;
  5173. }
  5174. if (rq->active_balance) {
  5175. active_load_balance(rq, cpu);
  5176. rq->active_balance = 0;
  5177. }
  5178. head = &rq->migration_queue;
  5179. if (list_empty(head)) {
  5180. spin_unlock_irq(&rq->lock);
  5181. schedule();
  5182. set_current_state(TASK_INTERRUPTIBLE);
  5183. continue;
  5184. }
  5185. req = list_entry(head->next, struct migration_req, list);
  5186. list_del_init(head->next);
  5187. spin_unlock(&rq->lock);
  5188. __migrate_task(req->task, cpu, req->dest_cpu);
  5189. local_irq_enable();
  5190. complete(&req->done);
  5191. }
  5192. __set_current_state(TASK_RUNNING);
  5193. return 0;
  5194. wait_to_die:
  5195. /* Wait for kthread_stop */
  5196. set_current_state(TASK_INTERRUPTIBLE);
  5197. while (!kthread_should_stop()) {
  5198. schedule();
  5199. set_current_state(TASK_INTERRUPTIBLE);
  5200. }
  5201. __set_current_state(TASK_RUNNING);
  5202. return 0;
  5203. }
  5204. #ifdef CONFIG_HOTPLUG_CPU
  5205. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5206. {
  5207. int ret;
  5208. local_irq_disable();
  5209. ret = __migrate_task(p, src_cpu, dest_cpu);
  5210. local_irq_enable();
  5211. return ret;
  5212. }
  5213. /*
  5214. * Figure out where task on dead CPU should go, use force if necessary.
  5215. */
  5216. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5217. {
  5218. unsigned long flags;
  5219. cpumask_t mask;
  5220. struct rq *rq;
  5221. int dest_cpu;
  5222. do {
  5223. /* On same node? */
  5224. node_to_cpumask_ptr(pnodemask, cpu_to_node(dead_cpu));
  5225. cpus_and(mask, *pnodemask, p->cpus_allowed);
  5226. dest_cpu = any_online_cpu(mask);
  5227. /* On any allowed CPU? */
  5228. if (dest_cpu >= nr_cpu_ids)
  5229. dest_cpu = any_online_cpu(p->cpus_allowed);
  5230. /* No more Mr. Nice Guy. */
  5231. if (dest_cpu >= nr_cpu_ids) {
  5232. cpumask_t cpus_allowed;
  5233. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5234. /*
  5235. * Try to stay on the same cpuset, where the
  5236. * current cpuset may be a subset of all cpus.
  5237. * The cpuset_cpus_allowed_locked() variant of
  5238. * cpuset_cpus_allowed() will not block. It must be
  5239. * called within calls to cpuset_lock/cpuset_unlock.
  5240. */
  5241. rq = task_rq_lock(p, &flags);
  5242. p->cpus_allowed = cpus_allowed;
  5243. dest_cpu = any_online_cpu(p->cpus_allowed);
  5244. task_rq_unlock(rq, &flags);
  5245. /*
  5246. * Don't tell them about moving exiting tasks or
  5247. * kernel threads (both mm NULL), since they never
  5248. * leave kernel.
  5249. */
  5250. if (p->mm && printk_ratelimit()) {
  5251. printk(KERN_INFO "process %d (%s) no "
  5252. "longer affine to cpu%d\n",
  5253. task_pid_nr(p), p->comm, dead_cpu);
  5254. }
  5255. }
  5256. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5257. }
  5258. /*
  5259. * While a dead CPU has no uninterruptible tasks queued at this point,
  5260. * it might still have a nonzero ->nr_uninterruptible counter, because
  5261. * for performance reasons the counter is not stricly tracking tasks to
  5262. * their home CPUs. So we just add the counter to another CPU's counter,
  5263. * to keep the global sum constant after CPU-down:
  5264. */
  5265. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5266. {
  5267. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5268. unsigned long flags;
  5269. local_irq_save(flags);
  5270. double_rq_lock(rq_src, rq_dest);
  5271. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5272. rq_src->nr_uninterruptible = 0;
  5273. double_rq_unlock(rq_src, rq_dest);
  5274. local_irq_restore(flags);
  5275. }
  5276. /* Run through task list and migrate tasks from the dead cpu. */
  5277. static void migrate_live_tasks(int src_cpu)
  5278. {
  5279. struct task_struct *p, *t;
  5280. read_lock(&tasklist_lock);
  5281. do_each_thread(t, p) {
  5282. if (p == current)
  5283. continue;
  5284. if (task_cpu(p) == src_cpu)
  5285. move_task_off_dead_cpu(src_cpu, p);
  5286. } while_each_thread(t, p);
  5287. read_unlock(&tasklist_lock);
  5288. }
  5289. /*
  5290. * Schedules idle task to be the next runnable task on current CPU.
  5291. * It does so by boosting its priority to highest possible.
  5292. * Used by CPU offline code.
  5293. */
  5294. void sched_idle_next(void)
  5295. {
  5296. int this_cpu = smp_processor_id();
  5297. struct rq *rq = cpu_rq(this_cpu);
  5298. struct task_struct *p = rq->idle;
  5299. unsigned long flags;
  5300. /* cpu has to be offline */
  5301. BUG_ON(cpu_online(this_cpu));
  5302. /*
  5303. * Strictly not necessary since rest of the CPUs are stopped by now
  5304. * and interrupts disabled on the current cpu.
  5305. */
  5306. spin_lock_irqsave(&rq->lock, flags);
  5307. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5308. update_rq_clock(rq);
  5309. activate_task(rq, p, 0);
  5310. spin_unlock_irqrestore(&rq->lock, flags);
  5311. }
  5312. /*
  5313. * Ensures that the idle task is using init_mm right before its cpu goes
  5314. * offline.
  5315. */
  5316. void idle_task_exit(void)
  5317. {
  5318. struct mm_struct *mm = current->active_mm;
  5319. BUG_ON(cpu_online(smp_processor_id()));
  5320. if (mm != &init_mm)
  5321. switch_mm(mm, &init_mm, current);
  5322. mmdrop(mm);
  5323. }
  5324. /* called under rq->lock with disabled interrupts */
  5325. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5326. {
  5327. struct rq *rq = cpu_rq(dead_cpu);
  5328. /* Must be exiting, otherwise would be on tasklist. */
  5329. BUG_ON(!p->exit_state);
  5330. /* Cannot have done final schedule yet: would have vanished. */
  5331. BUG_ON(p->state == TASK_DEAD);
  5332. get_task_struct(p);
  5333. /*
  5334. * Drop lock around migration; if someone else moves it,
  5335. * that's OK. No task can be added to this CPU, so iteration is
  5336. * fine.
  5337. */
  5338. spin_unlock_irq(&rq->lock);
  5339. move_task_off_dead_cpu(dead_cpu, p);
  5340. spin_lock_irq(&rq->lock);
  5341. put_task_struct(p);
  5342. }
  5343. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5344. static void migrate_dead_tasks(unsigned int dead_cpu)
  5345. {
  5346. struct rq *rq = cpu_rq(dead_cpu);
  5347. struct task_struct *next;
  5348. for ( ; ; ) {
  5349. if (!rq->nr_running)
  5350. break;
  5351. update_rq_clock(rq);
  5352. next = pick_next_task(rq, rq->curr);
  5353. if (!next)
  5354. break;
  5355. next->sched_class->put_prev_task(rq, next);
  5356. migrate_dead(dead_cpu, next);
  5357. }
  5358. }
  5359. #endif /* CONFIG_HOTPLUG_CPU */
  5360. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5361. static struct ctl_table sd_ctl_dir[] = {
  5362. {
  5363. .procname = "sched_domain",
  5364. .mode = 0555,
  5365. },
  5366. {0, },
  5367. };
  5368. static struct ctl_table sd_ctl_root[] = {
  5369. {
  5370. .ctl_name = CTL_KERN,
  5371. .procname = "kernel",
  5372. .mode = 0555,
  5373. .child = sd_ctl_dir,
  5374. },
  5375. {0, },
  5376. };
  5377. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5378. {
  5379. struct ctl_table *entry =
  5380. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5381. return entry;
  5382. }
  5383. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5384. {
  5385. struct ctl_table *entry;
  5386. /*
  5387. * In the intermediate directories, both the child directory and
  5388. * procname are dynamically allocated and could fail but the mode
  5389. * will always be set. In the lowest directory the names are
  5390. * static strings and all have proc handlers.
  5391. */
  5392. for (entry = *tablep; entry->mode; entry++) {
  5393. if (entry->child)
  5394. sd_free_ctl_entry(&entry->child);
  5395. if (entry->proc_handler == NULL)
  5396. kfree(entry->procname);
  5397. }
  5398. kfree(*tablep);
  5399. *tablep = NULL;
  5400. }
  5401. static void
  5402. set_table_entry(struct ctl_table *entry,
  5403. const char *procname, void *data, int maxlen,
  5404. mode_t mode, proc_handler *proc_handler)
  5405. {
  5406. entry->procname = procname;
  5407. entry->data = data;
  5408. entry->maxlen = maxlen;
  5409. entry->mode = mode;
  5410. entry->proc_handler = proc_handler;
  5411. }
  5412. static struct ctl_table *
  5413. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5414. {
  5415. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5416. if (table == NULL)
  5417. return NULL;
  5418. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5419. sizeof(long), 0644, proc_doulongvec_minmax);
  5420. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5421. sizeof(long), 0644, proc_doulongvec_minmax);
  5422. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5423. sizeof(int), 0644, proc_dointvec_minmax);
  5424. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5425. sizeof(int), 0644, proc_dointvec_minmax);
  5426. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5427. sizeof(int), 0644, proc_dointvec_minmax);
  5428. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5429. sizeof(int), 0644, proc_dointvec_minmax);
  5430. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5431. sizeof(int), 0644, proc_dointvec_minmax);
  5432. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[9], "cache_nice_tries",
  5437. &sd->cache_nice_tries,
  5438. sizeof(int), 0644, proc_dointvec_minmax);
  5439. set_table_entry(&table[10], "flags", &sd->flags,
  5440. sizeof(int), 0644, proc_dointvec_minmax);
  5441. set_table_entry(&table[11], "name", sd->name,
  5442. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5443. /* &table[12] is terminator */
  5444. return table;
  5445. }
  5446. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5447. {
  5448. struct ctl_table *entry, *table;
  5449. struct sched_domain *sd;
  5450. int domain_num = 0, i;
  5451. char buf[32];
  5452. for_each_domain(cpu, sd)
  5453. domain_num++;
  5454. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5455. if (table == NULL)
  5456. return NULL;
  5457. i = 0;
  5458. for_each_domain(cpu, sd) {
  5459. snprintf(buf, 32, "domain%d", i);
  5460. entry->procname = kstrdup(buf, GFP_KERNEL);
  5461. entry->mode = 0555;
  5462. entry->child = sd_alloc_ctl_domain_table(sd);
  5463. entry++;
  5464. i++;
  5465. }
  5466. return table;
  5467. }
  5468. static struct ctl_table_header *sd_sysctl_header;
  5469. static void register_sched_domain_sysctl(void)
  5470. {
  5471. int i, cpu_num = num_online_cpus();
  5472. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5473. char buf[32];
  5474. WARN_ON(sd_ctl_dir[0].child);
  5475. sd_ctl_dir[0].child = entry;
  5476. if (entry == NULL)
  5477. return;
  5478. for_each_online_cpu(i) {
  5479. snprintf(buf, 32, "cpu%d", i);
  5480. entry->procname = kstrdup(buf, GFP_KERNEL);
  5481. entry->mode = 0555;
  5482. entry->child = sd_alloc_ctl_cpu_table(i);
  5483. entry++;
  5484. }
  5485. WARN_ON(sd_sysctl_header);
  5486. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5487. }
  5488. /* may be called multiple times per register */
  5489. static void unregister_sched_domain_sysctl(void)
  5490. {
  5491. if (sd_sysctl_header)
  5492. unregister_sysctl_table(sd_sysctl_header);
  5493. sd_sysctl_header = NULL;
  5494. if (sd_ctl_dir[0].child)
  5495. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5496. }
  5497. #else
  5498. static void register_sched_domain_sysctl(void)
  5499. {
  5500. }
  5501. static void unregister_sched_domain_sysctl(void)
  5502. {
  5503. }
  5504. #endif
  5505. static void set_rq_online(struct rq *rq)
  5506. {
  5507. if (!rq->online) {
  5508. const struct sched_class *class;
  5509. cpu_set(rq->cpu, rq->rd->online);
  5510. rq->online = 1;
  5511. for_each_class(class) {
  5512. if (class->rq_online)
  5513. class->rq_online(rq);
  5514. }
  5515. }
  5516. }
  5517. static void set_rq_offline(struct rq *rq)
  5518. {
  5519. if (rq->online) {
  5520. const struct sched_class *class;
  5521. for_each_class(class) {
  5522. if (class->rq_offline)
  5523. class->rq_offline(rq);
  5524. }
  5525. cpu_clear(rq->cpu, rq->rd->online);
  5526. rq->online = 0;
  5527. }
  5528. }
  5529. /*
  5530. * migration_call - callback that gets triggered when a CPU is added.
