the_nilfs.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. /*
  2. * the_nilfs.c - the_nilfs shared structure.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/buffer_head.h>
  24. #include <linux/slab.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/crc32.h>
  28. #include "nilfs.h"
  29. #include "segment.h"
  30. #include "alloc.h"
  31. #include "cpfile.h"
  32. #include "sufile.h"
  33. #include "dat.h"
  34. #include "seglist.h"
  35. #include "segbuf.h"
  36. static LIST_HEAD(nilfs_objects);
  37. static DEFINE_SPINLOCK(nilfs_lock);
  38. void nilfs_set_last_segment(struct the_nilfs *nilfs,
  39. sector_t start_blocknr, u64 seq, __u64 cno)
  40. {
  41. spin_lock(&nilfs->ns_last_segment_lock);
  42. nilfs->ns_last_pseg = start_blocknr;
  43. nilfs->ns_last_seq = seq;
  44. nilfs->ns_last_cno = cno;
  45. spin_unlock(&nilfs->ns_last_segment_lock);
  46. }
  47. /**
  48. * alloc_nilfs - allocate the_nilfs structure
  49. * @bdev: block device to which the_nilfs is related
  50. *
  51. * alloc_nilfs() allocates memory for the_nilfs and
  52. * initializes its reference count and locks.
  53. *
  54. * Return Value: On success, pointer to the_nilfs is returned.
  55. * On error, NULL is returned.
  56. */
  57. static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
  58. {
  59. struct the_nilfs *nilfs;
  60. nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
  61. if (!nilfs)
  62. return NULL;
  63. nilfs->ns_bdev = bdev;
  64. atomic_set(&nilfs->ns_count, 1);
  65. atomic_set(&nilfs->ns_writer_refcount, -1);
  66. atomic_set(&nilfs->ns_ndirtyblks, 0);
  67. init_rwsem(&nilfs->ns_sem);
  68. mutex_init(&nilfs->ns_writer_mutex);
  69. INIT_LIST_HEAD(&nilfs->ns_list);
  70. INIT_LIST_HEAD(&nilfs->ns_supers);
  71. spin_lock_init(&nilfs->ns_last_segment_lock);
  72. nilfs->ns_gc_inodes_h = NULL;
  73. init_rwsem(&nilfs->ns_segctor_sem);
  74. return nilfs;
  75. }
  76. /**
  77. * find_or_create_nilfs - find or create nilfs object
  78. * @bdev: block device to which the_nilfs is related
  79. *
  80. * find_nilfs() looks up an existent nilfs object created on the
  81. * device and gets the reference count of the object. If no nilfs object
  82. * is found on the device, a new nilfs object is allocated.
  83. *
  84. * Return Value: On success, pointer to the nilfs object is returned.
  85. * On error, NULL is returned.
  86. */
  87. struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
  88. {
  89. struct the_nilfs *nilfs, *new = NULL;
  90. retry:
  91. spin_lock(&nilfs_lock);
  92. list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
  93. if (nilfs->ns_bdev == bdev) {
  94. get_nilfs(nilfs);
  95. spin_unlock(&nilfs_lock);
  96. if (new)
  97. put_nilfs(new);
  98. return nilfs; /* existing object */
  99. }
  100. }
  101. if (new) {
  102. list_add_tail(&new->ns_list, &nilfs_objects);
  103. spin_unlock(&nilfs_lock);
  104. return new; /* new object */
  105. }
  106. spin_unlock(&nilfs_lock);
  107. new = alloc_nilfs(bdev);
  108. if (new)
  109. goto retry;
  110. return NULL; /* insufficient memory */
  111. }
  112. /**
  113. * put_nilfs - release a reference to the_nilfs
  114. * @nilfs: the_nilfs structure to be released
  115. *
  116. * put_nilfs() decrements a reference counter of the_nilfs.
  117. * If the reference count reaches zero, the_nilfs is freed.
  118. */
  119. void put_nilfs(struct the_nilfs *nilfs)
  120. {
  121. spin_lock(&nilfs_lock);
  122. if (!atomic_dec_and_test(&nilfs->ns_count)) {
  123. spin_unlock(&nilfs_lock);
  124. return;
  125. }
  126. list_del_init(&nilfs->ns_list);
  127. spin_unlock(&nilfs_lock);
  128. /*
  129. * Increment of ns_count never occurs below because the caller
  130. * of get_nilfs() holds at least one reference to the_nilfs.
  131. * Thus its exclusion control is not required here.
