vmx.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. static struct vmcs_descriptor {
  40. int size;
  41. int order;
  42. u32 revision_id;
  43. } vmcs_descriptor;
  44. #define VMX_SEGMENT_FIELD(seg) \
  45. [VCPU_SREG_##seg] = { \
  46. .selector = GUEST_##seg##_SELECTOR, \
  47. .base = GUEST_##seg##_BASE, \
  48. .limit = GUEST_##seg##_LIMIT, \
  49. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  50. }
  51. static struct kvm_vmx_segment_field {
  52. unsigned selector;
  53. unsigned base;
  54. unsigned limit;
  55. unsigned ar_bytes;
  56. } kvm_vmx_segment_fields[] = {
  57. VMX_SEGMENT_FIELD(CS),
  58. VMX_SEGMENT_FIELD(DS),
  59. VMX_SEGMENT_FIELD(ES),
  60. VMX_SEGMENT_FIELD(FS),
  61. VMX_SEGMENT_FIELD(GS),
  62. VMX_SEGMENT_FIELD(SS),
  63. VMX_SEGMENT_FIELD(TR),
  64. VMX_SEGMENT_FIELD(LDTR),
  65. };
  66. /*
  67. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  68. * away by decrementing the array size.
  69. */
  70. static const u32 vmx_msr_index[] = {
  71. #ifdef CONFIG_X86_64
  72. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  73. #endif
  74. MSR_EFER, MSR_K6_STAR,
  75. };
  76. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  77. #ifdef CONFIG_X86_64
  78. static unsigned msr_offset_kernel_gs_base;
  79. #define NR_64BIT_MSRS 4
  80. /*
  81. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  82. * mechanism (cpu bug AA24)
  83. */
  84. #define NR_BAD_MSRS 2
  85. #else
  86. #define NR_64BIT_MSRS 0
  87. #define NR_BAD_MSRS 0
  88. #endif
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return &vcpu->guest_msrs[i];
  112. return NULL;
  113. }
  114. static void vmcs_clear(struct vmcs *vmcs)
  115. {
  116. u64 phys_addr = __pa(vmcs);
  117. u8 error;
  118. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  119. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  120. : "cc", "memory");
  121. if (error)
  122. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  123. vmcs, phys_addr);
  124. }
  125. static void __vcpu_clear(void *arg)
  126. {
  127. struct kvm_vcpu *vcpu = arg;
  128. int cpu = raw_smp_processor_id();
  129. if (vcpu->cpu == cpu)
  130. vmcs_clear(vcpu->vmcs);
  131. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  132. per_cpu(current_vmcs, cpu) = NULL;
  133. }
  134. static void vcpu_clear(struct kvm_vcpu *vcpu)
  135. {
  136. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  137. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  138. else
  139. __vcpu_clear(vcpu);
  140. vcpu->launched = 0;
  141. }
  142. static unsigned long vmcs_readl(unsigned long field)
  143. {
  144. unsigned long value;
  145. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  146. : "=a"(value) : "d"(field) : "cc");
  147. return value;
  148. }
  149. static u16 vmcs_read16(unsigned long field)
  150. {
  151. return vmcs_readl(field);
  152. }
  153. static u32 vmcs_read32(unsigned long field)
  154. {
  155. return vmcs_readl(field);
  156. }
  157. static u64 vmcs_read64(unsigned long field)
  158. {
  159. #ifdef CONFIG_X86_64
  160. return vmcs_readl(field);
  161. #else
  162. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  163. #endif
  164. }
  165. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  166. {
  167. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  168. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  169. dump_stack();
  170. }
  171. static void vmcs_writel(unsigned long field, unsigned long value)
  172. {
  173. u8 error;
  174. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  175. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  176. if (unlikely(error))
  177. vmwrite_error(field, value);
  178. }
  179. static void vmcs_write16(unsigned long field, u16 value)
  180. {
  181. vmcs_writel(field, value);
  182. }
  183. static void vmcs_write32(unsigned long field, u32 value)
  184. {
  185. vmcs_writel(field, value);
  186. }
  187. static void vmcs_write64(unsigned long field, u64 value)
  188. {
  189. #ifdef CONFIG_X86_64
  190. vmcs_writel(field, value);
  191. #else
  192. vmcs_writel(field, value);
  193. asm volatile ("");
  194. vmcs_writel(field+1, value >> 32);
  195. #endif
  196. }
  197. static void vmcs_clear_bits(unsigned long field, u32 mask)
  198. {
  199. vmcs_writel(field, vmcs_readl(field) & ~mask);
  200. }
  201. static void vmcs_set_bits(unsigned long field, u32 mask)
  202. {
  203. vmcs_writel(field, vmcs_readl(field) | mask);
  204. }
  205. static void reload_tss(void)
  206. {
  207. #ifndef CONFIG_X86_64
  208. /*
  209. * VT restores TR but not its size. Useless.
  210. */
  211. struct descriptor_table gdt;
  212. struct segment_descriptor *descs;
  213. get_gdt(&gdt);
  214. descs = (void *)gdt.base;
  215. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  216. load_TR_desc();
  217. #endif
  218. }
  219. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  220. {
  221. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  222. if (hs->loaded)
  223. return;
  224. hs->loaded = 1;
  225. /*
  226. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  227. * allow segment selectors with cpl > 0 or ti == 1.
  228. */
  229. hs->ldt_sel = read_ldt();
  230. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  231. hs->fs_sel = read_fs();
  232. if (!(hs->fs_sel & 7))
  233. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  234. else {
  235. vmcs_write16(HOST_FS_SELECTOR, 0);
  236. hs->fs_gs_ldt_reload_needed = 1;
  237. }
  238. hs->gs_sel = read_gs();
  239. if (!(hs->gs_sel & 7))
  240. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  241. else {
  242. vmcs_write16(HOST_GS_SELECTOR, 0);
  243. hs->fs_gs_ldt_reload_needed = 1;
  244. }
  245. #ifdef CONFIG_X86_64
  246. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  247. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  248. #else
  249. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  250. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  251. #endif
  252. }
  253. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  254. {
  255. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  256. if (!hs->loaded)
  257. return;
  258. hs->loaded = 0;
  259. if (hs->fs_gs_ldt_reload_needed) {
  260. load_ldt(hs->ldt_sel);
  261. load_fs(hs->fs_sel);
  262. /*
  263. * If we have to reload gs, we must take care to
  264. * preserve our gs base.
  265. */
  266. local_irq_disable();
  267. load_gs(hs->gs_sel);
  268. #ifdef CONFIG_X86_64
  269. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  270. #endif
  271. local_irq_enable();
  272. reload_tss();
  273. }
  274. #ifdef CONFIG_X86_64
  275. if (is_long_mode(vcpu)) {
  276. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  277. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  278. }
  279. #endif
  280. }
  281. /*
  282. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  283. * vcpu mutex is already taken.
  284. */
  285. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  286. {
  287. u64 phys_addr = __pa(vcpu->vmcs);
  288. int cpu;
  289. cpu = get_cpu();
  290. if (vcpu->cpu != cpu)
  291. vcpu_clear(vcpu);
  292. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  293. u8 error;
  294. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  295. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  296. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  297. : "cc");
  298. if (error)
  299. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  300. vcpu->vmcs, phys_addr);
  301. }
  302. if (vcpu->cpu != cpu) {
  303. struct descriptor_table dt;
  304. unsigned long sysenter_esp;
  305. vcpu->cpu = cpu;
  306. /*
  307. * Linux uses per-cpu TSS and GDT, so set these when switching
  308. * processors.