  5531. * Here we can start up the necessary migration thread for the new CPU.
  5532. */
  5533. static int __cpuinit
  5534. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5535. {
  5536. struct task_struct *p;
  5537. int cpu = (long)hcpu;
  5538. unsigned long flags;
  5539. struct rq *rq;
  5540. switch (action) {
  5541. case CPU_UP_PREPARE:
  5542. case CPU_UP_PREPARE_FROZEN:
  5543. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5544. if (IS_ERR(p))
  5545. return NOTIFY_BAD;
  5546. kthread_bind(p, cpu);
  5547. /* Must be high prio: stop_machine expects to yield to it. */
  5548. rq = task_rq_lock(p, &flags);
  5549. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5550. task_rq_unlock(rq, &flags);
  5551. cpu_rq(cpu)->migration_thread = p;
  5552. break;
  5553. case CPU_ONLINE:
  5554. case CPU_ONLINE_FROZEN:
  5555. /* Strictly unnecessary, as first user will wake it. */
  5556. wake_up_process(cpu_rq(cpu)->migration_thread);
  5557. /* Update our root-domain */
  5558. rq = cpu_rq(cpu);
  5559. spin_lock_irqsave(&rq->lock, flags);
  5560. if (rq->rd) {
  5561. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5562. set_rq_online(rq);
  5563. }
  5564. spin_unlock_irqrestore(&rq->lock, flags);
  5565. break;
  5566. #ifdef CONFIG_HOTPLUG_CPU
  5567. case CPU_UP_CANCELED:
  5568. case CPU_UP_CANCELED_FROZEN:
  5569. if (!cpu_rq(cpu)->migration_thread)
  5570. break;
  5571. /* Unbind it from offline cpu so it can run. Fall thru. */
  5572. kthread_bind(cpu_rq(cpu)->migration_thread,
  5573. any_online_cpu(cpu_online_map));
  5574. kthread_stop(cpu_rq(cpu)->migration_thread);
  5575. cpu_rq(cpu)->migration_thread = NULL;
  5576. break;
  5577. case CPU_DEAD:
  5578. case CPU_DEAD_FROZEN:
  5579. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5580. migrate_live_tasks(cpu);
  5581. rq = cpu_rq(cpu);
  5582. kthread_stop(rq->migration_thread);
  5583. rq->migration_thread = NULL;
  5584. /* Idle task back to normal (off runqueue, low prio) */
  5585. spin_lock_irq(&rq->lock);
  5586. update_rq_clock(rq);
  5587. deactivate_task(rq, rq->idle, 0);
  5588. rq->idle->static_prio = MAX_PRIO;
  5589. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5590. rq->idle->sched_class = &idle_sched_class;
  5591. migrate_dead_tasks(cpu);
  5592. spin_unlock_irq(&rq->lock);
  5593. cpuset_unlock();
  5594. migrate_nr_uninterruptible(rq);
  5595. BUG_ON(rq->nr_running != 0);
  5596. /*
  5597. * No need to migrate the tasks: it was best-effort if
  5598. * they didn't take sched_hotcpu_mutex. Just wake up
  5599. * the requestors.
  5600. */
  5601. spin_lock_irq(&rq->lock);
  5602. while (!list_empty(&rq->migration_queue)) {
  5603. struct migration_req *req;
  5604. req = list_entry(rq->migration_queue.next,
  5605. struct migration_req, list);
  5606. list_del_init(&req->list);
  5607. complete(&req->done);
  5608. }
  5609. spin_unlock_irq(&rq->lock);
  5610. break;
  5611. case CPU_DYING:
  5612. case CPU_DYING_FROZEN:
  5613. /* Update our root-domain */
  5614. rq = cpu_rq(cpu);
  5615. spin_lock_irqsave(&rq->lock, flags);
  5616. if (rq->rd) {
  5617. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5618. set_rq_offline(rq);
  5619. }
  5620. spin_unlock_irqrestore(&rq->lock, flags);
  5621. break;
  5622. #endif
  5623. }
  5624. return NOTIFY_OK;
  5625. }
  5626. /* Register at highest priority so that task migration (migrate_all_tasks)
  5627. * happens before everything else.
  5628. */
  5629. static struct notifier_block __cpuinitdata migration_notifier = {
  5630. .notifier_call = migration_call,
  5631. .priority = 10
  5632. };
  5633. static int __init migration_init(void)
  5634. {
  5635. void *cpu = (void *)(long)smp_processor_id();
  5636. int err;
  5637. /* Start one for the boot CPU: */
  5638. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5639. BUG_ON(err == NOTIFY_BAD);
  5640. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5641. register_cpu_notifier(&migration_notifier);
  5642. return err;
  5643. }
  5644. early_initcall(migration_init);
  5645. #endif
  5646. #ifdef CONFIG_SMP
  5647. #ifdef CONFIG_SCHED_DEBUG
  5648. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5649. cpumask_t *groupmask)
  5650. {
  5651. struct sched_group *group = sd->groups;
  5652. char str[256];
  5653. cpulist_scnprintf(str, sizeof(str), sd->span);
  5654. cpus_clear(*groupmask);
  5655. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5656. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5657. printk("does not load-balance\n");
  5658. if (sd->parent)
  5659. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5660. " has parent");
  5661. return -1;
  5662. }
  5663. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5664. if (!cpu_isset(cpu, sd->span)) {
  5665. printk(KERN_ERR "ERROR: domain->span does not contain "
  5666. "CPU%d\n", cpu);
  5667. }
  5668. if (!cpu_isset(cpu, group->cpumask)) {
  5669. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5670. " CPU%d\n", cpu);
  5671. }
  5672. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5673. do {
  5674. if (!group) {
  5675. printk("\n");
  5676. printk(KERN_ERR "ERROR: group is NULL\n");
  5677. break;
  5678. }
  5679. if (!group->__cpu_power) {
  5680. printk(KERN_CONT "\n");
  5681. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5682. "set\n");
  5683. break;
  5684. }
  5685. if (!cpus_weight(group->cpumask)) {
  5686. printk(KERN_CONT "\n");
  5687. printk(KERN_ERR "ERROR: empty group\n");
  5688. break;
  5689. }
  5690. if (cpus_intersects(*groupmask, group->cpumask)) {
  5691. printk(KERN_CONT "\n");
  5692. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5693. break;
  5694. }
  5695. cpus_or(*groupmask, *groupmask, group->cpumask);
  5696. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5697. printk(KERN_CONT " %s", str);
  5698. group = group->next;
  5699. } while (group != sd->groups);
  5700. printk(KERN_CONT "\n");
  5701. if (!cpus_equal(sd->span, *groupmask))
  5702. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5703. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5704. printk(KERN_ERR "ERROR: parent span is not a superset "
  5705. "of domain->span\n");
  5706. return 0;
  5707. }
  5708. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5709. {
  5710. cpumask_t *groupmask;
  5711. int level = 0;
  5712. if (!sd) {
  5713. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5714. return;
  5715. }
  5716. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5717. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5718. if (!groupmask) {
  5719. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5720. return;
  5721. }
  5722. for (;;) {
  5723. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5724. break;
  5725. level++;
  5726. sd = sd->parent;
  5727. if (!sd)
  5728. break;
  5729. }
  5730. kfree(groupmask);
  5731. }
  5732. #else /* !CONFIG_SCHED_DEBUG */
  5733. # define sched_domain_debug(sd, cpu) do { } while (0)
  5734. #endif /* CONFIG_SCHED_DEBUG */
  5735. static int sd_degenerate(struct sched_domain *sd)
  5736. {
  5737. if (cpus_weight(sd->span) == 1)
  5738. return 1;
  5739. /* Following flags need at least 2 groups */
  5740. if (sd->flags & (SD_LOAD_BALANCE |
  5741. SD_BALANCE_NEWIDLE |
  5742. SD_BALANCE_FORK |
  5743. SD_BALANCE_EXEC |
  5744. SD_SHARE_CPUPOWER |
  5745. SD_SHARE_PKG_RESOURCES)) {
  5746. if (sd->groups != sd->groups->next)
  5747. return 0;
  5748. }
  5749. /* Following flags don't use groups */
  5750. if (sd->flags & (SD_WAKE_IDLE |
  5751. SD_WAKE_AFFINE |
  5752. SD_WAKE_BALANCE))
  5753. return 0;
  5754. return 1;
  5755. }
  5756. static int
  5757. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5758. {
  5759. unsigned long cflags = sd->flags, pflags = parent->flags;
  5760. if (sd_degenerate(parent))
  5761. return 1;
  5762. if (!cpus_equal(sd->span, parent->span))
  5763. return 0;
  5764. /* Does parent contain flags not in child? */
  5765. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5766. if (cflags & SD_WAKE_AFFINE)
  5767. pflags &= ~SD_WAKE_BALANCE;
  5768. /* Flags needing groups don't count if only 1 group in parent */
  5769. if (parent->groups == parent->groups->next) {
  5770. pflags &= ~(SD_LOAD_BALANCE |
  5771. SD_BALANCE_NEWIDLE |
  5772. SD_BALANCE_FORK |
  5773. SD_BALANCE_EXEC |
  5774. SD_SHARE_CPUPOWER |
  5775. SD_SHARE_PKG_RESOURCES);
  5776. }
  5777. if (~cflags & pflags)
  5778. return 0;
  5779. return 1;
  5780. }
  5781. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5782. {
  5783. unsigned long flags;
  5784. spin_lock_irqsave(&rq->lock, flags);
  5785. if (rq->rd) {
  5786. struct root_domain *old_rd = rq->rd;
  5787. if (cpu_isset(rq->cpu, old_rd->online))
  5788. set_rq_offline(rq);
  5789. cpu_clear(rq->cpu, old_rd->span);
  5790. if (atomic_dec_and_test(&old_rd->refcount))
  5791. kfree(old_rd);
  5792. }
  5793. atomic_inc(&rd->refcount);
  5794. rq->rd = rd;
  5795. cpu_set(rq->cpu, rd->span);
  5796. if (cpu_isset(rq->cpu, cpu_online_map))
  5797. set_rq_online(rq);
  5798. spin_unlock_irqrestore(&rq->lock, flags);
  5799. }
  5800. static void init_rootdomain(struct root_domain *rd)
  5801. {
  5802. memset(rd, 0, sizeof(*rd));
  5803. cpus_clear(rd->span);
  5804. cpus_clear(rd->online);
  5805. cpupri_init(&rd->cpupri);
  5806. }
  5807. static void init_defrootdomain(void)
  5808. {
  5809. init_rootdomain(&def_root_domain);
  5810. atomic_set(&def_root_domain.refcount, 1);
  5811. }
  5812. static struct root_domain *alloc_rootdomain(void)
  5813. {
  5814. struct root_domain *rd;
  5815. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5816. if (!rd)
  5817. return NULL;
  5818. init_rootdomain(rd);
  5819. return rd;
  5820. }
  5821. /*
  5822. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5823. * hold the hotplug lock.