  132. */
  133. might_sleep();
  134. if (nilfs_loaded(nilfs)) {
  135. nilfs_mdt_clear(nilfs->ns_sufile);
  136. nilfs_mdt_destroy(nilfs->ns_sufile);
  137. nilfs_mdt_clear(nilfs->ns_cpfile);
  138. nilfs_mdt_destroy(nilfs->ns_cpfile);
  139. nilfs_mdt_clear(nilfs->ns_dat);
  140. nilfs_mdt_destroy(nilfs->ns_dat);
  141. /* XXX: how and when to clear nilfs->ns_gc_dat? */
  142. nilfs_mdt_destroy(nilfs->ns_gc_dat);
  143. }
  144. if (nilfs_init(nilfs)) {
  145. nilfs_destroy_gccache(nilfs);
  146. brelse(nilfs->ns_sbh[0]);
  147. brelse(nilfs->ns_sbh[1]);
  148. }
  149. kfree(nilfs);
  150. }
  151. static int nilfs_load_super_root(struct the_nilfs *nilfs,
  152. struct nilfs_sb_info *sbi, sector_t sr_block)
  153. {
  154. static struct lock_class_key dat_lock_key;
  155. struct buffer_head *bh_sr;
  156. struct nilfs_super_root *raw_sr;
  157. struct nilfs_super_block **sbp = nilfs->ns_sbp;
  158. unsigned dat_entry_size, segment_usage_size, checkpoint_size;
  159. unsigned inode_size;
  160. int err;
  161. err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
  162. if (unlikely(err))
  163. return err;
  164. down_read(&nilfs->ns_sem);
  165. dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
  166. checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
  167. segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
  168. up_read(&nilfs->ns_sem);
  169. inode_size = nilfs->ns_inode_size;
  170. err = -ENOMEM;
  171. nilfs->ns_dat = nilfs_mdt_new(
  172. nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
  173. if (unlikely(!nilfs->ns_dat))
  174. goto failed;
  175. nilfs->ns_gc_dat = nilfs_mdt_new(
  176. nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
  177. if (unlikely(!nilfs->ns_gc_dat))
  178. goto failed_dat;
  179. nilfs->ns_cpfile = nilfs_mdt_new(
  180. nilfs, NULL, NILFS_CPFILE_INO, NILFS_CPFILE_GFP);
  181. if (unlikely(!nilfs->ns_cpfile))
  182. goto failed_gc_dat;
  183. nilfs->ns_sufile = nilfs_mdt_new(
  184. nilfs, NULL, NILFS_SUFILE_INO, NILFS_SUFILE_GFP);
  185. if (unlikely(!nilfs->ns_sufile))
  186. goto failed_cpfile;
  187. err = nilfs_palloc_init_blockgroup(nilfs->ns_dat, dat_entry_size);
  188. if (unlikely(err))
  189. goto failed_sufile;
  190. err = nilfs_palloc_init_blockgroup(nilfs->ns_gc_dat, dat_entry_size);
  191. if (unlikely(err))
  192. goto failed_sufile;
  193. lockdep_set_class(&NILFS_MDT(nilfs->ns_dat)->mi_sem, &dat_lock_key);
  194. lockdep_set_class(&NILFS_MDT(nilfs->ns_gc_dat)->mi_sem, &dat_lock_key);
  195. nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
  196. nilfs_mdt_set_entry_size(nilfs->ns_cpfile, checkpoint_size,
  197. sizeof(struct nilfs_cpfile_header));
  198. nilfs_mdt_set_entry_size(nilfs->ns_sufile, segment_usage_size,
  199. sizeof(struct nilfs_sufile_header));
  200. err = nilfs_mdt_read_inode_direct(
  201. nilfs->ns_dat, bh_sr, NILFS_SR_DAT_OFFSET(inode_size));
  202. if (unlikely(err))
  203. goto failed_sufile;
  204. err = nilfs_mdt_read_inode_direct(
  205. nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(inode_size));
  206. if (unlikely(err))
  207. goto failed_sufile;
  208. err = nilfs_mdt_read_inode_direct(
  209. nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(inode_size));
  210. if (unlikely(err))
  211. goto failed_sufile;
  212. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  213. nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
  214. failed:
  215. brelse(bh_sr);
  216. return err;
  217. failed_sufile:
  218. nilfs_mdt_destroy(nilfs->ns_sufile);
  219. failed_cpfile:
  220. nilfs_mdt_destroy(nilfs->ns_cpfile);
  221. failed_gc_dat:
  222. nilfs_mdt_destroy(nilfs->ns_gc_dat);
  223. failed_dat:
  224. nilfs_mdt_destroy(nilfs->ns_dat);
  225. goto failed;
  226. }
  227. static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
  228. {
  229. memset(ri, 0, sizeof(*ri));
  230. INIT_LIST_HEAD(&ri->ri_used_segments);
  231. }
  232. static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
  233. {
  234. nilfs_dispose_segment_list(&ri->ri_used_segments);
  235. }
  236. /**
  237. * load_nilfs - load and recover the nilfs
  238. * @nilfs: the_nilfs structure to be released
  239. * @sbi: nilfs_sb_info used to recover past segment
  240. *
  241. * load_nilfs() searches and load the latest super root,
  242. * attaches the last segment, and does recovery if needed.
