forcedeth.c 192 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.63"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. };
  328. /* Big endian: should work, but is untested */
  329. struct ring_desc {
  330. __le32 buf;
  331. __le32 flaglen;
  332. };
  333. struct ring_desc_ex {
  334. __le32 bufhigh;
  335. __le32 buflow;
  336. __le32 txvlan;
  337. __le32 flaglen;
  338. };
  339. union ring_type {
  340. struct ring_desc* orig;
  341. struct ring_desc_ex* ex;
  342. };
  343. #define FLAG_MASK_V1 0xffff0000
  344. #define FLAG_MASK_V2 0xffffc000
  345. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  346. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  347. #define NV_TX_LASTPACKET (1<<16)
  348. #define NV_TX_RETRYERROR (1<<19)
  349. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  350. #define NV_TX_FORCED_INTERRUPT (1<<24)
  351. #define NV_TX_DEFERRED (1<<26)
  352. #define NV_TX_CARRIERLOST (1<<27)
  353. #define NV_TX_LATECOLLISION (1<<28)
  354. #define NV_TX_UNDERFLOW (1<<29)
  355. #define NV_TX_ERROR (1<<30)
  356. #define NV_TX_VALID (1<<31)
  357. #define NV_TX2_LASTPACKET (1<<29)
  358. #define NV_TX2_RETRYERROR (1<<18)
  359. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  360. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  361. #define NV_TX2_DEFERRED (1<<25)
  362. #define NV_TX2_CARRIERLOST (1<<26)
  363. #define NV_TX2_LATECOLLISION (1<<27)
  364. #define NV_TX2_UNDERFLOW (1<<28)
  365. /* error and valid are the same for both */
  366. #define NV_TX2_ERROR (1<<30)
  367. #define NV_TX2_VALID (1<<31)
  368. #define NV_TX2_TSO (1<<28)
  369. #define NV_TX2_TSO_SHIFT 14
  370. #define NV_TX2_TSO_MAX_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  372. #define NV_TX2_CHECKSUM_L3 (1<<27)
  373. #define NV_TX2_CHECKSUM_L4 (1<<26)
  374. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  375. #define NV_RX_DESCRIPTORVALID (1<<16)
  376. #define NV_RX_MISSEDFRAME (1<<17)
  377. #define NV_RX_SUBSTRACT1 (1<<18)
  378. #define NV_RX_ERROR1 (1<<23)
  379. #define NV_RX_ERROR2 (1<<24)
  380. #define NV_RX_ERROR3 (1<<25)
  381. #define NV_RX_ERROR4 (1<<26)
  382. #define NV_RX_CRCERR (1<<27)
  383. #define NV_RX_OVERFLOW (1<<28)
  384. #define NV_RX_FRAMINGERR (1<<29)
  385. #define NV_RX_ERROR (1<<30)
  386. #define NV_RX_AVAIL (1<<31)
  387. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  388. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  389. #define NV_RX2_CHECKSUM_IP (0x10000000)
  390. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  391. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  392. #define NV_RX2_DESCRIPTORVALID (1<<29)
  393. #define NV_RX2_SUBSTRACT1 (1<<25)
  394. #define NV_RX2_ERROR1 (1<<18)
  395. #define NV_RX2_ERROR2 (1<<19)
  396. #define NV_RX2_ERROR3 (1<<20)
  397. #define NV_RX2_ERROR4 (1<<21)
  398. #define NV_RX2_CRCERR (1<<22)
  399. #define NV_RX2_OVERFLOW (1<<23)
  400. #define NV_RX2_FRAMINGERR (1<<24)
  401. /* error and avail are the same for both */
  402. #define NV_RX2_ERROR (1<<30)
  403. #define NV_RX2_AVAIL (1<<31)
  404. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  405. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  406. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  407. /* Miscelaneous hardware related defines: */
  408. #define NV_PCI_REGSZ_VER1 0x270
  409. #define NV_PCI_REGSZ_VER2 0x2d4
  410. #define NV_PCI_REGSZ_VER3 0x604
  411. #define NV_PCI_REGSZ_MAX 0x604
  412. /* various timeout delays: all in usec */
  413. #define NV_TXRX_RESET_DELAY 4
  414. #define NV_TXSTOP_DELAY1 10
  415. #define NV_TXSTOP_DELAY1MAX 500000
  416. #define NV_TXSTOP_DELAY2 100
  417. #define NV_RXSTOP_DELAY1 10
  418. #define NV_RXSTOP_DELAY1MAX 500000
  419. #define NV_RXSTOP_DELAY2 100
  420. #define NV_SETUP5_DELAY 5
  421. #define NV_SETUP5_DELAYMAX 50000
  422. #define NV_POWERUP_DELAY 5
  423. #define NV_POWERUP_DELAYMAX 5000
  424. #define NV_MIIBUSY_DELAY 50
  425. #define NV_MIIPHY_DELAY 10
  426. #define NV_MIIPHY_DELAYMAX 10000
  427. #define NV_MAC_RESET_DELAY 64
  428. #define NV_WAKEUPPATTERNS 5
  429. #define NV_WAKEUPMASKENTRIES 4
  430. /* General driver defaults */
  431. #define NV_WATCHDOG_TIMEO (5*HZ)
  432. #define RX_RING_DEFAULT 128
  433. #define TX_RING_DEFAULT 256
  434. #define RX_RING_MIN 128
  435. #define TX_RING_MIN 64
  436. #define RING_MAX_DESC_VER_1 1024
  437. #define RING_MAX_DESC_VER_2_3 16384
  438. /* rx/tx mac addr + type + vlan + align + slack*/
  439. #define NV_RX_HEADERS (64)
  440. /* even more slack. */
  441. #define NV_RX_ALLOC_PAD (64)
  442. /* maximum mtu size */
  443. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  444. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  445. #define OOM_REFILL (1+HZ/20)
  446. #define POLL_WAIT (1+HZ/100)
  447. #define LINK_TIMEOUT (3*HZ)
  448. #define STATS_INTERVAL (10*HZ)
  449. /*
  450. * desc_ver values:
  451. * The nic supports three different descriptor types:
  452. * - DESC_VER_1: Original
  453. * - DESC_VER_2: support for jumbo frames.
  454. * - DESC_VER_3: 64-bit format.
  455. */
  456. #define DESC_VER_1 1
  457. #define DESC_VER_2 2
  458. #define DESC_VER_3 3
  459. /* PHY defines */
  460. #define PHY_OUI_MARVELL 0x5043
  461. #define PHY_OUI_CICADA 0x03f1
  462. #define PHY_OUI_VITESSE 0x01c1
  463. #define PHY_OUI_REALTEK 0x0732
  464. #define PHY_OUI_REALTEK2 0x0020
  465. #define PHYID1_OUI_MASK 0x03ff
  466. #define PHYID1_OUI_SHFT 6
  467. #define PHYID2_OUI_MASK 0xfc00
  468. #define PHYID2_OUI_SHFT 10
  469. #define PHYID2_MODEL_MASK 0x03f0
  470. #define PHY_MODEL_REALTEK_8211 0x0110
  471. #define PHY_REV_MASK 0x0001
  472. #define PHY_REV_REALTEK_8211B 0x0000
  473. #define PHY_REV_REALTEK_8211C 0x0001
  474. #define PHY_MODEL_REALTEK_8201 0x0200
  475. #define PHY_MODEL_MARVELL_E3016 0x0220
  476. #define PHY_MARVELL_E3016_INITMASK 0x0300
  477. #define PHY_CICADA_INIT1 0x0f000
  478. #define PHY_CICADA_INIT2 0x0e00
  479. #define PHY_CICADA_INIT3 0x01000
  480. #define PHY_CICADA_INIT4 0x0200
  481. #define PHY_CICADA_INIT5 0x0004
  482. #define PHY_CICADA_INIT6 0x02000
  483. #define PHY_VITESSE_INIT_REG1 0x1f
  484. #define PHY_VITESSE_INIT_REG2 0x10
  485. #define PHY_VITESSE_INIT_REG3 0x11
  486. #define PHY_VITESSE_INIT_REG4 0x12
  487. #define PHY_VITESSE_INIT_MSK1 0xc
  488. #define PHY_VITESSE_INIT_MSK2 0x0180
  489. #define PHY_VITESSE_INIT1 0x52b5
  490. #define PHY_VITESSE_INIT2 0xaf8a
  491. #define PHY_VITESSE_INIT3 0x8
  492. #define PHY_VITESSE_INIT4 0x8f8a
  493. #define PHY_VITESSE_INIT5 0xaf86
  494. #define PHY_VITESSE_INIT6 0x8f86
  495. #define PHY_VITESSE_INIT7 0xaf82
  496. #define PHY_VITESSE_INIT8 0x0100
  497. #define PHY_VITESSE_INIT9 0x8f82
  498. #define PHY_VITESSE_INIT10 0x0
  499. #define PHY_REALTEK_INIT_REG1 0x1f
  500. #define PHY_REALTEK_INIT_REG2 0x19
  501. #define PHY_REALTEK_INIT_REG3 0x13
  502. #define PHY_REALTEK_INIT_REG4 0x14
  503. #define PHY_REALTEK_INIT_REG5 0x18
  504. #define PHY_REALTEK_INIT_REG6 0x11
  505. #define PHY_REALTEK_INIT_REG7 0x01
  506. #define PHY_REALTEK_INIT1 0x0000
  507. #define PHY_REALTEK_INIT2 0x8e00
  508. #define PHY_REALTEK_INIT3 0x0001
  509. #define PHY_REALTEK_INIT4 0xad17
  510. #define PHY_REALTEK_INIT5 0xfb54
  511. #define PHY_REALTEK_INIT6 0xf5c7
  512. #define PHY_REALTEK_INIT7 0x1000
  513. #define PHY_REALTEK_INIT8 0x0003
  514. #define PHY_REALTEK_INIT9 0x0008
  515. #define PHY_REALTEK_INIT10 0x0005
  516. #define PHY_REALTEK_INIT11 0x0200
  517. #define PHY_REALTEK_INIT_MSK1 0x0003
  518. #define PHY_GIGABIT 0x0100
  519. #define PHY_TIMEOUT 0x1
  520. #define PHY_ERROR 0x2
  521. #define PHY_100 0x1
  522. #define PHY_1000 0x2
  523. #define PHY_HALF 0x100
  524. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  525. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  526. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  527. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  528. #define NV_PAUSEFRAME_RX_REQ 0x0010
  529. #define NV_PAUSEFRAME_TX_REQ 0x0020
  530. #define NV_PAUSEFRAME_AUTONEG 0x0040
  531. /* MSI/MSI-X defines */
  532. #define NV_MSI_X_MAX_VECTORS 8
  533. #define NV_MSI_X_VECTORS_MASK 0x000f
