xfs_log_recover.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * Sector aligned buffer routines for buffer create/read/write/access
  55. */
  56. /*
  57. * Verify the given count of basic blocks is valid number of blocks
  58. * to specify for an operation involving the given XFS log buffer.
  59. * Returns nonzero if the count is valid, 0 otherwise.
  60. */
  61. static inline int
  62. xlog_buf_bbcount_valid(
  63. xlog_t *log,
  64. int bbcount)
  65. {
  66. return bbcount > 0 && bbcount <= log->l_logBBsize;
  67. }
  68. /*
  69. * Allocate a buffer to hold log data. The buffer needs to be able
  70. * to map to a range of nbblks basic blocks at any valid (basic
  71. * block) offset within the log.
  72. */
  73. STATIC xfs_buf_t *
  74. xlog_get_bp(
  75. xlog_t *log,
  76. int nbblks)
  77. {
  78. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  79. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  80. nbblks);
  81. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  82. return NULL;
  83. }
  84. /*
  85. * We do log I/O in units of log sectors (a power-of-2
  86. * multiple of the basic block size), so we round up the
  87. * requested size to acommodate the basic blocks required
  88. * for complete log sectors.
  89. *
  90. * In addition, the buffer may be used for a non-sector-
  91. * aligned block offset, in which case an I/O of the
  92. * requested size could extend beyond the end of the
  93. * buffer. If the requested size is only 1 basic block it
  94. * will never straddle a sector boundary, so this won't be
  95. * an issue. Nor will this be a problem if the log I/O is
  96. * done in basic blocks (sector size 1). But otherwise we
  97. * extend the buffer by one extra log sector to ensure
  98. * there's space to accomodate this possiblility.
  99. */
  100. if (nbblks > 1 && log->l_sectBBsize > 1)
  101. nbblks += log->l_sectBBsize;
  102. nbblks = round_up(nbblks, log->l_sectBBsize);
  103. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  104. }
  105. STATIC void
  106. xlog_put_bp(
  107. xfs_buf_t *bp)
  108. {
  109. xfs_buf_free(bp);
  110. }
  111. /*
  112. * Return the address of the start of the given block number's data
  113. * in a log buffer. The buffer covers a log sector-aligned region.
  114. */
  115. STATIC xfs_caddr_t
  116. xlog_align(
  117. xlog_t *log,
  118. xfs_daddr_t blk_no,
  119. int nbblks,
  120. xfs_buf_t *bp)
  121. {
  122. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  123. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  124. return XFS_BUF_PTR(bp) + BBTOB(offset);
  125. }
  126. /*
  127. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  128. */
  129. STATIC int
  130. xlog_bread_noalign(
  131. xlog_t *log,
  132. xfs_daddr_t blk_no,
  133. int nbblks,
  134. xfs_buf_t *bp)
  135. {
  136. int error;
  137. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  138. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  139. nbblks);
  140. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  141. return EFSCORRUPTED;
  142. }
  143. blk_no = round_down(blk_no, log->l_sectBBsize);
  144. nbblks = round_up(nbblks, log->l_sectBBsize);
  145. ASSERT(nbblks > 0);
  146. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  147. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  148. XFS_BUF_READ(bp);
  149. XFS_BUF_BUSY(bp);
  150. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  151. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  152. xfsbdstrat(log->l_mp, bp);
  153. error = xfs_iowait(bp);
  154. if (error)
  155. xfs_ioerror_alert("xlog_bread", log->l_mp,
  156. bp, XFS_BUF_ADDR(bp));
  157. return error;
  158. }
  159. STATIC int
  160. xlog_bread(
  161. xlog_t *log,
  162. xfs_daddr_t blk_no,
  163. int nbblks,
  164. xfs_buf_t *bp,
  165. xfs_caddr_t *offset)
  166. {
  167. int error;
  168. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  169. if (error)
  170. return error;
  171. *offset = xlog_align(log, blk_no, nbblks, bp);
  172. return 0;
  173. }
  174. /*
  175. * Write out the buffer at the given block for the given number of blocks.
  176. * The buffer is kept locked across the write and is returned locked.
  177. * This can only be used for synchronous log writes.
  178. */
  179. STATIC int
  180. xlog_bwrite(
  181. xlog_t *log,
  182. xfs_daddr_t blk_no,
  183. int nbblks,
  184. xfs_buf_t *bp)
  185. {
  186. int error;
  187. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  188. xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  189. nbblks);
  190. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  191. return EFSCORRUPTED;
  192. }
  193. blk_no = round_down(blk_no, log->l_sectBBsize);
  194. nbblks = round_up(nbblks, log->l_sectBBsize);
  195. ASSERT(nbblks > 0);
  196. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  197. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  198. XFS_BUF_ZEROFLAGS(bp);
  199. XFS_BUF_BUSY(bp);
  200. XFS_BUF_HOLD(bp);
  201. XFS_BUF_PSEMA(bp, PRIBIO);
  202. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  203. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  204. if ((error = xfs_bwrite(log->l_mp, bp)))
  205. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  206. bp, XFS_BUF_ADDR(bp));
  207. return error;
  208. }
  209. #ifdef DEBUG
  210. /*
  211. * dump debug superblock and log record information
  212. */
  213. STATIC void
  214. xlog_header_check_dump(
  215. xfs_mount_t *mp,
  216. xlog_rec_header_t *head)
  217. {
  218. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  219. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  220. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  221. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  222. }
  223. #else
  224. #define xlog_header_check_dump(mp, head)
  225. #endif
  226. /*
  227. * check log record header for recovery
  228. */
  229. STATIC int
  230. xlog_header_check_recover(
  231. xfs_mount_t *mp,
  232. xlog_rec_header_t *head)
  233. {
  234. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  235. /*
  236. * IRIX doesn't write the h_fmt field and leaves it zeroed
  237. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  238. * a dirty log created in IRIX.
  239. */
  240. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  241. xlog_warn(
  242. "XFS: dirty log written in incompatible format - can't recover");
  243. xlog_header_check_dump(mp, head);
  244. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  245. XFS_ERRLEVEL_HIGH, mp);
  246. return XFS_ERROR(EFSCORRUPTED);
  247. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  248. xlog_warn(
  249. "XFS: dirty log entry has mismatched uuid - can't recover");
  250. xlog_header_check_dump(mp, head);
  251. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  252. XFS_ERRLEVEL_HIGH, mp);
  253. return XFS_ERROR(EFSCORRUPTED);
  254. }
  255. return 0;
  256. }
  257. /*
  258. * read the head block of the log and check the header
  259. */
  260. STATIC int
  261. xlog_header_check_mount(
  262. xfs_mount_t *mp,
  263. xlog_rec_header_t *head)
  264. {
  265. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  266. if (uuid_is_nil(&head->h_fs_uuid)) {
  267. /*
  268. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  269. * h_fs_uuid is nil, we assume this log was last mounted
  270. * by IRIX and continue.
  271. */
  272. xlog_warn("XFS: nil uuid in log - IRIX style log");
  273. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  274. xlog_warn("XFS: log has mismatched uuid - can't recover");
  275. xlog_header_check_dump(mp, head);
  276. XFS_ERROR_REPORT("xlog_header_check_mount",
  277. XFS_ERRLEVEL_HIGH, mp);
  278. return XFS_ERROR(EFSCORRUPTED);
  279. }
  280. return 0;
  281. }
  282. STATIC void
  283. xlog_recover_iodone(
  284. struct xfs_buf *bp)
  285. {
  286. if (XFS_BUF_GETERROR(bp)) {
  287. /*
  288. * We're not going to bother about retrying
  289. * this during recovery. One strike!
  290. */
  291. xfs_ioerror_alert("xlog_recover_iodone",
  292. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  293. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  294. }
  295. bp->b_mount = NULL;
  296. XFS_BUF_CLR_IODONE_FUNC(bp);
  297. xfs_biodone(bp);
  298. }
  299. /*
  300. * This routine finds (to an approximation) the first block in the physical
  301. * log which contains the given cycle. It uses a binary search algorithm.
  302. * Note that the algorithm can not be perfect because the disk will not
  303. * necessarily be perfect.
  304. */
  305. STATIC int
  306. xlog_find_cycle_start(
  307. xlog_t *log,
  308. xfs_buf_t *bp,
  309. xfs_daddr_t first_blk,
  310. xfs_daddr_t *last_blk,
  311. uint cycle)
  312. {
  313. xfs_caddr_t offset;
  314. xfs_daddr_t mid_blk;
  315. xfs_daddr_t end_blk;
  316. uint mid_cycle;
  317. int error;
  318. end_blk = *last_blk;
  319. mid_blk = BLK_AVG(first_blk, end_blk);
  320. while (mid_blk != first_blk && mid_blk != end_blk) {
  321. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  322. if (error)
  323. return error;
  324. mid_cycle = xlog_get_cycle(offset);
  325. if (mid_cycle == cycle)
  326. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  327. else
  328. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  329. mid_blk = BLK_AVG(first_blk, end_blk);
  330. }
  331. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  332. (mid_blk == end_blk && mid_blk-1 == first_blk));
  333. *last_blk = end_blk;
  334. return 0;
  335. }
  336. /*
  337. * Check that a range of blocks does not contain stop_on_cycle_no.
  338. * Fill in *new_blk with the block offset where such a block is
  339. * found, or with -1 (an invalid block number) if there is no such
  340. * block in the range. The scan needs to occur from front to back
  341. * and the pointer into the region must be updated since a later
  342. * routine will need to perform another test.
  343. */
  344. STATIC int
  345. xlog_find_verify_cycle(
  346. xlog_t *log,
  347. xfs_daddr_t start_blk,
  348. int nbblks,
  349. uint stop_on_cycle_no,
  350. xfs_daddr_t *new_blk)
  351. {
  352. xfs_daddr_t i, j;
  353. uint cycle;
  354. xfs_buf_t *bp;
  355. xfs_daddr_t bufblks;
  356. xfs_caddr_t buf = NULL;
  357. int error = 0;
  358. /*
  359. * Greedily allocate a buffer big enough to handle the full
  360. * range of basic blocks we'll be examining. If that fails,
  361. * try a smaller size. We need to be able to read at least
  362. * a log sector, or we're out of luck.
  363. */
  364. bufblks = 1 << ffs(nbblks);
  365. while (!(bp = xlog_get_bp(log, bufblks))) {
  366. bufblks >>= 1;
  367. if (bufblks < log->l_sectBBsize)
  368. return ENOMEM;
  369. }
  370. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  371. int bcount;
  372. bcount = min(bufblks, (start_blk + nbblks - i));
  373. error = xlog_bread(log, i, bcount, bp, &buf);
  374. if (error)
  375. goto out;
  376. for (j = 0; j < bcount; j++) {
  377. cycle = xlog_get_cycle(buf);
  378. if (cycle == stop_on_cycle_no) {
  379. *new_blk = i+j;
  380. goto out;
  381. }
  382. buf += BBSIZE;
  383. }
  384. }
  385. *new_blk = -1;
  386. out:
  387. xlog_put_bp(bp);
  388. return error;
  389. }
  390. /*
  391. * Potentially backup over partial log record write.
  392. *
  393. * In the typical case, last_blk is the number of the block directly after
  394. * a good log record. Therefore, we subtract one to get the block number
  395. * of the last block in the given buffer. extra_bblks contains the number
  396. * of blocks we would have read on a previous read. This happens when the
  397. * last log record is split over the end of the physical log.
  398. *
  399. * extra_bblks is the number of blocks potentially verified on a previous
  400. * call to this routine.
  401. */
  402. STATIC int
  403. xlog_find_verify_log_record(
  404. xlog_t *log,
  405. xfs_daddr_t start_blk,
  406. xfs_daddr_t *last_blk,
  407. int extra_bblks)
  408. {
  409. xfs_daddr_t i;
  410. xfs_buf_t *bp;
  411. xfs_caddr_t offset = NULL;
  412. xlog_rec_header_t *head = NULL;
  413. int error = 0;
  414. int smallmem = 0;
  415. int num_blks = *last_blk - start_blk;
  416. int xhdrs;
  417. ASSERT(start_blk != 0 || *last_blk != start_blk);
  418. if (!(bp = xlog_get_bp(log, num_blks))) {
  419. if (!(bp = xlog_get_bp(log, 1)))
  420. return ENOMEM;
  421. smallmem = 1;
  422. } else {
  423. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  424. if (error)
  425. goto out;
  426. offset += ((num_blks - 1) << BBSHIFT);
  427. }
  428. for (i = (*last_blk) - 1; i >= 0; i--) {
  429. if (i < start_blk) {
  430. /* valid log record not found */
  431. xlog_warn(
  432. "XFS: Log inconsistent (didn't find previous header)");
  433. ASSERT(0);
  434. error = XFS_ERROR(EIO);
  435. goto out;
  436. }
  437. if (smallmem) {
  438. error = xlog_bread(log, i, 1, bp, &offset);
  439. if (error)
  440. goto out;
  441. }
  442. head = (xlog_rec_header_t *)offset;
  443. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  444. break;
  445. if (!smallmem)
  446. offset -= BBSIZE;
  447. }
  448. /*
  449. * We hit the beginning of the physical log & still no header. Return
  450. * to caller. If caller can handle a return of -1, then this routine
  451. * will be called again for the end of the physical log.
  452. */
  453. if (i == -1) {
  454. error = -1;
  455. goto out;
  456. }
  457. /*
  458. * We have the final block of the good log (the first block
  459. * of the log record _before_ the head. So we check the uuid.
  460. */
  461. if ((error = xlog_header_check_mount(log->l_mp, head)))
  462. goto out;
  463. /*
  464. * We may have found a log record header before we expected one.
  465. * last_blk will be the 1st block # with a given cycle #. We may end
  466. * up reading an entire log record. In this case, we don't want to
  467. * reset last_blk. Only when last_blk points in the middle of a log
  468. * record do we update last_blk.
  469. */
  470. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  471. uint h_size = be32_to_cpu(head->h_size);
  472. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  473. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  474. xhdrs++;
  475. } else {
  476. xhdrs = 1;
  477. }
  478. if (*last_blk - i + extra_bblks !=
  479. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  480. *last_blk = i;
  481. out:
  482. xlog_put_bp(bp);
  483. return error;
  484. }
  485. /*
  486. * Head is defined to be the point of the log where the next log write
  487. * write could go. This means that incomplete LR writes at the end are
  488. * eliminated when calculating the head. We aren't guaranteed that previous
  489. * LR have complete transactions. We only know that a cycle number of
  490. * current cycle number -1 won't be present in the log if we start writing
  491. * from our current block number.
  492. *
  493. * last_blk contains the block number of the first block with a given
  494. * cycle number.
  495. *
  496. * Return: zero if normal, non-zero if error.
