exit.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/mnt_namespace.h>
  15. #include <linux/iocontext.h>
  16. #include <linux/key.h>
  17. #include <linux/security.h>
  18. #include <linux/cpu.h>
  19. #include <linux/acct.h>
  20. #include <linux/tsacct_kern.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/freezer.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/signal.h>
  38. #include <linux/posix-timers.h>
  39. #include <linux/cn_proc.h>
  40. #include <linux/mutex.h>
  41. #include <linux/futex.h>
  42. #include <linux/pipe_fs_i.h>
  43. #include <linux/audit.h> /* for audit_free() */
  44. #include <linux/resource.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/task_io_accounting_ops.h>
  47. #include <linux/tracehook.h>
  48. #include <linux/fs_struct.h>
  49. #include <linux/init_task.h>
  50. #include <trace/sched.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/unistd.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/mmu_context.h>
  55. #include "cred-internals.h"
  56. DEFINE_TRACE(sched_process_free);
  57. DEFINE_TRACE(sched_process_exit);
  58. DEFINE_TRACE(sched_process_wait);
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (thread_group_leader(p)) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. __get_cpu_var(process_counts)--;
  69. }
  70. list_del_rcu(&p->thread_group);
  71. list_del_init(&p->sibling);
  72. }
  73. /*
  74. * This function expects the tasklist_lock write-locked.
  75. */
  76. static void __exit_signal(struct task_struct *tsk)
  77. {
  78. struct signal_struct *sig = tsk->signal;
  79. struct sighand_struct *sighand;
  80. BUG_ON(!sig);
  81. BUG_ON(!atomic_read(&sig->count));
  82. sighand = rcu_dereference(tsk->sighand);
  83. spin_lock(&sighand->siglock);
  84. posix_cpu_timers_exit(tsk);
  85. if (atomic_dec_and_test(&sig->count))
  86. posix_cpu_timers_exit_group(tsk);
  87. else {
  88. /*
  89. * If there is any task waiting for the group exit
  90. * then notify it:
  91. */
  92. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  93. wake_up_process(sig->group_exit_task);
  94. if (tsk == sig->curr_target)
  95. sig->curr_target = next_thread(tsk);
  96. /*
  97. * Accumulate here the counters for all threads but the
  98. * group leader as they die, so they can be added into
  99. * the process-wide totals when those are taken.
  100. * The group leader stays around as a zombie as long
  101. * as there are other threads. When it gets reaped,
  102. * the exit.c code will add its counts into these totals.
  103. * We won't ever get here for the group leader, since it
  104. * will have been the last reference on the signal_struct.
  105. */
  106. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  107. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  108. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  109. sig->min_flt += tsk->min_flt;
  110. sig->maj_flt += tsk->maj_flt;
  111. sig->nvcsw += tsk->nvcsw;
  112. sig->nivcsw += tsk->nivcsw;
  113. sig->inblock += task_io_get_inblock(tsk);
  114. sig->oublock += task_io_get_oublock(tsk);
  115. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  116. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  117. sig = NULL; /* Marker for below. */
  118. }
  119. __unhash_process(tsk);
  120. /*
  121. * Do this under ->siglock, we can race with another thread
  122. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  123. */
  124. flush_sigqueue(&tsk->pending);
  125. tsk->signal = NULL;
  126. tsk->sighand = NULL;
  127. spin_unlock(&sighand->siglock);
  128. __cleanup_sighand(sighand);
  129. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  130. if (sig) {
  131. flush_sigqueue(&sig->shared_pending);
  132. taskstats_tgid_free(sig);
  133. /*
  134. * Make sure ->signal can't go away under rq->lock,
  135. * see account_group_exec_runtime().
  136. */
  137. task_rq_unlock_wait(tsk);
  138. __cleanup_signal(sig);
  139. }
  140. }
  141. static void delayed_put_task_struct(struct rcu_head *rhp)
  142. {
  143. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  144. #ifdef CONFIG_PERF_COUNTERS
  145. WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
  146. #endif
  147. trace_sched_process_free(tsk);
  148. put_task_struct(tsk);
  149. }
  150. void release_task(struct task_struct * p)
  151. {
  152. struct task_struct *leader;
  153. int zap_leader;
  154. repeat:
  155. tracehook_prepare_release_task(p);
  156. /* don't need to get the RCU readlock here - the process is dead and
  157. * can't be modifying its own credentials */
  158. atomic_dec(&__task_cred(p)->user->processes);
  159. proc_flush_task(p);
  160. write_lock_irq(&tasklist_lock);
  161. tracehook_finish_release_task(p);
  162. __exit_signal(p);
  163. /*
  164. * If we are the last non-leader member of the thread
  165. * group, and the leader is zombie, then notify the
  166. * group leader's parent process. (if it wants notification.)
  167. */
  168. zap_leader = 0;
  169. leader = p->group_leader;
  170. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  171. BUG_ON(task_detached(leader));
  172. do_notify_parent(leader, leader->exit_signal);
  173. /*
  174. * If we were the last child thread and the leader has
  175. * exited already, and the leader's parent ignores SIGCHLD,
  176. * then we are the one who should release the leader.
  177. *
  178. * do_notify_parent() will have marked it self-reaping in
  179. * that case.
  180. */
  181. zap_leader = task_detached(leader);
  182. /*
  183. * This maintains the invariant that release_task()
  184. * only runs on a task in EXIT_DEAD, just for sanity.
  185. */
  186. if (zap_leader)
  187. leader->exit_state = EXIT_DEAD;
  188. }
  189. write_unlock_irq(&tasklist_lock);
  190. release_thread(p);
  191. call_rcu(&p->rcu, delayed_put_task_struct);
  192. p = leader;
  193. if (unlikely(zap_leader))
  194. goto repeat;
  195. }
  196. /*
  197. * This checks not only the pgrp, but falls back on the pid if no
  198. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  199. * without this...
  200. *
  201. * The caller must hold rcu lock or the tasklist lock.
  202. */
  203. struct pid *session_of_pgrp(struct pid *pgrp)
  204. {
  205. struct task_struct *p;
  206. struct pid *sid = NULL;
  207. p = pid_task(pgrp, PIDTYPE_PGID);
  208. if (p == NULL)
  209. p = pid_task(pgrp, PIDTYPE_PID);
  210. if (p != NULL)
  211. sid = task_session(p);
  212. return sid;
  213. }
  214. /*
  215. * Determine if a process group is "orphaned", according to the POSIX
  216. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  217. * by terminal-generated stop signals. Newly orphaned process groups are
  218. * to receive a SIGHUP and a SIGCONT.
  219. *
  220. * "I ask you, have you ever known what it is to be an orphan?"
