xfs_aops.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_inum.h"
  22. #include "xfs_sb.h"
  23. #include "xfs_ag.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_mount.h"
  26. #include "xfs_bmap_btree.h"
  27. #include "xfs_dinode.h"
  28. #include "xfs_inode.h"
  29. #include "xfs_alloc.h"
  30. #include "xfs_error.h"
  31. #include "xfs_rw.h"
  32. #include "xfs_iomap.h"
  33. #include "xfs_vnodeops.h"
  34. #include "xfs_trace.h"
  35. #include "xfs_bmap.h"
  36. #include <linux/gfp.h>
  37. #include <linux/mpage.h>
  38. #include <linux/pagevec.h>
  39. #include <linux/writeback.h>
  40. /*
  41. * Types of I/O for bmap clustering and I/O completion tracking.
  42. */
  43. enum {
  44. IO_READ, /* mapping for a read */
  45. IO_DELAY, /* mapping covers delalloc region */
  46. IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
  47. IO_NEW /* just allocated */
  48. };
  49. /*
  50. * Prime number of hash buckets since address is used as the key.
  51. */
  52. #define NVSYNC 37
  53. #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  54. static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  55. void __init
  56. xfs_ioend_init(void)
  57. {
  58. int i;
  59. for (i = 0; i < NVSYNC; i++)
  60. init_waitqueue_head(&xfs_ioend_wq[i]);
  61. }
  62. void
  63. xfs_ioend_wait(
  64. xfs_inode_t *ip)
  65. {
  66. wait_queue_head_t *wq = to_ioend_wq(ip);
  67. wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  68. }
  69. STATIC void
  70. xfs_ioend_wake(
  71. xfs_inode_t *ip)
  72. {
  73. if (atomic_dec_and_test(&ip->i_iocount))
  74. wake_up(to_ioend_wq(ip));
  75. }
  76. void
  77. xfs_count_page_state(
  78. struct page *page,
  79. int *delalloc,
  80. int *unmapped,
  81. int *unwritten)
  82. {
  83. struct buffer_head *bh, *head;
  84. *delalloc = *unmapped = *unwritten = 0;
  85. bh = head = page_buffers(page);
  86. do {
  87. if (buffer_uptodate(bh) && !buffer_mapped(bh))
  88. (*unmapped) = 1;
  89. else if (buffer_unwritten(bh))
  90. (*unwritten) = 1;
  91. else if (buffer_delay(bh))
  92. (*delalloc) = 1;
  93. } while ((bh = bh->b_this_page) != head);
  94. }
  95. STATIC struct block_device *
  96. xfs_find_bdev_for_inode(
  97. struct inode *inode)
  98. {
  99. struct xfs_inode *ip = XFS_I(inode);
  100. struct xfs_mount *mp = ip->i_mount;
  101. if (XFS_IS_REALTIME_INODE(ip))
  102. return mp->m_rtdev_targp->bt_bdev;
  103. else
  104. return mp->m_ddev_targp->bt_bdev;
  105. }
  106. /*
  107. * We're now finished for good with this ioend structure.
  108. * Update the page state via the associated buffer_heads,
  109. * release holds on the inode and bio, and finally free
  110. * up memory. Do not use the ioend after this.
  111. */
  112. STATIC void
  113. xfs_destroy_ioend(
  114. xfs_ioend_t *ioend)
  115. {
  116. struct buffer_head *bh, *next;
  117. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  118. for (bh = ioend->io_buffer_head; bh; bh = next) {
  119. next = bh->b_private;
  120. bh->b_end_io(bh, !ioend->io_error);
  121. }
  122. /*
  123. * Volume managers supporting multiple paths can send back ENODEV
  124. * when the final path disappears. In this case continuing to fill
  125. * the page cache with dirty data which cannot be written out is
  126. * evil, so prevent that.
  127. */
  128. if (unlikely(ioend->io_error == -ENODEV)) {
  129. xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
  130. __FILE__, __LINE__);
  131. }
  132. xfs_ioend_wake(ip);
  133. mempool_free(ioend, xfs_ioend_pool);
  134. }
  135. /*
  136. * If the end of the current ioend is beyond the current EOF,
  137. * return the new EOF value, otherwise zero.
  138. */
  139. STATIC xfs_fsize_t
  140. xfs_ioend_new_eof(
  141. xfs_ioend_t *ioend)
  142. {
  143. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  144. xfs_fsize_t isize;
  145. xfs_fsize_t bsize;
  146. bsize = ioend->io_offset + ioend->io_size;
  147. isize = MAX(ip->i_size, ip->i_new_size);
  148. isize = MIN(isize, bsize);
  149. return isize > ip->i_d.di_size ? isize : 0;
  150. }
  151. /*
  152. * Update on-disk file size now that data has been written to disk. The
  153. * current in-memory file size is i_size. If a write is beyond eof i_new_size
  154. * will be the intended file size until i_size is updated. If this write does
  155. * not extend all the way to the valid file size then restrict this update to
  156. * the end of the write.
  157. *
  158. * This function does not block as blocking on the inode lock in IO completion
  159. * can lead to IO completion order dependency deadlocks.. If it can't get the
  160. * inode ilock it will return EAGAIN. Callers must handle this.
  161. */
  162. STATIC int
  163. xfs_setfilesize(
  164. xfs_ioend_t *ioend)
  165. {
  166. xfs_inode_t *ip = XFS_I(ioend->io_inode);
  167. xfs_fsize_t isize;
  168. ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
  169. ASSERT(ioend->io_type != IO_READ);
  170. if (unlikely(ioend->io_error))
  171. return 0;
  172. if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
  173. return EAGAIN;
  174. isize = xfs_ioend_new_eof(ioend);
  175. if (isize) {
  176. ip->i_d.di_size = isize;
  177. xfs_mark_inode_dirty(ip);
  178. }
  179. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  180. return 0;
  181. }
  182. /*
  183. * Schedule IO completion handling on a xfsdatad if this was
  184. * the final hold on this ioend. If we are asked to wait,
  185. * flush the workqueue.
  186. */
  187. STATIC void
  188. xfs_finish_ioend(
  189. xfs_ioend_t *ioend,
  190. int wait)
  191. {
  192. if (atomic_dec_and_test(&ioend->io_remaining)) {
  193. struct workqueue_struct *wq;
  194. wq = (ioend->io_type == IO_UNWRITTEN) ?
  195. xfsconvertd_workqueue : xfsdatad_workqueue;
  196. queue_work(wq, &ioend->io_work);
  197. if (wait)
  198. flush_workqueue(wq);
  199. }
  200. }
  201. /*
  202. * IO write completion.
  203. */
  204. STATIC void
  205. xfs_end_io(
  206. struct work_struct *work)
  207. {
  208. xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
  209. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  210. int error = 0;
  211. /*
  212. * For unwritten extents we need to issue transactions to convert a
  213. * range to normal written extens after the data I/O has finished.
