sun4m_irq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /* sun4m_irq.c
  2. * arch/sparc/kernel/sun4m_irq.c:
  3. *
  4. * djhr: Hacked out of irq.c into a CPU dependent version.
  5. *
  6. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  7. * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  8. * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com)
  9. * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/linkage.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/ptrace.h>
  17. #include <linux/smp.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/slab.h>
  20. #include <linux/init.h>
  21. #include <linux/ioport.h>
  22. #include <asm/ptrace.h>
  23. #include <asm/processor.h>
  24. #include <asm/system.h>
  25. #include <asm/psr.h>
  26. #include <asm/vaddrs.h>
  27. #include <asm/timer.h>
  28. #include <asm/openprom.h>
  29. #include <asm/oplib.h>
  30. #include <asm/traps.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/smp.h>
  34. #include <asm/irq.h>
  35. #include <asm/io.h>
  36. #include <asm/sbus.h>
  37. #include <asm/cacheflush.h>
  38. #include "irq.h"
  39. /* On the sun4m, just like the timers, we have both per-cpu and master
  40. * interrupt registers.
  41. */
  42. /* These registers are used for sending/receiving irqs from/to
  43. * different cpu's.
  44. */
  45. struct sun4m_intreg_percpu {
  46. unsigned int tbt; /* Interrupts still pending for this cpu. */
  47. /* These next two registers are WRITE-ONLY and are only
  48. * "on bit" sensitive, "off bits" written have NO affect.
  49. */
  50. unsigned int clear; /* Clear this cpus irqs here. */
  51. unsigned int set; /* Set this cpus irqs here. */
  52. unsigned char space[PAGE_SIZE - 12];
  53. };
  54. /*
  55. * djhr
  56. * Actually the clear and set fields in this struct are misleading..
  57. * according to the SLAVIO manual (and the same applies for the SEC)
  58. * the clear field clears bits in the mask which will ENABLE that IRQ
  59. * the set field sets bits in the mask to DISABLE the IRQ.
  60. *
  61. * Also the undirected_xx address in the SLAVIO is defined as
  62. * RESERVED and write only..
  63. *
  64. * DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor
  65. * sun4m machines, for MP the layout makes more sense.
  66. */
  67. struct sun4m_intregs {
  68. struct sun4m_intreg_percpu cpu_intregs[SUN4M_NCPUS];
  69. unsigned int tbt; /* IRQ's that are still pending. */
  70. unsigned int irqs; /* Master IRQ bits. */
  71. /* Again, like the above, two these registers are WRITE-ONLY. */
  72. unsigned int clear; /* Clear master IRQ's by setting bits here. */
  73. unsigned int set; /* Set master IRQ's by setting bits here. */
  74. /* This register is both READ and WRITE. */
  75. unsigned int undirected_target; /* Which cpu gets undirected irqs. */
  76. };
  77. static unsigned long dummy;
  78. struct sun4m_intregs *sun4m_interrupts;
  79. unsigned long *irq_rcvreg = &dummy;
  80. /* Dave Redman (djhr@tadpole.co.uk)
  81. * The sun4m interrupt registers.
  82. */
  83. #define SUN4M_INT_ENABLE 0x80000000
  84. #define SUN4M_INT_E14 0x00000080
  85. #define SUN4M_INT_E10 0x00080000
  86. #define SUN4M_HARD_INT(x) (0x000000001 << (x))
  87. #define SUN4M_SOFT_INT(x) (0x000010000 << (x))
  88. #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
  89. #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
  90. #define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */
  91. #define SUN4M_INT_ECC 0x10000000 /* ecc memory error */
  92. #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
  93. #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
  94. #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
  95. #define SUN4M_INT_REALTIME 0x00080000 /* system timer */
  96. #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
  97. #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
  98. #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
  99. #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
  100. #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */
  101. #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
  102. #define SUN4M_INT_SBUS(x) (1 << (x+7))
  103. #define SUN4M_INT_VME(x) (1 << (x))
  104. /* These tables only apply for interrupts greater than 15..