  497. */
  498. STATIC int
  499. xlog_find_head(
  500. xlog_t *log,
  501. xfs_daddr_t *return_head_blk)
  502. {
  503. xfs_buf_t *bp;
  504. xfs_caddr_t offset;
  505. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  506. int num_scan_bblks;
  507. uint first_half_cycle, last_half_cycle;
  508. uint stop_on_cycle;
  509. int error, log_bbnum = log->l_logBBsize;
  510. /* Is the end of the log device zeroed? */
  511. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  512. *return_head_blk = first_blk;
  513. /* Is the whole lot zeroed? */
  514. if (!first_blk) {
  515. /* Linux XFS shouldn't generate totally zeroed logs -
  516. * mkfs etc write a dummy unmount record to a fresh
  517. * log so we can store the uuid in there
  518. */
  519. xlog_warn("XFS: totally zeroed log");
  520. }
  521. return 0;
  522. } else if (error) {
  523. xlog_warn("XFS: empty log check failed");
  524. return error;
  525. }
  526. first_blk = 0; /* get cycle # of 1st block */
  527. bp = xlog_get_bp(log, 1);
  528. if (!bp)
  529. return ENOMEM;
  530. error = xlog_bread(log, 0, 1, bp, &offset);
  531. if (error)
  532. goto bp_err;
  533. first_half_cycle = xlog_get_cycle(offset);
  534. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  535. error = xlog_bread(log, last_blk, 1, bp, &offset);
  536. if (error)
  537. goto bp_err;
  538. last_half_cycle = xlog_get_cycle(offset);
  539. ASSERT(last_half_cycle != 0);
  540. /*
  541. * If the 1st half cycle number is equal to the last half cycle number,
  542. * then the entire log is stamped with the same cycle number. In this
  543. * case, head_blk can't be set to zero (which makes sense). The below
  544. * math doesn't work out properly with head_blk equal to zero. Instead,
  545. * we set it to log_bbnum which is an invalid block number, but this
  546. * value makes the math correct. If head_blk doesn't changed through
  547. * all the tests below, *head_blk is set to zero at the very end rather
  548. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  549. * in a circular file.
  550. */
  551. if (first_half_cycle == last_half_cycle) {
  552. /*
  553. * In this case we believe that the entire log should have
  554. * cycle number last_half_cycle. We need to scan backwards
  555. * from the end verifying that there are no holes still
  556. * containing last_half_cycle - 1. If we find such a hole,
  557. * then the start of that hole will be the new head. The
  558. * simple case looks like
  559. * x | x ... | x - 1 | x
  560. * Another case that fits this picture would be
  561. * x | x + 1 | x ... | x
  562. * In this case the head really is somewhere at the end of the
  563. * log, as one of the latest writes at the beginning was
  564. * incomplete.
  565. * One more case is
  566. * x | x + 1 | x ... | x - 1 | x
  567. * This is really the combination of the above two cases, and
  568. * the head has to end up at the start of the x-1 hole at the
  569. * end of the log.
  570. *
  571. * In the 256k log case, we will read from the beginning to the
  572. * end of the log and search for cycle numbers equal to x-1.
  573. * We don't worry about the x+1 blocks that we encounter,
  574. * because we know that they cannot be the head since the log
  575. * started with x.
  576. */
  577. head_blk = log_bbnum;
  578. stop_on_cycle = last_half_cycle - 1;
  579. } else {
  580. /*
  581. * In this case we want to find the first block with cycle
  582. * number matching last_half_cycle. We expect the log to be
  583. * some variation on
  584. * x + 1 ... | x ... | x
  585. * The first block with cycle number x (last_half_cycle) will
  586. * be where the new head belongs. First we do a binary search
  587. * for the first occurrence of last_half_cycle. The binary
  588. * search may not be totally accurate, so then we scan back
  589. * from there looking for occurrences of last_half_cycle before
  590. * us. If that backwards scan wraps around the beginning of
  591. * the log, then we look for occurrences of last_half_cycle - 1
  592. * at the end of the log. The cases we're looking for look
  593. * like
  594. * v binary search stopped here
  595. * x + 1 ... | x | x + 1 | x ... | x
  596. * ^ but we want to locate this spot
  597. * or
  598. * <---------> less than scan distance
  599. * x + 1 ... | x ... | x - 1 | x
  600. * ^ we want to locate this spot
  601. */
  602. stop_on_cycle = last_half_cycle;
  603. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  604. &head_blk, last_half_cycle)))
  605. goto bp_err;
  606. }
  607. /*
  608. * Now validate the answer. Scan back some number of maximum possible
  609. * blocks and make sure each one has the expected cycle number. The
  610. * maximum is determined by the total possible amount of buffering
  611. * in the in-core log. The following number can be made tighter if
  612. * we actually look at the block size of the filesystem.
  613. */
  614. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  615. if (head_blk >= num_scan_bblks) {
  616. /*
  617. * We are guaranteed that the entire check can be performed
  618. * in one buffer.
  619. */
  620. start_blk = head_blk - num_scan_bblks;
  621. if ((error = xlog_find_verify_cycle(log,
  622. start_blk, num_scan_bblks,
  623. stop_on_cycle, &new_blk)))
  624. goto bp_err;
  625. if (new_blk != -1)
  626. head_blk = new_blk;
  627. } else { /* need to read 2 parts of log */
  628. /*
  629. * We are going to scan backwards in the log in two parts.
  630. * First we scan the physical end of the log. In this part
  631. * of the log, we are looking for blocks with cycle number
  632. * last_half_cycle - 1.
  633. * If we find one, then we know that the log starts there, as
  634. * we've found a hole that didn't get written in going around
  635. * the end of the physical log. The simple case for this is
  636. * x + 1 ... | x ... | x - 1 | x
  637. * <---------> less than scan distance
  638. * If all of the blocks at the end of the log have cycle number
  639. * last_half_cycle, then we check the blocks at the start of
  640. * the log looking for occurrences of last_half_cycle. If we
  641. * find one, then our current estimate for the location of the
  642. * first occurrence of last_half_cycle is wrong and we move
  643. * back to the hole we've found. This case looks like
  644. * x + 1 ... | x | x + 1 | x ...
  645. * ^ binary search stopped here
  646. * Another case we need to handle that only occurs in 256k
  647. * logs is
  648. * x + 1 ... | x ... | x+1 | x ...
  649. * ^ binary search stops here
  650. * In a 256k log, the scan at the end of the log will see the
  651. * x + 1 blocks. We need to skip past those since that is
  652. * certainly not the head of the log. By searching for
  653. * last_half_cycle-1 we accomplish that.
  654. */
  655. ASSERT(head_blk <= INT_MAX &&
  656. (xfs_daddr_t) num_scan_bblks >= head_blk);
  657. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  658. if ((error = xlog_find_verify_cycle(log, start_blk,
  659. num_scan_bblks - (int)head_blk,
  660. (stop_on_cycle - 1), &new_blk)))
  661. goto bp_err;
  662. if (new_blk != -1) {
  663. head_blk = new_blk;
  664. goto validate_head;
  665. }
  666. /*
  667. * Scan beginning of log now. The last part of the physical
  668. * log is good. This scan needs to verify that it doesn't find
  669. * the last_half_cycle.
  670. */
  671. start_blk = 0;
  672. ASSERT(head_blk <= INT_MAX);
  673. if ((error = xlog_find_verify_cycle(log,
  674. start_blk, (int)head_blk,
  675. stop_on_cycle, &new_blk)))
  676. goto bp_err;
  677. if (new_blk != -1)
  678. head_blk = new_blk;
  679. }
  680. validate_head:
  681. /*
  682. * Now we need to make sure head_blk is not pointing to a block in
  683. * the middle of a log record.
  684. */
  685. num_scan_bblks = XLOG_REC_SHIFT(log);
  686. if (head_blk >= num_scan_bblks) {
  687. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  688. /* start ptr at last block ptr before head_blk */
  689. if ((error = xlog_find_verify_log_record(log, start_blk,
  690. &head_blk, 0)) == -1) {
  691. error = XFS_ERROR(EIO);
  692. goto bp_err;
  693. } else if (error)
  694. goto bp_err;
  695. } else {
  696. start_blk = 0;
  697. ASSERT(head_blk <= INT_MAX);
  698. if ((error = xlog_find_verify_log_record(log, start_blk,
  699. &head_blk, 0)) == -1) {
  700. /* We hit the beginning of the log during our search */
  701. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  702. new_blk = log_bbnum;
  703. ASSERT(start_blk <= INT_MAX &&
  704. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  705. ASSERT(head_blk <= INT_MAX);
  706. if ((error = xlog_find_verify_log_record(log,
  707. start_blk, &new_blk,
  708. (int)head_blk)) == -1) {
  709. error = XFS_ERROR(EIO);
  710. goto bp_err;
  711. } else if (error)
  712. goto bp_err;
  713. if (new_blk != log_bbnum)
  714. head_blk = new_blk;
  715. } else if (error)
  716. goto bp_err;
  717. }
  718. xlog_put_bp(bp);
  719. if (head_blk == log_bbnum)
  720. *return_head_blk = 0;
  721. else
  722. *return_head_blk = head_blk;
  723. /*
  724. * When returning here, we have a good block number. Bad block
  725. * means that during a previous crash, we didn't have a clean break
  726. * from cycle number N to cycle number N-1. In this case, we need
  727. * to find the first block with cycle number N-1.
  728. */
  729. return 0;
  730. bp_err:
  731. xlog_put_bp(bp);
  732. if (error)
  733. xlog_warn("XFS: failed to find log head");
  734. return error;
  735. }
  736. /*
  737. * Find the sync block number or the tail of the log.
  738. *
  739. * This will be the block number of the last record to have its
  740. * associated buffers synced to disk. Every log record header has
  741. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  742. * to get a sync block number. The only concern is to figure out which
  743. * log record header to believe.
  744. *
  745. * The following algorithm uses the log record header with the largest
  746. * lsn. The entire log record does not need to be valid. We only care
  747. * that the header is valid.
  748. *
  749. * We could speed up search by using current head_blk buffer, but it is not
  750. * available.
  751. */
  752. STATIC int
  753. xlog_find_tail(
  754. xlog_t *log,
  755. xfs_daddr_t *head_blk,
  756. xfs_daddr_t *tail_blk)
  757. {
  758. xlog_rec_header_t *rhead;
  759. xlog_op_header_t *op_head;
  760. xfs_caddr_t offset = NULL;
  761. xfs_buf_t *bp;
  762. int error, i, found;
  763. xfs_daddr_t umount_data_blk;
  764. xfs_daddr_t after_umount_blk;
  765. xfs_lsn_t tail_lsn;
  766. int hblks;
  767. found = 0;
  768. /*
  769. * Find previous log record
  770. */
  771. if ((error = xlog_find_head(log, head_blk)))
  772. return error;
  773. bp = xlog_get_bp(log, 1);
  774. if (!bp)
  775. return ENOMEM;
  776. if (*head_blk == 0) { /* special case */
  777. error = xlog_bread(log, 0, 1, bp, &offset);
  778. if (error)
  779. goto done;
  780. if (xlog_get_cycle(offset) == 0) {
  781. *tail_blk = 0;
  782. /* leave all other log inited values alone */
  783. goto done;
  784. }
  785. }
  786. /*
  787. * Search backwards looking for log record header block
  788. */
  789. ASSERT(*head_blk < INT_MAX);
  790. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  791. error = xlog_bread(log, i, 1, bp, &offset);
  792. if (error)
  793. goto done;
  794. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  795. found = 1;
  796. break;
  797. }
  798. }
  799. /*
  800. * If we haven't found the log record header block, start looking
  801. * again from the end of the physical log. XXXmiken: There should be
  802. * a check here to make sure we didn't search more than N blocks in
  803. * the previous code.
  804. */
  805. if (!found) {
  806. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  807. error = xlog_bread(log, i, 1, bp, &offset);
  808. if (error)
  809. goto done;
  810. if (XLOG_HEADER_MAGIC_NUM ==
  811. be32_to_cpu(*(__be32 *)offset)) {
  812. found = 2;
  813. break;
  814. }
  815. }
  816. }
  817. if (!found) {
  818. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  819. ASSERT(0);
  820. return XFS_ERROR(EIO);
  821. }
  822. /* find blk_no of tail of log */
  823. rhead = (xlog_rec_header_t *)offset;
  824. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  825. /*
  826. * Reset log values according to the state of the log when we
  827. * crashed. In the case where head_blk == 0, we bump curr_cycle
  828. * one because the next write starts a new cycle rather than
  829. * continuing the cycle of the last good log record. At this
  830. * point we have guaranteed that all partial log records have been
  831. * accounted for. Therefore, we know that the last good log record
  832. * written was complete and ended exactly on the end boundary
  833. * of the physical log.
  834. */
  835. log->l_prev_block = i;
  836. log->l_curr_block = (int)*head_blk;
  837. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  838. if (found == 2)
  839. log->l_curr_cycle++;
  840. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  841. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  842. log->l_grant_reserve_cycle = log->l_curr_cycle;
  843. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  844. log->l_grant_write_cycle = log->l_curr_cycle;
  845. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  846. /*
  847. * Look for unmount record. If we find it, then we know there
  848. * was a clean unmount. Since 'i' could be the last block in
  849. * the physical log, we convert to a log block before comparing
  850. * to the head_blk.
  851. *
  852. * Save the current tail lsn to use to pass to
  853. * xlog_clear_stale_blocks() below. We won't want to clear the
  854. * unmount record if there is one, so we pass the lsn of the
  855. * unmount record rather than the block after it.
  856. */
  857. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  858. int h_size = be32_to_cpu(rhead->h_size);
  859. int h_version = be32_to_cpu(rhead->h_version);
  860. if ((h_version & XLOG_VERSION_2) &&
  861. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  862. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  863. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  864. hblks++;
  865. } else {
  866. hblks = 1;
  867. }
  868. } else {
  869. hblks = 1;
  870. }
  871. after_umount_blk = (i + hblks + (int)
  872. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  873. tail_lsn = log->l_tail_lsn;
  874. if (*head_blk == after_umount_blk &&
  875. be32_to_cpu(rhead->h_num_logops) == 1) {
  876. umount_data_blk = (i + hblks) % log->l_logBBsize;
  877. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  878. if (error)
  879. goto done;
  880. op_head = (xlog_op_header_t *)offset;
  881. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  882. /*
  883. * Set tail and last sync so that newly written
  884. * log records will point recovery to after the
  885. * current unmount record.
  886. */
  887. log->l_tail_lsn =
  888. xlog_assign_lsn(log->l_curr_cycle,
  889. after_umount_blk);
  890. log->l_last_sync_lsn =
  891. xlog_assign_lsn(log->l_curr_cycle,
  892. after_umount_blk);
  893. *tail_blk = after_umount_blk;
  894. /*
  895. * Note that the unmount was clean. If the unmount
  896. * was not clean, we need to know this to rebuild the
  897. * superblock counters from the perag headers if we
  898. * have a filesystem using non-persistent counters.
  899. */
  900. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  901. }
  902. }
  903. /*
  904. * Make sure that there are no blocks in front of the head
  905. * with the same cycle number as the head. This can happen
  906. * because we allow multiple outstanding log writes concurrently,
  907. * and the later writes might make it out before earlier ones.
  908. *
  909. * We use the lsn from before modifying it so that we'll never
  910. * overwrite the unmount record after a clean unmount.
  911. *
  912. * Do this only if we are going to recover the filesystem
  913. *
  914. * NOTE: This used to say "if (!readonly)"
  915. * However on Linux, we can & do recover a read-only filesystem.
  916. * We only skip recovery if NORECOVERY is specified on mount,
  917. * in which case we would not be here.
  918. *
  919. * But... if the -device- itself is readonly, just skip this.
  920. * We can't recover this device anyway, so it won't matter.
  921. */
  922. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  923. error = xlog_clear_stale_blocks(log, tail_lsn);
  924. done:
  925. xlog_put_bp(bp);
  926. if (error)
  927. xlog_warn("XFS: failed to locate log tail");
  928. return error;
  929. }
  930. /*
  931. * Is the log zeroed at all?
  932. *
  933. * The last binary search should be changed to perform an X block read
  934. * once X becomes small enough. You can then search linearly through
  935. * the X blocks. This will cut down on the number of reads we need to do.
  936. *
  937. * If the log is partially zeroed, this routine will pass back the blkno
  938. * of the first block with cycle number 0. It won't have a complete LR
  939. * preceding it.