  534. #define NV_MSI_CAPABLE 0x0010
  535. #define NV_MSI_X_CAPABLE 0x0020
  536. #define NV_MSI_ENABLED 0x0040
  537. #define NV_MSI_X_ENABLED 0x0080
  538. #define NV_MSI_X_VECTOR_ALL 0x0
  539. #define NV_MSI_X_VECTOR_RX 0x0
  540. #define NV_MSI_X_VECTOR_TX 0x1
  541. #define NV_MSI_X_VECTOR_OTHER 0x2
  542. #define NV_MSI_PRIV_OFFSET 0x68
  543. #define NV_MSI_PRIV_VALUE 0xffffffff
  544. #define NV_RESTART_TX 0x1
  545. #define NV_RESTART_RX 0x2
  546. #define NV_TX_LIMIT_COUNT 16
  547. /* statistics */
  548. struct nv_ethtool_str {
  549. char name[ETH_GSTRING_LEN];
  550. };
  551. static const struct nv_ethtool_str nv_estats_str[] = {
  552. { "tx_bytes" },
  553. { "tx_zero_rexmt" },
  554. { "tx_one_rexmt" },
  555. { "tx_many_rexmt" },
  556. { "tx_late_collision" },
  557. { "tx_fifo_errors" },
  558. { "tx_carrier_errors" },
  559. { "tx_excess_deferral" },
  560. { "tx_retry_error" },
  561. { "rx_frame_error" },
  562. { "rx_extra_byte" },
  563. { "rx_late_collision" },
  564. { "rx_runt" },
  565. { "rx_frame_too_long" },
  566. { "rx_over_errors" },
  567. { "rx_crc_errors" },
  568. { "rx_frame_align_error" },
  569. { "rx_length_error" },
  570. { "rx_unicast" },
  571. { "rx_multicast" },
  572. { "rx_broadcast" },
  573. { "rx_packets" },
  574. { "rx_errors_total" },
  575. { "tx_errors_total" },
  576. /* version 2 stats */
  577. { "tx_deferral" },
  578. { "tx_packets" },
  579. { "rx_bytes" },
  580. { "tx_pause" },
  581. { "rx_pause" },
  582. { "rx_drop_frame" },
  583. /* version 3 stats */
  584. { "tx_unicast" },
  585. { "tx_multicast" },
  586. { "tx_broadcast" }
  587. };
  588. struct nv_ethtool_stats {
  589. u64 tx_bytes;
  590. u64 tx_zero_rexmt;
  591. u64 tx_one_rexmt;
  592. u64 tx_many_rexmt;
  593. u64 tx_late_collision;
  594. u64 tx_fifo_errors;
  595. u64 tx_carrier_errors;
  596. u64 tx_excess_deferral;
  597. u64 tx_retry_error;
  598. u64 rx_frame_error;
  599. u64 rx_extra_byte;
  600. u64 rx_late_collision;
  601. u64 rx_runt;
  602. u64 rx_frame_too_long;
  603. u64 rx_over_errors;
  604. u64 rx_crc_errors;
  605. u64 rx_frame_align_error;
  606. u64 rx_length_error;
  607. u64 rx_unicast;
  608. u64 rx_multicast;
  609. u64 rx_broadcast;
  610. u64 rx_packets;
  611. u64 rx_errors_total;
  612. u64 tx_errors_total;
  613. /* version 2 stats */
  614. u64 tx_deferral;
  615. u64 tx_packets;
  616. u64 rx_bytes;
  617. u64 tx_pause;
  618. u64 rx_pause;
  619. u64 rx_drop_frame;
  620. /* version 3 stats */
  621. u64 tx_unicast;
  622. u64 tx_multicast;
  623. u64 tx_broadcast;
  624. };
  625. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  626. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  627. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  628. /* diagnostics */
  629. #define NV_TEST_COUNT_BASE 3
  630. #define NV_TEST_COUNT_EXTENDED 4
  631. static const struct nv_ethtool_str nv_etests_str[] = {
  632. { "link (online/offline)" },
  633. { "register (offline) " },
  634. { "interrupt (offline) " },
  635. { "loopback (offline) " }
  636. };
  637. struct register_test {
  638. __u32 reg;
  639. __u32 mask;
  640. };
  641. static const struct register_test nv_registers_test[] = {
  642. { NvRegUnknownSetupReg6, 0x01 },
  643. { NvRegMisc1, 0x03c },
  644. { NvRegOffloadConfig, 0x03ff },
  645. { NvRegMulticastAddrA, 0xffffffff },
  646. { NvRegTxWatermark, 0x0ff },
  647. { NvRegWakeUpFlags, 0x07777 },
  648. { 0,0 }
  649. };
  650. struct nv_skb_map {
  651. struct sk_buff *skb;
  652. dma_addr_t dma;
  653. unsigned int dma_len;
  654. struct ring_desc_ex *first_tx_desc;
  655. struct nv_skb_map *next_tx_ctx;
  656. };
  657. /*
  658. * SMP locking:
  659. * All hardware access under netdev_priv(dev)->lock, except the performance
  660. * critical parts:
  661. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  662. * by the arch code for interrupts.
  663. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  664. * needs netdev_priv(dev)->lock :-(
  665. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  666. */
  667. /* in dev: base, irq */
  668. struct fe_priv {
  669. spinlock_t lock;
  670. struct net_device *dev;
  671. struct napi_struct napi;
  672. /* General data:
  673. * Locking: spin_lock(&np->lock); */
  674. struct nv_ethtool_stats estats;
  675. int in_shutdown;
  676. u32 linkspeed;
  677. int duplex;
  678. int autoneg;
  679. int fixed_mode;
  680. int phyaddr;
  681. int wolenabled;
  682. unsigned int phy_oui;
  683. unsigned int phy_model;
  684. unsigned int phy_rev;
  685. u16 gigabit;
  686. int intr_test;
  687. int recover_error;
  688. /* General data: RO fields */
  689. dma_addr_t ring_addr;
  690. struct pci_dev *pci_dev;
  691. u32 orig_mac[2];
  692. u32 events;
  693. u32 irqmask;
  694. u32 desc_ver;
  695. u32 txrxctl_bits;
  696. u32 vlanctl_bits;
  697. u32 driver_data;
  698. u32 device_id;
  699. u32 register_size;
  700. int rx_csum;
  701. u32 mac_in_use;
  702. int mgmt_version;
  703. int mgmt_sema;
  704. void __iomem *base;
  705. /* rx specific fields.
  706. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  707. */
  708. union ring_type get_rx, put_rx, first_rx, last_rx;
  709. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  710. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  711. struct nv_skb_map *rx_skb;
  712. union ring_type rx_ring;
  713. unsigned int rx_buf_sz;
  714. unsigned int pkt_limit;
  715. struct timer_list oom_kick;
  716. struct timer_list nic_poll;
  717. struct timer_list stats_poll;
  718. u32 nic_poll_irq;
  719. int rx_ring_size;
  720. /* media detection workaround.
  721. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  722. */
  723. int need_linktimer;
  724. unsigned long link_timeout;
  725. /*
  726. * tx specific fields.
  727. */
  728. union ring_type get_tx, put_tx, first_tx, last_tx;
  729. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  730. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  731. struct nv_skb_map *tx_skb;
  732. union ring_type tx_ring;
  733. u32 tx_flags;
  734. int tx_ring_size;
  735. int tx_limit;
  736. u32 tx_pkts_in_progress;
  737. struct nv_skb_map *tx_change_owner;
  738. struct nv_skb_map *tx_end_flip;
  739. int tx_stop;
  740. /* vlan fields */
  741. struct vlan_group *vlangrp;
  742. /* msi/msi-x fields */
  743. u32 msi_flags;
  744. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  745. /* flow control */
  746. u32 pause_flags;
  747. /* power saved state */
  748. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  749. /* for different msi-x irq type */
  750. char name_rx[IFNAMSIZ + 3]; /* -rx */
  751. char name_tx[IFNAMSIZ + 3]; /* -tx */
  752. char name_other[IFNAMSIZ + 6]; /* -other */
  753. };
  754. /*
  755. * Maximum number of loops until we assume that a bit in the irq mask
  756. * is stuck. Overridable with module param.
  757. */
  758. static int max_interrupt_work = 15;
  759. /*
  760. * Optimization can be either throuput mode or cpu mode
  761. *
  762. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  763. * CPU Mode: Interrupts are controlled by a timer.
  764. */
  765. enum {
  766. NV_OPTIMIZATION_MODE_THROUGHPUT,
  767. NV_OPTIMIZATION_MODE_CPU
  768. };
  769. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  770. /*
  771. * Poll interval for timer irq
  772. *
  773. * This interval determines how frequent an interrupt is generated.
  774. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  775. * Min = 0, and Max = 65535
  776. */
  777. static int poll_interval = -1;
  778. /*
  779. * MSI interrupts
  780. */
  781. enum {
  782. NV_MSI_INT_DISABLED,
  783. NV_MSI_INT_ENABLED
  784. };
  785. static int msi = NV_MSI_INT_ENABLED;
  786. /*
  787. * MSIX interrupts
  788. */
  789. enum {
  790. NV_MSIX_INT_DISABLED,
  791. NV_MSIX_INT_ENABLED
  792. };
  793. static int msix = NV_MSIX_INT_ENABLED;
  794. /*
  795. * DMA 64bit
  796. */
  797. enum {
  798. NV_DMA_64BIT_DISABLED,
  799. NV_DMA_64BIT_ENABLED
  800. };
  801. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  802. /*
  803. * Crossover Detection
  804. * Realtek 8201 phy + some OEM boards do not work properly.