  309. */
  310. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  311. get_gdt(&dt);
  312. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  313. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  314. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  315. }
  316. }
  317. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  318. {
  319. vmx_load_host_state(vcpu);
  320. kvm_put_guest_fpu(vcpu);
  321. put_cpu();
  322. }
  323. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  324. {
  325. vcpu_clear(vcpu);
  326. }
  327. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  328. {
  329. return vmcs_readl(GUEST_RFLAGS);
  330. }
  331. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  332. {
  333. vmcs_writel(GUEST_RFLAGS, rflags);
  334. }
  335. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  336. {
  337. unsigned long rip;
  338. u32 interruptibility;
  339. rip = vmcs_readl(GUEST_RIP);
  340. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  341. vmcs_writel(GUEST_RIP, rip);
  342. /*
  343. * We emulated an instruction, so temporary interrupt blocking
  344. * should be removed, if set.
  345. */
  346. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  347. if (interruptibility & 3)
  348. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  349. interruptibility & ~3);
  350. vcpu->interrupt_window_open = 1;
  351. }
  352. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  353. {
  354. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  355. vmcs_readl(GUEST_RIP));
  356. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  357. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  358. GP_VECTOR |
  359. INTR_TYPE_EXCEPTION |
  360. INTR_INFO_DELIEVER_CODE_MASK |
  361. INTR_INFO_VALID_MASK);
  362. }
  363. /*
  364. * Set up the vmcs to automatically save and restore system
  365. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  366. * mode, as fiddling with msrs is very expensive.
  367. */
  368. static void setup_msrs(struct kvm_vcpu *vcpu)
  369. {
  370. int nr_skip, nr_good_msrs;
  371. if (is_long_mode(vcpu))
  372. nr_skip = NR_BAD_MSRS;
  373. else
  374. nr_skip = NR_64BIT_MSRS;
  375. nr_good_msrs = vcpu->nmsrs - nr_skip;
  376. /*
  377. * MSR_K6_STAR is only needed on long mode guests, and only
  378. * if efer.sce is enabled.
  379. */
  380. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  381. --nr_good_msrs;
  382. #ifdef CONFIG_X86_64
  383. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  384. ++nr_good_msrs;
  385. #endif
  386. }
  387. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  388. virt_to_phys(vcpu->guest_msrs + nr_skip));
  389. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  390. virt_to_phys(vcpu->guest_msrs + nr_skip));
  391. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  392. virt_to_phys(vcpu->host_msrs + nr_skip));
  393. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  394. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  395. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  396. }
  397. /*
  398. * reads and returns guest's timestamp counter "register"
  399. * guest_tsc = host_tsc + tsc_offset -- 21.3
  400. */
  401. static u64 guest_read_tsc(void)
  402. {
  403. u64 host_tsc, tsc_offset;
  404. rdtscll(host_tsc);
  405. tsc_offset = vmcs_read64(TSC_OFFSET);
  406. return host_tsc + tsc_offset;
  407. }
  408. /*
  409. * writes 'guest_tsc' into guest's timestamp counter "register"
  410. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  411. */
  412. static void guest_write_tsc(u64 guest_tsc)
  413. {
  414. u64 host_tsc;
  415. rdtscll(host_tsc);
  416. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  417. }
  418. /*
  419. * Reads an msr value (of 'msr_index') into 'pdata'.
  420. * Returns 0 on success, non-0 otherwise.
  421. * Assumes vcpu_load() was already called.
  422. */
  423. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  424. {
  425. u64 data;
  426. struct vmx_msr_entry *msr;
  427. if (!pdata) {
  428. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  429. return -EINVAL;
  430. }
  431. switch (msr_index) {
  432. #ifdef CONFIG_X86_64
  433. case MSR_FS_BASE:
  434. data = vmcs_readl(GUEST_FS_BASE);
  435. break;
  436. case MSR_GS_BASE:
  437. data = vmcs_readl(GUEST_GS_BASE);
  438. break;
  439. case MSR_EFER:
  440. return kvm_get_msr_common(vcpu, msr_index, pdata);
  441. #endif
  442. case MSR_IA32_TIME_STAMP_COUNTER:
  443. data = guest_read_tsc();
  444. break;
  445. case MSR_IA32_SYSENTER_CS:
  446. data = vmcs_read32(GUEST_SYSENTER_CS);
  447. break;
  448. case MSR_IA32_SYSENTER_EIP:
  449. data = vmcs_readl(GUEST_SYSENTER_EIP);
  450. break;
  451. case MSR_IA32_SYSENTER_ESP:
  452. data = vmcs_readl(GUEST_SYSENTER_ESP);
  453. break;
  454. default:
  455. msr = find_msr_entry(vcpu, msr_index);
  456. if (msr) {
  457. data = msr->data;
  458. break;
  459. }
  460. return kvm_get_msr_common(vcpu, msr_index, pdata);
  461. }
  462. *pdata = data;
  463. return 0;
  464. }
  465. /*
  466. * Writes msr value into into the appropriate "register".
  467. * Returns 0 on success, non-0 otherwise.
  468. * Assumes vcpu_load() was already called.
  469. */
  470. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  471. {
  472. struct vmx_msr_entry *msr;
  473. switch (msr_index) {
  474. #ifdef CONFIG_X86_64
  475. case MSR_EFER:
  476. return kvm_set_msr_common(vcpu, msr_index, data);
  477. case MSR_FS_BASE:
  478. vmcs_writel(GUEST_FS_BASE, data);
  479. break;
  480. case MSR_GS_BASE:
  481. vmcs_writel(GUEST_GS_BASE, data);
  482. break;
  483. case MSR_LSTAR:
  484. case MSR_SYSCALL_MASK:
  485. msr = find_msr_entry(vcpu, msr_index);
  486. if (msr)
  487. msr->data = data;
  488. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  489. break;
  490. #endif
  491. case MSR_IA32_SYSENTER_CS:
  492. vmcs_write32(GUEST_SYSENTER_CS, data);
  493. break;
  494. case MSR_IA32_SYSENTER_EIP:
  495. vmcs_writel(GUEST_SYSENTER_EIP, data);
  496. break;
  497. case MSR_IA32_SYSENTER_ESP:
  498. vmcs_writel(GUEST_SYSENTER_ESP, data);
  499. break;
  500. case MSR_IA32_TIME_STAMP_COUNTER:
  501. guest_write_tsc(data);
  502. break;
  503. default:
  504. msr = find_msr_entry(vcpu, msr_index);
  505. if (msr) {
  506. msr->data = data;
  507. break;
  508. }
  509. return kvm_set_msr_common(vcpu, msr_index, data);
  510. msr->data = data;
  511. break;
  512. }
  513. return 0;
  514. }
  515. /*
  516. * Sync the rsp and rip registers into the vcpu structure. This allows
  517. * registers to be accessed by indexing vcpu->regs.
  518. */
  519. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  520. {
  521. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  522. vcpu->rip = vmcs_readl(GUEST_RIP);
  523. }
  524. /*
  525. * Syncs rsp and rip back into the vmcs. Should be called after possible
  526. * modification.