  105. *
  106. * any intr value below 0x10 is considered to be a soft-int
  107. * this may be useful or it may not.. but that's how I've done it.
  108. * and it won't clash with what OBP is telling us about devices.
  109. *
  110. * take an encoded intr value and lookup if it's valid
  111. * then get the mask bits that match from irq_mask
  112. *
  113. * P3: Translation from irq 0x0d to mask 0x2000 is for MrCoffee.
  114. */
  115. static unsigned char irq_xlate[32] = {
  116. /* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f */
  117. 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 5, 6, 14, 0, 7,
  118. 0, 0, 8, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 0
  119. };
  120. static unsigned long irq_mask[] = {
  121. 0, /* illegal index */
  122. SUN4M_INT_SCSI, /* 1 irq 4 */
  123. SUN4M_INT_ETHERNET, /* 2 irq 6 */
  124. SUN4M_INT_VIDEO, /* 3 irq 8 */
  125. SUN4M_INT_REALTIME, /* 4 irq 10 */
  126. SUN4M_INT_FLOPPY, /* 5 irq 11 */
  127. (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS), /* 6 irq 12 */
  128. SUN4M_INT_MODULE_ERR, /* 7 irq 15 */
  129. SUN4M_INT_SBUS(0), /* 8 irq 2 */
  130. SUN4M_INT_SBUS(1), /* 9 irq 3 */
  131. SUN4M_INT_SBUS(2), /* 10 irq 5 */
  132. SUN4M_INT_SBUS(3), /* 11 irq 7 */
  133. SUN4M_INT_SBUS(4), /* 12 irq 9 */
  134. SUN4M_INT_SBUS(5), /* 13 irq 11 */
  135. SUN4M_INT_SBUS(6) /* 14 irq 13 */
  136. };
  137. static unsigned long sun4m_get_irqmask(unsigned int irq)
  138. {
  139. unsigned long mask;
  140. if (irq > 0x20) {
  141. /* OBIO/SBUS interrupts */
  142. irq &= 0x1f;
  143. mask = irq_mask[irq_xlate[irq]];
  144. if (!mask)
  145. printk("sun4m_get_irqmask: IRQ%d has no valid mask!\n",irq);
  146. } else {
  147. /* Soft Interrupts will come here.
  148. * Currently there is no way to trigger them but I'm sure
  149. * something could be cooked up.
  150. */
  151. irq &= 0xf;
  152. mask = SUN4M_SOFT_INT(irq);
  153. }
  154. return mask;
  155. }
  156. static void sun4m_disable_irq(unsigned int irq_nr)
  157. {
  158. unsigned long mask, flags;
  159. int cpu = smp_processor_id();
  160. mask = sun4m_get_irqmask(irq_nr);
  161. local_irq_save(flags);
  162. if (irq_nr > 15)
  163. sun4m_interrupts->set = mask;
  164. else
  165. sun4m_interrupts->cpu_intregs[cpu].set = mask;
  166. local_irq_restore(flags);
  167. }
  168. static void sun4m_enable_irq(unsigned int irq_nr)
  169. {
  170. unsigned long mask, flags;
  171. int cpu = smp_processor_id();
  172. /* Dreadful floppy hack. When we use 0x2b instead of
  173. * 0x0b the system blows (it starts to whistle!).