  5824. */
  5825. static void
  5826. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5827. {
  5828. struct rq *rq = cpu_rq(cpu);
  5829. struct sched_domain *tmp;
  5830. /* Remove the sched domains which do not contribute to scheduling. */
  5831. for (tmp = sd; tmp; ) {
  5832. struct sched_domain *parent = tmp->parent;
  5833. if (!parent)
  5834. break;
  5835. if (sd_parent_degenerate(tmp, parent)) {
  5836. tmp->parent = parent->parent;
  5837. if (parent->parent)
  5838. parent->parent->child = tmp;
  5839. } else
  5840. tmp = tmp->parent;
  5841. }
  5842. if (sd && sd_degenerate(sd)) {
  5843. sd = sd->parent;
  5844. if (sd)
  5845. sd->child = NULL;
  5846. }
  5847. sched_domain_debug(sd, cpu);
  5848. rq_attach_root(rq, rd);
  5849. rcu_assign_pointer(rq->sd, sd);
  5850. }
  5851. /* cpus with isolated domains */
  5852. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5853. /* Setup the mask of cpus configured for isolated domains */
  5854. static int __init isolated_cpu_setup(char *str)
  5855. {
  5856. static int __initdata ints[NR_CPUS];
  5857. int i;
  5858. str = get_options(str, ARRAY_SIZE(ints), ints);
  5859. cpus_clear(cpu_isolated_map);
  5860. for (i = 1; i <= ints[0]; i++)
  5861. if (ints[i] < NR_CPUS)
  5862. cpu_set(ints[i], cpu_isolated_map);
  5863. return 1;
  5864. }
  5865. __setup("isolcpus=", isolated_cpu_setup);
  5866. /*
  5867. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5868. * to a function which identifies what group(along with sched group) a CPU
  5869. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5870. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5871. *
  5872. * init_sched_build_groups will build a circular linked list of the groups
  5873. * covered by the given span, and will set each group's ->cpumask correctly,
  5874. * and ->cpu_power to 0.
  5875. */
  5876. static void
  5877. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5878. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5879. struct sched_group **sg,
  5880. cpumask_t *tmpmask),
  5881. cpumask_t *covered, cpumask_t *tmpmask)
  5882. {
  5883. struct sched_group *first = NULL, *last = NULL;
  5884. int i;
  5885. cpus_clear(*covered);
  5886. for_each_cpu(i, span) {
  5887. struct sched_group *sg;
  5888. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5889. int j;
  5890. if (cpu_isset(i, *covered))
  5891. continue;
  5892. cpus_clear(sg->cpumask);
  5893. sg->__cpu_power = 0;
  5894. for_each_cpu(j, span) {
  5895. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5896. continue;
  5897. cpu_set(j, *covered);
  5898. cpu_set(j, sg->cpumask);
  5899. }
  5900. if (!first)
  5901. first = sg;
  5902. if (last)
  5903. last->next = sg;
  5904. last = sg;
  5905. }
  5906. last->next = first;
  5907. }
  5908. #define SD_NODES_PER_DOMAIN 16
  5909. #ifdef CONFIG_NUMA
  5910. /**
  5911. * find_next_best_node - find the next node to include in a sched_domain
  5912. * @node: node whose sched_domain we're building
  5913. * @used_nodes: nodes already in the sched_domain
  5914. *
  5915. * Find the next node to include in a given scheduling domain. Simply
  5916. * finds the closest node not already in the @used_nodes map.
  5917. *
  5918. * Should use nodemask_t.
  5919. */
  5920. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5921. {
  5922. int i, n, val, min_val, best_node = 0;
  5923. min_val = INT_MAX;
  5924. for (i = 0; i < nr_node_ids; i++) {
  5925. /* Start at @node */
  5926. n = (node + i) % nr_node_ids;
  5927. if (!nr_cpus_node(n))
  5928. continue;
  5929. /* Skip already used nodes */
  5930. if (node_isset(n, *used_nodes))
  5931. continue;
  5932. /* Simple min distance search */
  5933. val = node_distance(node, n);
  5934. if (val < min_val) {
  5935. min_val = val;
  5936. best_node = n;
  5937. }
  5938. }
  5939. node_set(best_node, *used_nodes);
  5940. return best_node;
  5941. }
  5942. /**
  5943. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5944. * @node: node whose cpumask we're constructing
  5945. * @span: resulting cpumask
  5946. *
  5947. * Given a node, construct a good cpumask for its sched_domain to span. It
  5948. * should be one that prevents unnecessary balancing, but also spreads tasks
  5949. * out optimally.
  5950. */
  5951. static void sched_domain_node_span(int node, cpumask_t *span)
  5952. {
  5953. nodemask_t used_nodes;
  5954. node_to_cpumask_ptr(nodemask, node);
  5955. int i;
  5956. cpus_clear(*span);
  5957. nodes_clear(used_nodes);
  5958. cpus_or(*span, *span, *nodemask);
  5959. node_set(node, used_nodes);
  5960. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5961. int next_node = find_next_best_node(node, &used_nodes);
  5962. node_to_cpumask_ptr_next(nodemask, next_node);
  5963. cpus_or(*span, *span, *nodemask);
  5964. }
  5965. }
  5966. #endif /* CONFIG_NUMA */
  5967. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5968. /*
  5969. * SMT sched-domains:
  5970. */
  5971. #ifdef CONFIG_SCHED_SMT
  5972. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5973. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5974. static int
  5975. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5976. cpumask_t *unused)
  5977. {
  5978. if (sg)
  5979. *sg = &per_cpu(sched_group_cpus, cpu);
  5980. return cpu;
  5981. }
  5982. #endif /* CONFIG_SCHED_SMT */
  5983. /*
  5984. * multi-core sched-domains:
  5985. */
  5986. #ifdef CONFIG_SCHED_MC
  5987. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5988. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5989. #endif /* CONFIG_SCHED_MC */
  5990. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5991. static int
  5992. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5993. cpumask_t *mask)
  5994. {
  5995. int group;
  5996. *mask = per_cpu(cpu_sibling_map, cpu);
  5997. cpus_and(*mask, *mask, *cpu_map);
  5998. group = first_cpu(*mask);
  5999. if (sg)
  6000. *sg = &per_cpu(sched_group_core, group);
  6001. return group;
  6002. }
  6003. #elif defined(CONFIG_SCHED_MC)
  6004. static int
  6005. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6006. cpumask_t *unused)
  6007. {
  6008. if (sg)
  6009. *sg = &per_cpu(sched_group_core, cpu);
  6010. return cpu;
  6011. }
  6012. #endif
  6013. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6014. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6015. static int
  6016. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6017. cpumask_t *mask)
  6018. {
  6019. int group;
  6020. #ifdef CONFIG_SCHED_MC
  6021. *mask = cpu_coregroup_map(cpu);
  6022. cpus_and(*mask, *mask, *cpu_map);
  6023. group = first_cpu(*mask);
  6024. #elif defined(CONFIG_SCHED_SMT)
  6025. *mask = per_cpu(cpu_sibling_map, cpu);
  6026. cpus_and(*mask, *mask, *cpu_map);
  6027. group = first_cpu(*mask);
  6028. #else
  6029. group = cpu;
  6030. #endif
  6031. if (sg)
  6032. *sg = &per_cpu(sched_group_phys, group);
  6033. return group;
  6034. }
  6035. #ifdef CONFIG_NUMA
  6036. /*
  6037. * The init_sched_build_groups can't handle what we want to do with node
  6038. * groups, so roll our own. Now each node has its own list of groups which
  6039. * gets dynamically allocated.
  6040. */
  6041. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6042. static struct sched_group ***sched_group_nodes_bycpu;
  6043. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6044. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6045. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6046. struct sched_group **sg, cpumask_t *nodemask)
  6047. {
  6048. int group;
  6049. node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
  6050. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6051. group = first_cpu(*nodemask);
  6052. if (sg)
  6053. *sg = &per_cpu(sched_group_allnodes, group);
  6054. return group;
  6055. }
  6056. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6057. {
  6058. struct sched_group *sg = group_head;
  6059. int j;
  6060. if (!sg)
  6061. return;
  6062. do {
  6063. for_each_cpu(j, &sg->cpumask) {
  6064. struct sched_domain *sd;
  6065. sd = &per_cpu(phys_domains, j);
  6066. if (j != first_cpu(sd->groups->cpumask)) {
  6067. /*
  6068. * Only add "power" once for each
  6069. * physical package.
  6070. */
  6071. continue;
  6072. }
  6073. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6074. }
  6075. sg = sg->next;
  6076. } while (sg != group_head);
  6077. }
  6078. #endif /* CONFIG_NUMA */
  6079. #ifdef CONFIG_NUMA
  6080. /* Free memory allocated for various sched_group structures */
  6081. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6082. {
  6083. int cpu, i;
  6084. for_each_cpu(cpu, cpu_map) {
  6085. struct sched_group **sched_group_nodes
  6086. = sched_group_nodes_bycpu[cpu];
  6087. if (!sched_group_nodes)
  6088. continue;
  6089. for (i = 0; i < nr_node_ids; i++) {
  6090. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6091. node_to_cpumask_ptr(pnodemask, i);
  6092. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6093. if (cpus_empty(*nodemask))
  6094. continue;
  6095. if (sg == NULL)
  6096. continue;
  6097. sg = sg->next;
  6098. next_sg:
  6099. oldsg = sg;
  6100. sg = sg->next;
  6101. kfree(oldsg);
  6102. if (oldsg != sched_group_nodes[i])
  6103. goto next_sg;
  6104. }
  6105. kfree(sched_group_nodes);
  6106. sched_group_nodes_bycpu[cpu] = NULL;
  6107. }
  6108. }
  6109. #else /* !CONFIG_NUMA */
  6110. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6111. {
  6112. }
  6113. #endif /* CONFIG_NUMA */
  6114. /*
  6115. * Initialize sched groups cpu_power.
  6116. *
  6117. * cpu_power indicates the capacity of sched group, which is used while
  6118. * distributing the load between different sched groups in a sched domain.
  6119. * Typically cpu_power for all the groups in a sched domain will be same unless
  6120. * there are asymmetries in the topology. If there are asymmetries, group
  6121. * having more cpu_power will pickup more load compared to the group having
  6122. * less cpu_power.
  6123. *
  6124. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6125. * the maximum number of tasks a group can handle in the presence of other idle
  6126. * or lightly loaded groups in the same sched domain.
  6127. */
  6128. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6129. {
  6130. struct sched_domain *child;
  6131. struct sched_group *group;
  6132. WARN_ON(!sd || !sd->groups);
  6133. if (cpu != first_cpu(sd->groups->cpumask))
  6134. return;
  6135. child = sd->child;
  6136. sd->groups->__cpu_power = 0;
  6137. /*
  6138. * For perf policy, if the groups in child domain share resources
  6139. * (for example cores sharing some portions of the cache hierarchy
  6140. * or SMT), then set this domain groups cpu_power such that each group
  6141. * can handle only one task, when there are other idle groups in the
  6142. * same sched domain.