  243. * The caller must call this exclusively for simultaneous mounts.
  244. */
  245. int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
  246. {
  247. struct nilfs_recovery_info ri;
  248. unsigned int s_flags = sbi->s_super->s_flags;
  249. int really_read_only = bdev_read_only(nilfs->ns_bdev);
  250. unsigned valid_fs;
  251. int err = 0;
  252. nilfs_init_recovery_info(&ri);
  253. down_write(&nilfs->ns_sem);
  254. valid_fs = (nilfs->ns_mount_state & NILFS_VALID_FS);
  255. up_write(&nilfs->ns_sem);
  256. if (!valid_fs && (s_flags & MS_RDONLY)) {
  257. printk(KERN_INFO "NILFS: INFO: recovery "
  258. "required for readonly filesystem.\n");
  259. if (really_read_only) {
  260. printk(KERN_ERR "NILFS: write access "
  261. "unavailable, cannot proceed.\n");
  262. err = -EROFS;
  263. goto failed;
  264. }
  265. printk(KERN_INFO "NILFS: write access will "
  266. "be enabled during recovery.\n");
  267. sbi->s_super->s_flags &= ~MS_RDONLY;
  268. }
  269. err = nilfs_search_super_root(nilfs, sbi, &ri);
  270. if (unlikely(err)) {
  271. printk(KERN_ERR "NILFS: error searching super root.\n");
  272. goto failed;
  273. }
  274. err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
  275. if (unlikely(err)) {
  276. printk(KERN_ERR "NILFS: error loading super root.\n");
  277. goto failed;
  278. }
  279. if (!valid_fs) {
  280. err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
  281. if (unlikely(err)) {
  282. nilfs_mdt_destroy(nilfs->ns_cpfile);
  283. nilfs_mdt_destroy(nilfs->ns_sufile);
  284. nilfs_mdt_destroy(nilfs->ns_dat);
  285. goto failed;
  286. }
  287. if (ri.ri_need_recovery == NILFS_RECOVERY_SR_UPDATED)
  288. sbi->s_super->s_dirt = 1;
  289. }
  290. set_nilfs_loaded(nilfs);
  291. failed:
  292. nilfs_clear_recovery_info(&ri);
  293. sbi->s_super->s_flags = s_flags;
  294. return err;
  295. }
  296. static unsigned long long nilfs_max_size(unsigned int blkbits)
  297. {
  298. unsigned int max_bits;
  299. unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
  300. max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
  301. if (max_bits < 64)
  302. res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
  303. return res;
  304. }
  305. static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
  306. struct nilfs_super_block *sbp)
  307. {
  308. if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
  309. printk(KERN_ERR "NILFS: revision mismatch "
  310. "(superblock rev.=%d.%d, current rev.=%d.%d). "
  311. "Please check the version of mkfs.nilfs.\n",
  312. le32_to_cpu(sbp->s_rev_level),
  313. le16_to_cpu(sbp->s_minor_rev_level),
  314. NILFS_CURRENT_REV, NILFS_MINOR_REV);
  315. return -EINVAL;
  316. }
  317. nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
  318. if (nilfs->ns_sbsize > BLOCK_SIZE)
  319. return -EINVAL;
  320. nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
  321. nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
  322. nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
  323. if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
  324. printk(KERN_ERR "NILFS: too short segment. \n");
  325. return -EINVAL;
  326. }
  327. nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
  328. nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
  329. nilfs->ns_r_segments_percentage =
  330. le32_to_cpu(sbp->s_r_segments_percentage);
  331. nilfs->ns_nrsvsegs =
  332. max_t(unsigned long, NILFS_MIN_NRSVSEGS,
  333. DIV_ROUND_UP(nilfs->ns_nsegments *
  334. nilfs->ns_r_segments_percentage, 100));
  335. nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
  336. return 0;
  337. }
  338. static int nilfs_valid_sb(struct nilfs_super_block *sbp)
  339. {
  340. static unsigned char sum[4];
  341. const int sumoff = offsetof(struct nilfs_super_block, s_sum);
  342. size_t bytes;
  343. u32 crc;
  344. if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
  345. return 0;
  346. bytes = le16_to_cpu(sbp->s_bytes);
  347. if (bytes > BLOCK_SIZE)
  348. return 0;