  527. */
  528. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  529. {
  530. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  531. vmcs_writel(GUEST_RIP, vcpu->rip);
  532. }
  533. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  534. {
  535. unsigned long dr7 = 0x400;
  536. u32 exception_bitmap;
  537. int old_singlestep;
  538. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  539. old_singlestep = vcpu->guest_debug.singlestep;
  540. vcpu->guest_debug.enabled = dbg->enabled;
  541. if (vcpu->guest_debug.enabled) {
  542. int i;
  543. dr7 |= 0x200; /* exact */
  544. for (i = 0; i < 4; ++i) {
  545. if (!dbg->breakpoints[i].enabled)
  546. continue;
  547. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  548. dr7 |= 2 << (i*2); /* global enable */
  549. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  550. }
  551. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  552. vcpu->guest_debug.singlestep = dbg->singlestep;
  553. } else {
  554. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  555. vcpu->guest_debug.singlestep = 0;
  556. }
  557. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  558. unsigned long flags;
  559. flags = vmcs_readl(GUEST_RFLAGS);
  560. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  561. vmcs_writel(GUEST_RFLAGS, flags);
  562. }
  563. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  564. vmcs_writel(GUEST_DR7, dr7);
  565. return 0;
  566. }
  567. static __init int cpu_has_kvm_support(void)
  568. {
  569. unsigned long ecx = cpuid_ecx(1);
  570. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  571. }
  572. static __init int vmx_disabled_by_bios(void)
  573. {
  574. u64 msr;
  575. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  576. return (msr & 5) == 1; /* locked but not enabled */
  577. }
  578. static void hardware_enable(void *garbage)
  579. {
  580. int cpu = raw_smp_processor_id();
  581. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  582. u64 old;
  583. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  584. if ((old & 5) != 5)
  585. /* enable and lock */
  586. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  587. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  588. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  589. : "memory", "cc");
  590. }
  591. static void hardware_disable(void *garbage)
  592. {
  593. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  594. }
  595. static __init void setup_vmcs_descriptor(void)
  596. {
  597. u32 vmx_msr_low, vmx_msr_high;
  598. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  599. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  600. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  601. vmcs_descriptor.revision_id = vmx_msr_low;
  602. }
  603. static struct vmcs *alloc_vmcs_cpu(int cpu)
  604. {
  605. int node = cpu_to_node(cpu);
  606. struct page *pages;
  607. struct vmcs *vmcs;
  608. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  609. if (!pages)
  610. return NULL;
  611. vmcs = page_address(pages);
  612. memset(vmcs, 0, vmcs_descriptor.size);
  613. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  614. return vmcs;
  615. }
  616. static struct vmcs *alloc_vmcs(void)
  617. {
  618. return alloc_vmcs_cpu(raw_smp_processor_id());
  619. }
  620. static void free_vmcs(struct vmcs *vmcs)
  621. {
  622. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  623. }
  624. static void free_kvm_area(void)
  625. {
  626. int cpu;
  627. for_each_online_cpu(cpu)
  628. free_vmcs(per_cpu(vmxarea, cpu));
  629. }
  630. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  631. static __init int alloc_kvm_area(void)
  632. {
  633. int cpu;
  634. for_each_online_cpu(cpu) {
  635. struct vmcs *vmcs;
  636. vmcs = alloc_vmcs_cpu(cpu);
  637. if (!vmcs) {
  638. free_kvm_area();
  639. return -ENOMEM;
  640. }
  641. per_cpu(vmxarea, cpu) = vmcs;
  642. }
  643. return 0;
  644. }
  645. static __init int hardware_setup(void)
  646. {
  647. setup_vmcs_descriptor();
  648. return alloc_kvm_area();
  649. }
  650. static __exit void hardware_unsetup(void)
  651. {
  652. free_kvm_area();
  653. }
  654. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  655. {
  656. if (vcpu->rmode.active)
  657. vmcs_write32(EXCEPTION_BITMAP, ~0);
  658. else
  659. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  660. }
  661. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  662. {
  663. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  664. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  665. vmcs_write16(sf->selector, save->selector);
  666. vmcs_writel(sf->base, save->base);
  667. vmcs_write32(sf->limit, save->limit);
  668. vmcs_write32(sf->ar_bytes, save->ar);
  669. } else {
  670. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  671. << AR_DPL_SHIFT;
  672. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  673. }
  674. }
  675. static void enter_pmode(struct kvm_vcpu *vcpu)
  676. {
  677. unsigned long flags;
  678. vcpu->rmode.active = 0;
  679. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  680. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  681. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  682. flags = vmcs_readl(GUEST_RFLAGS);
  683. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  684. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  685. vmcs_writel(GUEST_RFLAGS, flags);
  686. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  687. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  688. update_exception_bitmap(vcpu);
  689. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  690. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  691. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  692. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  693. vmcs_write16(GUEST_SS_SELECTOR, 0);
  694. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  695. vmcs_write16(GUEST_CS_SELECTOR,
  696. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  697. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  698. }
  699. static int rmode_tss_base(struct kvm* kvm)
  700. {
  701. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  702. return base_gfn << PAGE_SHIFT;
  703. }
  704. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  705. {
  706. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  707. save->selector = vmcs_read16(sf->selector);
  708. save->base = vmcs_readl(sf->base);
  709. save->limit = vmcs_read32(sf->limit);
  710. save->ar = vmcs_read32(sf->ar_bytes);
  711. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  712. vmcs_write32(sf->limit, 0xffff);
  713. vmcs_write32(sf->ar_bytes, 0xf3);
  714. }
  715. static void enter_rmode(struct kvm_vcpu *vcpu)
  716. {
  717. unsigned long flags;
  718. vcpu->rmode.active = 1;
  719. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  720. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  721. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  722. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  723. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  724. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  725. flags = vmcs_readl(GUEST_RFLAGS);
  726. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  727. flags |= IOPL_MASK | X86_EFLAGS_VM;
  728. vmcs_writel(GUEST_RFLAGS, flags);
  729. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  730. update_exception_bitmap(vcpu);