  214. */
  215. if (ioend->io_type == IO_UNWRITTEN &&
  216. likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
  217. error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
  218. ioend->io_size);
  219. if (error)
  220. ioend->io_error = error;
  221. }
  222. /*
  223. * We might have to update the on-disk file size after extending
  224. * writes.
  225. */
  226. if (ioend->io_type != IO_READ) {
  227. error = xfs_setfilesize(ioend);
  228. ASSERT(!error || error == EAGAIN);
  229. }
  230. /*
  231. * If we didn't complete processing of the ioend, requeue it to the
  232. * tail of the workqueue for another attempt later. Otherwise destroy
  233. * it.
  234. */
  235. if (error == EAGAIN) {
  236. atomic_inc(&ioend->io_remaining);
  237. xfs_finish_ioend(ioend, 0);
  238. /* ensure we don't spin on blocked ioends */
  239. delay(1);
  240. } else
  241. xfs_destroy_ioend(ioend);
  242. }
  243. /*
  244. * Allocate and initialise an IO completion structure.
  245. * We need to track unwritten extent write completion here initially.
  246. * We'll need to extend this for updating the ondisk inode size later
  247. * (vs. incore size).
  248. */
  249. STATIC xfs_ioend_t *
  250. xfs_alloc_ioend(
  251. struct inode *inode,
  252. unsigned int type)
  253. {
  254. xfs_ioend_t *ioend;
  255. ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
  256. /*
  257. * Set the count to 1 initially, which will prevent an I/O
  258. * completion callback from happening before we have started
  259. * all the I/O from calling the completion routine too early.
  260. */
  261. atomic_set(&ioend->io_remaining, 1);
  262. ioend->io_error = 0;
  263. ioend->io_list = NULL;
  264. ioend->io_type = type;
  265. ioend->io_inode = inode;
  266. ioend->io_buffer_head = NULL;
  267. ioend->io_buffer_tail = NULL;
  268. atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
  269. ioend->io_offset = 0;
  270. ioend->io_size = 0;
  271. INIT_WORK(&ioend->io_work, xfs_end_io);
  272. return ioend;
  273. }
  274. STATIC int
  275. xfs_map_blocks(
  276. struct inode *inode,
  277. loff_t offset,
  278. ssize_t count,
  279. struct xfs_bmbt_irec *imap,
  280. int flags)
  281. {
  282. int nmaps = 1;
  283. int new = 0;
  284. return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
  285. }
  286. STATIC int
  287. xfs_imap_valid(
  288. struct inode *inode,
  289. struct xfs_bmbt_irec *imap,
  290. xfs_off_t offset)
  291. {
  292. offset >>= inode->i_blkbits;
  293. return offset >= imap->br_startoff &&
  294. offset < imap->br_startoff + imap->br_blockcount;
  295. }
  296. /*
  297. * BIO completion handler for buffered IO.
  298. */
  299. STATIC void
  300. xfs_end_bio(
  301. struct bio *bio,
  302. int error)
  303. {
  304. xfs_ioend_t *ioend = bio->bi_private;
  305. ASSERT(atomic_read(&bio->bi_cnt) >= 1);
  306. ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
  307. /* Toss bio and pass work off to an xfsdatad thread */
  308. bio->bi_private = NULL;
  309. bio->bi_end_io = NULL;
  310. bio_put(bio);
  311. xfs_finish_ioend(ioend, 0);
  312. }
  313. STATIC void
  314. xfs_submit_ioend_bio(
  315. struct writeback_control *wbc,
  316. xfs_ioend_t *ioend,
  317. struct bio *bio)
  318. {
  319. atomic_inc(&ioend->io_remaining);
  320. bio->bi_private = ioend;
  321. bio->bi_end_io = xfs_end_bio;
  322. /*
  323. * If the I/O is beyond EOF we mark the inode dirty immediately
  324. * but don't update the inode size until I/O completion.
  325. */
  326. if (xfs_ioend_new_eof(ioend))
  327. xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
  328. submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
  329. WRITE_SYNC_PLUG : WRITE, bio);
  330. ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
  331. bio_put(bio);
  332. }
  333. STATIC struct bio *
  334. xfs_alloc_ioend_bio(
  335. struct buffer_head *bh)
  336. {
  337. struct bio *bio;
  338. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  339. do {
  340. bio = bio_alloc(GFP_NOIO, nvecs);
  341. nvecs >>= 1;
  342. } while (!bio);
  343. ASSERT(bio->bi_private == NULL);
  344. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  345. bio->bi_bdev = bh->b_bdev;
  346. bio_get(bio);
  347. return bio;
  348. }
  349. STATIC void
  350. xfs_start_buffer_writeback(
  351. struct buffer_head *bh)
  352. {
  353. ASSERT(buffer_mapped(bh));
  354. ASSERT(buffer_locked(bh));
  355. ASSERT(!buffer_delay(bh));
  356. ASSERT(!buffer_unwritten(bh));
  357. mark_buffer_async_write(bh);
  358. set_buffer_uptodate(bh);
  359. clear_buffer_dirty(bh);
  360. }
  361. STATIC void
  362. xfs_start_page_writeback(
  363. struct page *page,
  364. int clear_dirty,
  365. int buffers)
  366. {
  367. ASSERT(PageLocked(page));
  368. ASSERT(!PageWriteback(page));
  369. if (clear_dirty)
  370. clear_page_dirty_for_io(page);
  371. set_page_writeback(page);
  372. unlock_page(page);
  373. /* If no buffers on the page are to be written, finish it here */
  374. if (!buffers)
  375. end_page_writeback(page);
  376. }
  377. static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
  378. {
  379. return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
  380. }
  381. /*
  382. * Submit all of the bios for all of the ioends we have saved up, covering the
  383. * initial writepage page and also any probed pages.
  384. *
  385. * Because we may have multiple ioends spanning a page, we need to start
  386. * writeback on all the buffers before we submit them for I/O. If we mark the
  387. * buffers as we got, then we can end up with a page that only has buffers
  388. * marked async write and I/O complete on can occur before we mark the other
  389. * buffers async write.
  390. *
  391. * The end result of this is that we trip a bug in end_page_writeback() because
  392. * we call it twice for the one page as the code in end_buffer_async_write()
  393. * assumes that all buffers on the page are started at the same time.
  394. *
  395. * The fix is two passes across the ioend list - one to start writeback on the
  396. * buffer_heads, and then submit them for I/O on the second pass.