  940. *
  941. * Return:
  942. * 0 => the log is completely written to
  943. * -1 => use *blk_no as the first block of the log
  944. * >0 => error has occurred
  945. */
  946. STATIC int
  947. xlog_find_zeroed(
  948. xlog_t *log,
  949. xfs_daddr_t *blk_no)
  950. {
  951. xfs_buf_t *bp;
  952. xfs_caddr_t offset;
  953. uint first_cycle, last_cycle;
  954. xfs_daddr_t new_blk, last_blk, start_blk;
  955. xfs_daddr_t num_scan_bblks;
  956. int error, log_bbnum = log->l_logBBsize;
  957. *blk_no = 0;
  958. /* check totally zeroed log */
  959. bp = xlog_get_bp(log, 1);
  960. if (!bp)
  961. return ENOMEM;
  962. error = xlog_bread(log, 0, 1, bp, &offset);
  963. if (error)
  964. goto bp_err;
  965. first_cycle = xlog_get_cycle(offset);
  966. if (first_cycle == 0) { /* completely zeroed log */
  967. *blk_no = 0;
  968. xlog_put_bp(bp);
  969. return -1;
  970. }
  971. /* check partially zeroed log */
  972. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  973. if (error)
  974. goto bp_err;
  975. last_cycle = xlog_get_cycle(offset);
  976. if (last_cycle != 0) { /* log completely written to */
  977. xlog_put_bp(bp);
  978. return 0;
  979. } else if (first_cycle != 1) {
  980. /*
  981. * If the cycle of the last block is zero, the cycle of
  982. * the first block must be 1. If it's not, maybe we're
  983. * not looking at a log... Bail out.
  984. */
  985. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  986. return XFS_ERROR(EINVAL);
  987. }
  988. /* we have a partially zeroed log */
  989. last_blk = log_bbnum-1;
  990. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  991. goto bp_err;
  992. /*
  993. * Validate the answer. Because there is no way to guarantee that
  994. * the entire log is made up of log records which are the same size,
  995. * we scan over the defined maximum blocks. At this point, the maximum
  996. * is not chosen to mean anything special. XXXmiken
  997. */
  998. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  999. ASSERT(num_scan_bblks <= INT_MAX);
  1000. if (last_blk < num_scan_bblks)
  1001. num_scan_bblks = last_blk;
  1002. start_blk = last_blk - num_scan_bblks;
  1003. /*
  1004. * We search for any instances of cycle number 0 that occur before
  1005. * our current estimate of the head. What we're trying to detect is
  1006. * 1 ... | 0 | 1 | 0...
  1007. * ^ binary search ends here
  1008. */
  1009. if ((error = xlog_find_verify_cycle(log, start_blk,
  1010. (int)num_scan_bblks, 0, &new_blk)))
  1011. goto bp_err;
  1012. if (new_blk != -1)
  1013. last_blk = new_blk;
  1014. /*
  1015. * Potentially backup over partial log record write. We don't need
  1016. * to search the end of the log because we know it is zero.
  1017. */
  1018. if ((error = xlog_find_verify_log_record(log, start_blk,
  1019. &last_blk, 0)) == -1) {
  1020. error = XFS_ERROR(EIO);
  1021. goto bp_err;
  1022. } else if (error)
  1023. goto bp_err;
  1024. *blk_no = last_blk;
  1025. bp_err:
  1026. xlog_put_bp(bp);
  1027. if (error)
  1028. return error;
  1029. return -1;
  1030. }
  1031. /*
  1032. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1033. * to initialize a buffer full of empty log record headers and write
  1034. * them into the log.
  1035. */
  1036. STATIC void
  1037. xlog_add_record(
  1038. xlog_t *log,
  1039. xfs_caddr_t buf,
  1040. int cycle,
  1041. int block,
  1042. int tail_cycle,
  1043. int tail_block)
  1044. {
  1045. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1046. memset(buf, 0, BBSIZE);
  1047. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1048. recp->h_cycle = cpu_to_be32(cycle);
  1049. recp->h_version = cpu_to_be32(
  1050. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1051. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1052. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1053. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1054. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1055. }
  1056. STATIC int
  1057. xlog_write_log_records(
  1058. xlog_t *log,
  1059. int cycle,
  1060. int start_block,
  1061. int blocks,
  1062. int tail_cycle,
  1063. int tail_block)
  1064. {
  1065. xfs_caddr_t offset;
  1066. xfs_buf_t *bp;
  1067. int balign, ealign;
  1068. int sectbb = log->l_sectBBsize;
  1069. int end_block = start_block + blocks;
  1070. int bufblks;
  1071. int error = 0;
  1072. int i, j = 0;
  1073. /*
  1074. * Greedily allocate a buffer big enough to handle the full
  1075. * range of basic blocks to be written. If that fails, try
  1076. * a smaller size. We need to be able to write at least a
  1077. * log sector, or we're out of luck.
  1078. */
  1079. bufblks = 1 << ffs(blocks);
  1080. while (!(bp = xlog_get_bp(log, bufblks))) {
  1081. bufblks >>= 1;
  1082. if (bufblks < sectbb)
  1083. return ENOMEM;
  1084. }
  1085. /* We may need to do a read at the start to fill in part of
  1086. * the buffer in the starting sector not covered by the first
  1087. * write below.
  1088. */
  1089. balign = round_down(start_block, sectbb);
  1090. if (balign != start_block) {
  1091. error = xlog_bread_noalign(log, start_block, 1, bp);
  1092. if (error)
  1093. goto out_put_bp;
  1094. j = start_block - balign;
  1095. }
  1096. for (i = start_block; i < end_block; i += bufblks) {
  1097. int bcount, endcount;
  1098. bcount = min(bufblks, end_block - start_block);
  1099. endcount = bcount - j;
  1100. /* We may need to do a read at the end to fill in part of
  1101. * the buffer in the final sector not covered by the write.
  1102. * If this is the same sector as the above read, skip it.
  1103. */
  1104. ealign = round_down(end_block, sectbb);
  1105. if (j == 0 && (start_block + endcount > ealign)) {
  1106. offset = XFS_BUF_PTR(bp);
  1107. balign = BBTOB(ealign - start_block);
  1108. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1109. BBTOB(sectbb));
  1110. if (error)
  1111. break;
  1112. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1113. if (error)
  1114. break;
  1115. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1116. if (error)
  1117. break;
  1118. }
  1119. offset = xlog_align(log, start_block, endcount, bp);
  1120. for (; j < endcount; j++) {
  1121. xlog_add_record(log, offset, cycle, i+j,
  1122. tail_cycle, tail_block);
  1123. offset += BBSIZE;
  1124. }
  1125. error = xlog_bwrite(log, start_block, endcount, bp);
  1126. if (error)
  1127. break;
  1128. start_block += endcount;
  1129. j = 0;
  1130. }
  1131. out_put_bp:
  1132. xlog_put_bp(bp);
  1133. return error;
  1134. }
  1135. /*
  1136. * This routine is called to blow away any incomplete log writes out
  1137. * in front of the log head. We do this so that we won't become confused
  1138. * if we come up, write only a little bit more, and then crash again.
  1139. * If we leave the partial log records out there, this situation could
  1140. * cause us to think those partial writes are valid blocks since they
  1141. * have the current cycle number. We get rid of them by overwriting them
  1142. * with empty log records with the old cycle number rather than the
  1143. * current one.
  1144. *
  1145. * The tail lsn is passed in rather than taken from
  1146. * the log so that we will not write over the unmount record after a
  1147. * clean unmount in a 512 block log. Doing so would leave the log without
  1148. * any valid log records in it until a new one was written. If we crashed
  1149. * during that time we would not be able to recover.
  1150. */
  1151. STATIC int
  1152. xlog_clear_stale_blocks(
  1153. xlog_t *log,
  1154. xfs_lsn_t tail_lsn)
  1155. {
  1156. int tail_cycle, head_cycle;
  1157. int tail_block, head_block;
  1158. int tail_distance, max_distance;
  1159. int distance;
  1160. int error;
  1161. tail_cycle = CYCLE_LSN(tail_lsn);
  1162. tail_block = BLOCK_LSN(tail_lsn);
  1163. head_cycle = log->l_curr_cycle;
  1164. head_block = log->l_curr_block;
  1165. /*
  1166. * Figure out the distance between the new head of the log
  1167. * and the tail. We want to write over any blocks beyond the
  1168. * head that we may have written just before the crash, but
  1169. * we don't want to overwrite the tail of the log.
  1170. */
  1171. if (head_cycle == tail_cycle) {
  1172. /*
  1173. * The tail is behind the head in the physical log,
  1174. * so the distance from the head to the tail is the
  1175. * distance from the head to the end of the log plus
  1176. * the distance from the beginning of the log to the
  1177. * tail.
  1178. */
  1179. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1180. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1181. XFS_ERRLEVEL_LOW, log->l_mp);
  1182. return XFS_ERROR(EFSCORRUPTED);
  1183. }
  1184. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1185. } else {
  1186. /*
  1187. * The head is behind the tail in the physical log,
  1188. * so the distance from the head to the tail is just
  1189. * the tail block minus the head block.
  1190. */
  1191. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1192. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1193. XFS_ERRLEVEL_LOW, log->l_mp);
  1194. return XFS_ERROR(EFSCORRUPTED);
  1195. }
  1196. tail_distance = tail_block - head_block;
  1197. }
  1198. /*
  1199. * If the head is right up against the tail, we can't clear
  1200. * anything.
  1201. */
  1202. if (tail_distance <= 0) {
  1203. ASSERT(tail_distance == 0);
  1204. return 0;
  1205. }
  1206. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1207. /*
  1208. * Take the smaller of the maximum amount of outstanding I/O
  1209. * we could have and the distance to the tail to clear out.
  1210. * We take the smaller so that we don't overwrite the tail and
  1211. * we don't waste all day writing from the head to the tail
  1212. * for no reason.
  1213. */
  1214. max_distance = MIN(max_distance, tail_distance);
  1215. if ((head_block + max_distance) <= log->l_logBBsize) {
  1216. /*
  1217. * We can stomp all the blocks we need to without
  1218. * wrapping around the end of the log. Just do it
  1219. * in a single write. Use the cycle number of the
  1220. * current cycle minus one so that the log will look like:
  1221. * n ... | n - 1 ...
  1222. */
  1223. error = xlog_write_log_records(log, (head_cycle - 1),
  1224. head_block, max_distance, tail_cycle,
  1225. tail_block);
  1226. if (error)
  1227. return error;
  1228. } else {
  1229. /*
  1230. * We need to wrap around the end of the physical log in
  1231. * order to clear all the blocks. Do it in two separate
  1232. * I/Os. The first write should be from the head to the
  1233. * end of the physical log, and it should use the current
  1234. * cycle number minus one just like above.
  1235. */
  1236. distance = log->l_logBBsize - head_block;
  1237. error = xlog_write_log_records(log, (head_cycle - 1),
  1238. head_block, distance, tail_cycle,
  1239. tail_block);
  1240. if (error)
  1241. return error;
  1242. /*
  1243. * Now write the blocks at the start of the physical log.
  1244. * This writes the remainder of the blocks we want to clear.
  1245. * It uses the current cycle number since we're now on the
  1246. * same cycle as the head so that we get:
  1247. * n ... n ... | n - 1 ...
  1248. * ^^^^^ blocks we're writing
  1249. */
  1250. distance = max_distance - (log->l_logBBsize - head_block);
  1251. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1252. tail_cycle, tail_block);
  1253. if (error)
  1254. return error;
  1255. }
  1256. return 0;
  1257. }
  1258. /******************************************************************************
  1259. *
  1260. * Log recover routines
  1261. *
  1262. ******************************************************************************
  1263. */
  1264. STATIC xlog_recover_t *
  1265. xlog_recover_find_tid(
  1266. struct hlist_head *head,
  1267. xlog_tid_t tid)
  1268. {
  1269. xlog_recover_t *trans;
  1270. struct hlist_node *n;
  1271. hlist_for_each_entry(trans, n, head, r_list) {
  1272. if (trans->r_log_tid == tid)
  1273. return trans;
  1274. }
  1275. return NULL;
  1276. }
  1277. STATIC void
  1278. xlog_recover_new_tid(
  1279. struct hlist_head *head,
  1280. xlog_tid_t tid,
  1281. xfs_lsn_t lsn)
  1282. {
  1283. xlog_recover_t *trans;
  1284. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1285. trans->r_log_tid = tid;
  1286. trans->r_lsn = lsn;
  1287. INIT_LIST_HEAD(&trans->r_itemq);
  1288. INIT_HLIST_NODE(&trans->r_list);
  1289. hlist_add_head(&trans->r_list, head);
  1290. }
  1291. STATIC void
  1292. xlog_recover_add_item(
  1293. struct list_head *head)
  1294. {
  1295. xlog_recover_item_t *item;
  1296. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1297. INIT_LIST_HEAD(&item->ri_list);
  1298. list_add_tail(&item->ri_list, head);
  1299. }
  1300. STATIC int
  1301. xlog_recover_add_to_cont_trans(
  1302. struct log *log,
  1303. xlog_recover_t *trans,
  1304. xfs_caddr_t dp,
  1305. int len)
  1306. {
  1307. xlog_recover_item_t *item;
  1308. xfs_caddr_t ptr, old_ptr;
  1309. int old_len;
  1310. if (list_empty(&trans->r_itemq)) {
  1311. /* finish copying rest of trans header */
  1312. xlog_recover_add_item(&trans->r_itemq);
  1313. ptr = (xfs_caddr_t) &trans->r_theader +
  1314. sizeof(xfs_trans_header_t) - len;
  1315. memcpy(ptr, dp, len); /* d, s, l */
  1316. return 0;
  1317. }
  1318. /* take the tail entry */
  1319. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1320. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1321. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1322. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1323. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1324. item->ri_buf[item->ri_cnt-1].i_len += len;
  1325. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1326. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1327. return 0;
  1328. }
  1329. /*
  1330. * The next region to add is the start of a new region. It could be
  1331. * a whole region or it could be the first part of a new region. Because
  1332. * of this, the assumption here is that the type and size fields of all
  1333. * format structures fit into the first 32 bits of the structure.
  1334. *
  1335. * This works because all regions must be 32 bit aligned. Therefore, we
  1336. * either have both fields or we have neither field. In the case we have
  1337. * neither field, the data part of the region is zero length. We only have
  1338. * a log_op_header and can throw away the header since a new one will appear
  1339. * later. If we have at least 4 bytes, then we can determine how many regions
  1340. * will appear in the current log item.