  805. */
  806. enum {
  807. NV_CROSSOVER_DETECTION_DISABLED,
  808. NV_CROSSOVER_DETECTION_ENABLED
  809. };
  810. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  811. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  812. {
  813. return netdev_priv(dev);
  814. }
  815. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  816. {
  817. return ((struct fe_priv *)netdev_priv(dev))->base;
  818. }
  819. static inline void pci_push(u8 __iomem *base)
  820. {
  821. /* force out pending posted writes */
  822. readl(base);
  823. }
  824. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  825. {
  826. return le32_to_cpu(prd->flaglen)
  827. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  828. }
  829. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  830. {
  831. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  832. }
  833. static bool nv_optimized(struct fe_priv *np)
  834. {
  835. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  836. return false;
  837. return true;
  838. }
  839. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  840. int delay, int delaymax, const char *msg)
  841. {
  842. u8 __iomem *base = get_hwbase(dev);
  843. pci_push(base);
  844. do {
  845. udelay(delay);
  846. delaymax -= delay;
  847. if (delaymax < 0) {
  848. if (msg)
  849. printk("%s", msg);
  850. return 1;
  851. }
  852. } while ((readl(base + offset) & mask) != target);
  853. return 0;
  854. }
  855. #define NV_SETUP_RX_RING 0x01
  856. #define NV_SETUP_TX_RING 0x02
  857. static inline u32 dma_low(dma_addr_t addr)
  858. {
  859. return addr;
  860. }
  861. static inline u32 dma_high(dma_addr_t addr)
  862. {
  863. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  864. }
  865. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  866. {
  867. struct fe_priv *np = get_nvpriv(dev);
  868. u8 __iomem *base = get_hwbase(dev);
  869. if (!nv_optimized(np)) {
  870. if (rxtx_flags & NV_SETUP_RX_RING) {
  871. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  872. }
  873. if (rxtx_flags & NV_SETUP_TX_RING) {
  874. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  875. }
  876. } else {
  877. if (rxtx_flags & NV_SETUP_RX_RING) {
  878. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  879. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  880. }
  881. if (rxtx_flags & NV_SETUP_TX_RING) {
  882. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  883. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  884. }
  885. }
  886. }
  887. static void free_rings(struct net_device *dev)
  888. {
  889. struct fe_priv *np = get_nvpriv(dev);
  890. if (!nv_optimized(np)) {
  891. if (np->rx_ring.orig)
  892. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  893. np->rx_ring.orig, np->ring_addr);
  894. } else {
  895. if (np->rx_ring.ex)
  896. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  897. np->rx_ring.ex, np->ring_addr);
  898. }
  899. if (np->rx_skb)
  900. kfree(np->rx_skb);
  901. if (np->tx_skb)
  902. kfree(np->tx_skb);
  903. }
  904. static int using_multi_irqs(struct net_device *dev)
  905. {
  906. struct fe_priv *np = get_nvpriv(dev);
  907. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  908. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  909. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  910. return 0;
  911. else
  912. return 1;
  913. }
  914. static void nv_enable_irq(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!using_multi_irqs(dev)) {
  918. if (np->msi_flags & NV_MSI_X_ENABLED)
  919. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  920. else
  921. enable_irq(np->pci_dev->irq);
  922. } else {
  923. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  924. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  925. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  926. }
  927. }
  928. static void nv_disable_irq(struct net_device *dev)
  929. {
  930. struct fe_priv *np = get_nvpriv(dev);
  931. if (!using_multi_irqs(dev)) {
  932. if (np->msi_flags & NV_MSI_X_ENABLED)
  933. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  934. else
  935. disable_irq(np->pci_dev->irq);
  936. } else {
  937. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  938. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  939. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  940. }
  941. }
  942. /* In MSIX mode, a write to irqmask behaves as XOR */
  943. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  944. {
  945. u8 __iomem *base = get_hwbase(dev);
  946. writel(mask, base + NvRegIrqMask);
  947. }
  948. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  949. {
  950. struct fe_priv *np = get_nvpriv(dev);
  951. u8 __iomem *base = get_hwbase(dev);
  952. if (np->msi_flags & NV_MSI_X_ENABLED) {
  953. writel(mask, base + NvRegIrqMask);
  954. } else {
  955. if (np->msi_flags & NV_MSI_ENABLED)
  956. writel(0, base + NvRegMSIIrqMask);
  957. writel(0, base + NvRegIrqMask);
  958. }
  959. }
  960. static void nv_napi_enable(struct net_device *dev)
  961. {
  962. #ifdef CONFIG_FORCEDETH_NAPI
  963. struct fe_priv *np = get_nvpriv(dev);
  964. napi_enable(&np->napi);
  965. #endif
  966. }
  967. static void nv_napi_disable(struct net_device *dev)
  968. {
  969. #ifdef CONFIG_FORCEDETH_NAPI
  970. struct fe_priv *np = get_nvpriv(dev);
  971. napi_disable(&np->napi);
  972. #endif
  973. }
  974. #define MII_READ (-1)
  975. /* mii_rw: read/write a register on the PHY.
  976. *
  977. * Caller must guarantee serialization
  978. */
  979. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  980. {
  981. u8 __iomem *base = get_hwbase(dev);
  982. u32 reg;
  983. int retval;
  984. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  985. reg = readl(base + NvRegMIIControl);
  986. if (reg & NVREG_MIICTL_INUSE) {
  987. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  988. udelay(NV_MIIBUSY_DELAY);
  989. }
  990. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  991. if (value != MII_READ) {
  992. writel(value, base + NvRegMIIData);
  993. reg |= NVREG_MIICTL_WRITE;
  994. }
  995. writel(reg, base + NvRegMIIControl);
  996. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  997. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  998. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  999. dev->name, miireg, addr);
  1000. retval = -1;
  1001. } else if (value != MII_READ) {
  1002. /* it was a write operation - fewer failures are detectable */
  1003. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1004. dev->name, value, miireg, addr);
  1005. retval = 0;
  1006. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1007. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1008. dev->name, miireg, addr);
  1009. retval = -1;
  1010. } else {
  1011. retval = readl(base + NvRegMIIData);
  1012. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1013. dev->name, miireg, addr, retval);
  1014. }
  1015. return retval;
  1016. }
  1017. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1018. {
  1019. struct fe_priv *np = netdev_priv(dev);
  1020. u32 miicontrol;
  1021. unsigned int tries = 0;
  1022. miicontrol = BMCR_RESET | bmcr_setup;
  1023. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1024. return -1;
  1025. }
  1026. /* wait for 500ms */
  1027. msleep(500);
  1028. /* must wait till reset is deasserted */
  1029. while (miicontrol & BMCR_RESET) {
  1030. msleep(10);
  1031. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1032. /* FIXME: 100 tries seem excessive */
  1033. if (tries++ > 100)
  1034. return -1;
  1035. }
  1036. return 0;
  1037. }
  1038. static int phy_init(struct net_device *dev)
  1039. {
  1040. struct fe_priv *np = get_nvpriv(dev);
  1041. u8 __iomem *base = get_hwbase(dev);
  1042. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1043. /* phy errata for E3016 phy */
  1044. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1045. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1046. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1047. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1048. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1049. return PHY_ERROR;
  1050. }
  1051. }
  1052. if (np->phy_oui == PHY_OUI_REALTEK) {
  1053. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1054. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1055. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1056. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1057. return PHY_ERROR;
  1058. }
  1059. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1060. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1061. return PHY_ERROR;
  1062. }
  1063. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1076. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1077. return PHY_ERROR;
  1078. }
  1079. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1080. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. }
  1084. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1085. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1086. u32 powerstate = readl(base + NvRegPowerState2);
  1087. /* need to perform hw phy reset */
  1088. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1089. writel(powerstate, base + NvRegPowerState2);
  1090. msleep(25);
  1091. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1092. writel(powerstate, base + NvRegPowerState2);
  1093. msleep(25);
  1094. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1095. reg |= PHY_REALTEK_INIT9;
  1096. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1105. if (!(reg & PHY_REALTEK_INIT11)) {
  1106. reg |= PHY_REALTEK_INIT11;
  1107. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. }
  1112. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1113. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1114. return PHY_ERROR;
  1115. }
  1116. }
  1117. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1118. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1119. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1120. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1121. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1122. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1123. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1124. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1125. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1126. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1127. phy_reserved |= PHY_REALTEK_INIT7;
  1128. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. }
  1133. }
  1134. }
  1135. /* set advertise register */
  1136. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1137. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1138. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1139. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. /* get phy interface type */
  1143. phyinterface = readl(base + NvRegPhyInterface);
  1144. /* see if gigabit phy */
  1145. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1146. if (mii_status & PHY_GIGABIT) {
  1147. np->gigabit = PHY_GIGABIT;
  1148. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1149. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1150. if (phyinterface & PHY_RGMII)
  1151. mii_control_1000 |= ADVERTISE_1000FULL;
  1152. else
  1153. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1154. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. }
  1159. else
  1160. np->gigabit = 0;
  1161. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1162. mii_control |= BMCR_ANENABLE;
  1163. if (np->phy_oui == PHY_OUI_REALTEK &&
  1164. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1165. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1166. /* start autoneg since we already performed hw reset above */
  1167. mii_control |= BMCR_ANRESTART;
  1168. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1169. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1170. return PHY_ERROR;
  1171. }
  1172. } else {
  1173. /* reset the phy
  1174. * (certain phys need bmcr to be setup with reset)
  1175. */
  1176. if (phy_reset(dev, mii_control)) {
  1177. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1178. return PHY_ERROR;
  1179. }
  1180. }
  1181. /* phy vendor specific configuration */
  1182. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1183. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1184. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1185. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1186. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1191. phy_reserved |= PHY_CICADA_INIT5;