  397. */
  398. STATIC void
  399. xfs_submit_ioend(
  400. struct writeback_control *wbc,
  401. xfs_ioend_t *ioend)
  402. {
  403. xfs_ioend_t *head = ioend;
  404. xfs_ioend_t *next;
  405. struct buffer_head *bh;
  406. struct bio *bio;
  407. sector_t lastblock = 0;
  408. /* Pass 1 - start writeback */
  409. do {
  410. next = ioend->io_list;
  411. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  412. xfs_start_buffer_writeback(bh);
  413. }
  414. } while ((ioend = next) != NULL);
  415. /* Pass 2 - submit I/O */
  416. ioend = head;
  417. do {
  418. next = ioend->io_list;
  419. bio = NULL;
  420. for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
  421. if (!bio) {
  422. retry:
  423. bio = xfs_alloc_ioend_bio(bh);
  424. } else if (bh->b_blocknr != lastblock + 1) {
  425. xfs_submit_ioend_bio(wbc, ioend, bio);
  426. goto retry;
  427. }
  428. if (bio_add_buffer(bio, bh) != bh->b_size) {
  429. xfs_submit_ioend_bio(wbc, ioend, bio);
  430. goto retry;
  431. }
  432. lastblock = bh->b_blocknr;
  433. }
  434. if (bio)
  435. xfs_submit_ioend_bio(wbc, ioend, bio);
  436. xfs_finish_ioend(ioend, 0);
  437. } while ((ioend = next) != NULL);
  438. }
  439. /*
  440. * Cancel submission of all buffer_heads so far in this endio.
  441. * Toss the endio too. Only ever called for the initial page
  442. * in a writepage request, so only ever one page.
  443. */
  444. STATIC void
  445. xfs_cancel_ioend(
  446. xfs_ioend_t *ioend)
  447. {
  448. xfs_ioend_t *next;
  449. struct buffer_head *bh, *next_bh;
  450. do {
  451. next = ioend->io_list;
  452. bh = ioend->io_buffer_head;
  453. do {
  454. next_bh = bh->b_private;
  455. clear_buffer_async_write(bh);
  456. unlock_buffer(bh);
  457. } while ((bh = next_bh) != NULL);
  458. xfs_ioend_wake(XFS_I(ioend->io_inode));
  459. mempool_free(ioend, xfs_ioend_pool);
  460. } while ((ioend = next) != NULL);
  461. }
  462. /*
  463. * Test to see if we've been building up a completion structure for
  464. * earlier buffers -- if so, we try to append to this ioend if we
  465. * can, otherwise we finish off any current ioend and start another.
  466. * Return true if we've finished the given ioend.
  467. */
  468. STATIC void
  469. xfs_add_to_ioend(
  470. struct inode *inode,
  471. struct buffer_head *bh,
  472. xfs_off_t offset,
  473. unsigned int type,
  474. xfs_ioend_t **result,
  475. int need_ioend)
  476. {
  477. xfs_ioend_t *ioend = *result;
  478. if (!ioend || need_ioend || type != ioend->io_type) {
  479. xfs_ioend_t *previous = *result;
  480. ioend = xfs_alloc_ioend(inode, type);
  481. ioend->io_offset = offset;
  482. ioend->io_buffer_head = bh;
  483. ioend->io_buffer_tail = bh;
  484. if (previous)
  485. previous->io_list = ioend;
  486. *result = ioend;
  487. } else {
  488. ioend->io_buffer_tail->b_private = bh;
  489. ioend->io_buffer_tail = bh;
  490. }
  491. bh->b_private = NULL;
  492. ioend->io_size += bh->b_size;
  493. }
  494. STATIC void
  495. xfs_map_buffer(
  496. struct inode *inode,
  497. struct buffer_head *bh,
  498. struct xfs_bmbt_irec *imap,
  499. xfs_off_t offset)
  500. {
  501. sector_t bn;
  502. struct xfs_mount *m = XFS_I(inode)->i_mount;
  503. xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
  504. xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
  505. ASSERT(imap->br_startblock != HOLESTARTBLOCK);
  506. ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
  507. bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
  508. ((offset - iomap_offset) >> inode->i_blkbits);
  509. ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
  510. bh->b_blocknr = bn;
  511. set_buffer_mapped(bh);
  512. }
  513. STATIC void
  514. xfs_map_at_offset(
  515. struct inode *inode,
  516. struct buffer_head *bh,
  517. struct xfs_bmbt_irec *imap,
  518. xfs_off_t offset)
  519. {
  520. ASSERT(imap->br_startblock != HOLESTARTBLOCK);
  521. ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
  522. lock_buffer(bh);
  523. xfs_map_buffer(inode, bh, imap, offset);
  524. bh->b_bdev = xfs_find_bdev_for_inode(inode);
  525. set_buffer_mapped(bh);
  526. clear_buffer_delay(bh);
  527. clear_buffer_unwritten(bh);
  528. }
  529. /*
  530. * Look for a page at index that is suitable for clustering.
  531. */
  532. STATIC unsigned int
  533. xfs_probe_page(
  534. struct page *page,
  535. unsigned int pg_offset,
  536. int mapped)
  537. {
  538. int ret = 0;
  539. if (PageWriteback(page))
  540. return 0;
  541. if (page->mapping && PageDirty(page)) {
  542. if (page_has_buffers(page)) {
  543. struct buffer_head *bh, *head;
  544. bh = head = page_buffers(page);
  545. do {
  546. if (!buffer_uptodate(bh))
  547. break;
  548. if (mapped != buffer_mapped(bh))
  549. break;
  550. ret += bh->b_size;
  551. if (ret >= pg_offset)
  552. break;
  553. } while ((bh = bh->b_this_page) != head);
  554. } else
  555. ret = mapped ? 0 : PAGE_CACHE_SIZE;
  556. }
  557. return ret;
  558. }
  559. STATIC size_t
  560. xfs_probe_cluster(
  561. struct inode *inode,
  562. struct page *startpage,
  563. struct buffer_head *bh,
  564. struct buffer_head *head,
  565. int mapped)
  566. {
  567. struct pagevec pvec;
  568. pgoff_t tindex, tlast, tloff;
  569. size_t total = 0;
  570. int done = 0, i;
  571. /* First sum forwards in this page */
  572. do {
  573. if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
  574. return total;
  575. total += bh->b_size;
  576. } while ((bh = bh->b_this_page) != head);
  577. /* if we reached the end of the page, sum forwards in following pages */
  578. tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
  579. tindex = startpage->index + 1;
  580. /* Prune this back to avoid pathological behavior */
  581. tloff = min(tlast, startpage->index + 64);
  582. pagevec_init(&pvec, 0);
  583. while (!done && tindex <= tloff) {
  584. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  585. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  586. break;
  587. for (i = 0; i < pagevec_count(&pvec); i++) {
  588. struct page *page = pvec.pages[i];
  589. size_t pg_offset, pg_len = 0;
  590. if (tindex == tlast) {
  591. pg_offset =
  592. i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
  593. if (!pg_offset) {
  594. done = 1;
  595. break;
  596. }
  597. } else
  598. pg_offset = PAGE_CACHE_SIZE;
  599. if (page->index == tindex && trylock_page(page)) {
  600. pg_len = xfs_probe_page(page, pg_offset, mapped);
  601. unlock_page(page);
  602. }
  603. if (!pg_len) {
  604. done = 1;
  605. break;
  606. }
  607. total += pg_len;
  608. tindex++;
  609. }
  610. pagevec_release(&pvec);
  611. cond_resched();
  612. }
  613. return total;
  614. }
  615. /*
  616. * Test if a given page is suitable for writing as part of an unwritten
  617. * or delayed allocate extent.