  1341. */
  1342. STATIC int
  1343. xlog_recover_add_to_trans(
  1344. struct log *log,
  1345. xlog_recover_t *trans,
  1346. xfs_caddr_t dp,
  1347. int len)
  1348. {
  1349. xfs_inode_log_format_t *in_f; /* any will do */
  1350. xlog_recover_item_t *item;
  1351. xfs_caddr_t ptr;
  1352. if (!len)
  1353. return 0;
  1354. if (list_empty(&trans->r_itemq)) {
  1355. /* we need to catch log corruptions here */
  1356. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1357. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1358. "bad header magic number");
  1359. ASSERT(0);
  1360. return XFS_ERROR(EIO);
  1361. }
  1362. if (len == sizeof(xfs_trans_header_t))
  1363. xlog_recover_add_item(&trans->r_itemq);
  1364. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1365. return 0;
  1366. }
  1367. ptr = kmem_alloc(len, KM_SLEEP);
  1368. memcpy(ptr, dp, len);
  1369. in_f = (xfs_inode_log_format_t *)ptr;
  1370. /* take the tail entry */
  1371. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1372. if (item->ri_total != 0 &&
  1373. item->ri_total == item->ri_cnt) {
  1374. /* tail item is in use, get a new one */
  1375. xlog_recover_add_item(&trans->r_itemq);
  1376. item = list_entry(trans->r_itemq.prev,
  1377. xlog_recover_item_t, ri_list);
  1378. }
  1379. if (item->ri_total == 0) { /* first region to be added */
  1380. if (in_f->ilf_size == 0 ||
  1381. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1382. xlog_warn(
  1383. "XFS: bad number of regions (%d) in inode log format",
  1384. in_f->ilf_size);
  1385. ASSERT(0);
  1386. return XFS_ERROR(EIO);
  1387. }
  1388. item->ri_total = in_f->ilf_size;
  1389. item->ri_buf =
  1390. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1391. KM_SLEEP);
  1392. }
  1393. ASSERT(item->ri_total > item->ri_cnt);
  1394. /* Description region is ri_buf[0] */
  1395. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1396. item->ri_buf[item->ri_cnt].i_len = len;
  1397. item->ri_cnt++;
  1398. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1399. return 0;
  1400. }
  1401. /*
  1402. * Sort the log items in the transaction. Cancelled buffers need
  1403. * to be put first so they are processed before any items that might
  1404. * modify the buffers. If they are cancelled, then the modifications
  1405. * don't need to be replayed.
  1406. */
  1407. STATIC int
  1408. xlog_recover_reorder_trans(
  1409. struct log *log,
  1410. xlog_recover_t *trans,
  1411. int pass)
  1412. {
  1413. xlog_recover_item_t *item, *n;
  1414. LIST_HEAD(sort_list);
  1415. list_splice_init(&trans->r_itemq, &sort_list);
  1416. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1417. xfs_buf_log_format_t *buf_f;
  1418. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1419. switch (ITEM_TYPE(item)) {
  1420. case XFS_LI_BUF:
  1421. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1422. trace_xfs_log_recover_item_reorder_head(log,
  1423. trans, item, pass);
  1424. list_move(&item->ri_list, &trans->r_itemq);
  1425. break;
  1426. }
  1427. case XFS_LI_INODE:
  1428. case XFS_LI_DQUOT:
  1429. case XFS_LI_QUOTAOFF:
  1430. case XFS_LI_EFD:
  1431. case XFS_LI_EFI:
  1432. trace_xfs_log_recover_item_reorder_tail(log,
  1433. trans, item, pass);
  1434. list_move_tail(&item->ri_list, &trans->r_itemq);
  1435. break;
  1436. default:
  1437. xlog_warn(
  1438. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1439. ASSERT(0);
  1440. return XFS_ERROR(EIO);
  1441. }
  1442. }
  1443. ASSERT(list_empty(&sort_list));
  1444. return 0;
  1445. }
  1446. /*
  1447. * Build up the table of buf cancel records so that we don't replay
  1448. * cancelled data in the second pass. For buffer records that are
  1449. * not cancel records, there is nothing to do here so we just return.
  1450. *
  1451. * If we get a cancel record which is already in the table, this indicates
  1452. * that the buffer was cancelled multiple times. In order to ensure
  1453. * that during pass 2 we keep the record in the table until we reach its
  1454. * last occurrence in the log, we keep a reference count in the cancel
  1455. * record in the table to tell us how many times we expect to see this
  1456. * record during the second pass.
  1457. */
  1458. STATIC void
  1459. xlog_recover_do_buffer_pass1(
  1460. xlog_t *log,
  1461. xfs_buf_log_format_t *buf_f)
  1462. {
  1463. xfs_buf_cancel_t *bcp;
  1464. xfs_buf_cancel_t *nextp;
  1465. xfs_buf_cancel_t *prevp;
  1466. xfs_buf_cancel_t **bucket;
  1467. xfs_daddr_t blkno = 0;
  1468. uint len = 0;
  1469. ushort flags = 0;
  1470. switch (buf_f->blf_type) {
  1471. case XFS_LI_BUF:
  1472. blkno = buf_f->blf_blkno;
  1473. len = buf_f->blf_len;
  1474. flags = buf_f->blf_flags;
  1475. break;
  1476. }
  1477. /*
  1478. * If this isn't a cancel buffer item, then just return.
  1479. */
  1480. if (!(flags & XFS_BLF_CANCEL)) {
  1481. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1482. return;
  1483. }
  1484. /*
  1485. * Insert an xfs_buf_cancel record into the hash table of
  1486. * them. If there is already an identical record, bump
  1487. * its reference count.
  1488. */
  1489. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1490. XLOG_BC_TABLE_SIZE];
  1491. /*
  1492. * If the hash bucket is empty then just insert a new record into
  1493. * the bucket.
  1494. */
  1495. if (*bucket == NULL) {
  1496. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1497. KM_SLEEP);
  1498. bcp->bc_blkno = blkno;
  1499. bcp->bc_len = len;
  1500. bcp->bc_refcount = 1;
  1501. bcp->bc_next = NULL;
  1502. *bucket = bcp;
  1503. return;
  1504. }
  1505. /*
  1506. * The hash bucket is not empty, so search for duplicates of our
  1507. * record. If we find one them just bump its refcount. If not
  1508. * then add us at the end of the list.
  1509. */
  1510. prevp = NULL;
  1511. nextp = *bucket;
  1512. while (nextp != NULL) {
  1513. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1514. nextp->bc_refcount++;
  1515. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1516. return;
  1517. }
  1518. prevp = nextp;
  1519. nextp = nextp->bc_next;
  1520. }
  1521. ASSERT(prevp != NULL);
  1522. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1523. KM_SLEEP);
  1524. bcp->bc_blkno = blkno;
  1525. bcp->bc_len = len;
  1526. bcp->bc_refcount = 1;
  1527. bcp->bc_next = NULL;
  1528. prevp->bc_next = bcp;
  1529. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1530. }
  1531. /*
  1532. * Check to see whether the buffer being recovered has a corresponding
  1533. * entry in the buffer cancel record table. If it does then return 1
  1534. * so that it will be cancelled, otherwise return 0. If the buffer is
  1535. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1536. * the refcount on the entry in the table and remove it from the table
  1537. * if this is the last reference.
  1538. *
  1539. * We remove the cancel record from the table when we encounter its
  1540. * last occurrence in the log so that if the same buffer is re-used
  1541. * again after its last cancellation we actually replay the changes
  1542. * made at that point.
  1543. */
  1544. STATIC int
  1545. xlog_check_buffer_cancelled(
  1546. xlog_t *log,
  1547. xfs_daddr_t blkno,
  1548. uint len,
  1549. ushort flags)
  1550. {
  1551. xfs_buf_cancel_t *bcp;
  1552. xfs_buf_cancel_t *prevp;
  1553. xfs_buf_cancel_t **bucket;
  1554. if (log->l_buf_cancel_table == NULL) {
  1555. /*
  1556. * There is nothing in the table built in pass one,
  1557. * so this buffer must not be cancelled.
  1558. */
  1559. ASSERT(!(flags & XFS_BLF_CANCEL));
  1560. return 0;
  1561. }
  1562. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1563. XLOG_BC_TABLE_SIZE];
  1564. bcp = *bucket;
  1565. if (bcp == NULL) {
  1566. /*
  1567. * There is no corresponding entry in the table built
  1568. * in pass one, so this buffer has not been cancelled.
  1569. */
  1570. ASSERT(!(flags & XFS_BLF_CANCEL));
  1571. return 0;
  1572. }
  1573. /*
  1574. * Search for an entry in the buffer cancel table that
  1575. * matches our buffer.
  1576. */
  1577. prevp = NULL;
  1578. while (bcp != NULL) {
  1579. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1580. /*
  1581. * We've go a match, so return 1 so that the
  1582. * recovery of this buffer is cancelled.
  1583. * If this buffer is actually a buffer cancel
  1584. * log item, then decrement the refcount on the
  1585. * one in the table and remove it if this is the
  1586. * last reference.
  1587. */
  1588. if (flags & XFS_BLF_CANCEL) {
  1589. bcp->bc_refcount--;
  1590. if (bcp->bc_refcount == 0) {
  1591. if (prevp == NULL) {
  1592. *bucket = bcp->bc_next;
  1593. } else {
  1594. prevp->bc_next = bcp->bc_next;
  1595. }
  1596. kmem_free(bcp);
  1597. }
  1598. }
  1599. return 1;
  1600. }
  1601. prevp = bcp;
  1602. bcp = bcp->bc_next;
  1603. }
  1604. /*
  1605. * We didn't find a corresponding entry in the table, so
  1606. * return 0 so that the buffer is NOT cancelled.
  1607. */
  1608. ASSERT(!(flags & XFS_BLF_CANCEL));
  1609. return 0;
  1610. }
  1611. STATIC int
  1612. xlog_recover_do_buffer_pass2(
  1613. xlog_t *log,
  1614. xfs_buf_log_format_t *buf_f)
  1615. {
  1616. xfs_daddr_t blkno = 0;
  1617. ushort flags = 0;
  1618. uint len = 0;
  1619. switch (buf_f->blf_type) {
  1620. case XFS_LI_BUF:
  1621. blkno = buf_f->blf_blkno;
  1622. flags = buf_f->blf_flags;
  1623. len = buf_f->blf_len;
  1624. break;
  1625. }
  1626. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1627. }
  1628. /*
  1629. * Perform recovery for a buffer full of inodes. In these buffers,
  1630. * the only data which should be recovered is that which corresponds
  1631. * to the di_next_unlinked pointers in the on disk inode structures.
  1632. * The rest of the data for the inodes is always logged through the
  1633. * inodes themselves rather than the inode buffer and is recovered
  1634. * in xlog_recover_do_inode_trans().
  1635. *
  1636. * The only time when buffers full of inodes are fully recovered is
  1637. * when the buffer is full of newly allocated inodes. In this case
  1638. * the buffer will not be marked as an inode buffer and so will be
  1639. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1640. */
  1641. STATIC int
  1642. xlog_recover_do_inode_buffer(
  1643. xfs_mount_t *mp,
  1644. xlog_recover_item_t *item,
  1645. xfs_buf_t *bp,
  1646. xfs_buf_log_format_t *buf_f)
  1647. {
  1648. int i;
  1649. int item_index;
  1650. int bit;
  1651. int nbits;
  1652. int reg_buf_offset;
  1653. int reg_buf_bytes;
  1654. int next_unlinked_offset;
  1655. int inodes_per_buf;
  1656. xfs_agino_t *logged_nextp;
  1657. xfs_agino_t *buffer_nextp;
  1658. unsigned int *data_map = NULL;
  1659. unsigned int map_size = 0;
  1660. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1661. switch (buf_f->blf_type) {
  1662. case XFS_LI_BUF:
  1663. data_map = buf_f->blf_data_map;
  1664. map_size = buf_f->blf_map_size;
  1665. break;
  1666. }
  1667. /*
  1668. * Set the variables corresponding to the current region to
  1669. * 0 so that we'll initialize them on the first pass through
  1670. * the loop.
  1671. */
  1672. reg_buf_offset = 0;
  1673. reg_buf_bytes = 0;
  1674. bit = 0;
  1675. nbits = 0;
  1676. item_index = 0;
  1677. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1678. for (i = 0; i < inodes_per_buf; i++) {
  1679. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1680. offsetof(xfs_dinode_t, di_next_unlinked);
  1681. while (next_unlinked_offset >=
  1682. (reg_buf_offset + reg_buf_bytes)) {
  1683. /*
  1684. * The next di_next_unlinked field is beyond
  1685. * the current logged region. Find the next
  1686. * logged region that contains or is beyond
  1687. * the current di_next_unlinked field.
  1688. */
  1689. bit += nbits;
  1690. bit = xfs_next_bit(data_map, map_size, bit);
  1691. /*
  1692. * If there are no more logged regions in the
  1693. * buffer, then we're done.
  1694. */
  1695. if (bit == -1) {
  1696. return 0;
  1697. }
  1698. nbits = xfs_contig_bits(data_map, map_size,
  1699. bit);
  1700. ASSERT(nbits > 0);
  1701. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1702. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1703. item_index++;
  1704. }
  1705. /*
  1706. * If the current logged region starts after the current
  1707. * di_next_unlinked field, then move on to the next
  1708. * di_next_unlinked field.
  1709. */
  1710. if (next_unlinked_offset < reg_buf_offset) {
  1711. continue;
  1712. }
  1713. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1714. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1715. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1716. /*
  1717. * The current logged region contains a copy of the
  1718. * current di_next_unlinked field. Extract its value
  1719. * and copy it to the buffer copy.
  1720. */
  1721. logged_nextp = (xfs_agino_t *)
  1722. ((char *)(item->ri_buf[item_index].i_addr) +
  1723. (next_unlinked_offset - reg_buf_offset));
  1724. if (unlikely(*logged_nextp == 0)) {
  1725. xfs_fs_cmn_err(CE_ALERT, mp,
  1726. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1727. item, bp);
  1728. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1729. XFS_ERRLEVEL_LOW, mp);
  1730. return XFS_ERROR(EFSCORRUPTED);
  1731. }
  1732. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1733. next_unlinked_offset);
  1734. *buffer_nextp = *logged_nextp;
  1735. }
  1736. return 0;
  1737. }
  1738. /*
  1739. * Perform a 'normal' buffer recovery. Each logged region of the
  1740. * buffer should be copied over the corresponding region in the
  1741. * given buffer. The bitmap in the buf log format structure indicates
  1742. * where to place the logged data.
  1743. */
  1744. /*ARGSUSED*/
  1745. STATIC void
  1746. xlog_recover_do_reg_buffer(
  1747. struct xfs_mount *mp,
  1748. xlog_recover_item_t *item,
  1749. xfs_buf_t *bp,
  1750. xfs_buf_log_format_t *buf_f)
  1751. {
  1752. int i;
  1753. int bit;
  1754. int nbits;
  1755. unsigned int *data_map = NULL;
  1756. unsigned int map_size = 0;
  1757. int error;
  1758. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1759. switch (buf_f->blf_type) {
  1760. case XFS_LI_BUF:
  1761. data_map = buf_f->blf_data_map;
  1762. map_size = buf_f->blf_map_size;
  1763. break;
  1764. }
  1765. bit = 0;
  1766. i = 1; /* 0 is the buf format structure */
  1767. while (1) {
  1768. bit = xfs_next_bit(data_map, map_size, bit);
  1769. if (bit == -1)
  1770. break;
  1771. nbits = xfs_contig_bits(data_map, map_size, bit);
  1772. ASSERT(nbits > 0);
  1773. ASSERT(item->ri_buf[i].i_addr != NULL);
  1774. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1775. ASSERT(XFS_BUF_COUNT(bp) >=
  1776. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1777. /*
  1778. * Do a sanity check if this is a dquot buffer. Just checking
  1779. * the first dquot in the buffer should do. XXXThis is
  1780. * probably a good thing to do for other buf types also.
  1781. */
  1782. error = 0;
  1783. if (buf_f->blf_flags &
  1784. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1785. if (item->ri_buf[i].i_addr == NULL) {
  1786. cmn_err(CE_ALERT,
  1787. "XFS: NULL dquot in %s.", __func__);
  1788. goto next;
  1789. }
  1790. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1791. cmn_err(CE_ALERT,
  1792. "XFS: dquot too small (%d) in %s.",
  1793. item->ri_buf[i].i_len, __func__);
  1794. goto next;
  1795. }
  1796. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1797. item->ri_buf[i].i_addr,
  1798. -1, 0, XFS_QMOPT_DOWARN,
  1799. "dquot_buf_recover");
  1800. if (error)
  1801. goto next;
  1802. }
  1803. memcpy(xfs_buf_offset(bp,
  1804. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1805. item->ri_buf[i].i_addr, /* source */
  1806. nbits<<XFS_BLF_SHIFT); /* length */
  1807. next:
  1808. i++;
  1809. bit += nbits;
  1810. }
  1811. /* Shouldn't be any more regions */
  1812. ASSERT(i == item->ri_total);
  1813. }
  1814. /*
  1815. * Do some primitive error checking on ondisk dquot data structures.