  731. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  732. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  733. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  734. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  735. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  736. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  737. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  738. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  739. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  740. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  741. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  742. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  743. }
  744. #ifdef CONFIG_X86_64
  745. static void enter_lmode(struct kvm_vcpu *vcpu)
  746. {
  747. u32 guest_tr_ar;
  748. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  749. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  750. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  751. __FUNCTION__);
  752. vmcs_write32(GUEST_TR_AR_BYTES,
  753. (guest_tr_ar & ~AR_TYPE_MASK)
  754. | AR_TYPE_BUSY_64_TSS);
  755. }
  756. vcpu->shadow_efer |= EFER_LMA;
  757. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  758. vmcs_write32(VM_ENTRY_CONTROLS,
  759. vmcs_read32(VM_ENTRY_CONTROLS)
  760. | VM_ENTRY_CONTROLS_IA32E_MASK);
  761. }
  762. static void exit_lmode(struct kvm_vcpu *vcpu)
  763. {
  764. vcpu->shadow_efer &= ~EFER_LMA;
  765. vmcs_write32(VM_ENTRY_CONTROLS,
  766. vmcs_read32(VM_ENTRY_CONTROLS)
  767. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  768. }
  769. #endif
  770. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  771. {
  772. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  773. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  774. }
  775. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  776. {
  777. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  778. enter_pmode(vcpu);
  779. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  780. enter_rmode(vcpu);
  781. #ifdef CONFIG_X86_64
  782. if (vcpu->shadow_efer & EFER_LME) {
  783. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  784. enter_lmode(vcpu);
  785. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  786. exit_lmode(vcpu);
  787. }
  788. #endif
  789. if (!(cr0 & CR0_TS_MASK)) {
  790. vcpu->fpu_active = 1;
  791. vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
  792. }
  793. vmcs_writel(CR0_READ_SHADOW, cr0);
  794. vmcs_writel(GUEST_CR0,
  795. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  796. vcpu->cr0 = cr0;
  797. }
  798. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  799. {
  800. vmcs_writel(GUEST_CR3, cr3);
  801. if (!(vcpu->cr0 & CR0_TS_MASK)) {
  802. vcpu->fpu_active = 0;
  803. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  804. vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  805. }
  806. }
  807. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  808. {
  809. vmcs_writel(CR4_READ_SHADOW, cr4);
  810. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  811. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  812. vcpu->cr4 = cr4;
  813. }
  814. #ifdef CONFIG_X86_64
  815. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  816. {
  817. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  818. vcpu->shadow_efer = efer;
  819. if (efer & EFER_LMA) {
  820. vmcs_write32(VM_ENTRY_CONTROLS,
  821. vmcs_read32(VM_ENTRY_CONTROLS) |
  822. VM_ENTRY_CONTROLS_IA32E_MASK);
  823. msr->data = efer;
  824. } else {
  825. vmcs_write32(VM_ENTRY_CONTROLS,
  826. vmcs_read32(VM_ENTRY_CONTROLS) &
  827. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  828. msr->data = efer & ~EFER_LME;
  829. }
  830. setup_msrs(vcpu);
  831. }
  832. #endif
  833. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  834. {
  835. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  836. return vmcs_readl(sf->base);
  837. }
  838. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  839. struct kvm_segment *var, int seg)
  840. {
  841. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  842. u32 ar;
  843. var->base = vmcs_readl(sf->base);
  844. var->limit = vmcs_read32(sf->limit);
  845. var->selector = vmcs_read16(sf->selector);
  846. ar = vmcs_read32(sf->ar_bytes);
  847. if (ar & AR_UNUSABLE_MASK)
  848. ar = 0;
  849. var->type = ar & 15;
  850. var->s = (ar >> 4) & 1;
  851. var->dpl = (ar >> 5) & 3;
  852. var->present = (ar >> 7) & 1;
  853. var->avl = (ar >> 12) & 1;
  854. var->l = (ar >> 13) & 1;
  855. var->db = (ar >> 14) & 1;
  856. var->g = (ar >> 15) & 1;
  857. var->unusable = (ar >> 16) & 1;
  858. }
  859. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  860. struct kvm_segment *var, int seg)
  861. {
  862. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  863. u32 ar;
  864. vmcs_writel(sf->base, var->base);
  865. vmcs_write32(sf->limit, var->limit);
  866. vmcs_write16(sf->selector, var->selector);
  867. if (vcpu->rmode.active && var->s) {
  868. /*
  869. * Hack real-mode segments into vm86 compatibility.
  870. */
  871. if (var->base == 0xffff0000 && var->selector == 0xf000)
  872. vmcs_writel(sf->base, 0xf0000);
  873. ar = 0xf3;
  874. } else if (var->unusable)
  875. ar = 1 << 16;
  876. else {
  877. ar = var->type & 15;
  878. ar |= (var->s & 1) << 4;
  879. ar |= (var->dpl & 3) << 5;
  880. ar |= (var->present & 1) << 7;
  881. ar |= (var->avl & 1) << 12;
  882. ar |= (var->l & 1) << 13;
  883. ar |= (var->db & 1) << 14;
  884. ar |= (var->g & 1) << 15;
  885. }
  886. if (ar == 0) /* a 0 value means unusable */
  887. ar = AR_UNUSABLE_MASK;
  888. vmcs_write32(sf->ar_bytes, ar);
  889. }
  890. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  891. {
  892. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  893. *db = (ar >> 14) & 1;
  894. *l = (ar >> 13) & 1;
  895. }
  896. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  897. {
  898. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  899. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  900. }
  901. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  902. {
  903. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  904. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  905. }
  906. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  907. {
  908. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  909. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  910. }
  911. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  912. {
  913. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  914. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  915. }
  916. static int init_rmode_tss(struct kvm* kvm)
  917. {
  918. struct page *p1, *p2, *p3;
  919. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  920. char *page;
  921. p1 = gfn_to_page(kvm, fn++);
  922. p2 = gfn_to_page(kvm, fn++);
  923. p3 = gfn_to_page(kvm, fn);
  924. if (!p1 || !p2 || !p3) {
  925. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  926. return 0;
  927. }
  928. page = kmap_atomic(p1, KM_USER0);
  929. memset(page, 0, PAGE_SIZE);
  930. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  931. kunmap_atomic(page, KM_USER0);
  932. page = kmap_atomic(p2, KM_USER0);
  933. memset(page, 0, PAGE_SIZE);
  934. kunmap_atomic(page, KM_USER0);
  935. page = kmap_atomic(p3, KM_USER0);
  936. memset(page, 0, PAGE_SIZE);
  937. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  938. kunmap_atomic(page, KM_USER0);
  939. return 1;
  940. }
  941. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  942. {
  943. u32 msr_high, msr_low;
  944. rdmsr(msr, msr_low, msr_high);
  945. val &= msr_high;
  946. val |= msr_low;
  947. vmcs_write32(vmcs_field, val);
  948. }
  949. static void seg_setup(int seg)
  950. {
  951. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  952. vmcs_write16(sf->selector, 0);
  953. vmcs_writel(sf->base, 0);
  954. vmcs_write32(sf->limit, 0xffff);
  955. vmcs_write32(sf->ar_bytes, 0x93);
  956. }
  957. /*
  958. * Sets up the vmcs for emulated real mode.