  618. */
  619. STATIC int
  620. xfs_is_delayed_page(
  621. struct page *page,
  622. unsigned int type)
  623. {
  624. if (PageWriteback(page))
  625. return 0;
  626. if (page->mapping && page_has_buffers(page)) {
  627. struct buffer_head *bh, *head;
  628. int acceptable = 0;
  629. bh = head = page_buffers(page);
  630. do {
  631. if (buffer_unwritten(bh))
  632. acceptable = (type == IO_UNWRITTEN);
  633. else if (buffer_delay(bh))
  634. acceptable = (type == IO_DELAY);
  635. else if (buffer_dirty(bh) && buffer_mapped(bh))
  636. acceptable = (type == IO_NEW);
  637. else
  638. break;
  639. } while ((bh = bh->b_this_page) != head);
  640. if (acceptable)
  641. return 1;
  642. }
  643. return 0;
  644. }
  645. /*
  646. * Allocate & map buffers for page given the extent map. Write it out.
  647. * except for the original page of a writepage, this is called on
  648. * delalloc/unwritten pages only, for the original page it is possible
  649. * that the page has no mapping at all.
  650. */
  651. STATIC int
  652. xfs_convert_page(
  653. struct inode *inode,
  654. struct page *page,
  655. loff_t tindex,
  656. struct xfs_bmbt_irec *imap,
  657. xfs_ioend_t **ioendp,
  658. struct writeback_control *wbc,
  659. int startio,
  660. int all_bh)
  661. {
  662. struct buffer_head *bh, *head;
  663. xfs_off_t end_offset;
  664. unsigned long p_offset;
  665. unsigned int type;
  666. int len, page_dirty;
  667. int count = 0, done = 0, uptodate = 1;
  668. xfs_off_t offset = page_offset(page);
  669. if (page->index != tindex)
  670. goto fail;
  671. if (!trylock_page(page))
  672. goto fail;
  673. if (PageWriteback(page))
  674. goto fail_unlock_page;
  675. if (page->mapping != inode->i_mapping)
  676. goto fail_unlock_page;
  677. if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
  678. goto fail_unlock_page;
  679. /*
  680. * page_dirty is initially a count of buffers on the page before
  681. * EOF and is decremented as we move each into a cleanable state.
  682. *
  683. * Derivation:
  684. *
  685. * End offset is the highest offset that this page should represent.
  686. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  687. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  688. * hence give us the correct page_dirty count. On any other page,
  689. * it will be zero and in that case we need page_dirty to be the
  690. * count of buffers on the page.
  691. */
  692. end_offset = min_t(unsigned long long,
  693. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
  694. i_size_read(inode));
  695. len = 1 << inode->i_blkbits;
  696. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  697. PAGE_CACHE_SIZE);
  698. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  699. page_dirty = p_offset / len;
  700. bh = head = page_buffers(page);
  701. do {
  702. if (offset >= end_offset)
  703. break;
  704. if (!buffer_uptodate(bh))
  705. uptodate = 0;
  706. if (!(PageUptodate(page) || buffer_uptodate(bh))) {
  707. done = 1;
  708. continue;
  709. }
  710. if (buffer_unwritten(bh) || buffer_delay(bh)) {
  711. if (buffer_unwritten(bh))
  712. type = IO_UNWRITTEN;
  713. else
  714. type = IO_DELAY;
  715. if (!xfs_imap_valid(inode, imap, offset)) {
  716. done = 1;
  717. continue;
  718. }
  719. ASSERT(imap->br_startblock != HOLESTARTBLOCK);
  720. ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
  721. xfs_map_at_offset(inode, bh, imap, offset);
  722. if (startio) {
  723. xfs_add_to_ioend(inode, bh, offset,
  724. type, ioendp, done);
  725. } else {
  726. set_buffer_dirty(bh);
  727. unlock_buffer(bh);
  728. mark_buffer_dirty(bh);
  729. }
  730. page_dirty--;
  731. count++;
  732. } else {
  733. type = IO_NEW;
  734. if (buffer_mapped(bh) && all_bh && startio) {
  735. lock_buffer(bh);
  736. xfs_add_to_ioend(inode, bh, offset,
  737. type, ioendp, done);
  738. count++;
  739. page_dirty--;
  740. } else {
  741. done = 1;
  742. }
  743. }
  744. } while (offset += len, (bh = bh->b_this_page) != head);
  745. if (uptodate && bh == head)
  746. SetPageUptodate(page);
  747. if (startio) {
  748. if (count) {
  749. wbc->nr_to_write--;
  750. if (wbc->nr_to_write <= 0)
  751. done = 1;
  752. }
  753. xfs_start_page_writeback(page, !page_dirty, count);
  754. }
  755. return done;
  756. fail_unlock_page:
  757. unlock_page(page);
  758. fail:
  759. return 1;
  760. }
  761. /*
  762. * Convert & write out a cluster of pages in the same extent as defined
  763. * by mp and following the start page.
  764. */
  765. STATIC void
  766. xfs_cluster_write(
  767. struct inode *inode,
  768. pgoff_t tindex,
  769. struct xfs_bmbt_irec *imap,
  770. xfs_ioend_t **ioendp,
  771. struct writeback_control *wbc,
  772. int startio,
  773. int all_bh,
  774. pgoff_t tlast)
  775. {
  776. struct pagevec pvec;
  777. int done = 0, i;
  778. pagevec_init(&pvec, 0);
  779. while (!done && tindex <= tlast) {
  780. unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
  781. if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
  782. break;
  783. for (i = 0; i < pagevec_count(&pvec); i++) {
  784. done = xfs_convert_page(inode, pvec.pages[i], tindex++,
  785. imap, ioendp, wbc, startio, all_bh);
  786. if (done)
  787. break;
  788. }
  789. pagevec_release(&pvec);
  790. cond_resched();
  791. }
  792. }
  793. STATIC void
  794. xfs_vm_invalidatepage(
  795. struct page *page,
  796. unsigned long offset)
  797. {
  798. trace_xfs_invalidatepage(page->mapping->host, page, offset);
  799. block_invalidatepage(page, offset);
  800. }
  801. /*
  802. * If the page has delalloc buffers on it, we need to punch them out before we
  803. * invalidate the page. If we don't, we leave a stale delalloc mapping on the
  804. * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
  805. * is done on that same region - the delalloc extent is returned when none is
  806. * supposed to be there.