  1816. */
  1817. int
  1818. xfs_qm_dqcheck(
  1819. xfs_disk_dquot_t *ddq,
  1820. xfs_dqid_t id,
  1821. uint type, /* used only when IO_dorepair is true */
  1822. uint flags,
  1823. char *str)
  1824. {
  1825. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1826. int errs = 0;
  1827. /*
  1828. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1829. * 1. If we crash while deleting the quotainode(s), and those blks got
  1830. * used for user data. This is because we take the path of regular
  1831. * file deletion; however, the size field of quotainodes is never
  1832. * updated, so all the tricks that we play in itruncate_finish
  1833. * don't quite matter.
  1834. *
  1835. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1836. * But the allocation will be replayed so we'll end up with an
  1837. * uninitialized quota block.
  1838. *
  1839. * This is all fine; things are still consistent, and we haven't lost
  1840. * any quota information. Just don't complain about bad dquot blks.
  1841. */
  1842. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1843. if (flags & XFS_QMOPT_DOWARN)
  1844. cmn_err(CE_ALERT,
  1845. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1846. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1847. errs++;
  1848. }
  1849. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1850. if (flags & XFS_QMOPT_DOWARN)
  1851. cmn_err(CE_ALERT,
  1852. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1853. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1854. errs++;
  1855. }
  1856. if (ddq->d_flags != XFS_DQ_USER &&
  1857. ddq->d_flags != XFS_DQ_PROJ &&
  1858. ddq->d_flags != XFS_DQ_GROUP) {
  1859. if (flags & XFS_QMOPT_DOWARN)
  1860. cmn_err(CE_ALERT,
  1861. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1862. str, id, ddq->d_flags);
  1863. errs++;
  1864. }
  1865. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1866. if (flags & XFS_QMOPT_DOWARN)
  1867. cmn_err(CE_ALERT,
  1868. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1869. "0x%x expected, found id 0x%x",
  1870. str, ddq, id, be32_to_cpu(ddq->d_id));
  1871. errs++;
  1872. }
  1873. if (!errs && ddq->d_id) {
  1874. if (ddq->d_blk_softlimit &&
  1875. be64_to_cpu(ddq->d_bcount) >=
  1876. be64_to_cpu(ddq->d_blk_softlimit)) {
  1877. if (!ddq->d_btimer) {
  1878. if (flags & XFS_QMOPT_DOWARN)
  1879. cmn_err(CE_ALERT,
  1880. "%s : Dquot ID 0x%x (0x%p) "
  1881. "BLK TIMER NOT STARTED",
  1882. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1883. errs++;
  1884. }
  1885. }
  1886. if (ddq->d_ino_softlimit &&
  1887. be64_to_cpu(ddq->d_icount) >=
  1888. be64_to_cpu(ddq->d_ino_softlimit)) {
  1889. if (!ddq->d_itimer) {
  1890. if (flags & XFS_QMOPT_DOWARN)
  1891. cmn_err(CE_ALERT,
  1892. "%s : Dquot ID 0x%x (0x%p) "
  1893. "INODE TIMER NOT STARTED",
  1894. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1895. errs++;
  1896. }
  1897. }
  1898. if (ddq->d_rtb_softlimit &&
  1899. be64_to_cpu(ddq->d_rtbcount) >=
  1900. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1901. if (!ddq->d_rtbtimer) {
  1902. if (flags & XFS_QMOPT_DOWARN)
  1903. cmn_err(CE_ALERT,
  1904. "%s : Dquot ID 0x%x (0x%p) "
  1905. "RTBLK TIMER NOT STARTED",
  1906. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1907. errs++;
  1908. }
  1909. }
  1910. }
  1911. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1912. return errs;
  1913. if (flags & XFS_QMOPT_DOWARN)
  1914. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1915. /*
  1916. * Typically, a repair is only requested by quotacheck.
  1917. */
  1918. ASSERT(id != -1);
  1919. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1920. memset(d, 0, sizeof(xfs_dqblk_t));
  1921. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1922. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1923. d->dd_diskdq.d_flags = type;
  1924. d->dd_diskdq.d_id = cpu_to_be32(id);
  1925. return errs;
  1926. }
  1927. /*
  1928. * Perform a dquot buffer recovery.
  1929. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1930. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1931. * Else, treat it as a regular buffer and do recovery.
  1932. */
  1933. STATIC void
  1934. xlog_recover_do_dquot_buffer(
  1935. xfs_mount_t *mp,
  1936. xlog_t *log,
  1937. xlog_recover_item_t *item,
  1938. xfs_buf_t *bp,
  1939. xfs_buf_log_format_t *buf_f)
  1940. {
  1941. uint type;
  1942. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1943. /*
  1944. * Filesystems are required to send in quota flags at mount time.
  1945. */
  1946. if (mp->m_qflags == 0) {
  1947. return;
  1948. }
  1949. type = 0;
  1950. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1951. type |= XFS_DQ_USER;
  1952. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1953. type |= XFS_DQ_PROJ;
  1954. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1955. type |= XFS_DQ_GROUP;
  1956. /*
  1957. * This type of quotas was turned off, so ignore this buffer
  1958. */
  1959. if (log->l_quotaoffs_flag & type)
  1960. return;
  1961. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1962. }
  1963. /*
  1964. * This routine replays a modification made to a buffer at runtime.
  1965. * There are actually two types of buffer, regular and inode, which
  1966. * are handled differently. Inode buffers are handled differently
  1967. * in that we only recover a specific set of data from them, namely
  1968. * the inode di_next_unlinked fields. This is because all other inode
  1969. * data is actually logged via inode records and any data we replay
  1970. * here which overlaps that may be stale.
  1971. *
  1972. * When meta-data buffers are freed at run time we log a buffer item
  1973. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1974. * of the buffer in the log should not be replayed at recovery time.
  1975. * This is so that if the blocks covered by the buffer are reused for
  1976. * file data before we crash we don't end up replaying old, freed
  1977. * meta-data into a user's file.
  1978. *
  1979. * To handle the cancellation of buffer log items, we make two passes
  1980. * over the log during recovery. During the first we build a table of
  1981. * those buffers which have been cancelled, and during the second we
  1982. * only replay those buffers which do not have corresponding cancel
  1983. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1984. * for more details on the implementation of the table of cancel records.
  1985. */
  1986. STATIC int
  1987. xlog_recover_do_buffer_trans(
  1988. xlog_t *log,
  1989. xlog_recover_item_t *item,
  1990. int pass)
  1991. {
  1992. xfs_buf_log_format_t *buf_f;
  1993. xfs_mount_t *mp;
  1994. xfs_buf_t *bp;
  1995. int error;
  1996. int cancel;
  1997. xfs_daddr_t blkno;
  1998. int len;
  1999. ushort flags;
  2000. uint buf_flags;
  2001. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  2002. if (pass == XLOG_RECOVER_PASS1) {
  2003. /*
  2004. * In this pass we're only looking for buf items
  2005. * with the XFS_BLF_CANCEL bit set.
  2006. */
  2007. xlog_recover_do_buffer_pass1(log, buf_f);
  2008. return 0;
  2009. } else {
  2010. /*
  2011. * In this pass we want to recover all the buffers
  2012. * which have not been cancelled and are not
  2013. * cancellation buffers themselves. The routine
  2014. * we call here will tell us whether or not to
  2015. * continue with the replay of this buffer.
  2016. */
  2017. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  2018. if (cancel) {
  2019. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2020. return 0;
  2021. }
  2022. }
  2023. trace_xfs_log_recover_buf_recover(log, buf_f);
  2024. switch (buf_f->blf_type) {
  2025. case XFS_LI_BUF:
  2026. blkno = buf_f->blf_blkno;
  2027. len = buf_f->blf_len;
  2028. flags = buf_f->blf_flags;
  2029. break;
  2030. default:
  2031. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2032. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2033. buf_f->blf_type, log->l_mp->m_logname ?
  2034. log->l_mp->m_logname : "internal");
  2035. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2036. XFS_ERRLEVEL_LOW, log->l_mp);
  2037. return XFS_ERROR(EFSCORRUPTED);
  2038. }
  2039. mp = log->l_mp;
  2040. buf_flags = XBF_LOCK;
  2041. if (!(flags & XFS_BLF_INODE_BUF))
  2042. buf_flags |= XBF_MAPPED;
  2043. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
  2044. if (XFS_BUF_ISERROR(bp)) {
  2045. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2046. bp, blkno);
  2047. error = XFS_BUF_GETERROR(bp);
  2048. xfs_buf_relse(bp);
  2049. return error;
  2050. }
  2051. error = 0;
  2052. if (flags & XFS_BLF_INODE_BUF) {
  2053. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2054. } else if (flags &
  2055. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2056. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2057. } else {
  2058. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2059. }
  2060. if (error)
  2061. return XFS_ERROR(error);
  2062. /*
  2063. * Perform delayed write on the buffer. Asynchronous writes will be
  2064. * slower when taking into account all the buffers to be flushed.
  2065. *
  2066. * Also make sure that only inode buffers with good sizes stay in
  2067. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2068. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2069. * buffers in the log can be a different size if the log was generated
  2070. * by an older kernel using unclustered inode buffers or a newer kernel
  2071. * running with a different inode cluster size. Regardless, if the
  2072. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2073. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2074. * the buffer out of the buffer cache so that the buffer won't
  2075. * overlap with future reads of those inodes.
  2076. */
  2077. if (XFS_DINODE_MAGIC ==
  2078. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2079. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2080. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2081. XFS_BUF_STALE(bp);
  2082. error = xfs_bwrite(mp, bp);
  2083. } else {
  2084. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2085. bp->b_mount = mp;
  2086. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2087. xfs_bdwrite(mp, bp);
  2088. }
  2089. return (error);
  2090. }
  2091. STATIC int
  2092. xlog_recover_do_inode_trans(
  2093. xlog_t *log,
  2094. xlog_recover_item_t *item,
  2095. int pass)
  2096. {
  2097. xfs_inode_log_format_t *in_f;
  2098. xfs_mount_t *mp;
  2099. xfs_buf_t *bp;
  2100. xfs_dinode_t *dip;
  2101. xfs_ino_t ino;
  2102. int len;
  2103. xfs_caddr_t src;
  2104. xfs_caddr_t dest;
  2105. int error;
  2106. int attr_index;
  2107. uint fields;
  2108. xfs_icdinode_t *dicp;
  2109. int need_free = 0;
  2110. if (pass == XLOG_RECOVER_PASS1) {
  2111. return 0;
  2112. }
  2113. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2114. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2115. } else {
  2116. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2117. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2118. need_free = 1;
  2119. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2120. if (error)
  2121. goto error;
  2122. }
  2123. ino = in_f->ilf_ino;
  2124. mp = log->l_mp;
  2125. /*
  2126. * Inode buffers can be freed, look out for it,
  2127. * and do not replay the inode.
  2128. */
  2129. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2130. in_f->ilf_len, 0)) {
  2131. error = 0;
  2132. trace_xfs_log_recover_inode_cancel(log, in_f);
  2133. goto error;
  2134. }
  2135. trace_xfs_log_recover_inode_recover(log, in_f);
  2136. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2137. XBF_LOCK);
  2138. if (XFS_BUF_ISERROR(bp)) {
  2139. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2140. bp, in_f->ilf_blkno);
  2141. error = XFS_BUF_GETERROR(bp);
  2142. xfs_buf_relse(bp);
  2143. goto error;
  2144. }
  2145. error = 0;
  2146. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2147. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2148. /*
  2149. * Make sure the place we're flushing out to really looks
  2150. * like an inode!
  2151. */
  2152. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2153. xfs_buf_relse(bp);
  2154. xfs_fs_cmn_err(CE_ALERT, mp,
  2155. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2156. dip, bp, ino);
  2157. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2158. XFS_ERRLEVEL_LOW, mp);
  2159. error = EFSCORRUPTED;
  2160. goto error;
  2161. }
  2162. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2163. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2164. xfs_buf_relse(bp);
  2165. xfs_fs_cmn_err(CE_ALERT, mp,
  2166. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2167. item, ino);
  2168. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2169. XFS_ERRLEVEL_LOW, mp);
  2170. error = EFSCORRUPTED;
  2171. goto error;
  2172. }
  2173. /* Skip replay when the on disk inode is newer than the log one */
  2174. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2175. /*
  2176. * Deal with the wrap case, DI_MAX_FLUSH is less
  2177. * than smaller numbers
  2178. */
  2179. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2180. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2181. /* do nothing */
  2182. } else {
  2183. xfs_buf_relse(bp);
  2184. trace_xfs_log_recover_inode_skip(log, in_f);
  2185. error = 0;
  2186. goto error;
  2187. }
  2188. }
  2189. /* Take the opportunity to reset the flush iteration count */
  2190. dicp->di_flushiter = 0;
  2191. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2192. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2193. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2194. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2195. XFS_ERRLEVEL_LOW, mp, dicp);
  2196. xfs_buf_relse(bp);
  2197. xfs_fs_cmn_err(CE_ALERT, mp,
  2198. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2199. item, dip, bp, ino);
  2200. error = EFSCORRUPTED;
  2201. goto error;
  2202. }
  2203. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2204. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2205. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2206. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2207. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2208. XFS_ERRLEVEL_LOW, mp, dicp);
  2209. xfs_buf_relse(bp);
  2210. xfs_fs_cmn_err(CE_ALERT, mp,
  2211. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2212. item, dip, bp, ino);
  2213. error = EFSCORRUPTED;
  2214. goto error;
  2215. }
  2216. }
  2217. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2218. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2219. XFS_ERRLEVEL_LOW, mp, dicp);
  2220. xfs_buf_relse(bp);
  2221. xfs_fs_cmn_err(CE_ALERT, mp,
  2222. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2223. item, dip, bp, ino,
  2224. dicp->di_nextents + dicp->di_anextents,
  2225. dicp->di_nblocks);
  2226. error = EFSCORRUPTED;
  2227. goto error;
  2228. }
  2229. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2230. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2231. XFS_ERRLEVEL_LOW, mp, dicp);
  2232. xfs_buf_relse(bp);
  2233. xfs_fs_cmn_err(CE_ALERT, mp,
  2234. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2235. item, dip, bp, ino, dicp->di_forkoff);
  2236. error = EFSCORRUPTED;
  2237. goto error;
  2238. }
  2239. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2240. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2241. XFS_ERRLEVEL_LOW, mp, dicp);
  2242. xfs_buf_relse(bp);
  2243. xfs_fs_cmn_err(CE_ALERT, mp,
  2244. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2245. item->ri_buf[1].i_len, item);
  2246. error = EFSCORRUPTED;
  2247. goto error;
  2248. }
  2249. /* The core is in in-core format */
  2250. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2251. /* the rest is in on-disk format */
  2252. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2253. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2254. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2255. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2256. }
  2257. fields = in_f->ilf_fields;
  2258. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2259. case XFS_ILOG_DEV:
  2260. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2261. break;
  2262. case XFS_ILOG_UUID:
  2263. memcpy(XFS_DFORK_DPTR(dip),
  2264. &in_f->ilf_u.ilfu_uuid,
  2265. sizeof(uuid_t));
  2266. break;
  2267. }
  2268. if (in_f->ilf_size == 2)
  2269. goto write_inode_buffer;
  2270. len = item->ri_buf[2].i_len;
  2271. src = item->ri_buf[2].i_addr;
  2272. ASSERT(in_f->ilf_size <= 4);
  2273. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2274. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2275. (len == in_f->ilf_dsize));
  2276. switch (fields & XFS_ILOG_DFORK) {
  2277. case XFS_ILOG_DDATA:
  2278. case XFS_ILOG_DEXT:
  2279. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2280. break;
  2281. case XFS_ILOG_DBROOT:
  2282. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2283. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2284. XFS_DFORK_DSIZE(dip, mp));
  2285. break;
  2286. default:
  2287. /*
  2288. * There are no data fork flags set.