  6143. */
  6144. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6145. (child->flags &
  6146. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6147. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6148. return;
  6149. }
  6150. /*
  6151. * add cpu_power of each child group to this groups cpu_power
  6152. */
  6153. group = child->groups;
  6154. do {
  6155. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6156. group = group->next;
  6157. } while (group != child->groups);
  6158. }
  6159. /*
  6160. * Initializers for schedule domains
  6161. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6162. */
  6163. #ifdef CONFIG_SCHED_DEBUG
  6164. # define SD_INIT_NAME(sd, type) sd->name = #type
  6165. #else
  6166. # define SD_INIT_NAME(sd, type) do { } while (0)
  6167. #endif
  6168. #define SD_INIT(sd, type) sd_init_##type(sd)
  6169. #define SD_INIT_FUNC(type) \
  6170. static noinline void sd_init_##type(struct sched_domain *sd) \
  6171. { \
  6172. memset(sd, 0, sizeof(*sd)); \
  6173. *sd = SD_##type##_INIT; \
  6174. sd->level = SD_LV_##type; \
  6175. SD_INIT_NAME(sd, type); \
  6176. }
  6177. SD_INIT_FUNC(CPU)
  6178. #ifdef CONFIG_NUMA
  6179. SD_INIT_FUNC(ALLNODES)
  6180. SD_INIT_FUNC(NODE)
  6181. #endif
  6182. #ifdef CONFIG_SCHED_SMT
  6183. SD_INIT_FUNC(SIBLING)
  6184. #endif
  6185. #ifdef CONFIG_SCHED_MC
  6186. SD_INIT_FUNC(MC)
  6187. #endif
  6188. static int default_relax_domain_level = -1;
  6189. static int __init setup_relax_domain_level(char *str)
  6190. {
  6191. unsigned long val;
  6192. val = simple_strtoul(str, NULL, 0);
  6193. if (val < SD_LV_MAX)
  6194. default_relax_domain_level = val;
  6195. return 1;
  6196. }
  6197. __setup("relax_domain_level=", setup_relax_domain_level);
  6198. static void set_domain_attribute(struct sched_domain *sd,
  6199. struct sched_domain_attr *attr)
  6200. {
  6201. int request;
  6202. if (!attr || attr->relax_domain_level < 0) {
  6203. if (default_relax_domain_level < 0)
  6204. return;
  6205. else
  6206. request = default_relax_domain_level;
  6207. } else
  6208. request = attr->relax_domain_level;
  6209. if (request < sd->level) {
  6210. /* turn off idle balance on this domain */
  6211. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6212. } else {
  6213. /* turn on idle balance on this domain */
  6214. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6215. }
  6216. }
  6217. /*
  6218. * Build sched domains for a given set of cpus and attach the sched domains
  6219. * to the individual cpus
  6220. */
  6221. static int __build_sched_domains(const cpumask_t *cpu_map,
  6222. struct sched_domain_attr *attr)
  6223. {
  6224. int i, err = -ENOMEM;
  6225. struct root_domain *rd;
  6226. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6227. tmpmask;
  6228. #ifdef CONFIG_NUMA
  6229. cpumask_var_t domainspan, covered, notcovered;
  6230. struct sched_group **sched_group_nodes = NULL;
  6231. int sd_allnodes = 0;
  6232. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6233. goto out;
  6234. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6235. goto free_domainspan;
  6236. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6237. goto free_covered;
  6238. #endif
  6239. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6240. goto free_notcovered;
  6241. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6242. goto free_nodemask;
  6243. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6244. goto free_this_sibling_map;
  6245. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6246. goto free_this_core_map;
  6247. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6248. goto free_send_covered;
  6249. #ifdef CONFIG_NUMA
  6250. /*
  6251. * Allocate the per-node list of sched groups
  6252. */
  6253. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6254. GFP_KERNEL);
  6255. if (!sched_group_nodes) {
  6256. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6257. goto free_tmpmask;
  6258. }
  6259. #endif
  6260. rd = alloc_rootdomain();
  6261. if (!rd) {
  6262. printk(KERN_WARNING "Cannot alloc root domain\n");
  6263. goto free_sched_groups;
  6264. }
  6265. #ifdef CONFIG_NUMA
  6266. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6267. #endif
  6268. /*
  6269. * Set up domains for cpus specified by the cpu_map.
  6270. */
  6271. for_each_cpu(i, cpu_map) {
  6272. struct sched_domain *sd = NULL, *p;
  6273. *nodemask = node_to_cpumask(cpu_to_node(i));
  6274. cpus_and(*nodemask, *nodemask, *cpu_map);
  6275. #ifdef CONFIG_NUMA
  6276. if (cpus_weight(*cpu_map) >
  6277. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6278. sd = &per_cpu(allnodes_domains, i);
  6279. SD_INIT(sd, ALLNODES);
  6280. set_domain_attribute(sd, attr);
  6281. sd->span = *cpu_map;
  6282. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6283. p = sd;
  6284. sd_allnodes = 1;
  6285. } else
  6286. p = NULL;
  6287. sd = &per_cpu(node_domains, i);
  6288. SD_INIT(sd, NODE);
  6289. set_domain_attribute(sd, attr);
  6290. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6291. sd->parent = p;
  6292. if (p)
  6293. p->child = sd;
  6294. cpus_and(sd->span, sd->span, *cpu_map);
  6295. #endif
  6296. p = sd;
  6297. sd = &per_cpu(phys_domains, i);
  6298. SD_INIT(sd, CPU);
  6299. set_domain_attribute(sd, attr);
  6300. sd->span = *nodemask;
  6301. sd->parent = p;
  6302. if (p)
  6303. p->child = sd;
  6304. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6305. #ifdef CONFIG_SCHED_MC
  6306. p = sd;
  6307. sd = &per_cpu(core_domains, i);
  6308. SD_INIT(sd, MC);
  6309. set_domain_attribute(sd, attr);
  6310. sd->span = cpu_coregroup_map(i);
  6311. cpus_and(sd->span, sd->span, *cpu_map);
  6312. sd->parent = p;
  6313. p->child = sd;
  6314. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6315. #endif
  6316. #ifdef CONFIG_SCHED_SMT
  6317. p = sd;
  6318. sd = &per_cpu(cpu_domains, i);
  6319. SD_INIT(sd, SIBLING);
  6320. set_domain_attribute(sd, attr);
  6321. sd->span = per_cpu(cpu_sibling_map, i);
  6322. cpus_and(sd->span, sd->span, *cpu_map);
  6323. sd->parent = p;
  6324. p->child = sd;
  6325. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6326. #endif
  6327. }
  6328. #ifdef CONFIG_SCHED_SMT
  6329. /* Set up CPU (sibling) groups */
  6330. for_each_cpu(i, cpu_map) {
  6331. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6332. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6333. if (i != first_cpu(*this_sibling_map))
  6334. continue;
  6335. init_sched_build_groups(this_sibling_map, cpu_map,
  6336. &cpu_to_cpu_group,
  6337. send_covered, tmpmask);
  6338. }
  6339. #endif
  6340. #ifdef CONFIG_SCHED_MC
  6341. /* Set up multi-core groups */
  6342. for_each_cpu(i, cpu_map) {
  6343. *this_core_map = cpu_coregroup_map(i);
  6344. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6345. if (i != first_cpu(*this_core_map))
  6346. continue;
  6347. init_sched_build_groups(this_core_map, cpu_map,
  6348. &cpu_to_core_group,
  6349. send_covered, tmpmask);
  6350. }
  6351. #endif
  6352. /* Set up physical groups */
  6353. for (i = 0; i < nr_node_ids; i++) {
  6354. *nodemask = node_to_cpumask(i);
  6355. cpus_and(*nodemask, *nodemask, *cpu_map);
  6356. if (cpus_empty(*nodemask))
  6357. continue;
  6358. init_sched_build_groups(nodemask, cpu_map,
  6359. &cpu_to_phys_group,
  6360. send_covered, tmpmask);
  6361. }
  6362. #ifdef CONFIG_NUMA
  6363. /* Set up node groups */
  6364. if (sd_allnodes) {
  6365. init_sched_build_groups(cpu_map, cpu_map,
  6366. &cpu_to_allnodes_group,
  6367. send_covered, tmpmask);
  6368. }
  6369. for (i = 0; i < nr_node_ids; i++) {
  6370. /* Set up node groups */
  6371. struct sched_group *sg, *prev;
  6372. int j;
  6373. *nodemask = node_to_cpumask(i);
  6374. cpus_clear(*covered);
  6375. cpus_and(*nodemask, *nodemask, *cpu_map);
  6376. if (cpus_empty(*nodemask)) {
  6377. sched_group_nodes[i] = NULL;
  6378. continue;
  6379. }
  6380. sched_domain_node_span(i, domainspan);
  6381. cpus_and(*domainspan, *domainspan, *cpu_map);
  6382. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6383. if (!sg) {
  6384. printk(KERN_WARNING "Can not alloc domain group for "
  6385. "node %d\n", i);
  6386. goto error;
  6387. }
  6388. sched_group_nodes[i] = sg;
  6389. for_each_cpu(j, nodemask) {
  6390. struct sched_domain *sd;
  6391. sd = &per_cpu(node_domains, j);
  6392. sd->groups = sg;
  6393. }
  6394. sg->__cpu_power = 0;
  6395. sg->cpumask = *nodemask;
  6396. sg->next = sg;
  6397. cpus_or(*covered, *covered, *nodemask);
  6398. prev = sg;
  6399. for (j = 0; j < nr_node_ids; j++) {
  6400. int n = (i + j) % nr_node_ids;
  6401. node_to_cpumask_ptr(pnodemask, n);
  6402. cpus_complement(*notcovered, *covered);
  6403. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6404. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6405. if (cpus_empty(*tmpmask))
  6406. break;
  6407. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6408. if (cpus_empty(*tmpmask))
  6409. continue;
  6410. sg = kmalloc_node(sizeof(struct sched_group),
  6411. GFP_KERNEL, i);
  6412. if (!sg) {
  6413. printk(KERN_WARNING
  6414. "Can not alloc domain group for node %d\n", j);
  6415. goto error;
  6416. }
  6417. sg->__cpu_power = 0;
  6418. sg->cpumask = *tmpmask;
  6419. sg->next = prev->next;
  6420. cpus_or(*covered, *covered, *tmpmask);
  6421. prev->next = sg;
  6422. prev = sg;
  6423. }
  6424. }
  6425. #endif
  6426. /* Calculate CPU power for physical packages and nodes */
  6427. #ifdef CONFIG_SCHED_SMT
  6428. for_each_cpu(i, cpu_map) {
  6429. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6430. init_sched_groups_power(i, sd);
  6431. }
  6432. #endif
  6433. #ifdef CONFIG_SCHED_MC
  6434. for_each_cpu(i, cpu_map) {
  6435. struct sched_domain *sd = &per_cpu(core_domains, i);
  6436. init_sched_groups_power(i, sd);
  6437. }
  6438. #endif
  6439. for_each_cpu(i, cpu_map) {
  6440. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6441. init_sched_groups_power(i, sd);
  6442. }
  6443. #ifdef CONFIG_NUMA
  6444. for (i = 0; i < nr_node_ids; i++)
  6445. init_numa_sched_groups_power(sched_group_nodes[i]);
  6446. if (sd_allnodes) {
  6447. struct sched_group *sg;
  6448. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6449. tmpmask);
  6450. init_numa_sched_groups_power(sg);
  6451. }
  6452. #endif
  6453. /* Attach the domains */
  6454. for_each_cpu(i, cpu_map) {
  6455. struct sched_domain *sd;
  6456. #ifdef CONFIG_SCHED_SMT
  6457. sd = &per_cpu(cpu_domains, i);
  6458. #elif defined(CONFIG_SCHED_MC)
  6459. sd = &per_cpu(core_domains, i);
  6460. #else
  6461. sd = &per_cpu(phys_domains, i);
  6462. #endif
  6463. cpu_attach_domain(sd, rd, i);
  6464. }
  6465. err = 0;
  6466. free_tmpmask:
  6467. free_cpumask_var(tmpmask);
  6468. free_send_covered:
  6469. free_cpumask_var(send_covered);
  6470. free_this_core_map:
  6471. free_cpumask_var(this_core_map);
  6472. free_this_sibling_map:
  6473. free_cpumask_var(this_sibling_map);
  6474. free_nodemask:
  6475. free_cpumask_var(nodemask);
  6476. free_notcovered:
  6477. #ifdef CONFIG_NUMA
  6478. free_cpumask_var(notcovered);
  6479. free_covered:
  6480. free_cpumask_var(covered);
  6481. free_domainspan:
  6482. free_cpumask_var(domainspan);
  6483. out:
  6484. #endif
  6485. return err;
  6486. free_sched_groups:
  6487. #ifdef CONFIG_NUMA
  6488. kfree(sched_group_nodes);
  6489. #endif
  6490. goto free_tmpmask;
  6491. #ifdef CONFIG_NUMA
  6492. error:
  6493. free_sched_groups(cpu_map, tmpmask);
  6494. kfree(rd);
  6495. goto free_tmpmask;
  6496. #endif
  6497. }
  6498. static int build_sched_domains(const cpumask_t *cpu_map)
  6499. {
  6500. return __build_sched_domains(cpu_map, NULL);
  6501. }
  6502. static cpumask_t *doms_cur; /* current sched domains */
  6503. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6504. static struct sched_domain_attr *dattr_cur;
  6505. /* attribues of custom domains in 'doms_cur' */
  6506. /*
  6507. * Special case: If a kmalloc of a doms_cur partition (array of
  6508. * cpumask_t) fails, then fallback to a single sched domain,
  6509. * as determined by the single cpumask_t fallback_doms.
  6510. */
  6511. static cpumask_t fallback_doms;
  6512. void __attribute__((weak)) arch_update_cpu_topology(void)
  6513. {
  6514. }
  6515. /*
  6516. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6517. * For now this just excludes isolated cpus, but could be used to
  6518. * exclude other special cases in the future.