  807. *
  808. * We prevent this by truncating away the delalloc regions on the page before
  809. * invalidating it. Because they are delalloc, we can do this without needing a
  810. * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
  811. * truncation without a transaction as there is no space left for block
  812. * reservation (typically why we see a ENOSPC in writeback).
  813. *
  814. * This is not a performance critical path, so for now just do the punching a
  815. * buffer head at a time.
  816. */
  817. STATIC void
  818. xfs_aops_discard_page(
  819. struct page *page)
  820. {
  821. struct inode *inode = page->mapping->host;
  822. struct xfs_inode *ip = XFS_I(inode);
  823. struct buffer_head *bh, *head;
  824. loff_t offset = page_offset(page);
  825. ssize_t len = 1 << inode->i_blkbits;
  826. if (!xfs_is_delayed_page(page, IO_DELAY))
  827. goto out_invalidate;
  828. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  829. goto out_invalidate;
  830. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  831. "page discard on page %p, inode 0x%llx, offset %llu.",
  832. page, ip->i_ino, offset);
  833. xfs_ilock(ip, XFS_ILOCK_EXCL);
  834. bh = head = page_buffers(page);
  835. do {
  836. int done;
  837. xfs_fileoff_t offset_fsb;
  838. xfs_bmbt_irec_t imap;
  839. int nimaps = 1;
  840. int error;
  841. xfs_fsblock_t firstblock;
  842. xfs_bmap_free_t flist;
  843. if (!buffer_delay(bh))
  844. goto next_buffer;
  845. offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
  846. /*
  847. * Map the range first and check that it is a delalloc extent
  848. * before trying to unmap the range. Otherwise we will be
  849. * trying to remove a real extent (which requires a
  850. * transaction) or a hole, which is probably a bad idea...
  851. */
  852. error = xfs_bmapi(NULL, ip, offset_fsb, 1,
  853. XFS_BMAPI_ENTIRE, NULL, 0, &imap,
  854. &nimaps, NULL, NULL);
  855. if (error) {
  856. /* something screwed, just bail */
  857. if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  858. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  859. "page discard failed delalloc mapping lookup.");
  860. }
  861. break;
  862. }
  863. if (!nimaps) {
  864. /* nothing there */
  865. goto next_buffer;
  866. }
  867. if (imap.br_startblock != DELAYSTARTBLOCK) {
  868. /* been converted, ignore */
  869. goto next_buffer;
  870. }
  871. WARN_ON(imap.br_blockcount == 0);
  872. /*
  873. * Note: while we initialise the firstblock/flist pair, they
  874. * should never be used because blocks should never be
  875. * allocated or freed for a delalloc extent and hence we need
  876. * don't cancel or finish them after the xfs_bunmapi() call.
  877. */
  878. xfs_bmap_init(&flist, &firstblock);
  879. error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
  880. &flist, NULL, &done);
  881. ASSERT(!flist.xbf_count && !flist.xbf_first);
  882. if (error) {
  883. /* something screwed, just bail */
  884. if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  885. xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
  886. "page discard unable to remove delalloc mapping.");
  887. }
  888. break;
  889. }
  890. next_buffer:
  891. offset += len;
  892. } while ((bh = bh->b_this_page) != head);
  893. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  894. out_invalidate:
  895. xfs_vm_invalidatepage(page, 0);
  896. return;
  897. }
  898. /*
  899. * Calling this without startio set means we are being asked to make a dirty
  900. * page ready for freeing it's buffers. When called with startio set then
  901. * we are coming from writepage.
  902. *
  903. * When called with startio set it is important that we write the WHOLE
  904. * page if possible.
  905. * The bh->b_state's cannot know if any of the blocks or which block for
  906. * that matter are dirty due to mmap writes, and therefore bh uptodate is
  907. * only valid if the page itself isn't completely uptodate. Some layers
  908. * may clear the page dirty flag prior to calling write page, under the
  909. * assumption the entire page will be written out; by not writing out the
  910. * whole page the page can be reused before all valid dirty data is
  911. * written out. Note: in the case of a page that has been dirty'd by
  912. * mapwrite and but partially setup by block_prepare_write the
  913. * bh->b_states's will not agree and only ones setup by BPW/BCW will have
  914. * valid state, thus the whole page must be written out thing.
  915. */
  916. STATIC int
  917. xfs_page_state_convert(
  918. struct inode *inode,
  919. struct page *page,
  920. struct writeback_control *wbc,
  921. int startio,
  922. int unmapped) /* also implies page uptodate */
  923. {
  924. struct buffer_head *bh, *head;
  925. struct xfs_bmbt_irec imap;
  926. xfs_ioend_t *ioend = NULL, *iohead = NULL;
  927. loff_t offset;
  928. unsigned long p_offset = 0;
  929. unsigned int type;
  930. __uint64_t end_offset;
  931. pgoff_t end_index, last_index;
  932. ssize_t size, len;
  933. int flags, err, imap_valid = 0, uptodate = 1;
  934. int page_dirty, count = 0;
  935. int trylock = 0;
  936. int all_bh = unmapped;
  937. if (startio) {
  938. if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
  939. trylock |= BMAPI_TRYLOCK;
  940. }
  941. /* Is this page beyond the end of the file? */
  942. offset = i_size_read(inode);
  943. end_index = offset >> PAGE_CACHE_SHIFT;
  944. last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
  945. if (page->index >= end_index) {
  946. if ((page->index >= end_index + 1) ||
  947. !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
  948. if (startio)
  949. unlock_page(page);
  950. return 0;
  951. }
  952. }
  953. /*
  954. * page_dirty is initially a count of buffers on the page before
  955. * EOF and is decremented as we move each into a cleanable state.
  956. *
  957. * Derivation:
  958. *
  959. * End offset is the highest offset that this page should represent.
  960. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
  961. * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
  962. * hence give us the correct page_dirty count. On any other page,
  963. * it will be zero and in that case we need page_dirty to be the
  964. * count of buffers on the page.
  965. */
  966. end_offset = min_t(unsigned long long,
  967. (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
  968. len = 1 << inode->i_blkbits;
  969. p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
  970. PAGE_CACHE_SIZE);
  971. p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
  972. page_dirty = p_offset / len;
  973. bh = head = page_buffers(page);
  974. offset = page_offset(page);
  975. flags = BMAPI_READ;
  976. type = IO_NEW;
  977. /* TODO: cleanup count and page_dirty */
  978. do {
  979. if (offset >= end_offset)
  980. break;
  981. if (!buffer_uptodate(bh))
  982. uptodate = 0;
  983. if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
  984. /*
  985. * the iomap is actually still valid, but the ioend
  986. * isn't. shouldn't happen too often.
  987. */
  988. imap_valid = 0;
  989. continue;
  990. }
  991. if (imap_valid)
  992. imap_valid = xfs_imap_valid(inode, &imap, offset);
  993. /*
  994. * First case, map an unwritten extent and prepare for
  995. * extent state conversion transaction on completion.