  2289. */
  2290. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2291. break;
  2292. }
  2293. /*
  2294. * If we logged any attribute data, recover it. There may or
  2295. * may not have been any other non-core data logged in this
  2296. * transaction.
  2297. */
  2298. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2299. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2300. attr_index = 3;
  2301. } else {
  2302. attr_index = 2;
  2303. }
  2304. len = item->ri_buf[attr_index].i_len;
  2305. src = item->ri_buf[attr_index].i_addr;
  2306. ASSERT(len == in_f->ilf_asize);
  2307. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2308. case XFS_ILOG_ADATA:
  2309. case XFS_ILOG_AEXT:
  2310. dest = XFS_DFORK_APTR(dip);
  2311. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2312. memcpy(dest, src, len);
  2313. break;
  2314. case XFS_ILOG_ABROOT:
  2315. dest = XFS_DFORK_APTR(dip);
  2316. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2317. len, (xfs_bmdr_block_t*)dest,
  2318. XFS_DFORK_ASIZE(dip, mp));
  2319. break;
  2320. default:
  2321. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2322. ASSERT(0);
  2323. xfs_buf_relse(bp);
  2324. error = EIO;
  2325. goto error;
  2326. }
  2327. }
  2328. write_inode_buffer:
  2329. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2330. bp->b_mount = mp;
  2331. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2332. xfs_bdwrite(mp, bp);
  2333. error:
  2334. if (need_free)
  2335. kmem_free(in_f);
  2336. return XFS_ERROR(error);
  2337. }
  2338. /*
  2339. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2340. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2341. * of that type.
  2342. */
  2343. STATIC int
  2344. xlog_recover_do_quotaoff_trans(
  2345. xlog_t *log,
  2346. xlog_recover_item_t *item,
  2347. int pass)
  2348. {
  2349. xfs_qoff_logformat_t *qoff_f;
  2350. if (pass == XLOG_RECOVER_PASS2) {
  2351. return (0);
  2352. }
  2353. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2354. ASSERT(qoff_f);
  2355. /*
  2356. * The logitem format's flag tells us if this was user quotaoff,
  2357. * group/project quotaoff or both.
  2358. */
  2359. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2360. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2361. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2362. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2363. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2364. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2365. return (0);
  2366. }
  2367. /*
  2368. * Recover a dquot record
  2369. */
  2370. STATIC int
  2371. xlog_recover_do_dquot_trans(
  2372. xlog_t *log,
  2373. xlog_recover_item_t *item,
  2374. int pass)
  2375. {
  2376. xfs_mount_t *mp;
  2377. xfs_buf_t *bp;
  2378. struct xfs_disk_dquot *ddq, *recddq;
  2379. int error;
  2380. xfs_dq_logformat_t *dq_f;
  2381. uint type;
  2382. if (pass == XLOG_RECOVER_PASS1) {
  2383. return 0;
  2384. }
  2385. mp = log->l_mp;
  2386. /*
  2387. * Filesystems are required to send in quota flags at mount time.
  2388. */
  2389. if (mp->m_qflags == 0)
  2390. return (0);
  2391. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2392. if (item->ri_buf[1].i_addr == NULL) {
  2393. cmn_err(CE_ALERT,
  2394. "XFS: NULL dquot in %s.", __func__);
  2395. return XFS_ERROR(EIO);
  2396. }
  2397. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2398. cmn_err(CE_ALERT,
  2399. "XFS: dquot too small (%d) in %s.",
  2400. item->ri_buf[1].i_len, __func__);
  2401. return XFS_ERROR(EIO);
  2402. }
  2403. /*
  2404. * This type of quotas was turned off, so ignore this record.
  2405. */
  2406. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2407. ASSERT(type);
  2408. if (log->l_quotaoffs_flag & type)
  2409. return (0);
  2410. /*
  2411. * At this point we know that quota was _not_ turned off.
  2412. * Since the mount flags are not indicating to us otherwise, this
  2413. * must mean that quota is on, and the dquot needs to be replayed.
  2414. * Remember that we may not have fully recovered the superblock yet,
  2415. * so we can't do the usual trick of looking at the SB quota bits.
  2416. *
  2417. * The other possibility, of course, is that the quota subsystem was
  2418. * removed since the last mount - ENOSYS.
  2419. */
  2420. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2421. ASSERT(dq_f);
  2422. if ((error = xfs_qm_dqcheck(recddq,
  2423. dq_f->qlf_id,
  2424. 0, XFS_QMOPT_DOWARN,
  2425. "xlog_recover_do_dquot_trans (log copy)"))) {
  2426. return XFS_ERROR(EIO);
  2427. }
  2428. ASSERT(dq_f->qlf_len == 1);
  2429. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2430. dq_f->qlf_blkno,
  2431. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2432. 0, &bp);
  2433. if (error) {
  2434. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2435. bp, dq_f->qlf_blkno);
  2436. return error;
  2437. }
  2438. ASSERT(bp);
  2439. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2440. /*
  2441. * At least the magic num portion should be on disk because this
  2442. * was among a chunk of dquots created earlier, and we did some
  2443. * minimal initialization then.
  2444. */
  2445. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2446. "xlog_recover_do_dquot_trans")) {
  2447. xfs_buf_relse(bp);
  2448. return XFS_ERROR(EIO);
  2449. }
  2450. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2451. ASSERT(dq_f->qlf_size == 2);
  2452. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2453. bp->b_mount = mp;
  2454. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2455. xfs_bdwrite(mp, bp);
  2456. return (0);
  2457. }
  2458. /*
  2459. * This routine is called to create an in-core extent free intent
  2460. * item from the efi format structure which was logged on disk.
  2461. * It allocates an in-core efi, copies the extents from the format
  2462. * structure into it, and adds the efi to the AIL with the given
  2463. * LSN.
  2464. */
  2465. STATIC int
  2466. xlog_recover_do_efi_trans(
  2467. xlog_t *log,
  2468. xlog_recover_item_t *item,
  2469. xfs_lsn_t lsn,
  2470. int pass)
  2471. {
  2472. int error;
  2473. xfs_mount_t *mp;
  2474. xfs_efi_log_item_t *efip;
  2475. xfs_efi_log_format_t *efi_formatp;
  2476. if (pass == XLOG_RECOVER_PASS1) {
  2477. return 0;
  2478. }
  2479. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2480. mp = log->l_mp;
  2481. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2482. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2483. &(efip->efi_format)))) {
  2484. xfs_efi_item_free(efip);
  2485. return error;
  2486. }
  2487. efip->efi_next_extent = efi_formatp->efi_nextents;
  2488. efip->efi_flags |= XFS_EFI_COMMITTED;
  2489. spin_lock(&log->l_ailp->xa_lock);
  2490. /*
  2491. * xfs_trans_ail_update() drops the AIL lock.
  2492. */
  2493. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2494. return 0;
  2495. }
  2496. /*
  2497. * This routine is called when an efd format structure is found in
  2498. * a committed transaction in the log. It's purpose is to cancel
  2499. * the corresponding efi if it was still in the log. To do this
  2500. * it searches the AIL for the efi with an id equal to that in the
  2501. * efd format structure. If we find it, we remove the efi from the
  2502. * AIL and free it.
  2503. */
  2504. STATIC void
  2505. xlog_recover_do_efd_trans(
  2506. xlog_t *log,
  2507. xlog_recover_item_t *item,
  2508. int pass)
  2509. {
  2510. xfs_efd_log_format_t *efd_formatp;
  2511. xfs_efi_log_item_t *efip = NULL;
  2512. xfs_log_item_t *lip;
  2513. __uint64_t efi_id;
  2514. struct xfs_ail_cursor cur;
  2515. struct xfs_ail *ailp = log->l_ailp;
  2516. if (pass == XLOG_RECOVER_PASS1) {
  2517. return;
  2518. }
  2519. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2520. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2521. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2522. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2523. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2524. efi_id = efd_formatp->efd_efi_id;
  2525. /*
  2526. * Search for the efi with the id in the efd format structure
  2527. * in the AIL.
  2528. */
  2529. spin_lock(&ailp->xa_lock);
  2530. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2531. while (lip != NULL) {
  2532. if (lip->li_type == XFS_LI_EFI) {
  2533. efip = (xfs_efi_log_item_t *)lip;
  2534. if (efip->efi_format.efi_id == efi_id) {
  2535. /*
  2536. * xfs_trans_ail_delete() drops the
  2537. * AIL lock.
  2538. */
  2539. xfs_trans_ail_delete(ailp, lip);
  2540. xfs_efi_item_free(efip);
  2541. spin_lock(&ailp->xa_lock);
  2542. break;
  2543. }
  2544. }
  2545. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2546. }
  2547. xfs_trans_ail_cursor_done(ailp, &cur);
  2548. spin_unlock(&ailp->xa_lock);
  2549. }
  2550. /*
  2551. * Perform the transaction
  2552. *
  2553. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2554. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2555. */
  2556. STATIC int
  2557. xlog_recover_do_trans(
  2558. xlog_t *log,
  2559. xlog_recover_t *trans,
  2560. int pass)
  2561. {
  2562. int error = 0;
  2563. xlog_recover_item_t *item;
  2564. error = xlog_recover_reorder_trans(log, trans, pass);
  2565. if (error)
  2566. return error;
  2567. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2568. trace_xfs_log_recover_item_recover(log, trans, item, pass);
  2569. switch (ITEM_TYPE(item)) {
  2570. case XFS_LI_BUF:
  2571. error = xlog_recover_do_buffer_trans(log, item, pass);
  2572. break;
  2573. case XFS_LI_INODE:
  2574. error = xlog_recover_do_inode_trans(log, item, pass);
  2575. break;
  2576. case XFS_LI_EFI:
  2577. error = xlog_recover_do_efi_trans(log, item,
  2578. trans->r_lsn, pass);
  2579. break;
  2580. case XFS_LI_EFD:
  2581. xlog_recover_do_efd_trans(log, item, pass);
  2582. error = 0;
  2583. break;
  2584. case XFS_LI_DQUOT:
  2585. error = xlog_recover_do_dquot_trans(log, item, pass);
  2586. break;
  2587. case XFS_LI_QUOTAOFF:
  2588. error = xlog_recover_do_quotaoff_trans(log, item,
  2589. pass);
  2590. break;
  2591. default:
  2592. xlog_warn(
  2593. "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
  2594. ASSERT(0);
  2595. error = XFS_ERROR(EIO);
  2596. break;
  2597. }
  2598. if (error)
  2599. return error;
  2600. }
  2601. return 0;
  2602. }
  2603. /*
  2604. * Free up any resources allocated by the transaction
  2605. *
  2606. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2607. */
  2608. STATIC void
  2609. xlog_recover_free_trans(
  2610. xlog_recover_t *trans)
  2611. {
  2612. xlog_recover_item_t *item, *n;
  2613. int i;
  2614. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2615. /* Free the regions in the item. */
  2616. list_del(&item->ri_list);
  2617. for (i = 0; i < item->ri_cnt; i++)
  2618. kmem_free(item->ri_buf[i].i_addr);
  2619. /* Free the item itself */
  2620. kmem_free(item->ri_buf);
  2621. kmem_free(item);
  2622. }
  2623. /* Free the transaction recover structure */
  2624. kmem_free(trans);
  2625. }
  2626. STATIC int
  2627. xlog_recover_commit_trans(
  2628. xlog_t *log,
  2629. xlog_recover_t *trans,
  2630. int pass)
  2631. {
  2632. int error;
  2633. hlist_del(&trans->r_list);
  2634. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2635. return error;
  2636. xlog_recover_free_trans(trans); /* no error */
  2637. return 0;
  2638. }
  2639. STATIC int
  2640. xlog_recover_unmount_trans(
  2641. xlog_recover_t *trans)
  2642. {
  2643. /* Do nothing now */
  2644. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2645. return 0;
  2646. }
  2647. /*
  2648. * There are two valid states of the r_state field. 0 indicates that the
  2649. * transaction structure is in a normal state. We have either seen the
  2650. * start of the transaction or the last operation we added was not a partial
  2651. * operation. If the last operation we added to the transaction was a
  2652. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2653. *
  2654. * NOTE: skip LRs with 0 data length.
  2655. */
  2656. STATIC int
  2657. xlog_recover_process_data(
  2658. xlog_t *log,
  2659. struct hlist_head rhash[],
  2660. xlog_rec_header_t *rhead,
  2661. xfs_caddr_t dp,
  2662. int pass)
  2663. {
  2664. xfs_caddr_t lp;
  2665. int num_logops;
  2666. xlog_op_header_t *ohead;
  2667. xlog_recover_t *trans;
  2668. xlog_tid_t tid;
  2669. int error;
  2670. unsigned long hash;
  2671. uint flags;
  2672. lp = dp + be32_to_cpu(rhead->h_len);
  2673. num_logops = be32_to_cpu(rhead->h_num_logops);
  2674. /* check the log format matches our own - else we can't recover */
  2675. if (xlog_header_check_recover(log->l_mp, rhead))
  2676. return (XFS_ERROR(EIO));
  2677. while ((dp < lp) && num_logops) {
  2678. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2679. ohead = (xlog_op_header_t *)dp;
  2680. dp += sizeof(xlog_op_header_t);
  2681. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2682. ohead->oh_clientid != XFS_LOG) {
  2683. xlog_warn(
  2684. "XFS: xlog_recover_process_data: bad clientid");
  2685. ASSERT(0);
  2686. return (XFS_ERROR(EIO));
  2687. }
  2688. tid = be32_to_cpu(ohead->oh_tid);
  2689. hash = XLOG_RHASH(tid);
  2690. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2691. if (trans == NULL) { /* not found; add new tid */
  2692. if (ohead->oh_flags & XLOG_START_TRANS)
  2693. xlog_recover_new_tid(&rhash[hash], tid,
  2694. be64_to_cpu(rhead->h_lsn));
  2695. } else {
  2696. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2697. xlog_warn(
  2698. "XFS: xlog_recover_process_data: bad length");
  2699. WARN_ON(1);
  2700. return (XFS_ERROR(EIO));
  2701. }
  2702. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2703. if (flags & XLOG_WAS_CONT_TRANS)
  2704. flags &= ~XLOG_CONTINUE_TRANS;
  2705. switch (flags) {
  2706. case XLOG_COMMIT_TRANS:
  2707. error = xlog_recover_commit_trans(log,
  2708. trans, pass);
  2709. break;
  2710. case XLOG_UNMOUNT_TRANS:
  2711. error = xlog_recover_unmount_trans(trans);
  2712. break;
  2713. case XLOG_WAS_CONT_TRANS:
  2714. error = xlog_recover_add_to_cont_trans(log,
  2715. trans, dp,
  2716. be32_to_cpu(ohead->oh_len));
  2717. break;
  2718. case XLOG_START_TRANS:
  2719. xlog_warn(
  2720. "XFS: xlog_recover_process_data: bad transaction");
  2721. ASSERT(0);
  2722. error = XFS_ERROR(EIO);
  2723. break;
  2724. case 0:
  2725. case XLOG_CONTINUE_TRANS:
  2726. error = xlog_recover_add_to_trans(log, trans,
  2727. dp, be32_to_cpu(ohead->oh_len));
  2728. break;
  2729. default:
  2730. xlog_warn(
  2731. "XFS: xlog_recover_process_data: bad flag");
  2732. ASSERT(0);
  2733. error = XFS_ERROR(EIO);
  2734. break;
  2735. }
  2736. if (error)
  2737. return error;
  2738. }
  2739. dp += be32_to_cpu(ohead->oh_len);
  2740. num_logops--;
  2741. }
  2742. return 0;
  2743. }
  2744. /*
  2745. * Process an extent free intent item that was recovered from
  2746. * the log. We need to free the extents that it describes.