  1192. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1193. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1194. return PHY_ERROR;
  1195. }
  1196. }
  1197. if (np->phy_oui == PHY_OUI_CICADA) {
  1198. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1199. phy_reserved |= PHY_CICADA_INIT6;
  1200. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1201. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1202. return PHY_ERROR;
  1203. }
  1204. }
  1205. if (np->phy_oui == PHY_OUI_VITESSE) {
  1206. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1207. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1208. return PHY_ERROR;
  1209. }
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1215. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1216. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1217. return PHY_ERROR;
  1218. }
  1219. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1220. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1221. phy_reserved |= PHY_VITESSE_INIT3;
  1222. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1223. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1224. return PHY_ERROR;
  1225. }
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1227. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1228. return PHY_ERROR;
  1229. }
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1235. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1236. phy_reserved |= PHY_VITESSE_INIT3;
  1237. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1238. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1239. return PHY_ERROR;
  1240. }
  1241. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1242. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1243. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1244. return PHY_ERROR;
  1245. }
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1260. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1261. phy_reserved |= PHY_VITESSE_INIT8;
  1262. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1263. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. }
  1275. if (np->phy_oui == PHY_OUI_REALTEK) {
  1276. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1277. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1278. /* reset could have cleared these out, set them back */
  1279. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1300. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1301. return PHY_ERROR;
  1302. }
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. }
  1308. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1309. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1310. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1311. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1312. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1313. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1314. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1315. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1316. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1317. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1318. phy_reserved |= PHY_REALTEK_INIT7;
  1319. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1320. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1321. return PHY_ERROR;
  1322. }
  1323. }
  1324. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1325. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1326. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1327. return PHY_ERROR;
  1328. }
  1329. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1330. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1331. phy_reserved |= PHY_REALTEK_INIT3;
  1332. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1333. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1334. return PHY_ERROR;
  1335. }
  1336. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1337. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. }
  1341. }
  1342. }
  1343. /* some phys clear out pause advertisment on reset, set it back */
  1344. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1345. /* restart auto negotiation, power down phy */
  1346. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1347. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1348. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1349. return PHY_ERROR;
  1350. }
  1351. return 0;
  1352. }
  1353. static void nv_start_rx(struct net_device *dev)
  1354. {
  1355. struct fe_priv *np = netdev_priv(dev);
  1356. u8 __iomem *base = get_hwbase(dev);
  1357. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1358. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1359. /* Already running? Stop it. */
  1360. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1361. rx_ctrl &= ~NVREG_RCVCTL_START;
  1362. writel(rx_ctrl, base + NvRegReceiverControl);
  1363. pci_push(base);
  1364. }
  1365. writel(np->linkspeed, base + NvRegLinkSpeed);
  1366. pci_push(base);
  1367. rx_ctrl |= NVREG_RCVCTL_START;
  1368. if (np->mac_in_use)
  1369. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1370. writel(rx_ctrl, base + NvRegReceiverControl);
  1371. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1372. dev->name, np->duplex, np->linkspeed);
  1373. pci_push(base);
  1374. }
  1375. static void nv_stop_rx(struct net_device *dev)
  1376. {
  1377. struct fe_priv *np = netdev_priv(dev);
  1378. u8 __iomem *base = get_hwbase(dev);
  1379. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1380. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1381. if (!np->mac_in_use)
  1382. rx_ctrl &= ~NVREG_RCVCTL_START;
  1383. else
  1384. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1385. writel(rx_ctrl, base + NvRegReceiverControl);
  1386. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1387. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1388. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1389. udelay(NV_RXSTOP_DELAY2);
  1390. if (!np->mac_in_use)
  1391. writel(0, base + NvRegLinkSpeed);
  1392. }
  1393. static void nv_start_tx(struct net_device *dev)
  1394. {
  1395. struct fe_priv *np = netdev_priv(dev);
  1396. u8 __iomem *base = get_hwbase(dev);
  1397. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1398. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1399. tx_ctrl |= NVREG_XMITCTL_START;
  1400. if (np->mac_in_use)
  1401. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1402. writel(tx_ctrl, base + NvRegTransmitterControl);
  1403. pci_push(base);
  1404. }
  1405. static void nv_stop_tx(struct net_device *dev)
  1406. {
  1407. struct fe_priv *np = netdev_priv(dev);
  1408. u8 __iomem *base = get_hwbase(dev);
  1409. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1410. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1411. if (!np->mac_in_use)
  1412. tx_ctrl &= ~NVREG_XMITCTL_START;
  1413. else
  1414. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1415. writel(tx_ctrl, base + NvRegTransmitterControl);
  1416. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1417. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1418. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1419. udelay(NV_TXSTOP_DELAY2);
  1420. if (!np->mac_in_use)
  1421. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1422. base + NvRegTransmitPoll);
  1423. }
  1424. static void nv_start_rxtx(struct net_device *dev)
  1425. {
  1426. nv_start_rx(dev);
  1427. nv_start_tx(dev);
  1428. }
  1429. static void nv_stop_rxtx(struct net_device *dev)
  1430. {
  1431. nv_stop_rx(dev);
  1432. nv_stop_tx(dev);
  1433. }
  1434. static void nv_txrx_reset(struct net_device *dev)
  1435. {
  1436. struct fe_priv *np = netdev_priv(dev);
  1437. u8 __iomem *base = get_hwbase(dev);
  1438. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1439. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1440. pci_push(base);
  1441. udelay(NV_TXRX_RESET_DELAY);
  1442. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1443. pci_push(base);
  1444. }
  1445. static void nv_mac_reset(struct net_device *dev)
  1446. {
  1447. struct fe_priv *np = netdev_priv(dev);
  1448. u8 __iomem *base = get_hwbase(dev);
  1449. u32 temp1, temp2, temp3;
  1450. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1451. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1452. pci_push(base);
  1453. /* save registers since they will be cleared on reset */
  1454. temp1 = readl(base + NvRegMacAddrA);
  1455. temp2 = readl(base + NvRegMacAddrB);
  1456. temp3 = readl(base + NvRegTransmitPoll);
  1457. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1458. pci_push(base);
  1459. udelay(NV_MAC_RESET_DELAY);
  1460. writel(0, base + NvRegMacReset);
  1461. pci_push(base);
  1462. udelay(NV_MAC_RESET_DELAY);
  1463. /* restore saved registers */
  1464. writel(temp1, base + NvRegMacAddrA);
  1465. writel(temp2, base + NvRegMacAddrB);
  1466. writel(temp3, base + NvRegTransmitPoll);
  1467. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1468. pci_push(base);
  1469. }
  1470. static void nv_get_hw_stats(struct net_device *dev)
  1471. {
  1472. struct fe_priv *np = netdev_priv(dev);
  1473. u8 __iomem *base = get_hwbase(dev);
  1474. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1475. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1476. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1477. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1478. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1479. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1480. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1481. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1482. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1483. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1484. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1485. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1486. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1487. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1488. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1489. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1490. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1491. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1492. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1493. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1494. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1495. np->estats.rx_packets =
  1496. np->estats.rx_unicast +
  1497. np->estats.rx_multicast +
  1498. np->estats.rx_broadcast;
  1499. np->estats.rx_errors_total =
  1500. np->estats.rx_crc_errors +
  1501. np->estats.rx_over_errors +
  1502. np->estats.rx_frame_error +
  1503. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1504. np->estats.rx_late_collision +
  1505. np->estats.rx_runt +
  1506. np->estats.rx_frame_too_long;
  1507. np->estats.tx_errors_total =
  1508. np->estats.tx_late_collision +
  1509. np->estats.tx_fifo_errors +
  1510. np->estats.tx_carrier_errors +
  1511. np->estats.tx_excess_deferral +
  1512. np->estats.tx_retry_error;
  1513. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1514. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1515. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1516. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1517. np->estats.tx_pause += readl(base + NvRegTxPause);
  1518. np->estats.rx_pause += readl(base + NvRegRxPause);
  1519. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1520. }
  1521. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1522. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1523. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1524. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1525. }
  1526. }
  1527. /*
  1528. * nv_get_stats: dev->get_stats function
  1529. * Get latest stats value from the nic.
  1530. * Called with read_lock(&dev_base_lock) held for read -
  1531. * only synchronized against unregister_netdevice.
  1532. */
  1533. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1534. {
  1535. struct fe_priv *np = netdev_priv(dev);
  1536. /* If the nic supports hw counters then retrieve latest values */
  1537. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1538. nv_get_hw_stats(dev);
  1539. /* copy to net_device stats */
  1540. dev->stats.tx_bytes = np->estats.tx_bytes;
  1541. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1542. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1543. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1544. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1545. dev->stats.rx_errors = np->estats.rx_errors_total;