  996. *
  997. * Second case, allocate space for a delalloc buffer.
  998. * We can return EAGAIN here in the release page case.
  999. *
  1000. * Third case, an unmapped buffer was found, and we are
  1001. * in a path where we need to write the whole page out.
  1002. */
  1003. if (buffer_unwritten(bh) || buffer_delay(bh) ||
  1004. ((buffer_uptodate(bh) || PageUptodate(page)) &&
  1005. !buffer_mapped(bh) && (unmapped || startio))) {
  1006. int new_ioend = 0;
  1007. /*
  1008. * Make sure we don't use a read-only iomap
  1009. */
  1010. if (flags == BMAPI_READ)
  1011. imap_valid = 0;
  1012. if (buffer_unwritten(bh)) {
  1013. type = IO_UNWRITTEN;
  1014. flags = BMAPI_WRITE | BMAPI_IGNSTATE;
  1015. } else if (buffer_delay(bh)) {
  1016. type = IO_DELAY;
  1017. flags = BMAPI_ALLOCATE | trylock;
  1018. } else {
  1019. type = IO_NEW;
  1020. flags = BMAPI_WRITE | BMAPI_MMAP;
  1021. }
  1022. if (!imap_valid) {
  1023. /*
  1024. * if we didn't have a valid mapping then we
  1025. * need to ensure that we put the new mapping
  1026. * in a new ioend structure. This needs to be
  1027. * done to ensure that the ioends correctly
  1028. * reflect the block mappings at io completion
  1029. * for unwritten extent conversion.
  1030. */
  1031. new_ioend = 1;
  1032. if (type == IO_NEW) {
  1033. size = xfs_probe_cluster(inode,
  1034. page, bh, head, 0);
  1035. } else {
  1036. size = len;
  1037. }
  1038. err = xfs_map_blocks(inode, offset, size,
  1039. &imap, flags);
  1040. if (err)
  1041. goto error;
  1042. imap_valid = xfs_imap_valid(inode, &imap,
  1043. offset);
  1044. }
  1045. if (imap_valid) {
  1046. xfs_map_at_offset(inode, bh, &imap, offset);
  1047. if (startio) {
  1048. xfs_add_to_ioend(inode, bh, offset,
  1049. type, &ioend,
  1050. new_ioend);
  1051. } else {
  1052. set_buffer_dirty(bh);
  1053. unlock_buffer(bh);
  1054. mark_buffer_dirty(bh);
  1055. }
  1056. page_dirty--;
  1057. count++;
  1058. }
  1059. } else if (buffer_uptodate(bh) && startio) {
  1060. /*
  1061. * we got here because the buffer is already mapped.
  1062. * That means it must already have extents allocated
  1063. * underneath it. Map the extent by reading it.
  1064. */
  1065. if (!imap_valid || flags != BMAPI_READ) {
  1066. flags = BMAPI_READ;
  1067. size = xfs_probe_cluster(inode, page, bh,
  1068. head, 1);
  1069. err = xfs_map_blocks(inode, offset, size,
  1070. &imap, flags);
  1071. if (err)
  1072. goto error;
  1073. imap_valid = xfs_imap_valid(inode, &imap,
  1074. offset);
  1075. }
  1076. /*
  1077. * We set the type to IO_NEW in case we are doing a
  1078. * small write at EOF that is extending the file but
  1079. * without needing an allocation. We need to update the
  1080. * file size on I/O completion in this case so it is
  1081. * the same case as having just allocated a new extent
  1082. * that we are writing into for the first time.
  1083. */
  1084. type = IO_NEW;
  1085. if (trylock_buffer(bh)) {
  1086. ASSERT(buffer_mapped(bh));
  1087. if (imap_valid)
  1088. all_bh = 1;
  1089. xfs_add_to_ioend(inode, bh, offset, type,
  1090. &ioend, !imap_valid);
  1091. page_dirty--;
  1092. count++;
  1093. } else {
  1094. imap_valid = 0;
  1095. }
  1096. } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
  1097. (unmapped || startio)) {
  1098. imap_valid = 0;
  1099. }
  1100. if (!iohead)
  1101. iohead = ioend;
  1102. } while (offset += len, ((bh = bh->b_this_page) != head));
  1103. if (uptodate && bh == head)
  1104. SetPageUptodate(page);
  1105. if (startio)
  1106. xfs_start_page_writeback(page, 1, count);
  1107. if (ioend && imap_valid) {
  1108. xfs_off_t end_index;
  1109. end_index = imap.br_startoff + imap.br_blockcount;
  1110. /* to bytes */
  1111. end_index <<= inode->i_blkbits;
  1112. /* to pages */
  1113. end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
  1114. /* check against file size */
  1115. if (end_index > last_index)
  1116. end_index = last_index;
  1117. xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
  1118. wbc, startio, all_bh, end_index);
  1119. }
  1120. if (iohead)
  1121. xfs_submit_ioend(wbc, iohead);
  1122. return page_dirty;
  1123. error:
  1124. if (iohead)
  1125. xfs_cancel_ioend(iohead);
  1126. /*
  1127. * If it's delalloc and we have nowhere to put it,
  1128. * throw it away, unless the lower layers told
  1129. * us to try again.
  1130. */
  1131. if (err != -EAGAIN) {
  1132. if (!unmapped)
  1133. xfs_aops_discard_page(page);
  1134. ClearPageUptodate(page);
  1135. }
  1136. return err;
  1137. }
  1138. /*
  1139. * writepage: Called from one of two places:
  1140. *
  1141. * 1. we are flushing a delalloc buffer head.
  1142. *
  1143. * 2. we are writing out a dirty page. Typically the page dirty
  1144. * state is cleared before we get here. In this case is it
  1145. * conceivable we have no buffer heads.
  1146. *
  1147. * For delalloc space on the page we need to allocate space and
  1148. * flush it. For unmapped buffer heads on the page we should
  1149. * allocate space if the page is uptodate. For any other dirty
  1150. * buffer heads on the page we should flush them.
  1151. *
  1152. * If we detect that a transaction would be required to flush
  1153. * the page, we have to check the process flags first, if we
  1154. * are already in a transaction or disk I/O during allocations
  1155. * is off, we need to fail the writepage and redirty the page.
  1156. */
  1157. STATIC int
  1158. xfs_vm_writepage(
  1159. struct page *page,
  1160. struct writeback_control *wbc)
  1161. {
  1162. int error;
  1163. int need_trans;
  1164. int delalloc, unmapped, unwritten;
  1165. struct inode *inode = page->mapping->host;
  1166. trace_xfs_writepage(inode, page, 0);
  1167. /*
  1168. * Refuse to write the page out if we are called from reclaim context.