  2747. */
  2748. STATIC int
  2749. xlog_recover_process_efi(
  2750. xfs_mount_t *mp,
  2751. xfs_efi_log_item_t *efip)
  2752. {
  2753. xfs_efd_log_item_t *efdp;
  2754. xfs_trans_t *tp;
  2755. int i;
  2756. int error = 0;
  2757. xfs_extent_t *extp;
  2758. xfs_fsblock_t startblock_fsb;
  2759. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2760. /*
  2761. * First check the validity of the extents described by the
  2762. * EFI. If any are bad, then assume that all are bad and
  2763. * just toss the EFI.
  2764. */
  2765. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2766. extp = &(efip->efi_format.efi_extents[i]);
  2767. startblock_fsb = XFS_BB_TO_FSB(mp,
  2768. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2769. if ((startblock_fsb == 0) ||
  2770. (extp->ext_len == 0) ||
  2771. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2772. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2773. /*
  2774. * This will pull the EFI from the AIL and
  2775. * free the memory associated with it.
  2776. */
  2777. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2778. return XFS_ERROR(EIO);
  2779. }
  2780. }
  2781. tp = xfs_trans_alloc(mp, 0);
  2782. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2783. if (error)
  2784. goto abort_error;
  2785. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2786. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2787. extp = &(efip->efi_format.efi_extents[i]);
  2788. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2789. if (error)
  2790. goto abort_error;
  2791. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2792. extp->ext_len);
  2793. }
  2794. efip->efi_flags |= XFS_EFI_RECOVERED;
  2795. error = xfs_trans_commit(tp, 0);
  2796. return error;
  2797. abort_error:
  2798. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2799. return error;
  2800. }
  2801. /*
  2802. * When this is called, all of the EFIs which did not have
  2803. * corresponding EFDs should be in the AIL. What we do now
  2804. * is free the extents associated with each one.
  2805. *
  2806. * Since we process the EFIs in normal transactions, they
  2807. * will be removed at some point after the commit. This prevents
  2808. * us from just walking down the list processing each one.
  2809. * We'll use a flag in the EFI to skip those that we've already
  2810. * processed and use the AIL iteration mechanism's generation
  2811. * count to try to speed this up at least a bit.
  2812. *
  2813. * When we start, we know that the EFIs are the only things in
  2814. * the AIL. As we process them, however, other items are added
  2815. * to the AIL. Since everything added to the AIL must come after
  2816. * everything already in the AIL, we stop processing as soon as
  2817. * we see something other than an EFI in the AIL.
  2818. */
  2819. STATIC int
  2820. xlog_recover_process_efis(
  2821. xlog_t *log)
  2822. {
  2823. xfs_log_item_t *lip;
  2824. xfs_efi_log_item_t *efip;
  2825. int error = 0;
  2826. struct xfs_ail_cursor cur;
  2827. struct xfs_ail *ailp;
  2828. ailp = log->l_ailp;
  2829. spin_lock(&ailp->xa_lock);
  2830. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2831. while (lip != NULL) {
  2832. /*
  2833. * We're done when we see something other than an EFI.
  2834. * There should be no EFIs left in the AIL now.
  2835. */
  2836. if (lip->li_type != XFS_LI_EFI) {
  2837. #ifdef DEBUG
  2838. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2839. ASSERT(lip->li_type != XFS_LI_EFI);
  2840. #endif
  2841. break;
  2842. }
  2843. /*
  2844. * Skip EFIs that we've already processed.
  2845. */
  2846. efip = (xfs_efi_log_item_t *)lip;
  2847. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2848. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2849. continue;
  2850. }
  2851. spin_unlock(&ailp->xa_lock);
  2852. error = xlog_recover_process_efi(log->l_mp, efip);
  2853. spin_lock(&ailp->xa_lock);
  2854. if (error)
  2855. goto out;
  2856. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2857. }
  2858. out:
  2859. xfs_trans_ail_cursor_done(ailp, &cur);
  2860. spin_unlock(&ailp->xa_lock);
  2861. return error;
  2862. }
  2863. /*
  2864. * This routine performs a transaction to null out a bad inode pointer
  2865. * in an agi unlinked inode hash bucket.
  2866. */
  2867. STATIC void
  2868. xlog_recover_clear_agi_bucket(
  2869. xfs_mount_t *mp,
  2870. xfs_agnumber_t agno,
  2871. int bucket)
  2872. {
  2873. xfs_trans_t *tp;
  2874. xfs_agi_t *agi;
  2875. xfs_buf_t *agibp;
  2876. int offset;
  2877. int error;
  2878. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2879. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2880. 0, 0, 0);
  2881. if (error)
  2882. goto out_abort;
  2883. error = xfs_read_agi(mp, tp, agno, &agibp);
  2884. if (error)
  2885. goto out_abort;
  2886. agi = XFS_BUF_TO_AGI(agibp);
  2887. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2888. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2889. (sizeof(xfs_agino_t) * bucket);
  2890. xfs_trans_log_buf(tp, agibp, offset,
  2891. (offset + sizeof(xfs_agino_t) - 1));
  2892. error = xfs_trans_commit(tp, 0);
  2893. if (error)
  2894. goto out_error;
  2895. return;
  2896. out_abort:
  2897. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2898. out_error:
  2899. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2900. "failed to clear agi %d. Continuing.", agno);
  2901. return;
  2902. }
  2903. STATIC xfs_agino_t
  2904. xlog_recover_process_one_iunlink(
  2905. struct xfs_mount *mp,
  2906. xfs_agnumber_t agno,
  2907. xfs_agino_t agino,
  2908. int bucket)
  2909. {
  2910. struct xfs_buf *ibp;
  2911. struct xfs_dinode *dip;
  2912. struct xfs_inode *ip;
  2913. xfs_ino_t ino;
  2914. int error;
  2915. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2916. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2917. if (error)
  2918. goto fail;
  2919. /*
  2920. * Get the on disk inode to find the next inode in the bucket.
  2921. */
  2922. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2923. if (error)
  2924. goto fail_iput;
  2925. ASSERT(ip->i_d.di_nlink == 0);
  2926. ASSERT(ip->i_d.di_mode != 0);
  2927. /* setup for the next pass */
  2928. agino = be32_to_cpu(dip->di_next_unlinked);
  2929. xfs_buf_relse(ibp);
  2930. /*
  2931. * Prevent any DMAPI event from being sent when the reference on
  2932. * the inode is dropped.
  2933. */
  2934. ip->i_d.di_dmevmask = 0;
  2935. IRELE(ip);
  2936. return agino;
  2937. fail_iput:
  2938. IRELE(ip);
  2939. fail:
  2940. /*
  2941. * We can't read in the inode this bucket points to, or this inode
  2942. * is messed up. Just ditch this bucket of inodes. We will lose
  2943. * some inodes and space, but at least we won't hang.
  2944. *
  2945. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2946. * clear the inode pointer in the bucket.
  2947. */
  2948. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2949. return NULLAGINO;
  2950. }
  2951. /*
  2952. * xlog_iunlink_recover
  2953. *
  2954. * This is called during recovery to process any inodes which
  2955. * we unlinked but not freed when the system crashed. These
  2956. * inodes will be on the lists in the AGI blocks. What we do
  2957. * here is scan all the AGIs and fully truncate and free any
  2958. * inodes found on the lists. Each inode is removed from the
  2959. * lists when it has been fully truncated and is freed. The
  2960. * freeing of the inode and its removal from the list must be
  2961. * atomic.
  2962. */
  2963. STATIC void
  2964. xlog_recover_process_iunlinks(
  2965. xlog_t *log)
  2966. {
  2967. xfs_mount_t *mp;
  2968. xfs_agnumber_t agno;
  2969. xfs_agi_t *agi;
  2970. xfs_buf_t *agibp;
  2971. xfs_agino_t agino;
  2972. int bucket;
  2973. int error;
  2974. uint mp_dmevmask;
  2975. mp = log->l_mp;
  2976. /*
  2977. * Prevent any DMAPI event from being sent while in this function.
  2978. */
  2979. mp_dmevmask = mp->m_dmevmask;
  2980. mp->m_dmevmask = 0;
  2981. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2982. /*
  2983. * Find the agi for this ag.
  2984. */
  2985. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2986. if (error) {
  2987. /*
  2988. * AGI is b0rked. Don't process it.
  2989. *
  2990. * We should probably mark the filesystem as corrupt
  2991. * after we've recovered all the ag's we can....
  2992. */
  2993. continue;
  2994. }
  2995. agi = XFS_BUF_TO_AGI(agibp);
  2996. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2997. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2998. while (agino != NULLAGINO) {
  2999. /*
  3000. * Release the agi buffer so that it can
  3001. * be acquired in the normal course of the
  3002. * transaction to truncate and free the inode.
  3003. */
  3004. xfs_buf_relse(agibp);
  3005. agino = xlog_recover_process_one_iunlink(mp,
  3006. agno, agino, bucket);
  3007. /*
  3008. * Reacquire the agibuffer and continue around
  3009. * the loop. This should never fail as we know
  3010. * the buffer was good earlier on.
  3011. */
  3012. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3013. ASSERT(error == 0);
  3014. agi = XFS_BUF_TO_AGI(agibp);
  3015. }
  3016. }
  3017. /*
  3018. * Release the buffer for the current agi so we can
  3019. * go on to the next one.
  3020. */
  3021. xfs_buf_relse(agibp);
  3022. }
  3023. mp->m_dmevmask = mp_dmevmask;
  3024. }
  3025. #ifdef DEBUG
  3026. STATIC void
  3027. xlog_pack_data_checksum(
  3028. xlog_t *log,
  3029. xlog_in_core_t *iclog,
  3030. int size)
  3031. {
  3032. int i;
  3033. __be32 *up;
  3034. uint chksum = 0;
  3035. up = (__be32 *)iclog->ic_datap;
  3036. /* divide length by 4 to get # words */
  3037. for (i = 0; i < (size >> 2); i++) {
  3038. chksum ^= be32_to_cpu(*up);
  3039. up++;
  3040. }
  3041. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3042. }
  3043. #else
  3044. #define xlog_pack_data_checksum(log, iclog, size)
  3045. #endif
  3046. /*
  3047. * Stamp cycle number in every block
  3048. */
  3049. void
  3050. xlog_pack_data(
  3051. xlog_t *log,
  3052. xlog_in_core_t *iclog,
  3053. int roundoff)
  3054. {
  3055. int i, j, k;
  3056. int size = iclog->ic_offset + roundoff;
  3057. __be32 cycle_lsn;
  3058. xfs_caddr_t dp;
  3059. xlog_pack_data_checksum(log, iclog, size);
  3060. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3061. dp = iclog->ic_datap;
  3062. for (i = 0; i < BTOBB(size) &&
  3063. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3064. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3065. *(__be32 *)dp = cycle_lsn;
  3066. dp += BBSIZE;
  3067. }
  3068. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3069. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3070. for ( ; i < BTOBB(size); i++) {
  3071. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3072. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3073. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3074. *(__be32 *)dp = cycle_lsn;
  3075. dp += BBSIZE;
  3076. }
  3077. for (i = 1; i < log->l_iclog_heads; i++) {
  3078. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3079. }
  3080. }
  3081. }
  3082. STATIC void
  3083. xlog_unpack_data(
  3084. xlog_rec_header_t *rhead,
  3085. xfs_caddr_t dp,
  3086. xlog_t *log)
  3087. {
  3088. int i, j, k;
  3089. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3090. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3091. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3092. dp += BBSIZE;
  3093. }
  3094. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3095. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3096. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3097. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3098. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3099. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3100. dp += BBSIZE;
  3101. }
  3102. }
  3103. }
  3104. STATIC int
  3105. xlog_valid_rec_header(
  3106. xlog_t *log,
  3107. xlog_rec_header_t *rhead,
  3108. xfs_daddr_t blkno)
  3109. {
  3110. int hlen;
  3111. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3112. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3113. XFS_ERRLEVEL_LOW, log->l_mp);
  3114. return XFS_ERROR(EFSCORRUPTED);
  3115. }
  3116. if (unlikely(
  3117. (!rhead->h_version ||
  3118. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3119. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3120. __func__, be32_to_cpu(rhead->h_version));
  3121. return XFS_ERROR(EIO);
  3122. }
  3123. /* LR body must have data or it wouldn't have been written */
  3124. hlen = be32_to_cpu(rhead->h_len);
  3125. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3126. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3127. XFS_ERRLEVEL_LOW, log->l_mp);
  3128. return XFS_ERROR(EFSCORRUPTED);
  3129. }
  3130. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3131. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3132. XFS_ERRLEVEL_LOW, log->l_mp);
  3133. return XFS_ERROR(EFSCORRUPTED);
  3134. }
  3135. return 0;
  3136. }
  3137. /*
  3138. * Read the log from tail to head and process the log records found.
  3139. * Handle the two cases where the tail and head are in the same cycle
  3140. * and where the active portion of the log wraps around the end of
  3141. * the physical log separately. The pass parameter is passed through
  3142. * to the routines called to process the data and is not looked at
  3143. * here.
  3144. */
  3145. STATIC int
  3146. xlog_do_recovery_pass(
  3147. xlog_t *log,
  3148. xfs_daddr_t head_blk,
  3149. xfs_daddr_t tail_blk,
  3150. int pass)
  3151. {
  3152. xlog_rec_header_t *rhead;
  3153. xfs_daddr_t blk_no;
  3154. xfs_caddr_t offset;
  3155. xfs_buf_t *hbp, *dbp;
  3156. int error = 0, h_size;
  3157. int bblks, split_bblks;
  3158. int hblks, split_hblks, wrapped_hblks;
  3159. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3160. ASSERT(head_blk != tail_blk);
  3161. /*
  3162. * Read the header of the tail block and get the iclog buffer size from
  3163. * h_size. Use this to tell how many sectors make up the log header.
  3164. */
  3165. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3166. /*
  3167. * When using variable length iclogs, read first sector of
  3168. * iclog header and extract the header size from it. Get a
  3169. * new hbp that is the correct size.