  221. */
  222. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  223. {
  224. struct task_struct *p;
  225. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  226. if ((p == ignored_task) ||
  227. (p->exit_state && thread_group_empty(p)) ||
  228. is_global_init(p->real_parent))
  229. continue;
  230. if (task_pgrp(p->real_parent) != pgrp &&
  231. task_session(p->real_parent) == task_session(p))
  232. return 0;
  233. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  234. return 1;
  235. }
  236. int is_current_pgrp_orphaned(void)
  237. {
  238. int retval;
  239. read_lock(&tasklist_lock);
  240. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  241. read_unlock(&tasklist_lock);
  242. return retval;
  243. }
  244. static int has_stopped_jobs(struct pid *pgrp)
  245. {
  246. int retval = 0;
  247. struct task_struct *p;
  248. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  249. if (!task_is_stopped(p))
  250. continue;
  251. retval = 1;
  252. break;
  253. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  254. return retval;
  255. }
  256. /*
  257. * Check to see if any process groups have become orphaned as
  258. * a result of our exiting, and if they have any stopped jobs,
  259. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  260. */
  261. static void
  262. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  263. {
  264. struct pid *pgrp = task_pgrp(tsk);
  265. struct task_struct *ignored_task = tsk;
  266. if (!parent)
  267. /* exit: our father is in a different pgrp than
  268. * we are and we were the only connection outside.
  269. */
  270. parent = tsk->real_parent;
  271. else
  272. /* reparent: our child is in a different pgrp than
  273. * we are, and it was the only connection outside.
  274. */
  275. ignored_task = NULL;
  276. if (task_pgrp(parent) != pgrp &&
  277. task_session(parent) == task_session(tsk) &&
  278. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  279. has_stopped_jobs(pgrp)) {
  280. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  281. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  282. }
  283. }
  284. /**
  285. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  286. *
  287. * If a kernel thread is launched as a result of a system call, or if
  288. * it ever exits, it should generally reparent itself to kthreadd so it
  289. * isn't in the way of other processes and is correctly cleaned up on exit.
  290. *
  291. * The various task state such as scheduling policy and priority may have
  292. * been inherited from a user process, so we reset them to sane values here.
  293. *
  294. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  295. */
  296. static void reparent_to_kthreadd(void)
  297. {
  298. write_lock_irq(&tasklist_lock);
  299. ptrace_unlink(current);
  300. /* Reparent to init */
  301. current->real_parent = current->parent = kthreadd_task;
  302. list_move_tail(&current->sibling, &current->real_parent->children);
  303. /* Set the exit signal to SIGCHLD so we signal init on exit */
  304. current->exit_signal = SIGCHLD;
  305. if (task_nice(current) < 0)
  306. set_user_nice(current, 0);
  307. /* cpus_allowed? */
  308. /* rt_priority? */
  309. /* signals? */
  310. memcpy(current->signal->rlim, init_task.signal->rlim,
  311. sizeof(current->signal->rlim));
  312. atomic_inc(&init_cred.usage);
  313. commit_creds(&init_cred);
  314. write_unlock_irq(&tasklist_lock);
  315. }
  316. void __set_special_pids(struct pid *pid)
  317. {
  318. struct task_struct *curr = current->group_leader;
  319. if (task_session(curr) != pid)
  320. change_pid(curr, PIDTYPE_SID, pid);
  321. if (task_pgrp(curr) != pid)
  322. change_pid(curr, PIDTYPE_PGID, pid);
  323. }
  324. static void set_special_pids(struct pid *pid)
  325. {
  326. write_lock_irq(&tasklist_lock);
  327. __set_special_pids(pid);
  328. write_unlock_irq(&tasklist_lock);
  329. }
  330. /*
  331. * Let kernel threads use this to say that they
  332. * allow a certain signal (since daemonize() will
  333. * have disabled all of them by default).
  334. */
  335. int allow_signal(int sig)
  336. {
  337. if (!valid_signal(sig) || sig < 1)
  338. return -EINVAL;
  339. spin_lock_irq(&current->sighand->siglock);
  340. sigdelset(&current->blocked, sig);
  341. if (!current->mm) {
  342. /* Kernel threads handle their own signals.
  343. Let the signal code know it'll be handled, so
  344. that they don't get converted to SIGKILL or
  345. just silently dropped */
  346. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  347. }
  348. recalc_sigpending();
  349. spin_unlock_irq(&current->sighand->siglock);
  350. return 0;
  351. }
  352. EXPORT_SYMBOL(allow_signal);
  353. int disallow_signal(int sig)
  354. {
  355. if (!valid_signal(sig) || sig < 1)
  356. return -EINVAL;
  357. spin_lock_irq(&current->sighand->siglock);
  358. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  359. recalc_sigpending();
  360. spin_unlock_irq(&current->sighand->siglock);
  361. return 0;
  362. }
  363. EXPORT_SYMBOL(disallow_signal);
  364. /*
  365. * Put all the gunge required to become a kernel thread without
  366. * attached user resources in one place where it belongs.
  367. */
  368. void daemonize(const char *name, ...)
  369. {
  370. va_list args;
  371. sigset_t blocked;
  372. va_start(args, name);
  373. vsnprintf(current->comm, sizeof(current->comm), name, args);
  374. va_end(args);
  375. /*
  376. * If we were started as result of loading a module, close all of the
  377. * user space pages. We don't need them, and if we didn't close them
  378. * they would be locked into memory.
  379. */
  380. exit_mm(current);
  381. /*
  382. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  383. * or suspend transition begins right now.
  384. */
  385. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  386. if (current->nsproxy != &init_nsproxy) {
  387. get_nsproxy(&init_nsproxy);
  388. switch_task_namespaces(current, &init_nsproxy);
  389. }
  390. set_special_pids(&init_struct_pid);
  391. proc_clear_tty(current);
  392. /* Block and flush all signals */
  393. sigfillset(&blocked);
  394. sigprocmask(SIG_BLOCK, &blocked, NULL);
  395. flush_signals(current);
  396. /* Become as one with the init task */
  397. daemonize_fs_struct();
  398. exit_files(current);
  399. current->files = init_task.files;
  400. atomic_inc(&current->files->count);
  401. reparent_to_kthreadd();
  402. }
  403. EXPORT_SYMBOL(daemonize);
  404. static void close_files(struct files_struct * files)
  405. {
  406. int i, j;
  407. struct fdtable *fdt;
  408. j = 0;
  409. /*
  410. * It is safe to dereference the fd table without RCU or
  411. * ->file_lock because this is the last reference to the
  412. * files structure.