  1169. *
  1170. * This is primarily to avoid stack overflows when called from deep
  1171. * used stacks in random callers for direct reclaim, but disabling
  1172. * reclaim for kswap is a nice side-effect as kswapd causes rather
  1173. * suboptimal I/O patters, too.
  1174. *
  1175. * This should really be done by the core VM, but until that happens
  1176. * filesystems like XFS, btrfs and ext4 have to take care of this
  1177. * by themselves.
  1178. */
  1179. if (current->flags & PF_MEMALLOC)
  1180. goto out_fail;
  1181. /*
  1182. * We need a transaction if:
  1183. * 1. There are delalloc buffers on the page
  1184. * 2. The page is uptodate and we have unmapped buffers
  1185. * 3. The page is uptodate and we have no buffers
  1186. * 4. There are unwritten buffers on the page
  1187. */
  1188. if (!page_has_buffers(page)) {
  1189. unmapped = 1;
  1190. need_trans = 1;
  1191. } else {
  1192. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1193. if (!PageUptodate(page))
  1194. unmapped = 0;
  1195. need_trans = delalloc + unmapped + unwritten;
  1196. }
  1197. /*
  1198. * If we need a transaction and the process flags say
  1199. * we are already in a transaction, or no IO is allowed
  1200. * then mark the page dirty again and leave the page
  1201. * as is.
  1202. */
  1203. if (current_test_flags(PF_FSTRANS) && need_trans)
  1204. goto out_fail;
  1205. /*
  1206. * Delay hooking up buffer heads until we have
  1207. * made our go/no-go decision.
  1208. */
  1209. if (!page_has_buffers(page))
  1210. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  1211. /*
  1212. * Convert delayed allocate, unwritten or unmapped space
  1213. * to real space and flush out to disk.
  1214. */
  1215. error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
  1216. if (error == -EAGAIN)
  1217. goto out_fail;
  1218. if (unlikely(error < 0))
  1219. goto out_unlock;
  1220. return 0;
  1221. out_fail:
  1222. redirty_page_for_writepage(wbc, page);
  1223. unlock_page(page);
  1224. return 0;
  1225. out_unlock:
  1226. unlock_page(page);
  1227. return error;
  1228. }
  1229. STATIC int
  1230. xfs_vm_writepages(
  1231. struct address_space *mapping,
  1232. struct writeback_control *wbc)
  1233. {
  1234. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  1235. return generic_writepages(mapping, wbc);
  1236. }
  1237. /*
  1238. * Called to move a page into cleanable state - and from there
  1239. * to be released. Possibly the page is already clean. We always
  1240. * have buffer heads in this call.
  1241. *
  1242. * Returns 0 if the page is ok to release, 1 otherwise.
  1243. *
  1244. * Possible scenarios are:
  1245. *
  1246. * 1. We are being called to release a page which has been written
  1247. * to via regular I/O. buffer heads will be dirty and possibly
  1248. * delalloc. If no delalloc buffer heads in this case then we
  1249. * can just return zero.
  1250. *
  1251. * 2. We are called to release a page which has been written via
  1252. * mmap, all we need to do is ensure there is no delalloc
  1253. * state in the buffer heads, if not we can let the caller
  1254. * free them and we should come back later via writepage.
  1255. */
  1256. STATIC int
  1257. xfs_vm_releasepage(
  1258. struct page *page,
  1259. gfp_t gfp_mask)
  1260. {
  1261. struct inode *inode = page->mapping->host;
  1262. int dirty, delalloc, unmapped, unwritten;
  1263. struct writeback_control wbc = {
  1264. .sync_mode = WB_SYNC_ALL,
  1265. .nr_to_write = 1,
  1266. };
  1267. trace_xfs_releasepage(inode, page, 0);
  1268. if (!page_has_buffers(page))
  1269. return 0;
  1270. xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
  1271. if (!delalloc && !unwritten)
  1272. goto free_buffers;
  1273. if (!(gfp_mask & __GFP_FS))
  1274. return 0;
  1275. /* If we are already inside a transaction or the thread cannot
  1276. * do I/O, we cannot release this page.
  1277. */
  1278. if (current_test_flags(PF_FSTRANS))
  1279. return 0;
  1280. /*
  1281. * Convert delalloc space to real space, do not flush the
  1282. * data out to disk, that will be done by the caller.
  1283. * Never need to allocate space here - we will always
  1284. * come back to writepage in that case.
  1285. */
  1286. dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
  1287. if (dirty == 0 && !unwritten)
  1288. goto free_buffers;
  1289. return 0;
  1290. free_buffers:
  1291. return try_to_free_buffers(page);
  1292. }
  1293. STATIC int
  1294. __xfs_get_blocks(
  1295. struct inode *inode,
  1296. sector_t iblock,
  1297. struct buffer_head *bh_result,
  1298. int create,
  1299. int direct,
  1300. bmapi_flags_t flags)
  1301. {
  1302. struct xfs_bmbt_irec imap;
  1303. xfs_off_t offset;
  1304. ssize_t size;
  1305. int nimap = 1;
  1306. int new = 0;
  1307. int error;
  1308. offset = (xfs_off_t)iblock << inode->i_blkbits;
  1309. ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
  1310. size = bh_result->b_size;
  1311. if (!create && direct && offset >= i_size_read(inode))
  1312. return 0;
  1313. error = xfs_iomap(XFS_I(inode), offset, size,
  1314. create ? flags : BMAPI_READ, &imap, &nimap, &new);
  1315. if (error)
  1316. return -error;
  1317. if (nimap == 0)
  1318. return 0;
  1319. if (imap.br_startblock != HOLESTARTBLOCK &&
  1320. imap.br_startblock != DELAYSTARTBLOCK) {
  1321. /*
  1322. * For unwritten extents do not report a disk address on
  1323. * the read case (treat as if we're reading into a hole).
  1324. */
  1325. if (create || !ISUNWRITTEN(&imap))
  1326. xfs_map_buffer(inode, bh_result, &imap, offset);
  1327. if (create && ISUNWRITTEN(&imap)) {
  1328. if (direct)
  1329. bh_result->b_private = inode;
  1330. set_buffer_unwritten(bh_result);
  1331. }
  1332. }
  1333. /*
  1334. * If this is a realtime file, data may be on a different device.
  1335. * to that pointed to from the buffer_head b_bdev currently.
  1336. */
  1337. bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
  1338. /*
  1339. * If we previously allocated a block out beyond eof and we are now
  1340. * coming back to use it then we will need to flag it as new even if it
  1341. * has a disk address.
  1342. *
  1343. * With sub-block writes into unwritten extents we also need to mark
  1344. * the buffer as new so that the unwritten parts of the buffer gets
  1345. * correctly zeroed.