  1546. dev->stats.tx_errors = np->estats.tx_errors_total;
  1547. }
  1548. return &dev->stats;
  1549. }
  1550. /*
  1551. * nv_alloc_rx: fill rx ring entries.
  1552. * Return 1 if the allocations for the skbs failed and the
  1553. * rx engine is without Available descriptors
  1554. */
  1555. static int nv_alloc_rx(struct net_device *dev)
  1556. {
  1557. struct fe_priv *np = netdev_priv(dev);
  1558. struct ring_desc* less_rx;
  1559. less_rx = np->get_rx.orig;
  1560. if (less_rx-- == np->first_rx.orig)
  1561. less_rx = np->last_rx.orig;
  1562. while (np->put_rx.orig != less_rx) {
  1563. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1564. if (skb) {
  1565. np->put_rx_ctx->skb = skb;
  1566. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1567. skb->data,
  1568. skb_tailroom(skb),
  1569. PCI_DMA_FROMDEVICE);
  1570. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1571. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1572. wmb();
  1573. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1574. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1575. np->put_rx.orig = np->first_rx.orig;
  1576. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1577. np->put_rx_ctx = np->first_rx_ctx;
  1578. } else {
  1579. return 1;
  1580. }
  1581. }
  1582. return 0;
  1583. }
  1584. static int nv_alloc_rx_optimized(struct net_device *dev)
  1585. {
  1586. struct fe_priv *np = netdev_priv(dev);
  1587. struct ring_desc_ex* less_rx;
  1588. less_rx = np->get_rx.ex;
  1589. if (less_rx-- == np->first_rx.ex)
  1590. less_rx = np->last_rx.ex;
  1591. while (np->put_rx.ex != less_rx) {
  1592. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1593. if (skb) {
  1594. np->put_rx_ctx->skb = skb;
  1595. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1596. skb->data,
  1597. skb_tailroom(skb),
  1598. PCI_DMA_FROMDEVICE);
  1599. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1600. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1601. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1602. wmb();
  1603. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1604. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1605. np->put_rx.ex = np->first_rx.ex;
  1606. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1607. np->put_rx_ctx = np->first_rx_ctx;
  1608. } else {
  1609. return 1;
  1610. }
  1611. }
  1612. return 0;
  1613. }
  1614. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1615. #ifdef CONFIG_FORCEDETH_NAPI
  1616. static void nv_do_rx_refill(unsigned long data)
  1617. {
  1618. struct net_device *dev = (struct net_device *) data;
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. /* Just reschedule NAPI rx processing */
  1621. napi_schedule(&np->napi);
  1622. }
  1623. #else
  1624. static void nv_do_rx_refill(unsigned long data)
  1625. {
  1626. struct net_device *dev = (struct net_device *) data;
  1627. struct fe_priv *np = netdev_priv(dev);
  1628. int retcode;
  1629. if (!using_multi_irqs(dev)) {
  1630. if (np->msi_flags & NV_MSI_X_ENABLED)
  1631. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1632. else
  1633. disable_irq(np->pci_dev->irq);
  1634. } else {
  1635. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1636. }
  1637. if (!nv_optimized(np))
  1638. retcode = nv_alloc_rx(dev);
  1639. else
  1640. retcode = nv_alloc_rx_optimized(dev);
  1641. if (retcode) {
  1642. spin_lock_irq(&np->lock);
  1643. if (!np->in_shutdown)
  1644. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1645. spin_unlock_irq(&np->lock);
  1646. }
  1647. if (!using_multi_irqs(dev)) {
  1648. if (np->msi_flags & NV_MSI_X_ENABLED)
  1649. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1650. else
  1651. enable_irq(np->pci_dev->irq);
  1652. } else {
  1653. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1654. }
  1655. }
  1656. #endif
  1657. static void nv_init_rx(struct net_device *dev)
  1658. {
  1659. struct fe_priv *np = netdev_priv(dev);
  1660. int i;
  1661. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1662. if (!nv_optimized(np))
  1663. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1664. else
  1665. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1666. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1667. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1668. for (i = 0; i < np->rx_ring_size; i++) {
  1669. if (!nv_optimized(np)) {
  1670. np->rx_ring.orig[i].flaglen = 0;
  1671. np->rx_ring.orig[i].buf = 0;
  1672. } else {
  1673. np->rx_ring.ex[i].flaglen = 0;
  1674. np->rx_ring.ex[i].txvlan = 0;
  1675. np->rx_ring.ex[i].bufhigh = 0;
  1676. np->rx_ring.ex[i].buflow = 0;
  1677. }
  1678. np->rx_skb[i].skb = NULL;
  1679. np->rx_skb[i].dma = 0;
  1680. }
  1681. }
  1682. static void nv_init_tx(struct net_device *dev)
  1683. {
  1684. struct fe_priv *np = netdev_priv(dev);
  1685. int i;
  1686. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1687. if (!nv_optimized(np))
  1688. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1689. else
  1690. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1691. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1692. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1693. np->tx_pkts_in_progress = 0;
  1694. np->tx_change_owner = NULL;
  1695. np->tx_end_flip = NULL;
  1696. for (i = 0; i < np->tx_ring_size; i++) {
  1697. if (!nv_optimized(np)) {
  1698. np->tx_ring.orig[i].flaglen = 0;
  1699. np->tx_ring.orig[i].buf = 0;
  1700. } else {
  1701. np->tx_ring.ex[i].flaglen = 0;
  1702. np->tx_ring.ex[i].txvlan = 0;
  1703. np->tx_ring.ex[i].bufhigh = 0;
  1704. np->tx_ring.ex[i].buflow = 0;
  1705. }
  1706. np->tx_skb[i].skb = NULL;
  1707. np->tx_skb[i].dma = 0;
  1708. np->tx_skb[i].dma_len = 0;
  1709. np->tx_skb[i].first_tx_desc = NULL;
  1710. np->tx_skb[i].next_tx_ctx = NULL;
  1711. }
  1712. }
  1713. static int nv_init_ring(struct net_device *dev)
  1714. {
  1715. struct fe_priv *np = netdev_priv(dev);
  1716. nv_init_tx(dev);
  1717. nv_init_rx(dev);
  1718. if (!nv_optimized(np))
  1719. return nv_alloc_rx(dev);
  1720. else
  1721. return nv_alloc_rx_optimized(dev);
  1722. }
  1723. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1724. {
  1725. struct fe_priv *np = netdev_priv(dev);
  1726. if (tx_skb->dma) {
  1727. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1728. tx_skb->dma_len,
  1729. PCI_DMA_TODEVICE);
  1730. tx_skb->dma = 0;
  1731. }
  1732. if (tx_skb->skb) {
  1733. dev_kfree_skb_any(tx_skb->skb);
  1734. tx_skb->skb = NULL;
  1735. return 1;
  1736. } else {
  1737. return 0;
  1738. }
  1739. }
  1740. static void nv_drain_tx(struct net_device *dev)
  1741. {
  1742. struct fe_priv *np = netdev_priv(dev);
  1743. unsigned int i;
  1744. for (i = 0; i < np->tx_ring_size; i++) {
  1745. if (!nv_optimized(np)) {
  1746. np->tx_ring.orig[i].flaglen = 0;
  1747. np->tx_ring.orig[i].buf = 0;
  1748. } else {
  1749. np->tx_ring.ex[i].flaglen = 0;
  1750. np->tx_ring.ex[i].txvlan = 0;
  1751. np->tx_ring.ex[i].bufhigh = 0;
  1752. np->tx_ring.ex[i].buflow = 0;
  1753. }
  1754. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1755. dev->stats.tx_dropped++;
  1756. np->tx_skb[i].dma = 0;
  1757. np->tx_skb[i].dma_len = 0;
  1758. np->tx_skb[i].first_tx_desc = NULL;
  1759. np->tx_skb[i].next_tx_ctx = NULL;
  1760. }
  1761. np->tx_pkts_in_progress = 0;
  1762. np->tx_change_owner = NULL;
  1763. np->tx_end_flip = NULL;
  1764. }
  1765. static void nv_drain_rx(struct net_device *dev)
  1766. {
  1767. struct fe_priv *np = netdev_priv(dev);
  1768. int i;
  1769. for (i = 0; i < np->rx_ring_size; i++) {
  1770. if (!nv_optimized(np)) {
  1771. np->rx_ring.orig[i].flaglen = 0;
  1772. np->rx_ring.orig[i].buf = 0;
  1773. } else {
  1774. np->rx_ring.ex[i].flaglen = 0;
  1775. np->rx_ring.ex[i].txvlan = 0;
  1776. np->rx_ring.ex[i].bufhigh = 0;
  1777. np->rx_ring.ex[i].buflow = 0;
  1778. }
  1779. wmb();
  1780. if (np->rx_skb[i].skb) {
  1781. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1782. (skb_end_pointer(np->rx_skb[i].skb) -
  1783. np->rx_skb[i].skb->data),
  1784. PCI_DMA_FROMDEVICE);
  1785. dev_kfree_skb(np->rx_skb[i].skb);
  1786. np->rx_skb[i].skb = NULL;
  1787. }
  1788. }
  1789. }
  1790. static void nv_drain_rxtx(struct net_device *dev)
  1791. {
  1792. nv_drain_tx(dev);
  1793. nv_drain_rx(dev);
  1794. }
  1795. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1796. {
  1797. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1798. }
  1799. static void nv_legacybackoff_reseed(struct net_device *dev)
  1800. {
  1801. u8 __iomem *base = get_hwbase(dev);
  1802. u32 reg;
  1803. u32 low;
  1804. int tx_status = 0;
  1805. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1806. get_random_bytes(&low, sizeof(low));
  1807. reg |= low & NVREG_SLOTTIME_MASK;
  1808. /* Need to stop tx before change takes effect.
  1809. * Caller has already gained np->lock.
  1810. */
  1811. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1812. if (tx_status)
  1813. nv_stop_tx(dev);
  1814. nv_stop_rx(dev);
  1815. writel(reg, base + NvRegSlotTime);
  1816. if (tx_status)
  1817. nv_start_tx(dev);
  1818. nv_start_rx(dev);
  1819. }
  1820. /* Gear Backoff Seeds */
  1821. #define BACKOFF_SEEDSET_ROWS 8
  1822. #define BACKOFF_SEEDSET_LFSRS 15
  1823. /* Known Good seed sets */
  1824. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1825. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1826. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1827. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1828. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1829. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1830. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1831. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1832. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1833. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1834. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1835. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1836. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1837. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1838. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1839. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1840. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1841. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1842. static void nv_gear_backoff_reseed(struct net_device *dev)
  1843. {
  1844. u8 __iomem *base = get_hwbase(dev);
  1845. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1846. u32 temp, seedset, combinedSeed;
  1847. int i;
  1848. /* Setup seed for free running LFSR */
  1849. /* We are going to read the time stamp counter 3 times
  1850. and swizzle bits around to increase randomness */
  1851. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1852. miniseed1 &= 0x0fff;
  1853. if (miniseed1 == 0)
  1854. miniseed1 = 0xabc;
  1855. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1856. miniseed2 &= 0x0fff;
  1857. if (miniseed2 == 0)
  1858. miniseed2 = 0xabc;
  1859. miniseed2_reversed =
  1860. ((miniseed2 & 0xF00) >> 8) |
  1861. (miniseed2 & 0x0F0) |
  1862. ((miniseed2 & 0x00F) << 8);
  1863. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1864. miniseed3 &= 0x0fff;
  1865. if (miniseed3 == 0)
  1866. miniseed3 = 0xabc;
  1867. miniseed3_reversed =
  1868. ((miniseed3 & 0xF00) >> 8) |
  1869. (miniseed3 & 0x0F0) |
  1870. ((miniseed3 & 0x00F) << 8);
  1871. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1872. (miniseed2 ^ miniseed3_reversed);
  1873. /* Seeds can not be zero */
  1874. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1875. combinedSeed |= 0x08;
  1876. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1877. combinedSeed |= 0x8000;
  1878. /* No need to disable tx here */
  1879. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1880. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1881. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1882. writel(temp,base + NvRegBackOffControl);
  1883. /* Setup seeds for all gear LFSRs. */
  1884. get_random_bytes(&seedset, sizeof(seedset));
  1885. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1886. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1887. {
  1888. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1889. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1890. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1891. writel(temp, base + NvRegBackOffControl);
  1892. }
  1893. }
  1894. /*
  1895. * nv_start_xmit: dev->hard_start_xmit function
  1896. * Called with netif_tx_lock held.