  413. */
  414. fdt = files_fdtable(files);
  415. for (;;) {
  416. unsigned long set;
  417. i = j * __NFDBITS;
  418. if (i >= fdt->max_fds)
  419. break;
  420. set = fdt->open_fds->fds_bits[j++];
  421. while (set) {
  422. if (set & 1) {
  423. struct file * file = xchg(&fdt->fd[i], NULL);
  424. if (file) {
  425. filp_close(file, files);
  426. cond_resched();
  427. }
  428. }
  429. i++;
  430. set >>= 1;
  431. }
  432. }
  433. }
  434. struct files_struct *get_files_struct(struct task_struct *task)
  435. {
  436. struct files_struct *files;
  437. task_lock(task);
  438. files = task->files;
  439. if (files)
  440. atomic_inc(&files->count);
  441. task_unlock(task);
  442. return files;
  443. }
  444. void put_files_struct(struct files_struct *files)
  445. {
  446. struct fdtable *fdt;
  447. if (atomic_dec_and_test(&files->count)) {
  448. close_files(files);
  449. /*
  450. * Free the fd and fdset arrays if we expanded them.
  451. * If the fdtable was embedded, pass files for freeing
  452. * at the end of the RCU grace period. Otherwise,
  453. * you can free files immediately.
  454. */
  455. fdt = files_fdtable(files);
  456. if (fdt != &files->fdtab)
  457. kmem_cache_free(files_cachep, files);
  458. free_fdtable(fdt);
  459. }
  460. }
  461. void reset_files_struct(struct files_struct *files)
  462. {
  463. struct task_struct *tsk = current;
  464. struct files_struct *old;
  465. old = tsk->files;
  466. task_lock(tsk);
  467. tsk->files = files;
  468. task_unlock(tsk);
  469. put_files_struct(old);
  470. }
  471. void exit_files(struct task_struct *tsk)
  472. {
  473. struct files_struct * files = tsk->files;
  474. if (files) {
  475. task_lock(tsk);
  476. tsk->files = NULL;
  477. task_unlock(tsk);
  478. put_files_struct(files);
  479. }
  480. }
  481. #ifdef CONFIG_MM_OWNER
  482. /*
  483. * Task p is exiting and it owned mm, lets find a new owner for it
  484. */
  485. static inline int
  486. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  487. {
  488. /*
  489. * If there are other users of the mm and the owner (us) is exiting
  490. * we need to find a new owner to take on the responsibility.
  491. */
  492. if (atomic_read(&mm->mm_users) <= 1)
  493. return 0;
  494. if (mm->owner != p)
  495. return 0;
  496. return 1;
  497. }
  498. void mm_update_next_owner(struct mm_struct *mm)
  499. {
  500. struct task_struct *c, *g, *p = current;
  501. retry:
  502. if (!mm_need_new_owner(mm, p))
  503. return;
  504. read_lock(&tasklist_lock);
  505. /*
  506. * Search in the children
  507. */
  508. list_for_each_entry(c, &p->children, sibling) {
  509. if (c->mm == mm)
  510. goto assign_new_owner;
  511. }
  512. /*
  513. * Search in the siblings
  514. */
  515. list_for_each_entry(c, &p->parent->children, sibling) {
  516. if (c->mm == mm)
  517. goto assign_new_owner;
  518. }
  519. /*
  520. * Search through everything else. We should not get
  521. * here often
  522. */
  523. do_each_thread(g, c) {
  524. if (c->mm == mm)
  525. goto assign_new_owner;
  526. } while_each_thread(g, c);
  527. read_unlock(&tasklist_lock);
  528. /*
  529. * We found no owner yet mm_users > 1: this implies that we are
  530. * most likely racing with swapoff (try_to_unuse()) or /proc or
  531. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  532. */
  533. mm->owner = NULL;
  534. return;
  535. assign_new_owner:
  536. BUG_ON(c == p);
  537. get_task_struct(c);
  538. /*
  539. * The task_lock protects c->mm from changing.
  540. * We always want mm->owner->mm == mm
  541. */
  542. task_lock(c);
  543. /*
  544. * Delay read_unlock() till we have the task_lock()
  545. * to ensure that c does not slip away underneath us
  546. */
  547. read_unlock(&tasklist_lock);
  548. if (c->mm != mm) {
  549. task_unlock(c);
  550. put_task_struct(c);
  551. goto retry;
  552. }
  553. mm->owner = c;
  554. task_unlock(c);
  555. put_task_struct(c);
  556. }
  557. #endif /* CONFIG_MM_OWNER */
  558. /*
  559. * Turn us into a lazy TLB process if we
  560. * aren't already..
  561. */
  562. static void exit_mm(struct task_struct * tsk)
  563. {
  564. struct mm_struct *mm = tsk->mm;
  565. struct core_state *core_state;
  566. mm_release(tsk, mm);
  567. if (!mm)
  568. return;
  569. /*
  570. * Serialize with any possible pending coredump.
  571. * We must hold mmap_sem around checking core_state
  572. * and clearing tsk->mm. The core-inducing thread
  573. * will increment ->nr_threads for each thread in the
  574. * group with ->mm != NULL.
  575. */
  576. down_read(&mm->mmap_sem);
  577. core_state = mm->core_state;
  578. if (core_state) {
  579. struct core_thread self;
  580. up_read(&mm->mmap_sem);
  581. self.task = tsk;
  582. self.next = xchg(&core_state->dumper.next, &self);
  583. /*
  584. * Implies mb(), the result of xchg() must be visible
  585. * to core_state->dumper.
  586. */
  587. if (atomic_dec_and_test(&core_state->nr_threads))
  588. complete(&core_state->startup);
  589. for (;;) {
  590. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  591. if (!self.task) /* see coredump_finish() */
  592. break;
  593. schedule();
  594. }
  595. __set_task_state(tsk, TASK_RUNNING);
  596. down_read(&mm->mmap_sem);
  597. }
  598. atomic_inc(&mm->mm_count);
  599. BUG_ON(mm != tsk->active_mm);
  600. /* more a memory barrier than a real lock */
  601. task_lock(tsk);
  602. tsk->mm = NULL;
  603. up_read(&mm->mmap_sem);
  604. enter_lazy_tlb(mm, current);
  605. /* We don't want this task to be frozen prematurely */
  606. clear_freeze_flag(tsk);
  607. task_unlock(tsk);
  608. mm_update_next_owner(mm);
  609. mmput(mm);
  610. }
  611. /*
  612. * When we die, we re-parent all our children.
  613. * Try to give them to another thread in our thread
  614. * group, and if no such member exists, give it to
  615. * the child reaper process (ie "init") in our pid
  616. * space.