  174. * So we continue to use 0x0b. Fixme ASAP. --P3
  175. */
  176. if (irq_nr != 0x0b) {
  177. mask = sun4m_get_irqmask(irq_nr);
  178. local_irq_save(flags);
  179. if (irq_nr > 15)
  180. sun4m_interrupts->clear = mask;
  181. else
  182. sun4m_interrupts->cpu_intregs[cpu].clear = mask;
  183. local_irq_restore(flags);
  184. } else {
  185. local_irq_save(flags);
  186. sun4m_interrupts->clear = SUN4M_INT_FLOPPY;
  187. local_irq_restore(flags);
  188. }
  189. }
  190. static unsigned long cpu_pil_to_imask[16] = {
  191. /*0*/ 0x00000000,
  192. /*1*/ 0x00000000,
  193. /*2*/ SUN4M_INT_SBUS(0) | SUN4M_INT_VME(0),
  194. /*3*/ SUN4M_INT_SBUS(1) | SUN4M_INT_VME(1),
  195. /*4*/ SUN4M_INT_SCSI,
  196. /*5*/ SUN4M_INT_SBUS(2) | SUN4M_INT_VME(2),
  197. /*6*/ SUN4M_INT_ETHERNET,
  198. /*7*/ SUN4M_INT_SBUS(3) | SUN4M_INT_VME(3),
  199. /*8*/ SUN4M_INT_VIDEO,
  200. /*9*/ SUN4M_INT_SBUS(4) | SUN4M_INT_VME(4) | SUN4M_INT_MODULE_ERR,
  201. /*10*/ SUN4M_INT_REALTIME,
  202. /*11*/ SUN4M_INT_SBUS(5) | SUN4M_INT_VME(5) | SUN4M_INT_FLOPPY,
  203. /*12*/ SUN4M_INT_SERIAL | SUN4M_INT_KBDMS,
  204. /*13*/ SUN4M_INT_AUDIO,
  205. /*14*/ SUN4M_INT_E14,
  206. /*15*/ 0x00000000
  207. };
  208. /* We assume the caller has disabled local interrupts when these are called,
  209. * or else very bizarre behavior will result.
  210. */
  211. static void sun4m_disable_pil_irq(unsigned int pil)
  212. {
  213. sun4m_interrupts->set = cpu_pil_to_imask[pil];
  214. }
  215. static void sun4m_enable_pil_irq(unsigned int pil)
  216. {
  217. sun4m_interrupts->clear = cpu_pil_to_imask[pil];
  218. }
  219. #ifdef CONFIG_SMP
  220. static void sun4m_send_ipi(int cpu, int level)
  221. {
  222. unsigned long mask;
  223. mask = sun4m_get_irqmask(level);
  224. sun4m_interrupts->cpu_intregs[cpu].set = mask;
  225. }
  226. static void sun4m_clear_ipi(int cpu, int level)
  227. {
  228. unsigned long mask;
  229. mask = sun4m_get_irqmask(level);
  230. sun4m_interrupts->cpu_intregs[cpu].clear = mask;
  231. }
  232. static void sun4m_set_udt(int cpu)
  233. {
  234. sun4m_interrupts->undirected_target = cpu;
  235. }
  236. #endif
  237. #define OBIO_INTR 0x20
  238. #define TIMER_IRQ (OBIO_INTR | 10)
  239. #define PROFILE_IRQ (OBIO_INTR | 14)
  240. static struct sun4m_timer_regs *sun4m_timers;
  241. unsigned int lvl14_resolution = (((1000000/HZ) + 1) << 10);
  242. static void sun4m_clear_clock_irq(void)
  243. {
  244. volatile unsigned int clear_intr;
  245. clear_intr = sun4m_timers->l10_timer_limit;
  246. }
  247. static void sun4m_clear_profile_irq(int cpu)
  248. {
  249. volatile unsigned int clear;
  250. clear = sun4m_timers->cpu_timers[cpu].l14_timer_limit;
  251. }
  252. static void sun4m_load_profile_irq(int cpu, unsigned int limit)
  253. {
  254. sun4m_timers->cpu_timers[cpu].l14_timer_limit = limit;
  255. }
  256. static void __init sun4m_init_timers(irq_handler_t counter_fn)