  1897. */
  1898. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1899. {
  1900. struct fe_priv *np = netdev_priv(dev);
  1901. u32 tx_flags = 0;
  1902. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1903. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1904. unsigned int i;
  1905. u32 offset = 0;
  1906. u32 bcnt;
  1907. u32 size = skb->len-skb->data_len;
  1908. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1909. u32 empty_slots;
  1910. struct ring_desc* put_tx;
  1911. struct ring_desc* start_tx;
  1912. struct ring_desc* prev_tx;
  1913. struct nv_skb_map* prev_tx_ctx;
  1914. unsigned long flags;
  1915. /* add fragments to entries count */
  1916. for (i = 0; i < fragments; i++) {
  1917. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1918. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1919. }
  1920. spin_lock_irqsave(&np->lock, flags);
  1921. empty_slots = nv_get_empty_tx_slots(np);
  1922. if (unlikely(empty_slots <= entries)) {
  1923. netif_stop_queue(dev);
  1924. np->tx_stop = 1;
  1925. spin_unlock_irqrestore(&np->lock, flags);
  1926. return NETDEV_TX_BUSY;
  1927. }
  1928. spin_unlock_irqrestore(&np->lock, flags);
  1929. start_tx = put_tx = np->put_tx.orig;
  1930. /* setup the header buffer */
  1931. do {
  1932. prev_tx = put_tx;
  1933. prev_tx_ctx = np->put_tx_ctx;
  1934. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1935. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1936. PCI_DMA_TODEVICE);
  1937. np->put_tx_ctx->dma_len = bcnt;
  1938. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1939. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1940. tx_flags = np->tx_flags;
  1941. offset += bcnt;
  1942. size -= bcnt;
  1943. if (unlikely(put_tx++ == np->last_tx.orig))
  1944. put_tx = np->first_tx.orig;
  1945. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1946. np->put_tx_ctx = np->first_tx_ctx;
  1947. } while (size);
  1948. /* setup the fragments */
  1949. for (i = 0; i < fragments; i++) {
  1950. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1951. u32 size = frag->size;
  1952. offset = 0;
  1953. do {
  1954. prev_tx = put_tx;
  1955. prev_tx_ctx = np->put_tx_ctx;
  1956. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1957. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1958. PCI_DMA_TODEVICE);
  1959. np->put_tx_ctx->dma_len = bcnt;
  1960. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1961. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1962. offset += bcnt;
  1963. size -= bcnt;
  1964. if (unlikely(put_tx++ == np->last_tx.orig))
  1965. put_tx = np->first_tx.orig;
  1966. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1967. np->put_tx_ctx = np->first_tx_ctx;
  1968. } while (size);
  1969. }
  1970. /* set last fragment flag */
  1971. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1972. /* save skb in this slot's context area */
  1973. prev_tx_ctx->skb = skb;
  1974. if (skb_is_gso(skb))
  1975. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1976. else
  1977. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1978. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1979. spin_lock_irqsave(&np->lock, flags);
  1980. /* set tx flags */
  1981. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1982. np->put_tx.orig = put_tx;
  1983. spin_unlock_irqrestore(&np->lock, flags);
  1984. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1985. dev->name, entries, tx_flags_extra);
  1986. {
  1987. int j;
  1988. for (j=0; j<64; j++) {
  1989. if ((j%16) == 0)
  1990. dprintk("\n%03x:", j);
  1991. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1992. }
  1993. dprintk("\n");
  1994. }
  1995. dev->trans_start = jiffies;
  1996. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1997. return NETDEV_TX_OK;
  1998. }
  1999. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2000. {
  2001. struct fe_priv *np = netdev_priv(dev);
  2002. u32 tx_flags = 0;
  2003. u32 tx_flags_extra;
  2004. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2005. unsigned int i;
  2006. u32 offset = 0;
  2007. u32 bcnt;
  2008. u32 size = skb->len-skb->data_len;
  2009. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2010. u32 empty_slots;
  2011. struct ring_desc_ex* put_tx;
  2012. struct ring_desc_ex* start_tx;
  2013. struct ring_desc_ex* prev_tx;
  2014. struct nv_skb_map* prev_tx_ctx;
  2015. struct nv_skb_map* start_tx_ctx;
  2016. unsigned long flags;
  2017. /* add fragments to entries count */
  2018. for (i = 0; i < fragments; i++) {
  2019. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2020. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2021. }
  2022. spin_lock_irqsave(&np->lock, flags);
  2023. empty_slots = nv_get_empty_tx_slots(np);
  2024. if (unlikely(empty_slots <= entries)) {
  2025. netif_stop_queue(dev);
  2026. np->tx_stop = 1;
  2027. spin_unlock_irqrestore(&np->lock, flags);
  2028. return NETDEV_TX_BUSY;
  2029. }
  2030. spin_unlock_irqrestore(&np->lock, flags);
  2031. start_tx = put_tx = np->put_tx.ex;
  2032. start_tx_ctx = np->put_tx_ctx;
  2033. /* setup the header buffer */
  2034. do {
  2035. prev_tx = put_tx;
  2036. prev_tx_ctx = np->put_tx_ctx;
  2037. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2038. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2039. PCI_DMA_TODEVICE);
  2040. np->put_tx_ctx->dma_len = bcnt;
  2041. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2042. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2043. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2044. tx_flags = NV_TX2_VALID;
  2045. offset += bcnt;
  2046. size -= bcnt;
  2047. if (unlikely(put_tx++ == np->last_tx.ex))
  2048. put_tx = np->first_tx.ex;
  2049. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2050. np->put_tx_ctx = np->first_tx_ctx;
  2051. } while (size);
  2052. /* setup the fragments */
  2053. for (i = 0; i < fragments; i++) {
  2054. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2055. u32 size = frag->size;
  2056. offset = 0;
  2057. do {
  2058. prev_tx = put_tx;
  2059. prev_tx_ctx = np->put_tx_ctx;
  2060. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2061. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2062. PCI_DMA_TODEVICE);
  2063. np->put_tx_ctx->dma_len = bcnt;
  2064. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2065. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2066. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2067. offset += bcnt;
  2068. size -= bcnt;
  2069. if (unlikely(put_tx++ == np->last_tx.ex))
  2070. put_tx = np->first_tx.ex;
  2071. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2072. np->put_tx_ctx = np->first_tx_ctx;
  2073. } while (size);
  2074. }
  2075. /* set last fragment flag */
  2076. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2077. /* save skb in this slot's context area */
  2078. prev_tx_ctx->skb = skb;
  2079. if (skb_is_gso(skb))
  2080. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2081. else
  2082. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2083. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2084. /* vlan tag */
  2085. if (likely(!np->vlangrp)) {
  2086. start_tx->txvlan = 0;
  2087. } else {
  2088. if (vlan_tx_tag_present(skb))
  2089. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2090. else
  2091. start_tx->txvlan = 0;
  2092. }
  2093. spin_lock_irqsave(&np->lock, flags);
  2094. if (np->tx_limit) {
  2095. /* Limit the number of outstanding tx. Setup all fragments, but
  2096. * do not set the VALID bit on the first descriptor. Save a pointer
  2097. * to that descriptor and also for next skb_map element.
  2098. */
  2099. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2100. if (!np->tx_change_owner)
  2101. np->tx_change_owner = start_tx_ctx;
  2102. /* remove VALID bit */
  2103. tx_flags &= ~NV_TX2_VALID;
  2104. start_tx_ctx->first_tx_desc = start_tx;
  2105. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2106. np->tx_end_flip = np->put_tx_ctx;
  2107. } else {
  2108. np->tx_pkts_in_progress++;
  2109. }
  2110. }
  2111. /* set tx flags */
  2112. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2113. np->put_tx.ex = put_tx;
  2114. spin_unlock_irqrestore(&np->lock, flags);
  2115. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2116. dev->name, entries, tx_flags_extra);
  2117. {
  2118. int j;
  2119. for (j=0; j<64; j++) {
  2120. if ((j%16) == 0)
  2121. dprintk("\n%03x:", j);
  2122. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2123. }
  2124. dprintk("\n");
  2125. }
  2126. dev->trans_start = jiffies;
  2127. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2128. return NETDEV_TX_OK;
  2129. }
  2130. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2131. {
  2132. struct fe_priv *np = netdev_priv(dev);
  2133. np->tx_pkts_in_progress--;
  2134. if (np->tx_change_owner) {
  2135. np->tx_change_owner->first_tx_desc->flaglen |=
  2136. cpu_to_le32(NV_TX2_VALID);
  2137. np->tx_pkts_in_progress++;
  2138. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2139. if (np->tx_change_owner == np->tx_end_flip)
  2140. np->tx_change_owner = NULL;
  2141. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2142. }
  2143. }
  2144. /*
  2145. * nv_tx_done: check for completed packets, release the skbs.
  2146. *
  2147. * Caller must own np->lock.
  2148. */
  2149. static int nv_tx_done(struct net_device *dev, int limit)
  2150. {
  2151. struct fe_priv *np = netdev_priv(dev);
  2152. u32 flags;
  2153. int tx_work = 0;
  2154. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2155. while ((np->get_tx.orig != np->put_tx.orig) &&
  2156. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2157. (tx_work < limit)) {
  2158. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2159. dev->name, flags);
  2160. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2161. np->get_tx_ctx->dma_len,
  2162. PCI_DMA_TODEVICE);
  2163. np->get_tx_ctx->dma = 0;
  2164. if (np->desc_ver == DESC_VER_1) {
  2165. if (flags & NV_TX_LASTPACKET) {
  2166. if (flags & NV_TX_ERROR) {
  2167. if (flags & NV_TX_UNDERFLOW)
  2168. dev->stats.tx_fifo_errors++;
  2169. if (flags & NV_TX_CARRIERLOST)
  2170. dev->stats.tx_carrier_errors++;
  2171. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2172. nv_legacybackoff_reseed(dev);
  2173. dev->stats.tx_errors++;
  2174. } else {
  2175. dev->stats.tx_packets++;
  2176. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2177. }
  2178. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2179. np->get_tx_ctx->skb = NULL;
  2180. tx_work++;
  2181. }
  2182. } else {
  2183. if (flags & NV_TX2_LASTPACKET) {
  2184. if (flags & NV_TX2_ERROR) {
  2185. if (flags & NV_TX2_UNDERFLOW)
  2186. dev->stats.tx_fifo_errors++;
  2187. if (flags & NV_TX2_CARRIERLOST)
  2188. dev->stats.tx_carrier_errors++;
  2189. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2190. nv_legacybackoff_reseed(dev);
  2191. dev->stats.tx_errors++;
  2192. } else {
  2193. dev->stats.tx_packets++;
  2194. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2195. }
  2196. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2197. np->get_tx_ctx->skb = NULL;
  2198. tx_work++;
  2199. }
  2200. }
  2201. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2202. np->get_tx.orig = np->first_tx.orig;
  2203. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2204. np->get_tx_ctx = np->first_tx_ctx;
  2205. }
  2206. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2207. np->tx_stop = 0;
  2208. netif_wake_queue(dev);
  2209. }
  2210. return tx_work;
  2211. }
  2212. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2213. {
  2214. struct fe_priv *np = netdev_priv(dev);
  2215. u32 flags;
  2216. int tx_work = 0;
  2217. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2218. while ((np->get_tx.ex != np->put_tx.ex) &&
  2219. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2220. (tx_work < limit)) {
  2221. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2222. dev->name, flags);
  2223. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2224. np->get_tx_ctx->dma_len,
  2225. PCI_DMA_TODEVICE);
  2226. np->get_tx_ctx->dma = 0;
  2227. if (flags & NV_TX2_LASTPACKET) {
  2228. if (!(flags & NV_TX2_ERROR))
  2229. dev->stats.tx_packets++;
  2230. else {
  2231. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2232. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2233. nv_gear_backoff_reseed(dev);
  2234. else
  2235. nv_legacybackoff_reseed(dev);
  2236. }
  2237. }
  2238. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2239. np->get_tx_ctx->skb = NULL;
  2240. tx_work++;
  2241. if (np->tx_limit) {
  2242. nv_tx_flip_ownership(dev);
  2243. }
  2244. }
  2245. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2246. np->get_tx.ex = np->first_tx.ex;
  2247. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2248. np->get_tx_ctx = np->first_tx_ctx;
  2249. }
  2250. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2251. np->tx_stop = 0;
  2252. netif_wake_queue(dev);
  2253. }
  2254. return tx_work;
  2255. }
  2256. /*
  2257. * nv_tx_timeout: dev->tx_timeout function
  2258. * Called with netif_tx_lock held.