  6519. */
  6520. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6521. {
  6522. int err;
  6523. arch_update_cpu_topology();
  6524. ndoms_cur = 1;
  6525. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6526. if (!doms_cur)
  6527. doms_cur = &fallback_doms;
  6528. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6529. dattr_cur = NULL;
  6530. err = build_sched_domains(doms_cur);
  6531. register_sched_domain_sysctl();
  6532. return err;
  6533. }
  6534. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6535. cpumask_t *tmpmask)
  6536. {
  6537. free_sched_groups(cpu_map, tmpmask);
  6538. }
  6539. /*
  6540. * Detach sched domains from a group of cpus specified in cpu_map
  6541. * These cpus will now be attached to the NULL domain
  6542. */
  6543. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6544. {
  6545. cpumask_t tmpmask;
  6546. int i;
  6547. for_each_cpu(i, cpu_map)
  6548. cpu_attach_domain(NULL, &def_root_domain, i);
  6549. synchronize_sched();
  6550. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6551. }
  6552. /* handle null as "default" */
  6553. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6554. struct sched_domain_attr *new, int idx_new)
  6555. {
  6556. struct sched_domain_attr tmp;
  6557. /* fast path */
  6558. if (!new && !cur)
  6559. return 1;
  6560. tmp = SD_ATTR_INIT;
  6561. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6562. new ? (new + idx_new) : &tmp,
  6563. sizeof(struct sched_domain_attr));
  6564. }
  6565. /*
  6566. * Partition sched domains as specified by the 'ndoms_new'
  6567. * cpumasks in the array doms_new[] of cpumasks. This compares
  6568. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6569. * It destroys each deleted domain and builds each new domain.
  6570. *
  6571. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6572. * The masks don't intersect (don't overlap.) We should setup one
  6573. * sched domain for each mask. CPUs not in any of the cpumasks will
  6574. * not be load balanced. If the same cpumask appears both in the
  6575. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6576. * it as it is.
  6577. *
  6578. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6579. * ownership of it and will kfree it when done with it. If the caller
  6580. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6581. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6582. * the single partition 'fallback_doms', it also forces the domains
  6583. * to be rebuilt.
  6584. *
  6585. * If doms_new == NULL it will be replaced with cpu_online_map.
  6586. * ndoms_new == 0 is a special case for destroying existing domains,
  6587. * and it will not create the default domain.
  6588. *
  6589. * Call with hotplug lock held
  6590. */
  6591. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6592. struct sched_domain_attr *dattr_new)
  6593. {
  6594. int i, j, n;
  6595. mutex_lock(&sched_domains_mutex);
  6596. /* always unregister in case we don't destroy any domains */
  6597. unregister_sched_domain_sysctl();
  6598. n = doms_new ? ndoms_new : 0;
  6599. /* Destroy deleted domains */
  6600. for (i = 0; i < ndoms_cur; i++) {
  6601. for (j = 0; j < n; j++) {
  6602. if (cpus_equal(doms_cur[i], doms_new[j])
  6603. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6604. goto match1;
  6605. }
  6606. /* no match - a current sched domain not in new doms_new[] */
  6607. detach_destroy_domains(doms_cur + i);
  6608. match1:
  6609. ;
  6610. }
  6611. if (doms_new == NULL) {
  6612. ndoms_cur = 0;
  6613. doms_new = &fallback_doms;
  6614. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6615. WARN_ON_ONCE(dattr_new);
  6616. }
  6617. /* Build new domains */
  6618. for (i = 0; i < ndoms_new; i++) {
  6619. for (j = 0; j < ndoms_cur; j++) {
  6620. if (cpus_equal(doms_new[i], doms_cur[j])
  6621. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6622. goto match2;
  6623. }
  6624. /* no match - add a new doms_new */
  6625. __build_sched_domains(doms_new + i,
  6626. dattr_new ? dattr_new + i : NULL);
  6627. match2:
  6628. ;
  6629. }
  6630. /* Remember the new sched domains */
  6631. if (doms_cur != &fallback_doms)
  6632. kfree(doms_cur);
  6633. kfree(dattr_cur); /* kfree(NULL) is safe */
  6634. doms_cur = doms_new;
  6635. dattr_cur = dattr_new;
  6636. ndoms_cur = ndoms_new;
  6637. register_sched_domain_sysctl();
  6638. mutex_unlock(&sched_domains_mutex);
  6639. }
  6640. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6641. int arch_reinit_sched_domains(void)
  6642. {
  6643. get_online_cpus();
  6644. /* Destroy domains first to force the rebuild */
  6645. partition_sched_domains(0, NULL, NULL);
  6646. rebuild_sched_domains();
  6647. put_online_cpus();
  6648. return 0;
  6649. }
  6650. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6651. {
  6652. int ret;
  6653. if (buf[0] != '0' && buf[0] != '1')
  6654. return -EINVAL;
  6655. if (smt)
  6656. sched_smt_power_savings = (buf[0] == '1');
  6657. else
  6658. sched_mc_power_savings = (buf[0] == '1');
  6659. ret = arch_reinit_sched_domains();
  6660. return ret ? ret : count;
  6661. }
  6662. #ifdef CONFIG_SCHED_MC
  6663. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6664. char *page)
  6665. {
  6666. return sprintf(page, "%u\n", sched_mc_power_savings);
  6667. }
  6668. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6669. const char *buf, size_t count)
  6670. {
  6671. return sched_power_savings_store(buf, count, 0);
  6672. }
  6673. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6674. sched_mc_power_savings_show,
  6675. sched_mc_power_savings_store);
  6676. #endif
  6677. #ifdef CONFIG_SCHED_SMT
  6678. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6679. char *page)
  6680. {
  6681. return sprintf(page, "%u\n", sched_smt_power_savings);
  6682. }
  6683. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6684. const char *buf, size_t count)
  6685. {
  6686. return sched_power_savings_store(buf, count, 1);
  6687. }
  6688. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6689. sched_smt_power_savings_show,
  6690. sched_smt_power_savings_store);
  6691. #endif
  6692. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6693. {
  6694. int err = 0;
  6695. #ifdef CONFIG_SCHED_SMT
  6696. if (smt_capable())
  6697. err = sysfs_create_file(&cls->kset.kobj,
  6698. &attr_sched_smt_power_savings.attr);
  6699. #endif
  6700. #ifdef CONFIG_SCHED_MC
  6701. if (!err && mc_capable())
  6702. err = sysfs_create_file(&cls->kset.kobj,
  6703. &attr_sched_mc_power_savings.attr);
  6704. #endif
  6705. return err;
  6706. }
  6707. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6708. #ifndef CONFIG_CPUSETS
  6709. /*
  6710. * Add online and remove offline CPUs from the scheduler domains.
  6711. * When cpusets are enabled they take over this function.
  6712. */
  6713. static int update_sched_domains(struct notifier_block *nfb,
  6714. unsigned long action, void *hcpu)
  6715. {
  6716. switch (action) {
  6717. case CPU_ONLINE:
  6718. case CPU_ONLINE_FROZEN:
  6719. case CPU_DEAD:
  6720. case CPU_DEAD_FROZEN:
  6721. partition_sched_domains(1, NULL, NULL);
  6722. return NOTIFY_OK;
  6723. default:
  6724. return NOTIFY_DONE;
  6725. }
  6726. }
  6727. #endif
  6728. static int update_runtime(struct notifier_block *nfb,
  6729. unsigned long action, void *hcpu)
  6730. {
  6731. int cpu = (int)(long)hcpu;
  6732. switch (action) {
  6733. case CPU_DOWN_PREPARE:
  6734. case CPU_DOWN_PREPARE_FROZEN:
  6735. disable_runtime(cpu_rq(cpu));
  6736. return NOTIFY_OK;
  6737. case CPU_DOWN_FAILED:
  6738. case CPU_DOWN_FAILED_FROZEN:
  6739. case CPU_ONLINE:
  6740. case CPU_ONLINE_FROZEN:
  6741. enable_runtime(cpu_rq(cpu));
  6742. return NOTIFY_OK;
  6743. default:
  6744. return NOTIFY_DONE;
  6745. }
  6746. }
  6747. void __init sched_init_smp(void)
  6748. {
  6749. cpumask_t non_isolated_cpus;
  6750. #if defined(CONFIG_NUMA)
  6751. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6752. GFP_KERNEL);
  6753. BUG_ON(sched_group_nodes_bycpu == NULL);
  6754. #endif
  6755. get_online_cpus();
  6756. mutex_lock(&sched_domains_mutex);
  6757. arch_init_sched_domains(&cpu_online_map);
  6758. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6759. if (cpus_empty(non_isolated_cpus))
  6760. cpu_set(smp_processor_id(), non_isolated_cpus);
  6761. mutex_unlock(&sched_domains_mutex);
  6762. put_online_cpus();
  6763. #ifndef CONFIG_CPUSETS
  6764. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6765. hotcpu_notifier(update_sched_domains, 0);
  6766. #endif
  6767. /* RT runtime code needs to handle some hotplug events */
  6768. hotcpu_notifier(update_runtime, 0);
  6769. init_hrtick();
  6770. /* Move init over to a non-isolated CPU */
  6771. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6772. BUG();
  6773. sched_init_granularity();
  6774. }
  6775. #else
  6776. void __init sched_init_smp(void)
  6777. {
  6778. sched_init_granularity();
  6779. }
  6780. #endif /* CONFIG_SMP */
  6781. int in_sched_functions(unsigned long addr)
  6782. {
  6783. return in_lock_functions(addr) ||
  6784. (addr >= (unsigned long)__sched_text_start
  6785. && addr < (unsigned long)__sched_text_end);
  6786. }
  6787. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6788. {
  6789. cfs_rq->tasks_timeline = RB_ROOT;
  6790. INIT_LIST_HEAD(&cfs_rq->tasks);
  6791. #ifdef CONFIG_FAIR_GROUP_SCHED
  6792. cfs_rq->rq = rq;
  6793. #endif
  6794. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6795. }
  6796. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6797. {
  6798. struct rt_prio_array *array;
  6799. int i;
  6800. array = &rt_rq->active;
  6801. for (i = 0; i < MAX_RT_PRIO; i++) {
  6802. INIT_LIST_HEAD(array->queue + i);
  6803. __clear_bit(i, array->bitmap);
  6804. }
  6805. /* delimiter for bitsearch: */
  6806. __set_bit(MAX_RT_PRIO, array->bitmap);
  6807. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6808. rt_rq->highest_prio = MAX_RT_PRIO;
  6809. #endif
  6810. #ifdef CONFIG_SMP
  6811. rt_rq->rt_nr_migratory = 0;
  6812. rt_rq->overloaded = 0;
  6813. #endif
  6814. rt_rq->rt_time = 0;
  6815. rt_rq->rt_throttled = 0;
  6816. rt_rq->rt_runtime = 0;
  6817. spin_lock_init(&rt_rq->rt_runtime_lock);
  6818. #ifdef CONFIG_RT_GROUP_SCHED
  6819. rt_rq->rt_nr_boosted = 0;
  6820. rt_rq->rq = rq;
  6821. #endif
  6822. }
  6823. #ifdef CONFIG_FAIR_GROUP_SCHED
  6824. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6825. struct sched_entity *se, int cpu, int add,
  6826. struct sched_entity *parent)
  6827. {
  6828. struct rq *rq = cpu_rq(cpu);
  6829. tg->cfs_rq[cpu] = cfs_rq;
  6830. init_cfs_rq(cfs_rq, rq);
  6831. cfs_rq->tg = tg;
  6832. if (add)
  6833. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6834. tg->se[cpu] = se;
  6835. /* se could be NULL for init_task_group */
  6836. if (!se)
  6837. return;
  6838. if (!parent)
  6839. se->cfs_rq = &rq->cfs;
  6840. else
  6841. se->cfs_rq = parent->my_q;
  6842. se->my_q = cfs_rq;
  6843. se->load.weight = tg->shares;
  6844. se->load.inv_weight = 0;
  6845. se->parent = parent;
  6846. }
  6847. #endif
  6848. #ifdef CONFIG_RT_GROUP_SCHED
  6849. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6850. struct sched_rt_entity *rt_se, int cpu, int add,
  6851. struct sched_rt_entity *parent)
  6852. {
  6853. struct rq *rq = cpu_rq(cpu);
  6854. tg->rt_rq[cpu] = rt_rq;
  6855. init_rt_rq(rt_rq, rq);
  6856. rt_rq->tg = tg;
  6857. rt_rq->rt_se = rt_se;
  6858. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6859. if (add)
  6860. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6861. tg->rt_se[cpu] = rt_se;
  6862. if (!rt_se)
  6863. return;
  6864. if (!parent)
  6865. rt_se->rt_rq = &rq->rt;
  6866. else
  6867. rt_se->rt_rq = parent->my_q;
  6868. rt_se->my_q = rt_rq;
  6869. rt_se->parent = parent;
  6870. INIT_LIST_HEAD(&rt_se->run_list);
  6871. }
  6872. #endif
  6873. void __init sched_init(void)
  6874. {
  6875. int i, j;
  6876. unsigned long alloc_size = 0, ptr;
  6877. #ifdef CONFIG_FAIR_GROUP_SCHED
  6878. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6879. #endif
  6880. #ifdef CONFIG_RT_GROUP_SCHED
  6881. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6882. #endif
  6883. #ifdef CONFIG_USER_SCHED
  6884. alloc_size *= 2;
  6885. #endif
  6886. /*
  6887. * As sched_init() is called before page_alloc is setup,
  6888. * we use alloc_bootmem().