  257. {
  258. int reg_count, irq, cpu;
  259. struct linux_prom_registers cnt_regs[PROMREG_MAX];
  260. int obio_node, cnt_node;
  261. struct resource r;
  262. cnt_node = 0;
  263. if((obio_node =
  264. prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 ||
  265. (obio_node = prom_getchild (obio_node)) == 0 ||
  266. (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) {
  267. prom_printf("Cannot find /obio/counter node\n");
  268. prom_halt();
  269. }
  270. reg_count = prom_getproperty(cnt_node, "reg",
  271. (void *) cnt_regs, sizeof(cnt_regs));
  272. reg_count = (reg_count/sizeof(struct linux_prom_registers));
  273. /* Apply the obio ranges to the timer registers. */
  274. prom_apply_obio_ranges(cnt_regs, reg_count);
  275. cnt_regs[4].phys_addr = cnt_regs[reg_count-1].phys_addr;
  276. cnt_regs[4].reg_size = cnt_regs[reg_count-1].reg_size;
  277. cnt_regs[4].which_io = cnt_regs[reg_count-1].which_io;
  278. for(obio_node = 1; obio_node < 4; obio_node++) {
  279. cnt_regs[obio_node].phys_addr =
  280. cnt_regs[obio_node-1].phys_addr + PAGE_SIZE;
  281. cnt_regs[obio_node].reg_size = cnt_regs[obio_node-1].reg_size;
  282. cnt_regs[obio_node].which_io = cnt_regs[obio_node-1].which_io;
  283. }
  284. memset((char*)&r, 0, sizeof(struct resource));
  285. /* Map the per-cpu Counter registers. */
  286. r.flags = cnt_regs[0].which_io;
  287. r.start = cnt_regs[0].phys_addr;
  288. sun4m_timers = (struct sun4m_timer_regs *) sbus_ioremap(&r, 0,
  289. PAGE_SIZE*SUN4M_NCPUS, "sun4m_cpu_cnt");
  290. /* Map the system Counter register. */
  291. /* XXX Here we expect consequent calls to yeld adjusent maps. */
  292. r.flags = cnt_regs[4].which_io;
  293. r.start = cnt_regs[4].phys_addr;
  294. sbus_ioremap(&r, 0, cnt_regs[4].reg_size, "sun4m_sys_cnt");
  295. sun4m_timers->l10_timer_limit = (((1000000/HZ) + 1) << 10);
  296. master_l10_counter = &sun4m_timers->l10_cur_count;
  297. master_l10_limit = &sun4m_timers->l10_timer_limit;
  298. irq = request_irq(TIMER_IRQ,
  299. counter_fn,
  300. (IRQF_DISABLED | SA_STATIC_ALLOC),
  301. "timer", NULL);
  302. if (irq) {
  303. prom_printf("time_init: unable to attach IRQ%d\n",TIMER_IRQ);
  304. prom_halt();
  305. }
  306. if (!cpu_find_by_instance(1, NULL, NULL)) {
  307. for(cpu = 0; cpu < 4; cpu++)
  308. sun4m_timers->cpu_timers[cpu].l14_timer_limit = 0;
  309. sun4m_interrupts->set = SUN4M_INT_E14;
  310. } else {
  311. sun4m_timers->cpu_timers[0].l14_timer_limit = 0;
  312. }
  313. #ifdef CONFIG_SMP
  314. {
  315. unsigned long flags;
  316. extern unsigned long lvl14_save[4];
  317. struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)];
  318. /* For SMP we use the level 14 ticker, however the bootup code
  319. * has copied the firmware's level 14 vector into the boot cpu's
  320. * trap table, we must fix this now or we get squashed.