  2259. */
  2260. static void nv_tx_timeout(struct net_device *dev)
  2261. {
  2262. struct fe_priv *np = netdev_priv(dev);
  2263. u8 __iomem *base = get_hwbase(dev);
  2264. u32 status;
  2265. if (np->msi_flags & NV_MSI_X_ENABLED)
  2266. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2267. else
  2268. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2269. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2270. {
  2271. int i;
  2272. printk(KERN_INFO "%s: Ring at %lx\n",
  2273. dev->name, (unsigned long)np->ring_addr);
  2274. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2275. for (i=0;i<=np->register_size;i+= 32) {
  2276. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2277. i,
  2278. readl(base + i + 0), readl(base + i + 4),
  2279. readl(base + i + 8), readl(base + i + 12),
  2280. readl(base + i + 16), readl(base + i + 20),
  2281. readl(base + i + 24), readl(base + i + 28));
  2282. }
  2283. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2284. for (i=0;i<np->tx_ring_size;i+= 4) {
  2285. if (!nv_optimized(np)) {
  2286. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2287. i,
  2288. le32_to_cpu(np->tx_ring.orig[i].buf),
  2289. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2290. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2291. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2292. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2293. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2294. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2295. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2296. } else {
  2297. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2298. i,
  2299. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2300. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2301. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2302. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2303. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2304. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2305. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2306. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2307. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2308. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2309. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2310. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2311. }
  2312. }
  2313. }
  2314. spin_lock_irq(&np->lock);
  2315. /* 1) stop tx engine */
  2316. nv_stop_tx(dev);
  2317. /* 2) check that the packets were not sent already: */
  2318. if (!nv_optimized(np))
  2319. nv_tx_done(dev, np->tx_ring_size);
  2320. else
  2321. nv_tx_done_optimized(dev, np->tx_ring_size);
  2322. /* 3) if there are dead entries: clear everything */
  2323. if (np->get_tx_ctx != np->put_tx_ctx) {
  2324. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2325. nv_drain_tx(dev);
  2326. nv_init_tx(dev);
  2327. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2328. }
  2329. netif_wake_queue(dev);
  2330. /* 4) restart tx engine */
  2331. nv_start_tx(dev);
  2332. spin_unlock_irq(&np->lock);
  2333. }
  2334. /*
  2335. * Called when the nic notices a mismatch between the actual data len on the
  2336. * wire and the len indicated in the 802 header
  2337. */
  2338. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2339. {
  2340. int hdrlen; /* length of the 802 header */
  2341. int protolen; /* length as stored in the proto field */
  2342. /* 1) calculate len according to header */
  2343. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2344. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2345. hdrlen = VLAN_HLEN;
  2346. } else {
  2347. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2348. hdrlen = ETH_HLEN;
  2349. }
  2350. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2351. dev->name, datalen, protolen, hdrlen);
  2352. if (protolen > ETH_DATA_LEN)
  2353. return datalen; /* Value in proto field not a len, no checks possible */
  2354. protolen += hdrlen;
  2355. /* consistency checks: */
  2356. if (datalen > ETH_ZLEN) {
  2357. if (datalen >= protolen) {
  2358. /* more data on wire than in 802 header, trim of
  2359. * additional data.
  2360. */
  2361. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2362. dev->name, protolen);
  2363. return protolen;
  2364. } else {
  2365. /* less data on wire than mentioned in header.
  2366. * Discard the packet.
  2367. */
  2368. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2369. dev->name);
  2370. return -1;
  2371. }
  2372. } else {
  2373. /* short packet. Accept only if 802 values are also short */
  2374. if (protolen > ETH_ZLEN) {
  2375. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2376. dev->name);
  2377. return -1;
  2378. }
  2379. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2380. dev->name, datalen);
  2381. return datalen;
  2382. }
  2383. }
  2384. static int nv_rx_process(struct net_device *dev, int limit)
  2385. {
  2386. struct fe_priv *np = netdev_priv(dev);
  2387. u32 flags;
  2388. int rx_work = 0;
  2389. struct sk_buff *skb;
  2390. int len;
  2391. while((np->get_rx.orig != np->put_rx.orig) &&
  2392. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2393. (rx_work < limit)) {
  2394. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2395. dev->name, flags);
  2396. /*
  2397. * the packet is for us - immediately tear down the pci mapping.
  2398. * TODO: check if a prefetch of the first cacheline improves
  2399. * the performance.
  2400. */
  2401. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2402. np->get_rx_ctx->dma_len,
  2403. PCI_DMA_FROMDEVICE);
  2404. skb = np->get_rx_ctx->skb;
  2405. np->get_rx_ctx->skb = NULL;
  2406. {
  2407. int j;
  2408. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2409. for (j=0; j<64; j++) {
  2410. if ((j%16) == 0)
  2411. dprintk("\n%03x:", j);
  2412. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2413. }
  2414. dprintk("\n");
  2415. }
  2416. /* look at what we actually got: */
  2417. if (np->desc_ver == DESC_VER_1) {
  2418. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2419. len = flags & LEN_MASK_V1;
  2420. if (unlikely(flags & NV_RX_ERROR)) {
  2421. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2422. len = nv_getlen(dev, skb->data, len);
  2423. if (len < 0) {
  2424. dev->stats.rx_errors++;
  2425. dev_kfree_skb(skb);
  2426. goto next_pkt;
  2427. }
  2428. }
  2429. /* framing errors are soft errors */
  2430. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2431. if (flags & NV_RX_SUBSTRACT1) {
  2432. len--;
  2433. }
  2434. }
  2435. /* the rest are hard errors */
  2436. else {
  2437. if (flags & NV_RX_MISSEDFRAME)
  2438. dev->stats.rx_missed_errors++;
  2439. if (flags & NV_RX_CRCERR)
  2440. dev->stats.rx_crc_errors++;
  2441. if (flags & NV_RX_OVERFLOW)
  2442. dev->stats.rx_over_errors++;
  2443. dev->stats.rx_errors++;
  2444. dev_kfree_skb(skb);
  2445. goto next_pkt;
  2446. }
  2447. }
  2448. } else {
  2449. dev_kfree_skb(skb);
  2450. goto next_pkt;
  2451. }
  2452. } else {
  2453. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2454. len = flags & LEN_MASK_V2;
  2455. if (unlikely(flags & NV_RX2_ERROR)) {
  2456. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2457. len = nv_getlen(dev, skb->data, len);
  2458. if (len < 0) {
  2459. dev->stats.rx_errors++;
  2460. dev_kfree_skb(skb);
  2461. goto next_pkt;
  2462. }
  2463. }
  2464. /* framing errors are soft errors */
  2465. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2466. if (flags & NV_RX2_SUBSTRACT1) {
  2467. len--;
  2468. }
  2469. }
  2470. /* the rest are hard errors */
  2471. else {
  2472. if (flags & NV_RX2_CRCERR)
  2473. dev->stats.rx_crc_errors++;
  2474. if (flags & NV_RX2_OVERFLOW)
  2475. dev->stats.rx_over_errors++;
  2476. dev->stats.rx_errors++;
  2477. dev_kfree_skb(skb);
  2478. goto next_pkt;
  2479. }
  2480. }
  2481. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2482. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2483. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2484. } else {
  2485. dev_kfree_skb(skb);
  2486. goto next_pkt;
  2487. }
  2488. }
  2489. /* got a valid packet - forward it to the network core */
  2490. skb_put(skb, len);
  2491. skb->protocol = eth_type_trans(skb, dev);
  2492. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2493. dev->name, len, skb->protocol);
  2494. #ifdef CONFIG_FORCEDETH_NAPI
  2495. netif_receive_skb(skb);
  2496. #else
  2497. netif_rx(skb);
  2498. #endif
  2499. dev->stats.rx_packets++;
  2500. dev->stats.rx_bytes += len;
  2501. next_pkt:
  2502. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2503. np->get_rx.orig = np->first_rx.orig;
  2504. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2505. np->get_rx_ctx = np->first_rx_ctx;
  2506. rx_work++;
  2507. }
  2508. return rx_work;
  2509. }
  2510. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2511. {
  2512. struct fe_priv *np = netdev_priv(dev);
  2513. u32 flags;
  2514. u32 vlanflags = 0;
  2515. int rx_work = 0;
  2516. struct sk_buff *skb;
  2517. int len;
  2518. while((np->get_rx.ex != np->put_rx.ex) &&
  2519. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2520. (rx_work < limit)) {
  2521. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2522. dev->name, flags);
  2523. /*
  2524. * the packet is for us - immediately tear down the pci mapping.
  2525. * TODO: check if a prefetch of the first cacheline improves
  2526. * the performance.
  2527. */
  2528. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2529. np->get_rx_ctx->dma_len,
  2530. PCI_DMA_FROMDEVICE);
  2531. skb = np->get_rx_ctx->skb;
  2532. np->get_rx_ctx->skb = NULL;
  2533. {
  2534. int j;
  2535. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2536. for (j=0; j<64; j++) {
  2537. if ((j%16) == 0)
  2538. dprintk("\n%03x:", j);
  2539. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2540. }
  2541. dprintk("\n");
  2542. }
  2543. /* look at what we actually got: */
  2544. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2545. len = flags & LEN_MASK_V2;
  2546. if (unlikely(flags & NV_RX2_ERROR)) {
  2547. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2548. len = nv_getlen(dev, skb->data, len);
  2549. if (len < 0) {
  2550. dev_kfree_skb(skb);
  2551. goto next_pkt;
  2552. }
  2553. }
  2554. /* framing errors are soft errors */
  2555. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2556. if (flags & NV_RX2_SUBSTRACT1) {
  2557. len--;
  2558. }
  2559. }
  2560. /* the rest are hard errors */
  2561. else {
  2562. dev_kfree_skb(skb);
  2563. goto next_pkt;
  2564. }
  2565. }
  2566. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2567. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2568. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2569. /* got a valid packet - forward it to the network core */
  2570. skb_put(skb, len);
  2571. skb->protocol = eth_type_trans(skb, dev);
  2572. prefetch(skb->data);
  2573. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2574. dev->name, len, skb->protocol);
  2575. if (likely(!np->vlangrp)) {
  2576. #ifdef CONFIG_FORCEDETH_NAPI
  2577. netif_receive_skb(skb);
  2578. #else
  2579. netif_rx(skb);
  2580. #endif
  2581. } else {
  2582. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2583. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2584. #ifdef CONFIG_FORCEDETH_NAPI
  2585. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2586. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2587. #else
  2588. vlan_hwaccel_rx(skb, np->vlangrp,
  2589. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2590. #endif
  2591. } else {
  2592. #ifdef CONFIG_FORCEDETH_NAPI
  2593. netif_receive_skb(skb);
  2594. #else
  2595. netif_rx(skb);
  2596. #endif
  2597. }
  2598. }
  2599. dev->stats.rx_packets++;
  2600. dev->stats.rx_bytes += len;
  2601. } else {
  2602. dev_kfree_skb(skb);
  2603. }
  2604. next_pkt:
  2605. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2606. np->get_rx.ex = np->first_rx.ex;
  2607. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2608. np->get_rx_ctx = np->first_rx_ctx;
  2609. rx_work++;
  2610. }
  2611. return rx_work;
  2612. }
  2613. static void set_bufsize(struct net_device *dev)
  2614. {
  2615. struct fe_priv *np = netdev_priv(dev);
  2616. if (dev->mtu <= ETH_DATA_LEN)
  2617. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2618. else
  2619. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2620. }
  2621. /*
  2622. * nv_change_mtu: dev->change_mtu function
  2623. * Called with dev_base_lock held for read.