  617. */
  618. static struct task_struct *find_new_reaper(struct task_struct *father)
  619. {
  620. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  621. struct task_struct *thread;
  622. thread = father;
  623. while_each_thread(father, thread) {
  624. if (thread->flags & PF_EXITING)
  625. continue;
  626. if (unlikely(pid_ns->child_reaper == father))
  627. pid_ns->child_reaper = thread;
  628. return thread;
  629. }
  630. if (unlikely(pid_ns->child_reaper == father)) {
  631. write_unlock_irq(&tasklist_lock);
  632. if (unlikely(pid_ns == &init_pid_ns))
  633. panic("Attempted to kill init!");
  634. zap_pid_ns_processes(pid_ns);
  635. write_lock_irq(&tasklist_lock);
  636. /*
  637. * We can not clear ->child_reaper or leave it alone.
  638. * There may by stealth EXIT_DEAD tasks on ->children,
  639. * forget_original_parent() must move them somewhere.
  640. */
  641. pid_ns->child_reaper = init_pid_ns.child_reaper;
  642. }
  643. return pid_ns->child_reaper;
  644. }
  645. /*
  646. * Any that need to be release_task'd are put on the @dead list.
  647. */
  648. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  649. struct list_head *dead)
  650. {
  651. if (p->pdeath_signal)
  652. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  653. list_move_tail(&p->sibling, &p->real_parent->children);
  654. if (task_detached(p))
  655. return;
  656. /*
  657. * If this is a threaded reparent there is no need to
  658. * notify anyone anything has happened.
  659. */
  660. if (same_thread_group(p->real_parent, father))
  661. return;
  662. /* We don't want people slaying init. */
  663. p->exit_signal = SIGCHLD;
  664. /* If it has exited notify the new parent about this child's death. */
  665. if (!p->ptrace &&
  666. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  667. do_notify_parent(p, p->exit_signal);
  668. if (task_detached(p)) {
  669. p->exit_state = EXIT_DEAD;
  670. list_move_tail(&p->sibling, dead);
  671. }
  672. }
  673. kill_orphaned_pgrp(p, father);
  674. }
  675. static void forget_original_parent(struct task_struct *father)
  676. {
  677. struct task_struct *p, *n, *reaper;
  678. LIST_HEAD(dead_children);
  679. exit_ptrace(father);
  680. write_lock_irq(&tasklist_lock);
  681. reaper = find_new_reaper(father);
  682. list_for_each_entry_safe(p, n, &father->children, sibling) {
  683. p->real_parent = reaper;
  684. if (p->parent == father) {
  685. BUG_ON(p->ptrace);
  686. p->parent = p->real_parent;
  687. }
  688. reparent_thread(father, p, &dead_children);
  689. }
  690. write_unlock_irq(&tasklist_lock);
  691. BUG_ON(!list_empty(&father->children));
  692. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  693. list_del_init(&p->sibling);
  694. release_task(p);
  695. }
  696. }
  697. /*
  698. * Send signals to all our closest relatives so that they know
  699. * to properly mourn us..
  700. */
  701. static void exit_notify(struct task_struct *tsk, int group_dead)
  702. {
  703. int signal;
  704. void *cookie;
  705. /*
  706. * This does two things:
  707. *
  708. * A. Make init inherit all the child processes
  709. * B. Check to see if any process groups have become orphaned
  710. * as a result of our exiting, and if they have any stopped
  711. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  712. */
  713. forget_original_parent(tsk);
  714. exit_task_namespaces(tsk);
  715. write_lock_irq(&tasklist_lock);
  716. if (group_dead)
  717. kill_orphaned_pgrp(tsk->group_leader, NULL);
  718. /* Let father know we died
  719. *
  720. * Thread signals are configurable, but you aren't going to use
  721. * that to send signals to arbitary processes.
  722. * That stops right now.
  723. *
  724. * If the parent exec id doesn't match the exec id we saved
  725. * when we started then we know the parent has changed security
  726. * domain.
  727. *
  728. * If our self_exec id doesn't match our parent_exec_id then
  729. * we have changed execution domain as these two values started
  730. * the same after a fork.
  731. */
  732. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  733. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  734. tsk->self_exec_id != tsk->parent_exec_id))
  735. tsk->exit_signal = SIGCHLD;
  736. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  737. if (signal >= 0)
  738. signal = do_notify_parent(tsk, signal);
  739. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  740. /* mt-exec, de_thread() is waiting for us */
  741. if (thread_group_leader(tsk) &&
  742. tsk->signal->group_exit_task &&
  743. tsk->signal->notify_count < 0)
  744. wake_up_process(tsk->signal->group_exit_task);
  745. write_unlock_irq(&tasklist_lock);
  746. tracehook_report_death(tsk, signal, cookie, group_dead);
  747. /* If the process is dead, release it - nobody will wait for it */
  748. if (signal == DEATH_REAP)
  749. release_task(tsk);
  750. }
  751. #ifdef CONFIG_DEBUG_STACK_USAGE
  752. static void check_stack_usage(void)
  753. {
  754. static DEFINE_SPINLOCK(low_water_lock);
  755. static int lowest_to_date = THREAD_SIZE;
  756. unsigned long free;
  757. free = stack_not_used(current);
  758. if (free >= lowest_to_date)
  759. return;
  760. spin_lock(&low_water_lock);
  761. if (free < lowest_to_date) {
  762. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  763. "left\n",
  764. current->comm, free);
  765. lowest_to_date = free;
  766. }
  767. spin_unlock(&low_water_lock);
  768. }
  769. #else
  770. static inline void check_stack_usage(void) {}
  771. #endif
  772. NORET_TYPE void do_exit(long code)
  773. {
  774. struct task_struct *tsk = current;
  775. int group_dead;
  776. profile_task_exit(tsk);
  777. WARN_ON(atomic_read(&tsk->fs_excl));
  778. if (unlikely(in_interrupt()))
  779. panic("Aiee, killing interrupt handler!");
  780. if (unlikely(!tsk->pid))
  781. panic("Attempted to kill the idle task!");
  782. tracehook_report_exit(&code);
  783. /*
  784. * We're taking recursive faults here in do_exit. Safest is to just
  785. * leave this task alone and wait for reboot.
  786. */
  787. if (unlikely(tsk->flags & PF_EXITING)) {
  788. printk(KERN_ALERT
  789. "Fixing recursive fault but reboot is needed!\n");
  790. /*
  791. * We can do this unlocked here. The futex code uses
  792. * this flag just to verify whether the pi state
  793. * cleanup has been done or not. In the worst case it
  794. * loops once more. We pretend that the cleanup was
  795. * done as there is no way to return. Either the
  796. * OWNER_DIED bit is set by now or we push the blocked
  797. * task into the wait for ever nirwana as well.