  6889. */
  6890. if (alloc_size) {
  6891. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6892. #ifdef CONFIG_FAIR_GROUP_SCHED
  6893. init_task_group.se = (struct sched_entity **)ptr;
  6894. ptr += nr_cpu_ids * sizeof(void **);
  6895. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6896. ptr += nr_cpu_ids * sizeof(void **);
  6897. #ifdef CONFIG_USER_SCHED
  6898. root_task_group.se = (struct sched_entity **)ptr;
  6899. ptr += nr_cpu_ids * sizeof(void **);
  6900. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6901. ptr += nr_cpu_ids * sizeof(void **);
  6902. #endif /* CONFIG_USER_SCHED */
  6903. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6904. #ifdef CONFIG_RT_GROUP_SCHED
  6905. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6906. ptr += nr_cpu_ids * sizeof(void **);
  6907. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6908. ptr += nr_cpu_ids * sizeof(void **);
  6909. #ifdef CONFIG_USER_SCHED
  6910. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6911. ptr += nr_cpu_ids * sizeof(void **);
  6912. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6913. ptr += nr_cpu_ids * sizeof(void **);
  6914. #endif /* CONFIG_USER_SCHED */
  6915. #endif /* CONFIG_RT_GROUP_SCHED */
  6916. }
  6917. #ifdef CONFIG_SMP
  6918. init_defrootdomain();
  6919. #endif
  6920. init_rt_bandwidth(&def_rt_bandwidth,
  6921. global_rt_period(), global_rt_runtime());
  6922. #ifdef CONFIG_RT_GROUP_SCHED
  6923. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6924. global_rt_period(), global_rt_runtime());
  6925. #ifdef CONFIG_USER_SCHED
  6926. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6927. global_rt_period(), RUNTIME_INF);
  6928. #endif /* CONFIG_USER_SCHED */
  6929. #endif /* CONFIG_RT_GROUP_SCHED */
  6930. #ifdef CONFIG_GROUP_SCHED
  6931. list_add(&init_task_group.list, &task_groups);
  6932. INIT_LIST_HEAD(&init_task_group.children);
  6933. #ifdef CONFIG_USER_SCHED
  6934. INIT_LIST_HEAD(&root_task_group.children);
  6935. init_task_group.parent = &root_task_group;
  6936. list_add(&init_task_group.siblings, &root_task_group.children);
  6937. #endif /* CONFIG_USER_SCHED */
  6938. #endif /* CONFIG_GROUP_SCHED */
  6939. for_each_possible_cpu(i) {
  6940. struct rq *rq;
  6941. rq = cpu_rq(i);
  6942. spin_lock_init(&rq->lock);
  6943. rq->nr_running = 0;
  6944. init_cfs_rq(&rq->cfs, rq);
  6945. init_rt_rq(&rq->rt, rq);
  6946. #ifdef CONFIG_FAIR_GROUP_SCHED
  6947. init_task_group.shares = init_task_group_load;
  6948. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6949. #ifdef CONFIG_CGROUP_SCHED
  6950. /*
  6951. * How much cpu bandwidth does init_task_group get?
  6952. *
  6953. * In case of task-groups formed thr' the cgroup filesystem, it
  6954. * gets 100% of the cpu resources in the system. This overall
  6955. * system cpu resource is divided among the tasks of
  6956. * init_task_group and its child task-groups in a fair manner,
  6957. * based on each entity's (task or task-group's) weight
  6958. * (se->load.weight).
  6959. *
  6960. * In other words, if init_task_group has 10 tasks of weight
  6961. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6962. * then A0's share of the cpu resource is:
  6963. *
  6964. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6965. *
  6966. * We achieve this by letting init_task_group's tasks sit
  6967. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6968. */
  6969. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6970. #elif defined CONFIG_USER_SCHED
  6971. root_task_group.shares = NICE_0_LOAD;
  6972. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6973. /*
  6974. * In case of task-groups formed thr' the user id of tasks,
  6975. * init_task_group represents tasks belonging to root user.
  6976. * Hence it forms a sibling of all subsequent groups formed.
  6977. * In this case, init_task_group gets only a fraction of overall
  6978. * system cpu resource, based on the weight assigned to root
  6979. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6980. * by letting tasks of init_task_group sit in a separate cfs_rq
  6981. * (init_cfs_rq) and having one entity represent this group of
  6982. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6983. */
  6984. init_tg_cfs_entry(&init_task_group,
  6985. &per_cpu(init_cfs_rq, i),
  6986. &per_cpu(init_sched_entity, i), i, 1,
  6987. root_task_group.se[i]);
  6988. #endif
  6989. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6990. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6991. #ifdef CONFIG_RT_GROUP_SCHED
  6992. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6993. #ifdef CONFIG_CGROUP_SCHED
  6994. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6995. #elif defined CONFIG_USER_SCHED
  6996. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6997. init_tg_rt_entry(&init_task_group,
  6998. &per_cpu(init_rt_rq, i),
  6999. &per_cpu(init_sched_rt_entity, i), i, 1,
  7000. root_task_group.rt_se[i]);
  7001. #endif
  7002. #endif
  7003. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7004. rq->cpu_load[j] = 0;
  7005. #ifdef CONFIG_SMP
  7006. rq->sd = NULL;
  7007. rq->rd = NULL;
  7008. rq->active_balance = 0;
  7009. rq->next_balance = jiffies;
  7010. rq->push_cpu = 0;
  7011. rq->cpu = i;
  7012. rq->online = 0;
  7013. rq->migration_thread = NULL;
  7014. INIT_LIST_HEAD(&rq->migration_queue);
  7015. rq_attach_root(rq, &def_root_domain);
  7016. #endif
  7017. init_rq_hrtick(rq);
  7018. atomic_set(&rq->nr_iowait, 0);
  7019. }
  7020. set_load_weight(&init_task);
  7021. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7022. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7023. #endif
  7024. #ifdef CONFIG_SMP
  7025. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7026. #endif
  7027. #ifdef CONFIG_RT_MUTEXES
  7028. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7029. #endif
  7030. /*
  7031. * The boot idle thread does lazy MMU switching as well:
  7032. */
  7033. atomic_inc(&init_mm.mm_count);
  7034. enter_lazy_tlb(&init_mm, current);
  7035. /*
  7036. * Make us the idle thread. Technically, schedule() should not be
  7037. * called from this thread, however somewhere below it might be,
  7038. * but because we are the idle thread, we just pick up running again
  7039. * when this runqueue becomes "idle".
  7040. */
  7041. init_idle(current, smp_processor_id());
  7042. /*
  7043. * During early bootup we pretend to be a normal task:
  7044. */
  7045. current->sched_class = &fair_sched_class;
  7046. scheduler_running = 1;
  7047. }
  7048. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7049. void __might_sleep(char *file, int line)
  7050. {
  7051. #ifdef in_atomic
  7052. static unsigned long prev_jiffy; /* ratelimiting */
  7053. if ((!in_atomic() && !irqs_disabled()) ||
  7054. system_state != SYSTEM_RUNNING || oops_in_progress)
  7055. return;
  7056. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7057. return;
  7058. prev_jiffy = jiffies;
  7059. printk(KERN_ERR
  7060. "BUG: sleeping function called from invalid context at %s:%d\n",
  7061. file, line);
  7062. printk(KERN_ERR
  7063. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7064. in_atomic(), irqs_disabled(),
  7065. current->pid, current->comm);
  7066. debug_show_held_locks(current);
  7067. if (irqs_disabled())
  7068. print_irqtrace_events(current);
  7069. dump_stack();
  7070. #endif
  7071. }
  7072. EXPORT_SYMBOL(__might_sleep);
  7073. #endif
  7074. #ifdef CONFIG_MAGIC_SYSRQ
  7075. static void normalize_task(struct rq *rq, struct task_struct *p)
  7076. {
  7077. int on_rq;
  7078. update_rq_clock(rq);
  7079. on_rq = p->se.on_rq;
  7080. if (on_rq)
  7081. deactivate_task(rq, p, 0);
  7082. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7083. if (on_rq) {
  7084. activate_task(rq, p, 0);
  7085. resched_task(rq->curr);
  7086. }
  7087. }
  7088. void normalize_rt_tasks(void)
  7089. {
  7090. struct task_struct *g, *p;
  7091. unsigned long flags;
  7092. struct rq *rq;
  7093. read_lock_irqsave(&tasklist_lock, flags);
  7094. do_each_thread(g, p) {
  7095. /*
  7096. * Only normalize user tasks:
  7097. */
  7098. if (!p->mm)
  7099. continue;
  7100. p->se.exec_start = 0;
  7101. #ifdef CONFIG_SCHEDSTATS
  7102. p->se.wait_start = 0;
  7103. p->se.sleep_start = 0;
  7104. p->se.block_start = 0;
  7105. #endif
  7106. if (!rt_task(p)) {
  7107. /*
  7108. * Renice negative nice level userspace
  7109. * tasks back to 0:
  7110. */
  7111. if (TASK_NICE(p) < 0 && p->mm)
  7112. set_user_nice(p, 0);
  7113. continue;
  7114. }
  7115. spin_lock(&p->pi_lock);
  7116. rq = __task_rq_lock(p);
  7117. normalize_task(rq, p);
  7118. __task_rq_unlock(rq);
  7119. spin_unlock(&p->pi_lock);
  7120. } while_each_thread(g, p);
  7121. read_unlock_irqrestore(&tasklist_lock, flags);
  7122. }
  7123. #endif /* CONFIG_MAGIC_SYSRQ */
  7124. #ifdef CONFIG_IA64
  7125. /*
  7126. * These functions are only useful for the IA64 MCA handling.
  7127. *
  7128. * They can only be called when the whole system has been
  7129. * stopped - every CPU needs to be quiescent, and no scheduling
  7130. * activity can take place. Using them for anything else would
  7131. * be a serious bug, and as a result, they aren't even visible
  7132. * under any other configuration.
  7133. */
  7134. /**
  7135. * curr_task - return the current task for a given cpu.
  7136. * @cpu: the processor in question.
  7137. *
  7138. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7139. */
  7140. struct task_struct *curr_task(int cpu)
  7141. {
  7142. return cpu_curr(cpu);
  7143. }
  7144. /**
  7145. * set_curr_task - set the current task for a given cpu.
  7146. * @cpu: the processor in question.
  7147. * @p: the task pointer to set.
  7148. *
  7149. * Description: This function must only be used when non-maskable interrupts
  7150. * are serviced on a separate stack. It allows the architecture to switch the
  7151. * notion of the current task on a cpu in a non-blocking manner. This function
  7152. * must be called with all CPU's synchronized, and interrupts disabled, the
  7153. * and caller must save the original value of the current task (see
  7154. * curr_task() above) and restore that value before reenabling interrupts and
  7155. * re-starting the system.