  959. */
  960. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  961. {
  962. u32 host_sysenter_cs;
  963. u32 junk;
  964. unsigned long a;
  965. struct descriptor_table dt;
  966. int i;
  967. int ret = 0;
  968. extern asmlinkage void kvm_vmx_return(void);
  969. if (!init_rmode_tss(vcpu->kvm)) {
  970. ret = -ENOMEM;
  971. goto out;
  972. }
  973. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  974. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  975. vcpu->cr8 = 0;
  976. vcpu->apic_base = 0xfee00000 |
  977. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  978. MSR_IA32_APICBASE_ENABLE;
  979. fx_init(vcpu);
  980. /*
  981. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  982. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  983. */
  984. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  985. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  986. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  987. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  988. seg_setup(VCPU_SREG_DS);
  989. seg_setup(VCPU_SREG_ES);
  990. seg_setup(VCPU_SREG_FS);
  991. seg_setup(VCPU_SREG_GS);
  992. seg_setup(VCPU_SREG_SS);
  993. vmcs_write16(GUEST_TR_SELECTOR, 0);
  994. vmcs_writel(GUEST_TR_BASE, 0);
  995. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  996. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  997. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  998. vmcs_writel(GUEST_LDTR_BASE, 0);
  999. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1000. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1001. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1002. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1003. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1004. vmcs_writel(GUEST_RFLAGS, 0x02);
  1005. vmcs_writel(GUEST_RIP, 0xfff0);
  1006. vmcs_writel(GUEST_RSP, 0);
  1007. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1008. vmcs_writel(GUEST_DR7, 0x400);
  1009. vmcs_writel(GUEST_GDTR_BASE, 0);
  1010. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1011. vmcs_writel(GUEST_IDTR_BASE, 0);
  1012. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1013. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1014. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1015. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1016. /* I/O */
  1017. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1018. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1019. guest_write_tsc(0);
  1020. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1021. /* Special registers */
  1022. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1023. /* Control */
  1024. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1025. PIN_BASED_VM_EXEC_CONTROL,
  1026. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1027. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1028. );
  1029. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1030. CPU_BASED_VM_EXEC_CONTROL,
  1031. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1032. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1033. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1034. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1035. | CPU_BASED_MOV_DR_EXITING
  1036. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1037. );
  1038. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  1039. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1040. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1041. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1042. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1043. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1044. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1045. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1046. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1047. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1048. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1049. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1050. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1051. #ifdef CONFIG_X86_64
  1052. rdmsrl(MSR_FS_BASE, a);
  1053. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1054. rdmsrl(MSR_GS_BASE, a);
  1055. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1056. #else
  1057. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1058. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1059. #endif
  1060. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1061. get_idt(&dt);
  1062. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1063. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  1064. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1065. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1066. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1067. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1068. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1069. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1070. for (i = 0; i < NR_VMX_MSR; ++i) {
  1071. u32 index = vmx_msr_index[i];
  1072. u32 data_low, data_high;
  1073. u64 data;
  1074. int j = vcpu->nmsrs;
  1075. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1076. continue;
  1077. if (wrmsr_safe(index, data_low, data_high) < 0)
  1078. continue;
  1079. data = data_low | ((u64)data_high << 32);
  1080. vcpu->host_msrs[j].index = index;
  1081. vcpu->host_msrs[j].reserved = 0;
  1082. vcpu->host_msrs[j].data = data;
  1083. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1084. #ifdef CONFIG_X86_64
  1085. if (index == MSR_KERNEL_GS_BASE)
  1086. msr_offset_kernel_gs_base = j;
  1087. #endif
  1088. ++vcpu->nmsrs;
  1089. }
  1090. setup_msrs(vcpu);
  1091. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1092. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1093. /* 22.2.1, 20.8.1 */
  1094. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1095. VM_ENTRY_CONTROLS, 0);
  1096. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1097. #ifdef CONFIG_X86_64
  1098. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1099. vmcs_writel(TPR_THRESHOLD, 0);
  1100. #endif
  1101. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1102. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1103. vcpu->cr0 = 0x60000010;
  1104. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1105. vmx_set_cr4(vcpu, 0);
  1106. #ifdef CONFIG_X86_64
  1107. vmx_set_efer(vcpu, 0);
  1108. #endif
  1109. return 0;
  1110. out:
  1111. return ret;
  1112. }
  1113. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1114. {
  1115. u16 ent[2];
  1116. u16 cs;
  1117. u16 ip;
  1118. unsigned long flags;
  1119. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1120. u16 sp = vmcs_readl(GUEST_RSP);
  1121. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1122. if (sp > ss_limit || sp < 6 ) {
  1123. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1124. __FUNCTION__,
  1125. vmcs_readl(GUEST_RSP),
  1126. vmcs_readl(GUEST_SS_BASE),
  1127. vmcs_read32(GUEST_SS_LIMIT));
  1128. return;
  1129. }
  1130. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1131. sizeof(ent)) {
  1132. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1133. return;
  1134. }
  1135. flags = vmcs_readl(GUEST_RFLAGS);
  1136. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1137. ip = vmcs_readl(GUEST_RIP);
  1138. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1139. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1140. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1141. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1142. return;
  1143. }
  1144. vmcs_writel(GUEST_RFLAGS, flags &
  1145. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1146. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1147. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1148. vmcs_writel(GUEST_RIP, ent[0]);
  1149. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1150. }
  1151. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1152. {
  1153. int word_index = __ffs(vcpu->irq_summary);
  1154. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1155. int irq = word_index * BITS_PER_LONG + bit_index;
  1156. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1157. if (!vcpu->irq_pending[word_index])
  1158. clear_bit(word_index, &vcpu->irq_summary);
  1159. if (vcpu->rmode.active) {
  1160. inject_rmode_irq(vcpu, irq);
  1161. return;
  1162. }
  1163. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1164. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1165. }
  1166. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1167. struct kvm_run *kvm_run)
  1168. {
  1169. u32 cpu_based_vm_exec_control;
  1170. vcpu->interrupt_window_open =
  1171. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1172. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1173. if (vcpu->interrupt_window_open &&
  1174. vcpu->irq_summary &&
  1175. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1176. /*
  1177. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1178. */
  1179. kvm_do_inject_irq(vcpu);
  1180. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1181. if (!vcpu->interrupt_window_open &&
  1182. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1183. /*
  1184. * Interrupts blocked. Wait for unblock.
  1185. */
  1186. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1187. else
  1188. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1189. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1190. }
  1191. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1192. {
  1193. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1194. set_debugreg(dbg->bp[0], 0);
  1195. set_debugreg(dbg->bp[1], 1);
  1196. set_debugreg(dbg->bp[2], 2);
  1197. set_debugreg(dbg->bp[3], 3);
  1198. if (dbg->singlestep) {
  1199. unsigned long flags;
  1200. flags = vmcs_readl(GUEST_RFLAGS);
  1201. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1202. vmcs_writel(GUEST_RFLAGS, flags);
  1203. }
  1204. }
  1205. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1206. int vec, u32 err_code)
  1207. {
  1208. if (!vcpu->rmode.active)
  1209. return 0;
  1210. if (vec == GP_VECTOR && err_code == 0)
  1211. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1212. return 1;
  1213. return 0;
  1214. }
  1215. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1216. {
  1217. u32 intr_info, error_code;
  1218. unsigned long cr2, rip;
  1219. u32 vect_info;
  1220. enum emulation_result er;
  1221. int r;