  798. */
  799. tsk->flags |= PF_EXITPIDONE;
  800. set_current_state(TASK_UNINTERRUPTIBLE);
  801. schedule();
  802. }
  803. exit_irq_thread();
  804. exit_signals(tsk); /* sets PF_EXITING */
  805. /*
  806. * tsk->flags are checked in the futex code to protect against
  807. * an exiting task cleaning up the robust pi futexes.
  808. */
  809. smp_mb();
  810. spin_unlock_wait(&tsk->pi_lock);
  811. if (unlikely(in_atomic()))
  812. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  813. current->comm, task_pid_nr(current),
  814. preempt_count());
  815. acct_update_integrals(tsk);
  816. group_dead = atomic_dec_and_test(&tsk->signal->live);
  817. if (group_dead) {
  818. hrtimer_cancel(&tsk->signal->real_timer);
  819. exit_itimers(tsk->signal);
  820. }
  821. acct_collect(code, group_dead);
  822. if (group_dead)
  823. tty_audit_exit();
  824. if (unlikely(tsk->audit_context))
  825. audit_free(tsk);
  826. tsk->exit_code = code;
  827. taskstats_exit(tsk, group_dead);
  828. exit_mm(tsk);
  829. if (group_dead)
  830. acct_process();
  831. trace_sched_process_exit(tsk);
  832. exit_sem(tsk);
  833. exit_files(tsk);
  834. exit_fs(tsk);
  835. check_stack_usage();
  836. exit_thread();
  837. cgroup_exit(tsk, 1);
  838. if (group_dead && tsk->signal->leader)
  839. disassociate_ctty(1);
  840. module_put(task_thread_info(tsk)->exec_domain->module);
  841. if (tsk->binfmt)
  842. module_put(tsk->binfmt->module);
  843. proc_exit_connector(tsk);
  844. /*
  845. * Flush inherited counters to the parent - before the parent
  846. * gets woken up by child-exit notifications.
  847. */
  848. perf_counter_exit_task(tsk);
  849. exit_notify(tsk, group_dead);
  850. #ifdef CONFIG_NUMA
  851. mpol_put(tsk->mempolicy);
  852. tsk->mempolicy = NULL;
  853. #endif
  854. #ifdef CONFIG_FUTEX
  855. if (unlikely(!list_empty(&tsk->pi_state_list)))
  856. exit_pi_state_list(tsk);
  857. if (unlikely(current->pi_state_cache))
  858. kfree(current->pi_state_cache);
  859. #endif
  860. /*
  861. * Make sure we are holding no locks:
  862. */
  863. debug_check_no_locks_held(tsk);
  864. /*
  865. * We can do this unlocked here. The futex code uses this flag
  866. * just to verify whether the pi state cleanup has been done
  867. * or not. In the worst case it loops once more.
  868. */
  869. tsk->flags |= PF_EXITPIDONE;
  870. if (tsk->io_context)
  871. exit_io_context();
  872. if (tsk->splice_pipe)
  873. __free_pipe_info(tsk->splice_pipe);
  874. preempt_disable();
  875. /* causes final put_task_struct in finish_task_switch(). */
  876. tsk->state = TASK_DEAD;
  877. schedule();
  878. BUG();
  879. /* Avoid "noreturn function does return". */
  880. for (;;)
  881. cpu_relax(); /* For when BUG is null */
  882. }
  883. EXPORT_SYMBOL_GPL(do_exit);
  884. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  885. {
  886. if (comp)
  887. complete(comp);
  888. do_exit(code);
  889. }
  890. EXPORT_SYMBOL(complete_and_exit);
  891. SYSCALL_DEFINE1(exit, int, error_code)
  892. {
  893. do_exit((error_code&0xff)<<8);
  894. }
  895. /*
  896. * Take down every thread in the group. This is called by fatal signals
  897. * as well as by sys_exit_group (below).
  898. */
  899. NORET_TYPE void
  900. do_group_exit(int exit_code)
  901. {
  902. struct signal_struct *sig = current->signal;
  903. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  904. if (signal_group_exit(sig))
  905. exit_code = sig->group_exit_code;
  906. else if (!thread_group_empty(current)) {
  907. struct sighand_struct *const sighand = current->sighand;
  908. spin_lock_irq(&sighand->siglock);
  909. if (signal_group_exit(sig))
  910. /* Another thread got here before we took the lock. */
  911. exit_code = sig->group_exit_code;
  912. else {
  913. sig->group_exit_code = exit_code;
  914. sig->flags = SIGNAL_GROUP_EXIT;
  915. zap_other_threads(current);
  916. }
  917. spin_unlock_irq(&sighand->siglock);
  918. }
  919. do_exit(exit_code);
  920. /* NOTREACHED */
  921. }
  922. /*
  923. * this kills every thread in the thread group. Note that any externally
  924. * wait4()-ing process will get the correct exit code - even if this
  925. * thread is not the thread group leader.
  926. */
  927. SYSCALL_DEFINE1(exit_group, int, error_code)
  928. {
  929. do_group_exit((error_code & 0xff) << 8);
  930. /* NOTREACHED */
  931. return 0;
  932. }
  933. static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  934. {
  935. struct pid *pid = NULL;
  936. if (type == PIDTYPE_PID)
  937. pid = task->pids[type].pid;
  938. else if (type < PIDTYPE_MAX)
  939. pid = task->group_leader->pids[type].pid;
  940. return pid;
  941. }
  942. static int eligible_child(enum pid_type type, struct pid *pid, int options,
  943. struct task_struct *p)
  944. {
  945. int err;
  946. if (type < PIDTYPE_MAX) {
  947. if (task_pid_type(p, type) != pid)
  948. return 0;
  949. }
  950. /* Wait for all children (clone and not) if __WALL is set;
  951. * otherwise, wait for clone children *only* if __WCLONE is
  952. * set; otherwise, wait for non-clone children *only*. (Note:
  953. * A "clone" child here is one that reports to its parent
  954. * using a signal other than SIGCHLD.) */
  955. if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
  956. && !(options & __WALL))
  957. return 0;
  958. err = security_task_wait(p);
  959. if (err)
  960. return err;
  961. return 1;
  962. }
  963. static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
  964. int why, int status,
  965. struct siginfo __user *infop,
  966. struct rusage __user *rusagep)
  967. {
  968. int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
  969. put_task_struct(p);
  970. if (!retval)
  971. retval = put_user(SIGCHLD, &infop->si_signo);
  972. if (!retval)
  973. retval = put_user(0, &infop->si_errno);
  974. if (!retval)
  975. retval = put_user((short)why, &infop->si_code);
  976. if (!retval)
  977. retval = put_user(pid, &infop->si_pid);
  978. if (!retval)
  979. retval = put_user(uid, &infop->si_uid);
  980. if (!retval)
  981. retval = put_user(status, &infop->si_status);
  982. if (!retval)
  983. retval = pid;
  984. return retval;
  985. }
  986. /*
  987. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  988. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  989. * the lock and this task is uninteresting. If we return nonzero, we have
  990. * released the lock and the system call should return.