  7156. *
  7157. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7158. */
  7159. void set_curr_task(int cpu, struct task_struct *p)
  7160. {
  7161. cpu_curr(cpu) = p;
  7162. }
  7163. #endif
  7164. #ifdef CONFIG_FAIR_GROUP_SCHED
  7165. static void free_fair_sched_group(struct task_group *tg)
  7166. {
  7167. int i;
  7168. for_each_possible_cpu(i) {
  7169. if (tg->cfs_rq)
  7170. kfree(tg->cfs_rq[i]);
  7171. if (tg->se)
  7172. kfree(tg->se[i]);
  7173. }
  7174. kfree(tg->cfs_rq);
  7175. kfree(tg->se);
  7176. }
  7177. static
  7178. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7179. {
  7180. struct cfs_rq *cfs_rq;
  7181. struct sched_entity *se;
  7182. struct rq *rq;
  7183. int i;
  7184. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7185. if (!tg->cfs_rq)
  7186. goto err;
  7187. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7188. if (!tg->se)
  7189. goto err;
  7190. tg->shares = NICE_0_LOAD;
  7191. for_each_possible_cpu(i) {
  7192. rq = cpu_rq(i);
  7193. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7194. GFP_KERNEL, cpu_to_node(i));
  7195. if (!cfs_rq)
  7196. goto err;
  7197. se = kzalloc_node(sizeof(struct sched_entity),
  7198. GFP_KERNEL, cpu_to_node(i));
  7199. if (!se)
  7200. goto err;
  7201. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7202. }
  7203. return 1;
  7204. err:
  7205. return 0;
  7206. }
  7207. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7208. {
  7209. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7210. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7211. }
  7212. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7213. {
  7214. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7215. }
  7216. #else /* !CONFG_FAIR_GROUP_SCHED */
  7217. static inline void free_fair_sched_group(struct task_group *tg)
  7218. {
  7219. }
  7220. static inline
  7221. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7222. {
  7223. return 1;
  7224. }
  7225. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7226. {
  7227. }
  7228. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7229. {
  7230. }
  7231. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7232. #ifdef CONFIG_RT_GROUP_SCHED
  7233. static void free_rt_sched_group(struct task_group *tg)
  7234. {
  7235. int i;
  7236. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7237. for_each_possible_cpu(i) {
  7238. if (tg->rt_rq)
  7239. kfree(tg->rt_rq[i]);
  7240. if (tg->rt_se)
  7241. kfree(tg->rt_se[i]);
  7242. }
  7243. kfree(tg->rt_rq);
  7244. kfree(tg->rt_se);
  7245. }
  7246. static
  7247. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7248. {
  7249. struct rt_rq *rt_rq;
  7250. struct sched_rt_entity *rt_se;
  7251. struct rq *rq;
  7252. int i;
  7253. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7254. if (!tg->rt_rq)
  7255. goto err;
  7256. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7257. if (!tg->rt_se)
  7258. goto err;
  7259. init_rt_bandwidth(&tg->rt_bandwidth,
  7260. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7261. for_each_possible_cpu(i) {
  7262. rq = cpu_rq(i);
  7263. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7264. GFP_KERNEL, cpu_to_node(i));
  7265. if (!rt_rq)
  7266. goto err;
  7267. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7268. GFP_KERNEL, cpu_to_node(i));
  7269. if (!rt_se)
  7270. goto err;
  7271. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7272. }
  7273. return 1;
  7274. err:
  7275. return 0;
  7276. }
  7277. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7278. {
  7279. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7280. &cpu_rq(cpu)->leaf_rt_rq_list);
  7281. }
  7282. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7283. {
  7284. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7285. }
  7286. #else /* !CONFIG_RT_GROUP_SCHED */
  7287. static inline void free_rt_sched_group(struct task_group *tg)
  7288. {
  7289. }
  7290. static inline
  7291. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7292. {
  7293. return 1;
  7294. }
  7295. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7296. {
  7297. }
  7298. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7299. {
  7300. }
  7301. #endif /* CONFIG_RT_GROUP_SCHED */
  7302. #ifdef CONFIG_GROUP_SCHED
  7303. static void free_sched_group(struct task_group *tg)
  7304. {
  7305. free_fair_sched_group(tg);
  7306. free_rt_sched_group(tg);
  7307. kfree(tg);
  7308. }
  7309. /* allocate runqueue etc for a new task group */
  7310. struct task_group *sched_create_group(struct task_group *parent)
  7311. {
  7312. struct task_group *tg;
  7313. unsigned long flags;
  7314. int i;
  7315. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7316. if (!tg)
  7317. return ERR_PTR(-ENOMEM);
  7318. if (!alloc_fair_sched_group(tg, parent))
  7319. goto err;
  7320. if (!alloc_rt_sched_group(tg, parent))
  7321. goto err;
  7322. spin_lock_irqsave(&task_group_lock, flags);
  7323. for_each_possible_cpu(i) {
  7324. register_fair_sched_group(tg, i);
  7325. register_rt_sched_group(tg, i);
  7326. }
  7327. list_add_rcu(&tg->list, &task_groups);
  7328. WARN_ON(!parent); /* root should already exist */
  7329. tg->parent = parent;
  7330. INIT_LIST_HEAD(&tg->children);
  7331. list_add_rcu(&tg->siblings, &parent->children);
  7332. spin_unlock_irqrestore(&task_group_lock, flags);
  7333. return tg;
  7334. err:
  7335. free_sched_group(tg);
  7336. return ERR_PTR(-ENOMEM);
  7337. }
  7338. /* rcu callback to free various structures associated with a task group */
  7339. static void free_sched_group_rcu(struct rcu_head *rhp)
  7340. {
  7341. /* now it should be safe to free those cfs_rqs */
  7342. free_sched_group(container_of(rhp, struct task_group, rcu));
  7343. }
  7344. /* Destroy runqueue etc associated with a task group */
  7345. void sched_destroy_group(struct task_group *tg)
  7346. {
  7347. unsigned long flags;
  7348. int i;
  7349. spin_lock_irqsave(&task_group_lock, flags);
  7350. for_each_possible_cpu(i) {
  7351. unregister_fair_sched_group(tg, i);
  7352. unregister_rt_sched_group(tg, i);
  7353. }
  7354. list_del_rcu(&tg->list);
  7355. list_del_rcu(&tg->siblings);
  7356. spin_unlock_irqrestore(&task_group_lock, flags);
  7357. /* wait for possible concurrent references to cfs_rqs complete */
  7358. call_rcu(&tg->rcu, free_sched_group_rcu);
  7359. }
  7360. /* change task's runqueue when it moves between groups.
  7361. * The caller of this function should have put the task in its new group
  7362. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7363. * reflect its new group.
  7364. */
  7365. void sched_move_task(struct task_struct *tsk)
  7366. {
  7367. int on_rq, running;
  7368. unsigned long flags;
  7369. struct rq *rq;
  7370. rq = task_rq_lock(tsk, &flags);
  7371. update_rq_clock(rq);
  7372. running = task_current(rq, tsk);
  7373. on_rq = tsk->se.on_rq;
  7374. if (on_rq)
  7375. dequeue_task(rq, tsk, 0);
  7376. if (unlikely(running))
  7377. tsk->sched_class->put_prev_task(rq, tsk);
  7378. set_task_rq(tsk, task_cpu(tsk));
  7379. #ifdef CONFIG_FAIR_GROUP_SCHED
  7380. if (tsk->sched_class->moved_group)
  7381. tsk->sched_class->moved_group(tsk);
  7382. #endif
  7383. if (unlikely(running))
  7384. tsk->sched_class->set_curr_task(rq);
  7385. if (on_rq)
  7386. enqueue_task(rq, tsk, 0);
  7387. task_rq_unlock(rq, &flags);
  7388. }
  7389. #endif /* CONFIG_GROUP_SCHED */
  7390. #ifdef CONFIG_FAIR_GROUP_SCHED
  7391. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7392. {
  7393. struct cfs_rq *cfs_rq = se->cfs_rq;
  7394. int on_rq;
  7395. on_rq = se->on_rq;
  7396. if (on_rq)
  7397. dequeue_entity(cfs_rq, se, 0);
  7398. se->load.weight = shares;
  7399. se->load.inv_weight = 0;
  7400. if (on_rq)
  7401. enqueue_entity(cfs_rq, se, 0);
  7402. }
  7403. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7404. {
  7405. struct cfs_rq *cfs_rq = se->cfs_rq;
  7406. struct rq *rq = cfs_rq->rq;
  7407. unsigned long flags;
  7408. spin_lock_irqsave(&rq->lock, flags);
  7409. __set_se_shares(se, shares);
  7410. spin_unlock_irqrestore(&rq->lock, flags);
  7411. }
  7412. static DEFINE_MUTEX(shares_mutex);
  7413. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7414. {
  7415. int i;
  7416. unsigned long flags;
  7417. /*
  7418. * We can't change the weight of the root cgroup.
  7419. */
  7420. if (!tg->se[0])
  7421. return -EINVAL;
  7422. if (shares < MIN_SHARES)
  7423. shares = MIN_SHARES;
  7424. else if (shares > MAX_SHARES)
  7425. shares = MAX_SHARES;
  7426. mutex_lock(&shares_mutex);
  7427. if (tg->shares == shares)
  7428. goto done;
  7429. spin_lock_irqsave(&task_group_lock, flags);
  7430. for_each_possible_cpu(i)
  7431. unregister_fair_sched_group(tg, i);
  7432. list_del_rcu(&tg->siblings);
  7433. spin_unlock_irqrestore(&task_group_lock, flags);
  7434. /* wait for any ongoing reference to this group to finish */
  7435. synchronize_sched();
  7436. /*
  7437. * Now we are free to modify the group's share on each cpu
  7438. * w/o tripping rebalance_share or load_balance_fair.
  7439. */
  7440. tg->shares = shares;
  7441. for_each_possible_cpu(i) {
  7442. /*
  7443. * force a rebalance
  7444. */
  7445. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7446. set_se_shares(tg->se[i], shares);
  7447. }
  7448. /*
  7449. * Enable load balance activity on this group, by inserting it back on
  7450. * each cpu's rq->leaf_cfs_rq_list.
  7451. */
  7452. spin_lock_irqsave(&task_group_lock, flags);
  7453. for_each_possible_cpu(i)
  7454. register_fair_sched_group(tg, i);
  7455. list_add_rcu(&tg->siblings, &tg->parent->children);
  7456. spin_unlock_irqrestore(&task_group_lock, flags);
  7457. done:
  7458. mutex_unlock(&shares_mutex);
  7459. return 0;
  7460. }
  7461. unsigned long sched_group_shares(struct task_group *tg)
  7462. {
  7463. return tg->shares;
  7464. }
  7465. #endif
  7466. #ifdef CONFIG_RT_GROUP_SCHED
  7467. /*
  7468. * Ensure that the real time constraints are schedulable.
  7469. */
  7470. static DEFINE_MUTEX(rt_constraints_mutex);
  7471. static unsigned long to_ratio(u64 period, u64 runtime)
  7472. {
  7473. if (runtime == RUNTIME_INF)
  7474. return 1ULL << 20;
  7475. return div64_u64(runtime << 20, period);
  7476. }
  7477. /* Must be called with tasklist_lock held */
  7478. static inline int tg_has_rt_tasks(struct task_group *tg)
  7479. {
  7480. struct task_struct *g, *p;
  7481. do_each_thread(g, p) {
  7482. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7483. return 1;
  7484. } while_each_thread(g, p);
  7485. return 0;
  7486. }
  7487. struct rt_schedulable_data {
  7488. struct task_group *tg;
  7489. u64 rt_period;
  7490. u64 rt_runtime;
  7491. };
  7492. static int tg_schedulable(struct task_group *tg, void *data)
  7493. {
  7494. struct rt_schedulable_data *d = data;
  7495. struct task_group *child;
  7496. unsigned long total, sum = 0;
  7497. u64 period, runtime;
  7498. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7499. runtime = tg->rt_bandwidth.rt_runtime;
  7500. if (tg == d->tg) {
  7501. period = d->rt_period;
  7502. runtime = d->rt_runtime;
  7503. }
  7504. /*
  7505. * Cannot have more runtime than the period.
  7506. */
  7507. if (runtime > period && runtime != RUNTIME_INF)
  7508. return -EINVAL;
  7509. /*
  7510. * Ensure we don't starve existing RT tasks.
  7511. */
  7512. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7513. return -EBUSY;
  7514. total = to_ratio(period, runtime);
  7515. /*
  7516. * Nobody can have more than the global setting allows.
  7517. */
  7518. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7519. return -EINVAL;
  7520. /*
  7521. * The sum of our children's runtime should not exceed our own.