  1222. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1223. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1224. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1225. !is_page_fault(intr_info)) {
  1226. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1227. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1228. }
  1229. if (is_external_interrupt(vect_info)) {
  1230. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1231. set_bit(irq, vcpu->irq_pending);
  1232. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1233. }
  1234. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1235. asm ("int $2");
  1236. return 1;
  1237. }
  1238. if (is_no_device(intr_info)) {
  1239. vcpu->fpu_active = 1;
  1240. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1241. if (!(vcpu->cr0 & CR0_TS_MASK))
  1242. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1243. return 1;
  1244. }
  1245. error_code = 0;
  1246. rip = vmcs_readl(GUEST_RIP);
  1247. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1248. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1249. if (is_page_fault(intr_info)) {
  1250. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1251. spin_lock(&vcpu->kvm->lock);
  1252. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1253. if (r < 0) {
  1254. spin_unlock(&vcpu->kvm->lock);
  1255. return r;
  1256. }
  1257. if (!r) {
  1258. spin_unlock(&vcpu->kvm->lock);
  1259. return 1;
  1260. }
  1261. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1262. spin_unlock(&vcpu->kvm->lock);
  1263. switch (er) {
  1264. case EMULATE_DONE:
  1265. return 1;
  1266. case EMULATE_DO_MMIO:
  1267. ++vcpu->stat.mmio_exits;
  1268. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1269. return 0;
  1270. case EMULATE_FAIL:
  1271. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1272. break;
  1273. default:
  1274. BUG();
  1275. }
  1276. }
  1277. if (vcpu->rmode.active &&
  1278. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1279. error_code))
  1280. return 1;
  1281. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1282. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1283. return 0;
  1284. }
  1285. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1286. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1287. kvm_run->ex.error_code = error_code;
  1288. return 0;
  1289. }
  1290. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1291. struct kvm_run *kvm_run)
  1292. {
  1293. ++vcpu->stat.irq_exits;
  1294. return 1;
  1295. }
  1296. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1297. {
  1298. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1299. return 0;
  1300. }
  1301. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1302. {
  1303. u64 inst;
  1304. gva_t rip;
  1305. int countr_size;
  1306. int i, n;
  1307. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1308. countr_size = 2;
  1309. } else {
  1310. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1311. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1312. (cs_ar & AR_DB_MASK) ? 4: 2;
  1313. }
  1314. rip = vmcs_readl(GUEST_RIP);
  1315. if (countr_size != 8)
  1316. rip += vmcs_readl(GUEST_CS_BASE);
  1317. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1318. for (i = 0; i < n; i++) {
  1319. switch (((u8*)&inst)[i]) {
  1320. case 0xf0:
  1321. case 0xf2:
  1322. case 0xf3:
  1323. case 0x2e:
  1324. case 0x36:
  1325. case 0x3e:
  1326. case 0x26:
  1327. case 0x64:
  1328. case 0x65:
  1329. case 0x66:
  1330. break;
  1331. case 0x67:
  1332. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1333. default:
  1334. goto done;
  1335. }
  1336. }
  1337. return 0;
  1338. done:
  1339. countr_size *= 8;
  1340. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1341. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1342. return 1;
  1343. }
  1344. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1345. {
  1346. u64 exit_qualification;
  1347. int size, down, in, string, rep;
  1348. unsigned port;
  1349. unsigned long count;
  1350. gva_t address;
  1351. ++vcpu->stat.io_exits;
  1352. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1353. in = (exit_qualification & 8) != 0;
  1354. size = (exit_qualification & 7) + 1;
  1355. string = (exit_qualification & 16) != 0;
  1356. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1357. count = 1;
  1358. rep = (exit_qualification & 32) != 0;
  1359. port = exit_qualification >> 16;
  1360. address = 0;
  1361. if (string) {
  1362. if (rep && !get_io_count(vcpu, &count))
  1363. return 1;
  1364. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1365. }
  1366. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1367. address, rep, port);
  1368. }
  1369. static void
  1370. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1371. {
  1372. /*
  1373. * Patch in the VMCALL instruction:
  1374. */
  1375. hypercall[0] = 0x0f;
  1376. hypercall[1] = 0x01;
  1377. hypercall[2] = 0xc1;
  1378. hypercall[3] = 0xc3;
  1379. }
  1380. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1381. {
  1382. u64 exit_qualification;
  1383. int cr;
  1384. int reg;
  1385. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1386. cr = exit_qualification & 15;
  1387. reg = (exit_qualification >> 8) & 15;
  1388. switch ((exit_qualification >> 4) & 3) {
  1389. case 0: /* mov to cr */
  1390. switch (cr) {
  1391. case 0:
  1392. vcpu_load_rsp_rip(vcpu);
  1393. set_cr0(vcpu, vcpu->regs[reg]);
  1394. skip_emulated_instruction(vcpu);
  1395. return 1;
  1396. case 3:
  1397. vcpu_load_rsp_rip(vcpu);
  1398. set_cr3(vcpu, vcpu->regs[reg]);
  1399. skip_emulated_instruction(vcpu);
  1400. return 1;
  1401. case 4:
  1402. vcpu_load_rsp_rip(vcpu);
  1403. set_cr4(vcpu, vcpu->regs[reg]);
  1404. skip_emulated_instruction(vcpu);
  1405. return 1;
  1406. case 8:
  1407. vcpu_load_rsp_rip(vcpu);
  1408. set_cr8(vcpu, vcpu->regs[reg]);
  1409. skip_emulated_instruction(vcpu);
  1410. return 1;
  1411. };
  1412. break;
  1413. case 2: /* clts */
  1414. vcpu_load_rsp_rip(vcpu);
  1415. vcpu->fpu_active = 1;
  1416. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1417. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1418. vcpu->cr0 &= ~CR0_TS_MASK;
  1419. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1420. skip_emulated_instruction(vcpu);
  1421. return 1;
  1422. case 1: /*mov from cr*/
  1423. switch (cr) {
  1424. case 3:
  1425. vcpu_load_rsp_rip(vcpu);
  1426. vcpu->regs[reg] = vcpu->cr3;
  1427. vcpu_put_rsp_rip(vcpu);
  1428. skip_emulated_instruction(vcpu);
  1429. return 1;
  1430. case 8:
  1431. vcpu_load_rsp_rip(vcpu);
  1432. vcpu->regs[reg] = vcpu->cr8;
  1433. vcpu_put_rsp_rip(vcpu);
  1434. skip_emulated_instruction(vcpu);
  1435. return 1;
  1436. }
  1437. break;
  1438. case 3: /* lmsw */
  1439. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1440. skip_emulated_instruction(vcpu);
  1441. return 1;
  1442. default:
  1443. break;
  1444. }
  1445. kvm_run->exit_reason = 0;
  1446. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1447. (int)(exit_qualification >> 4) & 3, cr);
  1448. return 0;
  1449. }
  1450. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1451. {
  1452. u64 exit_qualification;
  1453. unsigned long val;
  1454. int dr, reg;
  1455. /*
  1456. * FIXME: this code assumes the host is debugging the guest.
  1457. * need to deal with guest debugging itself too.
  1458. */
  1459. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1460. dr = exit_qualification & 7;
  1461. reg = (exit_qualification >> 8) & 15;
  1462. vcpu_load_rsp_rip(vcpu);
  1463. if (exit_qualification & 16) {
  1464. /* mov from dr */
  1465. switch (dr) {
  1466. case 6:
  1467. val = 0xffff0ff0;
  1468. break;
  1469. case 7:
  1470. val = 0x400;
  1471. break;
  1472. default:
  1473. val = 0;
  1474. }
  1475. vcpu->regs[reg] = val;
  1476. } else {
  1477. /* mov to dr */
  1478. }
  1479. vcpu_put_rsp_rip(vcpu);
  1480. skip_emulated_instruction(vcpu);
  1481. return 1;
  1482. }
  1483. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1484. {
  1485. kvm_emulate_cpuid(vcpu);
  1486. return 1;
  1487. }
  1488. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1489. {
  1490. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1491. u64 data;
  1492. if (vmx_get_msr(vcpu, ecx, &data)) {
  1493. vmx_inject_gp(vcpu, 0);
  1494. return 1;
  1495. }
  1496. /* FIXME: handling of bits 32:63 of rax, rdx */
  1497. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1498. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1499. skip_emulated_instruction(vcpu);
  1500. return 1;
  1501. }
  1502. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1503. {
  1504. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1505. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1506. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1507. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1508. vmx_inject_gp(vcpu, 0);
  1509. return 1;
  1510. }
  1511. skip_emulated_instruction(vcpu);
  1512. return 1;
  1513. }
  1514. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1515. struct kvm_run *kvm_run)
  1516. {
  1517. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1518. kvm_run->cr8 = vcpu->cr8;
  1519. kvm_run->apic_base = vcpu->apic_base;
  1520. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1521. vcpu->irq_summary == 0);
  1522. }
  1523. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1524. struct kvm_run *kvm_run)
  1525. {
  1526. /*
  1527. * If the user space waits to inject interrupts, exit as soon as
  1528. * possible
  1529. */
  1530. if (kvm_run->request_interrupt_window &&
  1531. !vcpu->irq_summary) {
  1532. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1533. ++vcpu->stat.irq_window_exits;
  1534. return 0;
  1535. }
  1536. return 1;
  1537. }
  1538. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1539. {
  1540. skip_emulated_instruction(vcpu);
  1541. if (vcpu->irq_summary)
  1542. return 1;
  1543. kvm_run->exit_reason = KVM_EXIT_HLT;
  1544. ++vcpu->stat.halt_exits;
  1545. return 0;
  1546. }
  1547. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1548. {
  1549. skip_emulated_instruction(vcpu);
  1550. return kvm_hypercall(vcpu, kvm_run);
  1551. }
  1552. /*
  1553. * The exit handlers return 1 if the exit was handled fully and guest execution
  1554. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1555. * to be done to userspace and return 0.