  991. */
  992. static int wait_task_zombie(struct task_struct *p, int options,
  993. struct siginfo __user *infop,
  994. int __user *stat_addr, struct rusage __user *ru)
  995. {
  996. unsigned long state;
  997. int retval, status, traced;
  998. pid_t pid = task_pid_vnr(p);
  999. uid_t uid = __task_cred(p)->uid;
  1000. if (!likely(options & WEXITED))
  1001. return 0;
  1002. if (unlikely(options & WNOWAIT)) {
  1003. int exit_code = p->exit_code;
  1004. int why, status;
  1005. get_task_struct(p);
  1006. read_unlock(&tasklist_lock);
  1007. if ((exit_code & 0x7f) == 0) {
  1008. why = CLD_EXITED;
  1009. status = exit_code >> 8;
  1010. } else {
  1011. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1012. status = exit_code & 0x7f;
  1013. }
  1014. return wait_noreap_copyout(p, pid, uid, why,
  1015. status, infop, ru);
  1016. }
  1017. /*
  1018. * Try to move the task's state to DEAD
  1019. * only one thread is allowed to do this:
  1020. */
  1021. state = xchg(&p->exit_state, EXIT_DEAD);
  1022. if (state != EXIT_ZOMBIE) {
  1023. BUG_ON(state != EXIT_DEAD);
  1024. return 0;
  1025. }
  1026. traced = ptrace_reparented(p);
  1027. if (likely(!traced)) {
  1028. struct signal_struct *psig;
  1029. struct signal_struct *sig;
  1030. struct task_cputime cputime;
  1031. /*
  1032. * The resource counters for the group leader are in its
  1033. * own task_struct. Those for dead threads in the group
  1034. * are in its signal_struct, as are those for the child
  1035. * processes it has previously reaped. All these
  1036. * accumulate in the parent's signal_struct c* fields.
  1037. *
  1038. * We don't bother to take a lock here to protect these
  1039. * p->signal fields, because they are only touched by
  1040. * __exit_signal, which runs with tasklist_lock
  1041. * write-locked anyway, and so is excluded here. We do
  1042. * need to protect the access to p->parent->signal fields,
  1043. * as other threads in the parent group can be right
  1044. * here reaping other children at the same time.
  1045. *
  1046. * We use thread_group_cputime() to get times for the thread
  1047. * group, which consolidates times for all threads in the
  1048. * group including the group leader.
  1049. */
  1050. thread_group_cputime(p, &cputime);
  1051. spin_lock_irq(&p->parent->sighand->siglock);
  1052. psig = p->parent->signal;
  1053. sig = p->signal;
  1054. psig->cutime =
  1055. cputime_add(psig->cutime,
  1056. cputime_add(cputime.utime,
  1057. sig->cutime));
  1058. psig->cstime =
  1059. cputime_add(psig->cstime,
  1060. cputime_add(cputime.stime,
  1061. sig->cstime));
  1062. psig->cgtime =
  1063. cputime_add(psig->cgtime,
  1064. cputime_add(p->gtime,
  1065. cputime_add(sig->gtime,
  1066. sig->cgtime)));
  1067. psig->cmin_flt +=
  1068. p->min_flt + sig->min_flt + sig->cmin_flt;
  1069. psig->cmaj_flt +=
  1070. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1071. psig->cnvcsw +=
  1072. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1073. psig->cnivcsw +=
  1074. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1075. psig->cinblock +=
  1076. task_io_get_inblock(p) +
  1077. sig->inblock + sig->cinblock;
  1078. psig->coublock +=
  1079. task_io_get_oublock(p) +
  1080. sig->oublock + sig->coublock;
  1081. task_io_accounting_add(&psig->ioac, &p->ioac);
  1082. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1083. spin_unlock_irq(&p->parent->sighand->siglock);
  1084. }
  1085. /*
  1086. * Now we are sure this task is interesting, and no other
  1087. * thread can reap it because we set its state to EXIT_DEAD.
  1088. */
  1089. read_unlock(&tasklist_lock);
  1090. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1091. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1092. ? p->signal->group_exit_code : p->exit_code;
  1093. if (!retval && stat_addr)
  1094. retval = put_user(status, stat_addr);
  1095. if (!retval && infop)
  1096. retval = put_user(SIGCHLD, &infop->si_signo);
  1097. if (!retval && infop)
  1098. retval = put_user(0, &infop->si_errno);
  1099. if (!retval && infop) {
  1100. int why;
  1101. if ((status & 0x7f) == 0) {
  1102. why = CLD_EXITED;
  1103. status >>= 8;
  1104. } else {
  1105. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1106. status &= 0x7f;
  1107. }
  1108. retval = put_user((short)why, &infop->si_code);
  1109. if (!retval)
  1110. retval = put_user(status, &infop->si_status);
  1111. }
  1112. if (!retval && infop)
  1113. retval = put_user(pid, &infop->si_pid);
  1114. if (!retval && infop)
  1115. retval = put_user(uid, &infop->si_uid);
  1116. if (!retval)
  1117. retval = pid;
  1118. if (traced) {
  1119. write_lock_irq(&tasklist_lock);
  1120. /* We dropped tasklist, ptracer could die and untrace */
  1121. ptrace_unlink(p);
  1122. /*
  1123. * If this is not a detached task, notify the parent.
  1124. * If it's still not detached after that, don't release
  1125. * it now.
  1126. */
  1127. if (!task_detached(p)) {
  1128. do_notify_parent(p, p->exit_signal);
  1129. if (!task_detached(p)) {
  1130. p->exit_state = EXIT_ZOMBIE;
  1131. p = NULL;
  1132. }
  1133. }
  1134. write_unlock_irq(&tasklist_lock);
  1135. }
  1136. if (p != NULL)
  1137. release_task(p);
  1138. return retval;
  1139. }
  1140. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1141. {
  1142. if (ptrace) {
  1143. if (task_is_stopped_or_traced(p))
  1144. return &p->exit_code;
  1145. } else {
  1146. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1147. return &p->signal->group_exit_code;
  1148. }
  1149. return NULL;
  1150. }
  1151. /*
  1152. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1153. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1154. * the lock and this task is uninteresting. If we return nonzero, we have
  1155. * released the lock and the system call should return.