  349. crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
  350. sumoff);
  351. crc = crc32_le(crc, sum, 4);
  352. crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
  353. bytes - sumoff - 4);
  354. return crc == le32_to_cpu(sbp->s_sum);
  355. }
  356. static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
  357. {
  358. return offset < ((le64_to_cpu(sbp->s_nsegments) *
  359. le32_to_cpu(sbp->s_blocks_per_segment)) <<
  360. (le32_to_cpu(sbp->s_log_block_size) + 10));
  361. }
  362. static void nilfs_release_super_block(struct the_nilfs *nilfs)
  363. {
  364. int i;
  365. for (i = 0; i < 2; i++) {
  366. if (nilfs->ns_sbp[i]) {
  367. brelse(nilfs->ns_sbh[i]);
  368. nilfs->ns_sbh[i] = NULL;
  369. nilfs->ns_sbp[i] = NULL;
  370. }
  371. }
  372. }
  373. void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
  374. {
  375. brelse(nilfs->ns_sbh[0]);
  376. nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
  377. nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
  378. nilfs->ns_sbh[1] = NULL;
  379. nilfs->ns_sbp[1] = NULL;
  380. }
  381. void nilfs_swap_super_block(struct the_nilfs *nilfs)
  382. {
  383. struct buffer_head *tsbh = nilfs->ns_sbh[0];
  384. struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
  385. nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
  386. nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
  387. nilfs->ns_sbh[1] = tsbh;
  388. nilfs->ns_sbp[1] = tsbp;
  389. }
  390. static int nilfs_load_super_block(struct the_nilfs *nilfs,
  391. struct super_block *sb, int blocksize,
  392. struct nilfs_super_block **sbpp)
  393. {
  394. struct nilfs_super_block **sbp = nilfs->ns_sbp;
  395. struct buffer_head **sbh = nilfs->ns_sbh;
  396. u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
  397. int valid[2], swp = 0;
  398. sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
  399. &sbh[0]);
  400. sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
  401. if (!sbp[0]) {
  402. if (!sbp[1]) {
  403. printk(KERN_ERR "NILFS: unable to read superblock\n");
  404. return -EIO;
  405. }
  406. printk(KERN_WARNING
  407. "NILFS warning: unable to read primary superblock\n");
  408. } else if (!sbp[1])
  409. printk(KERN_WARNING
  410. "NILFS warning: unable to read secondary superblock\n");
  411. valid[0] = nilfs_valid_sb(sbp[0]);
  412. valid[1] = nilfs_valid_sb(sbp[1]);
  413. swp = valid[1] &&
  414. (!valid[0] ||
  415. le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
  416. if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
  417. brelse(sbh[1]);
  418. sbh[1] = NULL;
  419. sbp[1] = NULL;
  420. swp = 0;
  421. }
  422. if (!valid[swp]) {
  423. nilfs_release_super_block(nilfs);
  424. printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
  425. sb->s_id);
  426. return -EINVAL;
  427. }
  428. if (swp) {
  429. printk(KERN_WARNING "NILFS warning: broken superblock. "
  430. "using spare superblock.\n");
  431. nilfs_swap_super_block(nilfs);
  432. }
  433. nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
  434. nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
  435. nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
  436. *sbpp = sbp[0];
  437. return 0;
  438. }
  439. /**
  440. * init_nilfs - initialize a NILFS instance.
  441. * @nilfs: the_nilfs structure
  442. * @sbi: nilfs_sb_info
  443. * @sb: super block
  444. * @data: mount options
  445. *
  446. * init_nilfs() performs common initialization per block device (e.g.
  447. * reading the super block, getting disk layout information, initializing
  448. * shared fields in the_nilfs). It takes on some portion of the jobs
  449. * typically done by a fill_super() routine. This division arises from
  450. * the nature that multiple NILFS instances may be simultaneously
  451. * mounted on a device.
  452. * For multiple mounts on the same device, only the first mount
  453. * invokes these tasks.
  454. *
  455. * Return Value: On success, 0 is returned. On error, a negative error
  456. * code is returned.