  1556. */
  1557. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1558. struct kvm_run *kvm_run) = {
  1559. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1560. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1561. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1562. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1563. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1564. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1565. [EXIT_REASON_CPUID] = handle_cpuid,
  1566. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1567. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1568. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1569. [EXIT_REASON_HLT] = handle_halt,
  1570. [EXIT_REASON_VMCALL] = handle_vmcall,
  1571. };
  1572. static const int kvm_vmx_max_exit_handlers =
  1573. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1574. /*
  1575. * The guest has exited. See if we can fix it or if we need userspace
  1576. * assistance.
  1577. */
  1578. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1579. {
  1580. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1581. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1582. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1583. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1584. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1585. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1586. if (exit_reason < kvm_vmx_max_exit_handlers
  1587. && kvm_vmx_exit_handlers[exit_reason])
  1588. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1589. else {
  1590. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1591. kvm_run->hw.hardware_exit_reason = exit_reason;
  1592. }
  1593. return 0;
  1594. }
  1595. /*
  1596. * Check if userspace requested an interrupt window, and that the
  1597. * interrupt window is open.
  1598. *
  1599. * No need to exit to userspace if we already have an interrupt queued.
  1600. */
  1601. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1602. struct kvm_run *kvm_run)
  1603. {
  1604. return (!vcpu->irq_summary &&
  1605. kvm_run->request_interrupt_window &&
  1606. vcpu->interrupt_window_open &&
  1607. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1608. }
  1609. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1610. {
  1611. u8 fail;
  1612. int r;
  1613. preempted:
  1614. if (!vcpu->mmio_read_completed)
  1615. do_interrupt_requests(vcpu, kvm_run);
  1616. if (vcpu->guest_debug.enabled)
  1617. kvm_guest_debug_pre(vcpu);
  1618. #ifdef CONFIG_X86_64
  1619. if (is_long_mode(vcpu)) {
  1620. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  1621. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1622. }
  1623. #endif
  1624. again:
  1625. vmx_save_host_state(vcpu);
  1626. kvm_load_guest_fpu(vcpu);
  1627. /*
  1628. * Loading guest fpu may have cleared host cr0.ts
  1629. */
  1630. vmcs_writel(HOST_CR0, read_cr0());
  1631. asm (
  1632. /* Store host registers */
  1633. "pushf \n\t"
  1634. #ifdef CONFIG_X86_64
  1635. "push %%rax; push %%rbx; push %%rdx;"
  1636. "push %%rsi; push %%rdi; push %%rbp;"
  1637. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1638. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1639. "push %%rcx \n\t"
  1640. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1641. #else
  1642. "pusha; push %%ecx \n\t"
  1643. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1644. #endif
  1645. /* Check if vmlaunch of vmresume is needed */
  1646. "cmp $0, %1 \n\t"
  1647. /* Load guest registers. Don't clobber flags. */
  1648. #ifdef CONFIG_X86_64
  1649. "mov %c[cr2](%3), %%rax \n\t"
  1650. "mov %%rax, %%cr2 \n\t"
  1651. "mov %c[rax](%3), %%rax \n\t"
  1652. "mov %c[rbx](%3), %%rbx \n\t"
  1653. "mov %c[rdx](%3), %%rdx \n\t"
  1654. "mov %c[rsi](%3), %%rsi \n\t"
  1655. "mov %c[rdi](%3), %%rdi \n\t"
  1656. "mov %c[rbp](%3), %%rbp \n\t"
  1657. "mov %c[r8](%3), %%r8 \n\t"
  1658. "mov %c[r9](%3), %%r9 \n\t"
  1659. "mov %c[r10](%3), %%r10 \n\t"
  1660. "mov %c[r11](%3), %%r11 \n\t"
  1661. "mov %c[r12](%3), %%r12 \n\t"
  1662. "mov %c[r13](%3), %%r13 \n\t"
  1663. "mov %c[r14](%3), %%r14 \n\t"
  1664. "mov %c[r15](%3), %%r15 \n\t"
  1665. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1666. #else
  1667. "mov %c[cr2](%3), %%eax \n\t"
  1668. "mov %%eax, %%cr2 \n\t"
  1669. "mov %c[rax](%3), %%eax \n\t"
  1670. "mov %c[rbx](%3), %%ebx \n\t"
  1671. "mov %c[rdx](%3), %%edx \n\t"
  1672. "mov %c[rsi](%3), %%esi \n\t"
  1673. "mov %c[rdi](%3), %%edi \n\t"
  1674. "mov %c[rbp](%3), %%ebp \n\t"
  1675. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1676. #endif
  1677. /* Enter guest mode */
  1678. "jne launched \n\t"
  1679. ASM_VMX_VMLAUNCH "\n\t"
  1680. "jmp kvm_vmx_return \n\t"
  1681. "launched: " ASM_VMX_VMRESUME "\n\t"
  1682. ".globl kvm_vmx_return \n\t"
  1683. "kvm_vmx_return: "
  1684. /* Save guest registers, load host registers, keep flags */
  1685. #ifdef CONFIG_X86_64
  1686. "xchg %3, (%%rsp) \n\t"
  1687. "mov %%rax, %c[rax](%3) \n\t"
  1688. "mov %%rbx, %c[rbx](%3) \n\t"
  1689. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1690. "mov %%rdx, %c[rdx](%3) \n\t"
  1691. "mov %%rsi, %c[rsi](%3) \n\t"
  1692. "mov %%rdi, %c[rdi](%3) \n\t"
  1693. "mov %%rbp, %c[rbp](%3) \n\t"
  1694. "mov %%r8, %c[r8](%3) \n\t"
  1695. "mov %%r9, %c[r9](%3) \n\t"
  1696. "mov %%r10, %c[r10](%3) \n\t"
  1697. "mov %%r11, %c[r11](%3) \n\t"
  1698. "mov %%r12, %c[r12](%3) \n\t"
  1699. "mov %%r13, %c[r13](%3) \n\t"
  1700. "mov %%r14, %c[r14](%3) \n\t"
  1701. "mov %%r15, %c[r15](%3) \n\t"
  1702. "mov %%cr2, %%rax \n\t"
  1703. "mov %%rax, %c[cr2](%3) \n\t"
  1704. "mov (%%rsp), %3 \n\t"
  1705. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1706. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1707. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1708. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1709. #else
  1710. "xchg %3, (%%esp) \n\t"
  1711. "mov %%eax, %c[rax](%3) \n\t"
  1712. "mov %%ebx, %c[rbx](%3) \n\t"
  1713. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1714. "mov %%edx, %c[rdx](%3) \n\t"
  1715. "mov %%esi, %c[rsi](%3) \n\t"
  1716. "mov %%edi, %c[rdi](%3) \n\t"
  1717. "mov %%ebp, %c[rbp](%3) \n\t"
  1718. "mov %%cr2, %%eax \n\t"
  1719. "mov %%eax, %c[cr2](%3) \n\t"
  1720. "mov (%%esp), %3 \n\t"
  1721. "pop %%ecx; popa \n\t"
  1722. #endif
  1723. "setbe %0 \n\t"
  1724. "popf \n\t"
  1725. : "=q" (fail)
  1726. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1727. "c"(vcpu),
  1728. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1729. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1730. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1731. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1732. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1733. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1734. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1735. #ifdef CONFIG_X86_64