  1156. */
  1157. static int wait_task_stopped(int ptrace, struct task_struct *p,
  1158. int options, struct siginfo __user *infop,
  1159. int __user *stat_addr, struct rusage __user *ru)
  1160. {
  1161. int retval, exit_code, *p_code, why;
  1162. uid_t uid = 0; /* unneeded, required by compiler */
  1163. pid_t pid;
  1164. if (!(options & WUNTRACED))
  1165. return 0;
  1166. exit_code = 0;
  1167. spin_lock_irq(&p->sighand->siglock);
  1168. p_code = task_stopped_code(p, ptrace);
  1169. if (unlikely(!p_code))
  1170. goto unlock_sig;
  1171. exit_code = *p_code;
  1172. if (!exit_code)
  1173. goto unlock_sig;
  1174. if (!unlikely(options & WNOWAIT))
  1175. *p_code = 0;
  1176. /* don't need the RCU readlock here as we're holding a spinlock */
  1177. uid = __task_cred(p)->uid;
  1178. unlock_sig:
  1179. spin_unlock_irq(&p->sighand->siglock);
  1180. if (!exit_code)
  1181. return 0;
  1182. /*
  1183. * Now we are pretty sure this task is interesting.
  1184. * Make sure it doesn't get reaped out from under us while we
  1185. * give up the lock and then examine it below. We don't want to
  1186. * keep holding onto the tasklist_lock while we call getrusage and
  1187. * possibly take page faults for user memory.
  1188. */
  1189. get_task_struct(p);
  1190. pid = task_pid_vnr(p);
  1191. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1192. read_unlock(&tasklist_lock);
  1193. if (unlikely(options & WNOWAIT))
  1194. return wait_noreap_copyout(p, pid, uid,
  1195. why, exit_code,
  1196. infop, ru);
  1197. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1198. if (!retval && stat_addr)
  1199. retval = put_user((exit_code << 8) | 0x7f, stat_addr);
  1200. if (!retval && infop)
  1201. retval = put_user(SIGCHLD, &infop->si_signo);
  1202. if (!retval && infop)
  1203. retval = put_user(0, &infop->si_errno);
  1204. if (!retval && infop)
  1205. retval = put_user((short)why, &infop->si_code);
  1206. if (!retval && infop)
  1207. retval = put_user(exit_code, &infop->si_status);
  1208. if (!retval && infop)
  1209. retval = put_user(pid, &infop->si_pid);
  1210. if (!retval && infop)
  1211. retval = put_user(uid, &infop->si_uid);
  1212. if (!retval)
  1213. retval = pid;
  1214. put_task_struct(p);
  1215. BUG_ON(!retval);
  1216. return retval;
  1217. }
  1218. /*
  1219. * Handle do_wait work for one task in a live, non-stopped state.
  1220. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1221. * the lock and this task is uninteresting. If we return nonzero, we have
  1222. * released the lock and the system call should return.
  1223. */
  1224. static int wait_task_continued(struct task_struct *p, int options,
  1225. struct siginfo __user *infop,
  1226. int __user *stat_addr, struct rusage __user *ru)
  1227. {
  1228. int retval;
  1229. pid_t pid;
  1230. uid_t uid;
  1231. if (!unlikely(options & WCONTINUED))
  1232. return 0;
  1233. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1234. return 0;
  1235. spin_lock_irq(&p->sighand->siglock);
  1236. /* Re-check with the lock held. */
  1237. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1238. spin_unlock_irq(&p->sighand->siglock);
  1239. return 0;
  1240. }
  1241. if (!unlikely(options & WNOWAIT))
  1242. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1243. uid = __task_cred(p)->uid;
  1244. spin_unlock_irq(&p->sighand->siglock);
  1245. pid = task_pid_vnr(p);
  1246. get_task_struct(p);
  1247. read_unlock(&tasklist_lock);
  1248. if (!infop) {
  1249. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1250. put_task_struct(p);
  1251. if (!retval && stat_addr)
  1252. retval = put_user(0xffff, stat_addr);
  1253. if (!retval)
  1254. retval = pid;
  1255. } else {
  1256. retval = wait_noreap_copyout(p, pid, uid,
  1257. CLD_CONTINUED, SIGCONT,
  1258. infop, ru);
  1259. BUG_ON(retval == 0);
  1260. }
  1261. return retval;
  1262. }
  1263. /*
  1264. * Consider @p for a wait by @parent.
  1265. *
  1266. * -ECHILD should be in *@notask_error before the first call.
  1267. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1268. * Returns zero if the search for a child should continue;
  1269. * then *@notask_error is 0 if @p is an eligible child,
  1270. * or another error from security_task_wait(), or still -ECHILD.
  1271. */
  1272. static int wait_consider_task(struct task_struct *parent, int ptrace,
  1273. struct task_struct *p, int *notask_error,
  1274. enum pid_type type, struct pid *pid, int options,
  1275. struct siginfo __user *infop,
  1276. int __user *stat_addr, struct rusage __user *ru)
  1277. {
  1278. int ret = eligible_child(type, pid, options, p);
  1279. if (!ret)
  1280. return ret;
  1281. if (unlikely(ret < 0)) {
  1282. /*
  1283. * If we have not yet seen any eligible child,
  1284. * then let this error code replace -ECHILD.
  1285. * A permission error will give the user a clue
  1286. * to look for security policy problems, rather
  1287. * than for mysterious wait bugs.
  1288. */
  1289. if (*notask_error)
  1290. *notask_error = ret;
  1291. }
  1292. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1293. /*
  1294. * This child is hidden by ptrace.
  1295. * We aren't allowed to see it now, but eventually we will.
  1296. */
  1297. *notask_error = 0;
  1298. return 0;
  1299. }
  1300. if (p->exit_state == EXIT_DEAD)
  1301. return 0;
  1302. /*
  1303. * We don't reap group leaders with subthreads.
  1304. */
  1305. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1306. return wait_task_zombie(p, options, infop, stat_addr, ru);
  1307. /*
  1308. * It's stopped or running now, so it might
  1309. * later continue, exit, or stop again.
  1310. */
  1311. *notask_error = 0;
  1312. if (task_stopped_code(p, ptrace))
  1313. return wait_task_stopped(ptrace, p, options,
  1314. infop, stat_addr, ru);
  1315. return wait_task_continued(p, options, infop, stat_addr, ru);
  1316. }
  1317. /*
  1318. * Do the work of do_wait() for one thread in the group, @tsk.
  1319. *
  1320. * -ECHILD should be in *@notask_error before the first call.
  1321. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1322. * Returns zero if the search for a child should continue; then
  1323. * *@notask_error is 0 if there were any eligible children,
  1324. * or another error from security_task_wait(), or still -ECHILD.