  1346. */
  1347. if (create &&
  1348. ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
  1349. (offset >= i_size_read(inode)) ||
  1350. (new || ISUNWRITTEN(&imap))))
  1351. set_buffer_new(bh_result);
  1352. if (imap.br_startblock == DELAYSTARTBLOCK) {
  1353. BUG_ON(direct);
  1354. if (create) {
  1355. set_buffer_uptodate(bh_result);
  1356. set_buffer_mapped(bh_result);
  1357. set_buffer_delay(bh_result);
  1358. }
  1359. }
  1360. /*
  1361. * If this is O_DIRECT or the mpage code calling tell them how large
  1362. * the mapping is, so that we can avoid repeated get_blocks calls.
  1363. */
  1364. if (direct || size > (1 << inode->i_blkbits)) {
  1365. xfs_off_t mapping_size;
  1366. mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
  1367. mapping_size <<= inode->i_blkbits;
  1368. ASSERT(mapping_size > 0);
  1369. if (mapping_size > size)
  1370. mapping_size = size;
  1371. if (mapping_size > LONG_MAX)
  1372. mapping_size = LONG_MAX;
  1373. bh_result->b_size = mapping_size;
  1374. }
  1375. return 0;
  1376. }
  1377. int
  1378. xfs_get_blocks(
  1379. struct inode *inode,
  1380. sector_t iblock,
  1381. struct buffer_head *bh_result,
  1382. int create)
  1383. {
  1384. return __xfs_get_blocks(inode, iblock,
  1385. bh_result, create, 0, BMAPI_WRITE);
  1386. }
  1387. STATIC int
  1388. xfs_get_blocks_direct(
  1389. struct inode *inode,
  1390. sector_t iblock,
  1391. struct buffer_head *bh_result,
  1392. int create)
  1393. {
  1394. return __xfs_get_blocks(inode, iblock,
  1395. bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
  1396. }
  1397. STATIC void
  1398. xfs_end_io_direct(
  1399. struct kiocb *iocb,
  1400. loff_t offset,
  1401. ssize_t size,
  1402. void *private)
  1403. {
  1404. xfs_ioend_t *ioend = iocb->private;
  1405. /*
  1406. * Non-NULL private data means we need to issue a transaction to
  1407. * convert a range from unwritten to written extents. This needs
  1408. * to happen from process context but aio+dio I/O completion
  1409. * happens from irq context so we need to defer it to a workqueue.
  1410. * This is not necessary for synchronous direct I/O, but we do
  1411. * it anyway to keep the code uniform and simpler.
  1412. *
  1413. * Well, if only it were that simple. Because synchronous direct I/O
  1414. * requires extent conversion to occur *before* we return to userspace,
  1415. * we have to wait for extent conversion to complete. Look at the
  1416. * iocb that has been passed to us to determine if this is AIO or
  1417. * not. If it is synchronous, tell xfs_finish_ioend() to kick the
  1418. * workqueue and wait for it to complete.
  1419. *
  1420. * The core direct I/O code might be changed to always call the
  1421. * completion handler in the future, in which case all this can
  1422. * go away.
  1423. */
  1424. ioend->io_offset = offset;
  1425. ioend->io_size = size;
  1426. if (ioend->io_type == IO_READ) {
  1427. xfs_finish_ioend(ioend, 0);
  1428. } else if (private && size > 0) {
  1429. xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
  1430. } else {
  1431. /*
  1432. * A direct I/O write ioend starts it's life in unwritten
  1433. * state in case they map an unwritten extent. This write
  1434. * didn't map an unwritten extent so switch it's completion
  1435. * handler.
  1436. */
  1437. ioend->io_type = IO_NEW;
  1438. xfs_finish_ioend(ioend, 0);
  1439. }
  1440. /*
  1441. * blockdev_direct_IO can return an error even after the I/O
  1442. * completion handler was called. Thus we need to protect
  1443. * against double-freeing.
  1444. */
  1445. iocb->private = NULL;
  1446. }
  1447. STATIC ssize_t
  1448. xfs_vm_direct_IO(
  1449. int rw,
  1450. struct kiocb *iocb,
  1451. const struct iovec *iov,
  1452. loff_t offset,
  1453. unsigned long nr_segs)
  1454. {
  1455. struct file *file = iocb->ki_filp;
  1456. struct inode *inode = file->f_mapping->host;
  1457. struct block_device *bdev;
  1458. ssize_t ret;
  1459. bdev = xfs_find_bdev_for_inode(inode);
  1460. iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
  1461. IO_UNWRITTEN : IO_READ);
  1462. ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
  1463. offset, nr_segs,
  1464. xfs_get_blocks_direct,
  1465. xfs_end_io_direct);
  1466. if (unlikely(ret != -EIOCBQUEUED && iocb->private))
  1467. xfs_destroy_ioend(iocb->private);
  1468. return ret;
  1469. }
  1470. STATIC int
  1471. xfs_vm_write_begin(
  1472. struct file *file,
  1473. struct address_space *mapping,
  1474. loff_t pos,
  1475. unsigned len,
  1476. unsigned flags,
  1477. struct page **pagep,
  1478. void **fsdata)
  1479. {
  1480. *pagep = NULL;
  1481. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1482. xfs_get_blocks);
  1483. }
  1484. STATIC sector_t
  1485. xfs_vm_bmap(
  1486. struct address_space *mapping,
  1487. sector_t block)
  1488. {
  1489. struct inode *inode = (struct inode *)mapping->host;
  1490. struct xfs_inode *ip = XFS_I(inode);
  1491. xfs_itrace_entry(XFS_I(inode));
  1492. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  1493. xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
  1494. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  1495. return generic_block_bmap(mapping, block, xfs_get_blocks);
  1496. }
  1497. STATIC int
  1498. xfs_vm_readpage(
  1499. struct file *unused,
  1500. struct page *page)
  1501. {
  1502. return mpage_readpage(page, xfs_get_blocks);
  1503. }
  1504. STATIC int
  1505. xfs_vm_readpages(
  1506. struct file *unused,
  1507. struct address_space *mapping,
  1508. struct list_head *pages,
  1509. unsigned nr_pages)
  1510. {
  1511. return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
  1512. }
  1513. const struct address_space_operations xfs_address_space_operations = {
  1514. .readpage = xfs_vm_readpage,
  1515. .readpages = xfs_vm_readpages,
  1516. .writepage = xfs_vm_writepage,
  1517. .writepages = xfs_vm_writepages,
  1518. .sync_page = block_sync_page,
  1519. .releasepage = xfs_vm_releasepage,
  1520. .invalidatepage = xfs_vm_invalidatepage,
  1521. .write_begin = xfs_vm_write_begin,
  1522. .write_end = generic_write_end,
  1523. .bmap = xfs_vm_bmap,
  1524. .direct_IO = xfs_vm_direct_IO,
  1525. .migratepage = buffer_migrate_page,
  1526. .is_partially_uptodate = block_is_partially_uptodate,
  1527. .error_remove_page = generic_error_remove_page,
  1528. };