  457. */
  458. int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
  459. {
  460. struct super_block *sb = sbi->s_super;
  461. struct nilfs_super_block *sbp;
  462. struct backing_dev_info *bdi;
  463. int blocksize;
  464. int err;
  465. down_write(&nilfs->ns_sem);
  466. if (nilfs_init(nilfs)) {
  467. /* Load values from existing the_nilfs */
  468. sbp = nilfs->ns_sbp[0];
  469. err = nilfs_store_magic_and_option(sb, sbp, data);
  470. if (err)
  471. goto out;
  472. blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
  473. if (sb->s_blocksize != blocksize &&
  474. !sb_set_blocksize(sb, blocksize)) {
  475. printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
  476. blocksize);
  477. err = -EINVAL;
  478. }
  479. sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
  480. goto out;
  481. }
  482. blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
  483. if (!blocksize) {
  484. printk(KERN_ERR "NILFS: unable to set blocksize\n");
  485. err = -EINVAL;
  486. goto out;
  487. }
  488. err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
  489. if (err)
  490. goto out;
  491. err = nilfs_store_magic_and_option(sb, sbp, data);
  492. if (err)
  493. goto failed_sbh;
  494. blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
  495. if (sb->s_blocksize != blocksize) {
  496. int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
  497. if (blocksize < hw_blocksize) {
  498. printk(KERN_ERR
  499. "NILFS: blocksize %d too small for device "
  500. "(sector-size = %d).\n",
  501. blocksize, hw_blocksize);
  502. err = -EINVAL;
  503. goto failed_sbh;
  504. }
  505. nilfs_release_super_block(nilfs);
  506. sb_set_blocksize(sb, blocksize);
  507. err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
  508. if (err)
  509. goto out;
  510. /* not failed_sbh; sbh is released automatically
  511. when reloading fails. */
  512. }
  513. nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
  514. err = nilfs_store_disk_layout(nilfs, sbp);
  515. if (err)
  516. goto failed_sbh;
  517. sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
  518. nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
  519. bdi = nilfs->ns_bdev->bd_inode_backing_dev_info;
  520. if (!bdi)
  521. bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
  522. nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
  523. /* Finding last segment */
  524. nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
  525. nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
  526. nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
  527. nilfs->ns_seg_seq = nilfs->ns_last_seq;
  528. nilfs->ns_segnum =
  529. nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
  530. nilfs->ns_cno = nilfs->ns_last_cno + 1;
  531. if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
  532. printk(KERN_ERR "NILFS invalid last segment number.\n");
  533. err = -EINVAL;
  534. goto failed_sbh;
  535. }
  536. /* Dummy values */
  537. nilfs->ns_free_segments_count =
  538. nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
  539. /* Initialize gcinode cache */
  540. err = nilfs_init_gccache(nilfs);
  541. if (err)
  542. goto failed_sbh;
  543. set_nilfs_init(nilfs);
  544. err = 0;
  545. out:
  546. up_write(&nilfs->ns_sem);
  547. return err;
  548. failed_sbh:
  549. nilfs_release_super_block(nilfs);
  550. goto out;
  551. }
  552. int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
  553. {
  554. struct inode *dat = nilfs_dat_inode(nilfs);
  555. unsigned long ncleansegs;
  556. int err;
  557. down_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
  558. err = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile, &ncleansegs);
  559. up_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
  560. if (likely(!err))
  561. *nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
  562. return err;
  563. }
  564. int nilfs_near_disk_full(struct the_nilfs *nilfs)
  565. {
  566. struct inode *sufile = nilfs->ns_sufile;
  567. unsigned long ncleansegs, nincsegs;
  568. int ret;
  569. ret = nilfs_sufile_get_ncleansegs(sufile, &ncleansegs);
  570. if (likely(!ret)) {
  571. nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
  572. nilfs->ns_blocks_per_segment + 1;
  573. if (ncleansegs <= nilfs->ns_nrsvsegs + nincsegs)
  574. ret++;
  575. }
  576. return ret;
  577. }
  578. int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
  579. int snapshot_mount)
  580. {
  581. struct nilfs_sb_info *sbi;
  582. int ret = 0;
  583. down_read(&nilfs->ns_sem);
  584. if (cno == 0 || cno > nilfs->ns_cno)
  585. goto out_unlock;
  586. list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
  587. if (sbi->s_snapshot_cno == cno &&
  588. (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
  589. /* exclude read-only mounts */
  590. ret++;
  591. break;
  592. }
  593. }
  594. /* for protecting recent checkpoints */
  595. if (cno >= nilfs_last_cno(nilfs))
  596. ret++;
  597. out_unlock:
  598. up_read(&nilfs->ns_sem);
  599. return ret;
  600. }