  1325. */
  1326. static int do_wait_thread(struct task_struct *tsk, int *notask_error,
  1327. enum pid_type type, struct pid *pid, int options,
  1328. struct siginfo __user *infop, int __user *stat_addr,
  1329. struct rusage __user *ru)
  1330. {
  1331. struct task_struct *p;
  1332. list_for_each_entry(p, &tsk->children, sibling) {
  1333. /*
  1334. * Do not consider detached threads.
  1335. */
  1336. if (!task_detached(p)) {
  1337. int ret = wait_consider_task(tsk, 0, p, notask_error,
  1338. type, pid, options,
  1339. infop, stat_addr, ru);
  1340. if (ret)
  1341. return ret;
  1342. }
  1343. }
  1344. return 0;
  1345. }
  1346. static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
  1347. enum pid_type type, struct pid *pid, int options,
  1348. struct siginfo __user *infop, int __user *stat_addr,
  1349. struct rusage __user *ru)
  1350. {
  1351. struct task_struct *p;
  1352. /*
  1353. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1354. */
  1355. options |= WUNTRACED;
  1356. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1357. int ret = wait_consider_task(tsk, 1, p, notask_error,
  1358. type, pid, options,
  1359. infop, stat_addr, ru);
  1360. if (ret)
  1361. return ret;
  1362. }
  1363. return 0;
  1364. }
  1365. static long do_wait(enum pid_type type, struct pid *pid, int options,
  1366. struct siginfo __user *infop, int __user *stat_addr,
  1367. struct rusage __user *ru)
  1368. {
  1369. DECLARE_WAITQUEUE(wait, current);
  1370. struct task_struct *tsk;
  1371. int retval;
  1372. trace_sched_process_wait(pid);
  1373. add_wait_queue(&current->signal->wait_chldexit,&wait);
  1374. repeat:
  1375. /*
  1376. * If there is nothing that can match our critiera just get out.
  1377. * We will clear @retval to zero if we see any child that might later
  1378. * match our criteria, even if we are not able to reap it yet.
  1379. */
  1380. retval = -ECHILD;
  1381. if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
  1382. goto end;
  1383. current->state = TASK_INTERRUPTIBLE;
  1384. read_lock(&tasklist_lock);
  1385. tsk = current;
  1386. do {
  1387. int tsk_result = do_wait_thread(tsk, &retval,
  1388. type, pid, options,
  1389. infop, stat_addr, ru);
  1390. if (!tsk_result)
  1391. tsk_result = ptrace_do_wait(tsk, &retval,
  1392. type, pid, options,
  1393. infop, stat_addr, ru);
  1394. if (tsk_result) {
  1395. /*
  1396. * tasklist_lock is unlocked and we have a final result.
  1397. */
  1398. retval = tsk_result;
  1399. goto end;
  1400. }
  1401. if (options & __WNOTHREAD)
  1402. break;
  1403. tsk = next_thread(tsk);
  1404. BUG_ON(tsk->signal != current->signal);
  1405. } while (tsk != current);
  1406. read_unlock(&tasklist_lock);
  1407. if (!retval && !(options & WNOHANG)) {
  1408. retval = -ERESTARTSYS;
  1409. if (!signal_pending(current)) {
  1410. schedule();
  1411. goto repeat;
  1412. }
  1413. }
  1414. end:
  1415. current->state = TASK_RUNNING;
  1416. remove_wait_queue(&current->signal->wait_chldexit,&wait);
  1417. if (infop) {
  1418. if (retval > 0)
  1419. retval = 0;
  1420. else {
  1421. /*
  1422. * For a WNOHANG return, clear out all the fields
  1423. * we would set so the user can easily tell the
  1424. * difference.
  1425. */
  1426. if (!retval)
  1427. retval = put_user(0, &infop->si_signo);
  1428. if (!retval)
  1429. retval = put_user(0, &infop->si_errno);
  1430. if (!retval)
  1431. retval = put_user(0, &infop->si_code);
  1432. if (!retval)
  1433. retval = put_user(0, &infop->si_pid);
  1434. if (!retval)
  1435. retval = put_user(0, &infop->si_uid);
  1436. if (!retval)
  1437. retval = put_user(0, &infop->si_status);
  1438. }
  1439. }
  1440. return retval;
  1441. }
  1442. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1443. infop, int, options, struct rusage __user *, ru)
  1444. {
  1445. struct pid *pid = NULL;
  1446. enum pid_type type;
  1447. long ret;
  1448. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1449. return -EINVAL;
  1450. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1451. return -EINVAL;
  1452. switch (which) {
  1453. case P_ALL:
  1454. type = PIDTYPE_MAX;
  1455. break;
  1456. case P_PID:
  1457. type = PIDTYPE_PID;
  1458. if (upid <= 0)
  1459. return -EINVAL;
  1460. break;
  1461. case P_PGID:
  1462. type = PIDTYPE_PGID;
  1463. if (upid <= 0)
  1464. return -EINVAL;
  1465. break;
  1466. default:
  1467. return -EINVAL;
  1468. }
  1469. if (type < PIDTYPE_MAX)
  1470. pid = find_get_pid(upid);
  1471. ret = do_wait(type, pid, options, infop, NULL, ru);
  1472. put_pid(pid);
  1473. /* avoid REGPARM breakage on x86: */
  1474. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1475. return ret;
  1476. }
  1477. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1478. int, options, struct rusage __user *, ru)
  1479. {
  1480. struct pid *pid = NULL;
  1481. enum pid_type type;
  1482. long ret;
  1483. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1484. __WNOTHREAD|__WCLONE|__WALL))
  1485. return -EINVAL;
  1486. if (upid == -1)
  1487. type = PIDTYPE_MAX;
  1488. else if (upid < 0) {
  1489. type = PIDTYPE_PGID;
  1490. pid = find_get_pid(-upid);
  1491. } else if (upid == 0) {
  1492. type = PIDTYPE_PGID;
  1493. pid = get_task_pid(current, PIDTYPE_PGID);
  1494. } else /* upid > 0 */ {
  1495. type = PIDTYPE_PID;
  1496. pid = find_get_pid(upid);
  1497. }
  1498. ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
  1499. put_pid(pid);
  1500. /* avoid REGPARM breakage on x86: */
  1501. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1502. return ret;
  1503. }
  1504. #ifdef __ARCH_WANT_SYS_WAITPID
  1505. /*
  1506. * sys_waitpid() remains for compatibility. waitpid() should be
  1507. * implemented by calling sys_wait4() from libc.a.
  1508. */
  1509. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1510. {
  1511. return sys_wait4(pid, stat_addr, options, NULL);
  1512. }
  1513. #endif