  321. */
  322. local_irq_save(flags);
  323. trap_table->inst_one = lvl14_save[0];
  324. trap_table->inst_two = lvl14_save[1];
  325. trap_table->inst_three = lvl14_save[2];
  326. trap_table->inst_four = lvl14_save[3];
  327. local_flush_cache_all();
  328. local_irq_restore(flags);
  329. }
  330. #endif
  331. }
  332. void __init sun4m_init_IRQ(void)
  333. {
  334. int ie_node,i;
  335. struct linux_prom_registers int_regs[PROMREG_MAX];
  336. int num_regs;
  337. struct resource r;
  338. int mid;
  339. local_irq_disable();
  340. if((ie_node = prom_searchsiblings(prom_getchild(prom_root_node), "obio")) == 0 ||
  341. (ie_node = prom_getchild (ie_node)) == 0 ||
  342. (ie_node = prom_searchsiblings (ie_node, "interrupt")) == 0) {
  343. prom_printf("Cannot find /obio/interrupt node\n");
  344. prom_halt();
  345. }
  346. num_regs = prom_getproperty(ie_node, "reg", (char *) int_regs,
  347. sizeof(int_regs));
  348. num_regs = (num_regs/sizeof(struct linux_prom_registers));
  349. /* Apply the obio ranges to these registers. */
  350. prom_apply_obio_ranges(int_regs, num_regs);
  351. int_regs[4].phys_addr = int_regs[num_regs-1].phys_addr;
  352. int_regs[4].reg_size = int_regs[num_regs-1].reg_size;
  353. int_regs[4].which_io = int_regs[num_regs-1].which_io;
  354. for(ie_node = 1; ie_node < 4; ie_node++) {
  355. int_regs[ie_node].phys_addr = int_regs[ie_node-1].phys_addr + PAGE_SIZE;
  356. int_regs[ie_node].reg_size = int_regs[ie_node-1].reg_size;
  357. int_regs[ie_node].which_io = int_regs[ie_node-1].which_io;
  358. }
  359. memset((char *)&r, 0, sizeof(struct resource));
  360. /* Map the interrupt registers for all possible cpus. */
  361. r.flags = int_regs[0].which_io;
  362. r.start = int_regs[0].phys_addr;
  363. sun4m_interrupts = (struct sun4m_intregs *) sbus_ioremap(&r, 0,
  364. PAGE_SIZE*SUN4M_NCPUS, "interrupts_percpu");
  365. /* Map the system interrupt control registers. */
  366. r.flags = int_regs[4].which_io;
  367. r.start = int_regs[4].phys_addr;
  368. sbus_ioremap(&r, 0, int_regs[4].reg_size, "interrupts_system");
  369. sun4m_interrupts->set = ~SUN4M_INT_MASKALL;
  370. for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++)
  371. sun4m_interrupts->cpu_intregs[mid].clear = ~0x17fff;
  372. if (!cpu_find_by_instance(1, NULL, NULL)) {
  373. /* system wide interrupts go to cpu 0, this should always
  374. * be safe because it is guaranteed to be fitted or OBP doesn't
  375. * come up
  376. *
  377. * Not sure, but writing here on SLAVIO systems may puke
  378. * so I don't do it unless there is more than 1 cpu.
  379. */
  380. irq_rcvreg = (unsigned long *)
  381. &sun4m_interrupts->undirected_target;
  382. sun4m_interrupts->undirected_target = 0;
  383. }
  384. BTFIXUPSET_CALL(enable_irq, sun4m_enable_irq, BTFIXUPCALL_NORM);
  385. BTFIXUPSET_CALL(disable_irq, sun4m_disable_irq, BTFIXUPCALL_NORM);
  386. BTFIXUPSET_CALL(enable_pil_irq, sun4m_enable_pil_irq, BTFIXUPCALL_NORM);
  387. BTFIXUPSET_CALL(disable_pil_irq, sun4m_disable_pil_irq, BTFIXUPCALL_NORM);
  388. BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM);
  389. BTFIXUPSET_CALL(clear_profile_irq, sun4m_clear_profile_irq, BTFIXUPCALL_NORM);
  390. BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM);
  391. sparc_init_timers = sun4m_init_timers;
  392. #ifdef CONFIG_SMP
  393. BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM);
  394. BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM);
  395. BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM);
  396. #endif
  397. /* Cannot enable interrupts until OBP ticker is disabled. */
  398. }