  7522. */
  7523. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7524. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7525. runtime = child->rt_bandwidth.rt_runtime;
  7526. if (child == d->tg) {
  7527. period = d->rt_period;
  7528. runtime = d->rt_runtime;
  7529. }
  7530. sum += to_ratio(period, runtime);
  7531. }
  7532. if (sum > total)
  7533. return -EINVAL;
  7534. return 0;
  7535. }
  7536. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7537. {
  7538. struct rt_schedulable_data data = {
  7539. .tg = tg,
  7540. .rt_period = period,
  7541. .rt_runtime = runtime,
  7542. };
  7543. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7544. }
  7545. static int tg_set_bandwidth(struct task_group *tg,
  7546. u64 rt_period, u64 rt_runtime)
  7547. {
  7548. int i, err = 0;
  7549. mutex_lock(&rt_constraints_mutex);
  7550. read_lock(&tasklist_lock);
  7551. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7552. if (err)
  7553. goto unlock;
  7554. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7555. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7556. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7557. for_each_possible_cpu(i) {
  7558. struct rt_rq *rt_rq = tg->rt_rq[i];
  7559. spin_lock(&rt_rq->rt_runtime_lock);
  7560. rt_rq->rt_runtime = rt_runtime;
  7561. spin_unlock(&rt_rq->rt_runtime_lock);
  7562. }
  7563. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7564. unlock:
  7565. read_unlock(&tasklist_lock);
  7566. mutex_unlock(&rt_constraints_mutex);
  7567. return err;
  7568. }
  7569. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7570. {
  7571. u64 rt_runtime, rt_period;
  7572. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7573. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7574. if (rt_runtime_us < 0)
  7575. rt_runtime = RUNTIME_INF;
  7576. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7577. }
  7578. long sched_group_rt_runtime(struct task_group *tg)
  7579. {
  7580. u64 rt_runtime_us;
  7581. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7582. return -1;
  7583. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7584. do_div(rt_runtime_us, NSEC_PER_USEC);
  7585. return rt_runtime_us;
  7586. }
  7587. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7588. {
  7589. u64 rt_runtime, rt_period;
  7590. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7591. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7592. if (rt_period == 0)
  7593. return -EINVAL;
  7594. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7595. }
  7596. long sched_group_rt_period(struct task_group *tg)
  7597. {
  7598. u64 rt_period_us;
  7599. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7600. do_div(rt_period_us, NSEC_PER_USEC);
  7601. return rt_period_us;
  7602. }
  7603. static int sched_rt_global_constraints(void)
  7604. {
  7605. u64 runtime, period;
  7606. int ret = 0;
  7607. if (sysctl_sched_rt_period <= 0)
  7608. return -EINVAL;
  7609. runtime = global_rt_runtime();
  7610. period = global_rt_period();
  7611. /*
  7612. * Sanity check on the sysctl variables.
  7613. */
  7614. if (runtime > period && runtime != RUNTIME_INF)
  7615. return -EINVAL;
  7616. mutex_lock(&rt_constraints_mutex);
  7617. read_lock(&tasklist_lock);
  7618. ret = __rt_schedulable(NULL, 0, 0);
  7619. read_unlock(&tasklist_lock);
  7620. mutex_unlock(&rt_constraints_mutex);
  7621. return ret;
  7622. }
  7623. #else /* !CONFIG_RT_GROUP_SCHED */
  7624. static int sched_rt_global_constraints(void)
  7625. {
  7626. unsigned long flags;
  7627. int i;
  7628. if (sysctl_sched_rt_period <= 0)
  7629. return -EINVAL;
  7630. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7631. for_each_possible_cpu(i) {
  7632. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7633. spin_lock(&rt_rq->rt_runtime_lock);
  7634. rt_rq->rt_runtime = global_rt_runtime();
  7635. spin_unlock(&rt_rq->rt_runtime_lock);
  7636. }
  7637. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7638. return 0;
  7639. }
  7640. #endif /* CONFIG_RT_GROUP_SCHED */
  7641. int sched_rt_handler(struct ctl_table *table, int write,
  7642. struct file *filp, void __user *buffer, size_t *lenp,
  7643. loff_t *ppos)
  7644. {
  7645. int ret;
  7646. int old_period, old_runtime;
  7647. static DEFINE_MUTEX(mutex);
  7648. mutex_lock(&mutex);
  7649. old_period = sysctl_sched_rt_period;
  7650. old_runtime = sysctl_sched_rt_runtime;
  7651. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7652. if (!ret && write) {
  7653. ret = sched_rt_global_constraints();
  7654. if (ret) {
  7655. sysctl_sched_rt_period = old_period;
  7656. sysctl_sched_rt_runtime = old_runtime;
  7657. } else {
  7658. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7659. def_rt_bandwidth.rt_period =
  7660. ns_to_ktime(global_rt_period());
  7661. }
  7662. }
  7663. mutex_unlock(&mutex);
  7664. return ret;
  7665. }
  7666. #ifdef CONFIG_CGROUP_SCHED
  7667. /* return corresponding task_group object of a cgroup */
  7668. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7669. {
  7670. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7671. struct task_group, css);
  7672. }
  7673. static struct cgroup_subsys_state *
  7674. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7675. {
  7676. struct task_group *tg, *parent;
  7677. if (!cgrp->parent) {
  7678. /* This is early initialization for the top cgroup */
  7679. return &init_task_group.css;
  7680. }
  7681. parent = cgroup_tg(cgrp->parent);
  7682. tg = sched_create_group(parent);
  7683. if (IS_ERR(tg))
  7684. return ERR_PTR(-ENOMEM);
  7685. return &tg->css;
  7686. }
  7687. static void
  7688. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7689. {
  7690. struct task_group *tg = cgroup_tg(cgrp);
  7691. sched_destroy_group(tg);
  7692. }
  7693. static int
  7694. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7695. struct task_struct *tsk)
  7696. {
  7697. #ifdef CONFIG_RT_GROUP_SCHED
  7698. /* Don't accept realtime tasks when there is no way for them to run */
  7699. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7700. return -EINVAL;
  7701. #else
  7702. /* We don't support RT-tasks being in separate groups */
  7703. if (tsk->sched_class != &fair_sched_class)
  7704. return -EINVAL;
  7705. #endif
  7706. return 0;
  7707. }
  7708. static void
  7709. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7710. struct cgroup *old_cont, struct task_struct *tsk)
  7711. {
  7712. sched_move_task(tsk);
  7713. }
  7714. #ifdef CONFIG_FAIR_GROUP_SCHED
  7715. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7716. u64 shareval)
  7717. {
  7718. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7719. }
  7720. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7721. {
  7722. struct task_group *tg = cgroup_tg(cgrp);
  7723. return (u64) tg->shares;
  7724. }
  7725. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7726. #ifdef CONFIG_RT_GROUP_SCHED
  7727. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7728. s64 val)
  7729. {
  7730. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7731. }
  7732. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7733. {
  7734. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7735. }
  7736. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7737. u64 rt_period_us)
  7738. {
  7739. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7740. }
  7741. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7742. {
  7743. return sched_group_rt_period(cgroup_tg(cgrp));
  7744. }
  7745. #endif /* CONFIG_RT_GROUP_SCHED */
  7746. static struct cftype cpu_files[] = {
  7747. #ifdef CONFIG_FAIR_GROUP_SCHED
  7748. {
  7749. .name = "shares",
  7750. .read_u64 = cpu_shares_read_u64,
  7751. .write_u64 = cpu_shares_write_u64,
  7752. },
  7753. #endif
  7754. #ifdef CONFIG_RT_GROUP_SCHED
  7755. {
  7756. .name = "rt_runtime_us",
  7757. .read_s64 = cpu_rt_runtime_read,
  7758. .write_s64 = cpu_rt_runtime_write,
  7759. },
  7760. {
  7761. .name = "rt_period_us",
  7762. .read_u64 = cpu_rt_period_read_uint,
  7763. .write_u64 = cpu_rt_period_write_uint,
  7764. },
  7765. #endif
  7766. };
  7767. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7768. {
  7769. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7770. }
  7771. struct cgroup_subsys cpu_cgroup_subsys = {
  7772. .name = "cpu",
  7773. .create = cpu_cgroup_create,
  7774. .destroy = cpu_cgroup_destroy,
  7775. .can_attach = cpu_cgroup_can_attach,
  7776. .attach = cpu_cgroup_attach,
  7777. .populate = cpu_cgroup_populate,
  7778. .subsys_id = cpu_cgroup_subsys_id,
  7779. .early_init = 1,
  7780. };
  7781. #endif /* CONFIG_CGROUP_SCHED */
  7782. #ifdef CONFIG_CGROUP_CPUACCT
  7783. /*
  7784. * CPU accounting code for task groups.
  7785. *
  7786. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7787. * (balbir@in.ibm.com).
  7788. */
  7789. /* track cpu usage of a group of tasks and its child groups */
  7790. struct cpuacct {
  7791. struct cgroup_subsys_state css;
  7792. /* cpuusage holds pointer to a u64-type object on every cpu */
  7793. u64 *cpuusage;
  7794. struct cpuacct *parent;
  7795. };
  7796. struct cgroup_subsys cpuacct_subsys;
  7797. /* return cpu accounting group corresponding to this container */
  7798. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7799. {
  7800. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7801. struct cpuacct, css);
  7802. }
  7803. /* return cpu accounting group to which this task belongs */
  7804. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7805. {
  7806. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7807. struct cpuacct, css);
  7808. }
  7809. /* create a new cpu accounting group */
  7810. static struct cgroup_subsys_state *cpuacct_create(
  7811. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7812. {
  7813. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7814. if (!ca)
  7815. return ERR_PTR(-ENOMEM);
  7816. ca->cpuusage = alloc_percpu(u64);
  7817. if (!ca->cpuusage) {
  7818. kfree(ca);
  7819. return ERR_PTR(-ENOMEM);
  7820. }
  7821. if (cgrp->parent)
  7822. ca->parent = cgroup_ca(cgrp->parent);
  7823. return &ca->css;
  7824. }
  7825. /* destroy an existing cpu accounting group */
  7826. static void
  7827. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7828. {
  7829. struct cpuacct *ca = cgroup_ca(cgrp);
  7830. free_percpu(ca->cpuusage);
  7831. kfree(ca);
  7832. }
  7833. /* return total cpu usage (in nanoseconds) of a group */
  7834. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7835. {
  7836. struct cpuacct *ca = cgroup_ca(cgrp);
  7837. u64 totalcpuusage = 0;
  7838. int i;
  7839. for_each_possible_cpu(i) {
  7840. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7841. /*
  7842. * Take rq->lock to make 64-bit addition safe on 32-bit
  7843. * platforms.
  7844. */
  7845. spin_lock_irq(&cpu_rq(i)->lock);
  7846. totalcpuusage += *cpuusage;
  7847. spin_unlock_irq(&cpu_rq(i)->lock);
  7848. }
  7849. return totalcpuusage;
  7850. }
  7851. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7852. u64 reset)
  7853. {
  7854. struct cpuacct *ca = cgroup_ca(cgrp);
  7855. int err = 0;
  7856. int i;
  7857. if (reset) {
  7858. err = -EINVAL;
  7859. goto out;
  7860. }
  7861. for_each_possible_cpu(i) {
  7862. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7863. spin_lock_irq(&cpu_rq(i)->lock);
  7864. *cpuusage = 0;
  7865. spin_unlock_irq(&cpu_rq(i)->lock);
  7866. }
  7867. out:
  7868. return err;
  7869. }
  7870. static struct cftype files[] = {
  7871. {
  7872. .name = "usage",
  7873. .read_u64 = cpuusage_read,
  7874. .write_u64 = cpuusage_write,
  7875. },
  7876. };
  7877. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7878. {
  7879. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7880. }
  7881. /*
  7882. * charge this task's execution time to its accounting group.
  7883. *
  7884. * called with rq->lock held.
  7885. */
  7886. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7887. {
  7888. struct cpuacct *ca;
  7889. int cpu;
  7890. if (!cpuacct_subsys.active)
  7891. return;
  7892. cpu = task_cpu(tsk);
  7893. ca = task_ca(tsk);
  7894. for (; ca; ca = ca->parent) {
  7895. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7896. *cpuusage += cputime;
  7897. }
  7898. }
  7899. struct cgroup_subsys cpuacct_subsys = {
  7900. .name = "cpuacct",
  7901. .create = cpuacct_create,
  7902. .destroy = cpuacct_destroy,
  7903. .populate = cpuacct_populate,
  7904. .subsys_id = cpuacct_subsys_id,
  7905. };
  7906. #endif /* CONFIG_CGROUP_CPUACCT */