  1736. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1737. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1738. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1739. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1740. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1741. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1742. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1743. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1744. #endif
  1745. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1746. : "cc", "memory" );
  1747. ++vcpu->stat.exits;
  1748. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1749. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1750. if (unlikely(fail)) {
  1751. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1752. kvm_run->fail_entry.hardware_entry_failure_reason
  1753. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1754. r = 0;
  1755. goto out;
  1756. }
  1757. /*
  1758. * Profile KVM exit RIPs:
  1759. */
  1760. if (unlikely(prof_on == KVM_PROFILING))
  1761. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1762. vcpu->launched = 1;
  1763. r = kvm_handle_exit(kvm_run, vcpu);
  1764. if (r > 0) {
  1765. /* Give scheduler a change to reschedule. */
  1766. if (signal_pending(current)) {
  1767. r = -EINTR;
  1768. kvm_run->exit_reason = KVM_EXIT_INTR;
  1769. ++vcpu->stat.signal_exits;
  1770. goto out;
  1771. }
  1772. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1773. r = -EINTR;
  1774. kvm_run->exit_reason = KVM_EXIT_INTR;
  1775. ++vcpu->stat.request_irq_exits;
  1776. goto out;
  1777. }
  1778. if (!need_resched()) {
  1779. ++vcpu->stat.light_exits;
  1780. goto again;
  1781. }
  1782. }
  1783. out:
  1784. if (r > 0) {
  1785. kvm_resched(vcpu);
  1786. goto preempted;
  1787. }
  1788. post_kvm_run_save(vcpu, kvm_run);
  1789. return r;
  1790. }
  1791. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1792. {
  1793. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1794. }
  1795. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1796. unsigned long addr,
  1797. u32 err_code)
  1798. {
  1799. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1800. ++vcpu->stat.pf_guest;
  1801. if (is_page_fault(vect_info)) {
  1802. printk(KERN_DEBUG "inject_page_fault: "
  1803. "double fault 0x%lx @ 0x%lx\n",
  1804. addr, vmcs_readl(GUEST_RIP));
  1805. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1806. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1807. DF_VECTOR |
  1808. INTR_TYPE_EXCEPTION |
  1809. INTR_INFO_DELIEVER_CODE_MASK |
  1810. INTR_INFO_VALID_MASK);
  1811. return;
  1812. }
  1813. vcpu->cr2 = addr;
  1814. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1815. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1816. PF_VECTOR |
  1817. INTR_TYPE_EXCEPTION |
  1818. INTR_INFO_DELIEVER_CODE_MASK |
  1819. INTR_INFO_VALID_MASK);
  1820. }
  1821. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1822. {
  1823. if (vcpu->vmcs) {
  1824. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1825. free_vmcs(vcpu->vmcs);
  1826. vcpu->vmcs = NULL;
  1827. }
  1828. }
  1829. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1830. {
  1831. vmx_free_vmcs(vcpu);
  1832. }
  1833. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1834. {
  1835. struct vmcs *vmcs;
  1836. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1837. if (!vcpu->guest_msrs)
  1838. return -ENOMEM;
  1839. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1840. if (!vcpu->host_msrs)
  1841. goto out_free_guest_msrs;
  1842. vmcs = alloc_vmcs();
  1843. if (!vmcs)
  1844. goto out_free_msrs;
  1845. vmcs_clear(vmcs);
  1846. vcpu->vmcs = vmcs;
  1847. vcpu->launched = 0;
  1848. vcpu->fpu_active = 1;
  1849. return 0;
  1850. out_free_msrs:
  1851. kfree(vcpu->host_msrs);
  1852. vcpu->host_msrs = NULL;
  1853. out_free_guest_msrs:
  1854. kfree(vcpu->guest_msrs);
  1855. vcpu->guest_msrs = NULL;
  1856. return -ENOMEM;
  1857. }
  1858. static struct kvm_arch_ops vmx_arch_ops = {
  1859. .cpu_has_kvm_support = cpu_has_kvm_support,
  1860. .disabled_by_bios = vmx_disabled_by_bios,
  1861. .hardware_setup = hardware_setup,
  1862. .hardware_unsetup = hardware_unsetup,
  1863. .hardware_enable = hardware_enable,
  1864. .hardware_disable = hardware_disable,
  1865. .vcpu_create = vmx_create_vcpu,
  1866. .vcpu_free = vmx_free_vcpu,
  1867. .vcpu_load = vmx_vcpu_load,
  1868. .vcpu_put = vmx_vcpu_put,
  1869. .vcpu_decache = vmx_vcpu_decache,
  1870. .set_guest_debug = set_guest_debug,
  1871. .get_msr = vmx_get_msr,
  1872. .set_msr = vmx_set_msr,
  1873. .get_segment_base = vmx_get_segment_base,
  1874. .get_segment = vmx_get_segment,
  1875. .set_segment = vmx_set_segment,
  1876. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1877. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1878. .set_cr0 = vmx_set_cr0,
  1879. .set_cr3 = vmx_set_cr3,
  1880. .set_cr4 = vmx_set_cr4,
  1881. #ifdef CONFIG_X86_64
  1882. .set_efer = vmx_set_efer,
  1883. #endif
  1884. .get_idt = vmx_get_idt,
  1885. .set_idt = vmx_set_idt,
  1886. .get_gdt = vmx_get_gdt,
  1887. .set_gdt = vmx_set_gdt,
  1888. .cache_regs = vcpu_load_rsp_rip,
  1889. .decache_regs = vcpu_put_rsp_rip,
  1890. .get_rflags = vmx_get_rflags,
  1891. .set_rflags = vmx_set_rflags,
  1892. .tlb_flush = vmx_flush_tlb,
  1893. .inject_page_fault = vmx_inject_page_fault,
  1894. .inject_gp = vmx_inject_gp,
  1895. .run = vmx_vcpu_run,
  1896. .skip_emulated_instruction = skip_emulated_instruction,
  1897. .vcpu_setup = vmx_vcpu_setup,
  1898. .patch_hypercall = vmx_patch_hypercall,
  1899. };
  1900. static int __init vmx_init(void)
  1901. {
  1902. void *iova;
  1903. int r;
  1904. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1905. if (!vmx_io_bitmap_a)
  1906. return -ENOMEM;
  1907. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1908. if (!vmx_io_bitmap_b) {
  1909. r = -ENOMEM;
  1910. goto out;
  1911. }
  1912. /*
  1913. * Allow direct access to the PC debug port (it is often used for I/O
  1914. * delays, but the vmexits simply slow things down).
  1915. */
  1916. iova = kmap(vmx_io_bitmap_a);
  1917. memset(iova, 0xff, PAGE_SIZE);
  1918. clear_bit(0x80, iova);
  1919. kunmap(iova);
  1920. iova = kmap(vmx_io_bitmap_b);
  1921. memset(iova, 0xff, PAGE_SIZE);
  1922. kunmap(iova);
  1923. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1924. if (r)
  1925. goto out1;
  1926. return 0;
  1927. out1:
  1928. __free_page(vmx_io_bitmap_b);
  1929. out:
  1930. __free_page(vmx_io_bitmap_a);
  1931. return r;
  1932. }
  1933. static void __exit vmx_exit(void)
  1934. {
  1935. __free_page(vmx_io_bitmap_b);
  1936. __free_page(vmx_io_bitmap_a);
  1937. kvm_exit_arch();
  1938. }
  1939. module_init(vmx_init)
  1940. module_exit(vmx_exit)