  3170. */
  3171. hbp = xlog_get_bp(log, 1);
  3172. if (!hbp)
  3173. return ENOMEM;
  3174. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3175. if (error)
  3176. goto bread_err1;
  3177. rhead = (xlog_rec_header_t *)offset;
  3178. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3179. if (error)
  3180. goto bread_err1;
  3181. h_size = be32_to_cpu(rhead->h_size);
  3182. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3183. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3184. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3185. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3186. hblks++;
  3187. xlog_put_bp(hbp);
  3188. hbp = xlog_get_bp(log, hblks);
  3189. } else {
  3190. hblks = 1;
  3191. }
  3192. } else {
  3193. ASSERT(log->l_sectBBsize == 1);
  3194. hblks = 1;
  3195. hbp = xlog_get_bp(log, 1);
  3196. h_size = XLOG_BIG_RECORD_BSIZE;
  3197. }
  3198. if (!hbp)
  3199. return ENOMEM;
  3200. dbp = xlog_get_bp(log, BTOBB(h_size));
  3201. if (!dbp) {
  3202. xlog_put_bp(hbp);
  3203. return ENOMEM;
  3204. }
  3205. memset(rhash, 0, sizeof(rhash));
  3206. if (tail_blk <= head_blk) {
  3207. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3208. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3209. if (error)
  3210. goto bread_err2;
  3211. rhead = (xlog_rec_header_t *)offset;
  3212. error = xlog_valid_rec_header(log, rhead, blk_no);
  3213. if (error)
  3214. goto bread_err2;
  3215. /* blocks in data section */
  3216. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3217. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3218. &offset);
  3219. if (error)
  3220. goto bread_err2;
  3221. xlog_unpack_data(rhead, offset, log);
  3222. if ((error = xlog_recover_process_data(log,
  3223. rhash, rhead, offset, pass)))
  3224. goto bread_err2;
  3225. blk_no += bblks + hblks;
  3226. }
  3227. } else {
  3228. /*
  3229. * Perform recovery around the end of the physical log.
  3230. * When the head is not on the same cycle number as the tail,
  3231. * we can't do a sequential recovery as above.
  3232. */
  3233. blk_no = tail_blk;
  3234. while (blk_no < log->l_logBBsize) {
  3235. /*
  3236. * Check for header wrapping around physical end-of-log
  3237. */
  3238. offset = XFS_BUF_PTR(hbp);
  3239. split_hblks = 0;
  3240. wrapped_hblks = 0;
  3241. if (blk_no + hblks <= log->l_logBBsize) {
  3242. /* Read header in one read */
  3243. error = xlog_bread(log, blk_no, hblks, hbp,
  3244. &offset);
  3245. if (error)
  3246. goto bread_err2;
  3247. } else {
  3248. /* This LR is split across physical log end */
  3249. if (blk_no != log->l_logBBsize) {
  3250. /* some data before physical log end */
  3251. ASSERT(blk_no <= INT_MAX);
  3252. split_hblks = log->l_logBBsize - (int)blk_no;
  3253. ASSERT(split_hblks > 0);
  3254. error = xlog_bread(log, blk_no,
  3255. split_hblks, hbp,
  3256. &offset);
  3257. if (error)
  3258. goto bread_err2;
  3259. }
  3260. /*
  3261. * Note: this black magic still works with
  3262. * large sector sizes (non-512) only because:
  3263. * - we increased the buffer size originally
  3264. * by 1 sector giving us enough extra space
  3265. * for the second read;
  3266. * - the log start is guaranteed to be sector
  3267. * aligned;
  3268. * - we read the log end (LR header start)
  3269. * _first_, then the log start (LR header end)
  3270. * - order is important.
  3271. */
  3272. wrapped_hblks = hblks - split_hblks;
  3273. error = XFS_BUF_SET_PTR(hbp,
  3274. offset + BBTOB(split_hblks),
  3275. BBTOB(hblks - split_hblks));
  3276. if (error)
  3277. goto bread_err2;
  3278. error = xlog_bread_noalign(log, 0,
  3279. wrapped_hblks, hbp);
  3280. if (error)
  3281. goto bread_err2;
  3282. error = XFS_BUF_SET_PTR(hbp, offset,
  3283. BBTOB(hblks));
  3284. if (error)
  3285. goto bread_err2;
  3286. }
  3287. rhead = (xlog_rec_header_t *)offset;
  3288. error = xlog_valid_rec_header(log, rhead,
  3289. split_hblks ? blk_no : 0);
  3290. if (error)
  3291. goto bread_err2;
  3292. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3293. blk_no += hblks;
  3294. /* Read in data for log record */
  3295. if (blk_no + bblks <= log->l_logBBsize) {
  3296. error = xlog_bread(log, blk_no, bblks, dbp,
  3297. &offset);
  3298. if (error)
  3299. goto bread_err2;
  3300. } else {
  3301. /* This log record is split across the
  3302. * physical end of log */
  3303. offset = XFS_BUF_PTR(dbp);
  3304. split_bblks = 0;
  3305. if (blk_no != log->l_logBBsize) {
  3306. /* some data is before the physical
  3307. * end of log */
  3308. ASSERT(!wrapped_hblks);
  3309. ASSERT(blk_no <= INT_MAX);
  3310. split_bblks =
  3311. log->l_logBBsize - (int)blk_no;
  3312. ASSERT(split_bblks > 0);
  3313. error = xlog_bread(log, blk_no,
  3314. split_bblks, dbp,
  3315. &offset);
  3316. if (error)
  3317. goto bread_err2;
  3318. }
  3319. /*
  3320. * Note: this black magic still works with
  3321. * large sector sizes (non-512) only because:
  3322. * - we increased the buffer size originally
  3323. * by 1 sector giving us enough extra space
  3324. * for the second read;
  3325. * - the log start is guaranteed to be sector
  3326. * aligned;
  3327. * - we read the log end (LR header start)
  3328. * _first_, then the log start (LR header end)
  3329. * - order is important.
  3330. */
  3331. error = XFS_BUF_SET_PTR(dbp,
  3332. offset + BBTOB(split_bblks),
  3333. BBTOB(bblks - split_bblks));
  3334. if (error)
  3335. goto bread_err2;
  3336. error = xlog_bread_noalign(log, wrapped_hblks,
  3337. bblks - split_bblks,
  3338. dbp);
  3339. if (error)
  3340. goto bread_err2;
  3341. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3342. if (error)
  3343. goto bread_err2;
  3344. }
  3345. xlog_unpack_data(rhead, offset, log);
  3346. if ((error = xlog_recover_process_data(log, rhash,
  3347. rhead, offset, pass)))
  3348. goto bread_err2;
  3349. blk_no += bblks;
  3350. }
  3351. ASSERT(blk_no >= log->l_logBBsize);
  3352. blk_no -= log->l_logBBsize;
  3353. /* read first part of physical log */
  3354. while (blk_no < head_blk) {
  3355. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3356. if (error)
  3357. goto bread_err2;
  3358. rhead = (xlog_rec_header_t *)offset;
  3359. error = xlog_valid_rec_header(log, rhead, blk_no);
  3360. if (error)
  3361. goto bread_err2;
  3362. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3363. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3364. &offset);
  3365. if (error)
  3366. goto bread_err2;
  3367. xlog_unpack_data(rhead, offset, log);
  3368. if ((error = xlog_recover_process_data(log, rhash,
  3369. rhead, offset, pass)))
  3370. goto bread_err2;
  3371. blk_no += bblks + hblks;
  3372. }
  3373. }
  3374. bread_err2:
  3375. xlog_put_bp(dbp);
  3376. bread_err1:
  3377. xlog_put_bp(hbp);
  3378. return error;
  3379. }
  3380. /*
  3381. * Do the recovery of the log. We actually do this in two phases.
  3382. * The two passes are necessary in order to implement the function
  3383. * of cancelling a record written into the log. The first pass
  3384. * determines those things which have been cancelled, and the
  3385. * second pass replays log items normally except for those which
  3386. * have been cancelled. The handling of the replay and cancellations
  3387. * takes place in the log item type specific routines.
  3388. *
  3389. * The table of items which have cancel records in the log is allocated
  3390. * and freed at this level, since only here do we know when all of
  3391. * the log recovery has been completed.
  3392. */
  3393. STATIC int
  3394. xlog_do_log_recovery(
  3395. xlog_t *log,
  3396. xfs_daddr_t head_blk,
  3397. xfs_daddr_t tail_blk)
  3398. {
  3399. int error;
  3400. ASSERT(head_blk != tail_blk);
  3401. /*
  3402. * First do a pass to find all of the cancelled buf log items.
  3403. * Store them in the buf_cancel_table for use in the second pass.
  3404. */
  3405. log->l_buf_cancel_table =
  3406. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3407. sizeof(xfs_buf_cancel_t*),
  3408. KM_SLEEP);
  3409. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3410. XLOG_RECOVER_PASS1);
  3411. if (error != 0) {
  3412. kmem_free(log->l_buf_cancel_table);
  3413. log->l_buf_cancel_table = NULL;
  3414. return error;
  3415. }
  3416. /*
  3417. * Then do a second pass to actually recover the items in the log.
  3418. * When it is complete free the table of buf cancel items.
  3419. */
  3420. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3421. XLOG_RECOVER_PASS2);
  3422. #ifdef DEBUG
  3423. if (!error) {
  3424. int i;
  3425. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3426. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3427. }
  3428. #endif /* DEBUG */
  3429. kmem_free(log->l_buf_cancel_table);
  3430. log->l_buf_cancel_table = NULL;
  3431. return error;
  3432. }
  3433. /*
  3434. * Do the actual recovery
  3435. */
  3436. STATIC int
  3437. xlog_do_recover(
  3438. xlog_t *log,
  3439. xfs_daddr_t head_blk,
  3440. xfs_daddr_t tail_blk)
  3441. {
  3442. int error;
  3443. xfs_buf_t *bp;
  3444. xfs_sb_t *sbp;
  3445. /*
  3446. * First replay the images in the log.
  3447. */
  3448. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3449. if (error) {
  3450. return error;
  3451. }
  3452. XFS_bflush(log->l_mp->m_ddev_targp);
  3453. /*
  3454. * If IO errors happened during recovery, bail out.
  3455. */
  3456. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3457. return (EIO);
  3458. }
  3459. /*
  3460. * We now update the tail_lsn since much of the recovery has completed
  3461. * and there may be space available to use. If there were no extent
  3462. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3463. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3464. * lsn of the last known good LR on disk. If there are extent frees
  3465. * or iunlinks they will have some entries in the AIL; so we look at
  3466. * the AIL to determine how to set the tail_lsn.
  3467. */
  3468. xlog_assign_tail_lsn(log->l_mp);
  3469. /*
  3470. * Now that we've finished replaying all buffer and inode
  3471. * updates, re-read in the superblock.
  3472. */
  3473. bp = xfs_getsb(log->l_mp, 0);
  3474. XFS_BUF_UNDONE(bp);
  3475. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3476. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3477. XFS_BUF_READ(bp);
  3478. XFS_BUF_UNASYNC(bp);
  3479. xfsbdstrat(log->l_mp, bp);
  3480. error = xfs_iowait(bp);
  3481. if (error) {
  3482. xfs_ioerror_alert("xlog_do_recover",
  3483. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3484. ASSERT(0);
  3485. xfs_buf_relse(bp);
  3486. return error;
  3487. }
  3488. /* Convert superblock from on-disk format */
  3489. sbp = &log->l_mp->m_sb;
  3490. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3491. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3492. ASSERT(xfs_sb_good_version(sbp));
  3493. xfs_buf_relse(bp);
  3494. /* We've re-read the superblock so re-initialize per-cpu counters */
  3495. xfs_icsb_reinit_counters(log->l_mp);
  3496. xlog_recover_check_summary(log);
  3497. /* Normal transactions can now occur */
  3498. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3499. return 0;
  3500. }
  3501. /*
  3502. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3503. *
  3504. * Return error or zero.
  3505. */
  3506. int
  3507. xlog_recover(
  3508. xlog_t *log)
  3509. {
  3510. xfs_daddr_t head_blk, tail_blk;
  3511. int error;
  3512. /* find the tail of the log */
  3513. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3514. return error;
  3515. if (tail_blk != head_blk) {
  3516. /* There used to be a comment here:
  3517. *
  3518. * disallow recovery on read-only mounts. note -- mount
  3519. * checks for ENOSPC and turns it into an intelligent
  3520. * error message.
  3521. * ...but this is no longer true. Now, unless you specify
  3522. * NORECOVERY (in which case this function would never be
  3523. * called), we just go ahead and recover. We do this all
  3524. * under the vfs layer, so we can get away with it unless
  3525. * the device itself is read-only, in which case we fail.
  3526. */
  3527. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3528. return error;
  3529. }
  3530. cmn_err(CE_NOTE,
  3531. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3532. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3533. log->l_mp->m_logname : "internal");
  3534. error = xlog_do_recover(log, head_blk, tail_blk);
  3535. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3536. }
  3537. return error;
  3538. }
  3539. /*
  3540. * In the first part of recovery we replay inodes and buffers and build
  3541. * up the list of extent free items which need to be processed. Here
  3542. * we process the extent free items and clean up the on disk unlinked
  3543. * inode lists. This is separated from the first part of recovery so
  3544. * that the root and real-time bitmap inodes can be read in from disk in
  3545. * between the two stages. This is necessary so that we can free space
  3546. * in the real-time portion of the file system.
  3547. */
  3548. int
  3549. xlog_recover_finish(
  3550. xlog_t *log)
  3551. {
  3552. /*
  3553. * Now we're ready to do the transactions needed for the
  3554. * rest of recovery. Start with completing all the extent
  3555. * free intent records and then process the unlinked inode
  3556. * lists. At this point, we essentially run in normal mode
  3557. * except that we're still performing recovery actions
  3558. * rather than accepting new requests.
  3559. */
  3560. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3561. int error;
  3562. error = xlog_recover_process_efis(log);
  3563. if (error) {
  3564. cmn_err(CE_ALERT,
  3565. "Failed to recover EFIs on filesystem: %s",
  3566. log->l_mp->m_fsname);
  3567. return error;
  3568. }
  3569. /*
  3570. * Sync the log to get all the EFIs out of the AIL.
  3571. * This isn't absolutely necessary, but it helps in
  3572. * case the unlink transactions would have problems
  3573. * pushing the EFIs out of the way.
  3574. */
  3575. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3576. xlog_recover_process_iunlinks(log);
  3577. xlog_recover_check_summary(log);
  3578. cmn_err(CE_NOTE,
  3579. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3580. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3581. log->l_mp->m_logname : "internal");
  3582. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3583. } else {
  3584. cmn_err(CE_DEBUG,
  3585. "!Ending clean XFS mount for filesystem: %s\n",
  3586. log->l_mp->m_fsname);
  3587. }
  3588. return 0;
  3589. }
  3590. #if defined(DEBUG)
  3591. /*
  3592. * Read all of the agf and agi counters and check that they
  3593. * are consistent with the superblock counters.
  3594. */
  3595. void
  3596. xlog_recover_check_summary(
  3597. xlog_t *log)
  3598. {
  3599. xfs_mount_t *mp;
  3600. xfs_agf_t *agfp;
  3601. xfs_buf_t *agfbp;
  3602. xfs_buf_t *agibp;
  3603. xfs_agnumber_t agno;
  3604. __uint64_t freeblks;
  3605. __uint64_t itotal;
  3606. __uint64_t ifree;
  3607. int error;
  3608. mp = log->l_mp;
  3609. freeblks = 0LL;
  3610. itotal = 0LL;
  3611. ifree = 0LL;
  3612. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3613. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3614. if (error) {
  3615. xfs_fs_cmn_err(CE_ALERT, mp,
  3616. "xlog_recover_check_summary(agf)"
  3617. "agf read failed agno %d error %d",
  3618. agno, error);
  3619. } else {
  3620. agfp = XFS_BUF_TO_AGF(agfbp);
  3621. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3622. be32_to_cpu(agfp->agf_flcount);
  3623. xfs_buf_relse(agfbp);
  3624. }
  3625. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3626. if (!error) {
  3627. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3628. itotal += be32_to_cpu(agi->agi_count);
  3629. ifree += be32_to_cpu(agi->agi_freecount);
  3630. xfs_buf_relse(agibp);
  3631. }
  3632. }
  3633. }
  3634. #endif /* DEBUG */