  2624. */
  2625. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2626. {
  2627. struct fe_priv *np = netdev_priv(dev);
  2628. int old_mtu;
  2629. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2630. return -EINVAL;
  2631. old_mtu = dev->mtu;
  2632. dev->mtu = new_mtu;
  2633. /* return early if the buffer sizes will not change */
  2634. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2635. return 0;
  2636. if (old_mtu == new_mtu)
  2637. return 0;
  2638. /* synchronized against open : rtnl_lock() held by caller */
  2639. if (netif_running(dev)) {
  2640. u8 __iomem *base = get_hwbase(dev);
  2641. /*
  2642. * It seems that the nic preloads valid ring entries into an
  2643. * internal buffer. The procedure for flushing everything is
  2644. * guessed, there is probably a simpler approach.
  2645. * Changing the MTU is a rare event, it shouldn't matter.
  2646. */
  2647. nv_disable_irq(dev);
  2648. nv_napi_disable(dev);
  2649. netif_tx_lock_bh(dev);
  2650. netif_addr_lock(dev);
  2651. spin_lock(&np->lock);
  2652. /* stop engines */
  2653. nv_stop_rxtx(dev);
  2654. nv_txrx_reset(dev);
  2655. /* drain rx queue */
  2656. nv_drain_rxtx(dev);
  2657. /* reinit driver view of the rx queue */
  2658. set_bufsize(dev);
  2659. if (nv_init_ring(dev)) {
  2660. if (!np->in_shutdown)
  2661. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2662. }
  2663. /* reinit nic view of the rx queue */
  2664. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2665. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2666. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2667. base + NvRegRingSizes);
  2668. pci_push(base);
  2669. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2670. pci_push(base);
  2671. /* restart rx engine */
  2672. nv_start_rxtx(dev);
  2673. spin_unlock(&np->lock);
  2674. netif_addr_unlock(dev);
  2675. netif_tx_unlock_bh(dev);
  2676. nv_napi_enable(dev);
  2677. nv_enable_irq(dev);
  2678. }
  2679. return 0;
  2680. }
  2681. static void nv_copy_mac_to_hw(struct net_device *dev)
  2682. {
  2683. u8 __iomem *base = get_hwbase(dev);
  2684. u32 mac[2];
  2685. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2686. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2687. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2688. writel(mac[0], base + NvRegMacAddrA);
  2689. writel(mac[1], base + NvRegMacAddrB);
  2690. }
  2691. /*
  2692. * nv_set_mac_address: dev->set_mac_address function
  2693. * Called with rtnl_lock() held.
  2694. */
  2695. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2696. {
  2697. struct fe_priv *np = netdev_priv(dev);
  2698. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2699. if (!is_valid_ether_addr(macaddr->sa_data))
  2700. return -EADDRNOTAVAIL;
  2701. /* synchronized against open : rtnl_lock() held by caller */
  2702. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2703. if (netif_running(dev)) {
  2704. netif_tx_lock_bh(dev);
  2705. netif_addr_lock(dev);
  2706. spin_lock_irq(&np->lock);
  2707. /* stop rx engine */
  2708. nv_stop_rx(dev);
  2709. /* set mac address */
  2710. nv_copy_mac_to_hw(dev);
  2711. /* restart rx engine */
  2712. nv_start_rx(dev);
  2713. spin_unlock_irq(&np->lock);
  2714. netif_addr_unlock(dev);
  2715. netif_tx_unlock_bh(dev);
  2716. } else {
  2717. nv_copy_mac_to_hw(dev);
  2718. }
  2719. return 0;
  2720. }
  2721. /*
  2722. * nv_set_multicast: dev->set_multicast function
  2723. * Called with netif_tx_lock held.
  2724. */
  2725. static void nv_set_multicast(struct net_device *dev)
  2726. {
  2727. struct fe_priv *np = netdev_priv(dev);
  2728. u8 __iomem *base = get_hwbase(dev);
  2729. u32 addr[2];
  2730. u32 mask[2];
  2731. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2732. memset(addr, 0, sizeof(addr));
  2733. memset(mask, 0, sizeof(mask));
  2734. if (dev->flags & IFF_PROMISC) {
  2735. pff |= NVREG_PFF_PROMISC;
  2736. } else {
  2737. pff |= NVREG_PFF_MYADDR;
  2738. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2739. u32 alwaysOff[2];
  2740. u32 alwaysOn[2];
  2741. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2742. if (dev->flags & IFF_ALLMULTI) {
  2743. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2744. } else {
  2745. struct dev_mc_list *walk;
  2746. walk = dev->mc_list;
  2747. while (walk != NULL) {
  2748. u32 a, b;
  2749. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2750. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2751. alwaysOn[0] &= a;
  2752. alwaysOff[0] &= ~a;
  2753. alwaysOn[1] &= b;
  2754. alwaysOff[1] &= ~b;
  2755. walk = walk->next;
  2756. }
  2757. }
  2758. addr[0] = alwaysOn[0];
  2759. addr[1] = alwaysOn[1];
  2760. mask[0] = alwaysOn[0] | alwaysOff[0];
  2761. mask[1] = alwaysOn[1] | alwaysOff[1];
  2762. } else {
  2763. mask[0] = NVREG_MCASTMASKA_NONE;
  2764. mask[1] = NVREG_MCASTMASKB_NONE;
  2765. }
  2766. }
  2767. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2768. pff |= NVREG_PFF_ALWAYS;
  2769. spin_lock_irq(&np->lock);
  2770. nv_stop_rx(dev);
  2771. writel(addr[0], base + NvRegMulticastAddrA);
  2772. writel(addr[1], base + NvRegMulticastAddrB);
  2773. writel(mask[0], base + NvRegMulticastMaskA);
  2774. writel(mask[1], base + NvRegMulticastMaskB);
  2775. writel(pff, base + NvRegPacketFilterFlags);
  2776. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2777. dev->name);
  2778. nv_start_rx(dev);
  2779. spin_unlock_irq(&np->lock);
  2780. }
  2781. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2782. {
  2783. struct fe_priv *np = netdev_priv(dev);
  2784. u8 __iomem *base = get_hwbase(dev);
  2785. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2786. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2787. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2788. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2789. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2790. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2791. } else {
  2792. writel(pff, base + NvRegPacketFilterFlags);
  2793. }
  2794. }
  2795. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2796. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2797. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2798. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2799. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2800. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2801. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2802. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2803. /* limit the number of tx pause frames to a default of 8 */
  2804. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2805. }
  2806. writel(pause_enable, base + NvRegTxPauseFrame);
  2807. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2808. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2809. } else {
  2810. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2811. writel(regmisc, base + NvRegMisc1);
  2812. }
  2813. }
  2814. }
  2815. /**
  2816. * nv_update_linkspeed: Setup the MAC according to the link partner
  2817. * @dev: Network device to be configured
  2818. *
  2819. * The function queries the PHY and checks if there is a link partner.
  2820. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2821. * set to 10 MBit HD.
  2822. *
  2823. * The function returns 0 if there is no link partner and 1 if there is
  2824. * a good link partner.
  2825. */
  2826. static int nv_update_linkspeed(struct net_device *dev)
  2827. {
  2828. struct fe_priv *np = netdev_priv(dev);
  2829. u8 __iomem *base = get_hwbase(dev);
  2830. int adv = 0;
  2831. int lpa = 0;
  2832. int adv_lpa, adv_pause, lpa_pause;
  2833. int newls = np->linkspeed;
  2834. int newdup = np->duplex;
  2835. int mii_status;
  2836. int retval = 0;
  2837. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2838. u32 txrxFlags = 0;
  2839. u32 phy_exp;
  2840. /* BMSR_LSTATUS is latched, read it twice:
  2841. * we want the current value.
  2842. */
  2843. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2844. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2845. if (!(mii_status & BMSR_LSTATUS)) {
  2846. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2847. dev->name);
  2848. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2849. newdup = 0;
  2850. retval = 0;
  2851. goto set_speed;
  2852. }
  2853. if (np->autoneg == 0) {
  2854. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2855. dev->name, np->fixed_mode);
  2856. if (np->fixed_mode & LPA_100FULL) {
  2857. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2858. newdup = 1;
  2859. } else if (np->fixed_mode & LPA_100HALF) {
  2860. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2861. newdup = 0;
  2862. } else if (np->fixed_mode & LPA_10FULL) {
  2863. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2864. newdup = 1;
  2865. } else {
  2866. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2867. newdup = 0;
  2868. }
  2869. retval = 1;
  2870. goto set_speed;
  2871. }
  2872. /* check auto negotiation is complete */
  2873. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2874. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2875. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2876. newdup = 0;
  2877. retval = 0;
  2878. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2879. goto set_speed;
  2880. }
  2881. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2882. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2883. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2884. dev->name, adv, lpa);
  2885. retval = 1;
  2886. if (np->gigabit == PHY_GIGABIT) {
  2887. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2888. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2889. if ((control_1000 & ADVERTISE_1000FULL) &&
  2890. (status_1000 & LPA_1000FULL)) {
  2891. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2892. dev->name);
  2893. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2894. newdup = 1;
  2895. goto set_speed;
  2896. }
  2897. }
  2898. /* FIXME: handle parallel detection properly */
  2899. adv_lpa = lpa & adv;
  2900. if (adv_lpa & LPA_100FULL) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2902. newdup = 1;
  2903. } else if (adv_lpa & LPA_100HALF) {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2905. newdup = 0;
  2906. } else if (adv_lpa & LPA_10FULL) {
  2907. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2908. newdup = 1;
  2909. } else if (adv_lpa & LPA_10HALF) {
  2910. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2911. newdup = 0;
  2912. } else {
  2913. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2914. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2915. newdup = 0;
  2916. }
  2917. set_speed:
  2918. if (np->duplex == newdup && np->linkspeed == newls)
  2919. return retval;
  2920. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2921. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2922. np->duplex = newdup;
  2923. np->linkspeed = newls;
  2924. /* The transmitter and receiver must be restarted for safe update */
  2925. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2926. txrxFlags |= NV_RESTART_TX;
  2927. nv_stop_tx(dev);
  2928. }
  2929. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2930. txrxFlags |= NV_RESTART_RX;
  2931. nv_stop_rx(dev);
  2932. }
  2933. if (np->gigabit == PHY_GIGABIT) {
  2934. phyreg = readl(base + NvRegSlotTime);
  2935. phyreg &= ~(0x3FF00);
  2936. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2937. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2938. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2939. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2940. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2941. writel(phyreg, base + NvRegSlotTime);
  2942. }
  2943. phyreg = readl(base + NvRegPhyInterface);
  2944. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2945. if (np->duplex == 0)
  2946. phyreg |= PHY_HALF;
  2947. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2948. phyreg |= PHY_100;
  2949. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2950. phyreg |= PHY_1000;
  2951. writel(phyreg, base + NvRegPhyInterface);
  2952. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2953. if (phyreg & PHY_RGMII) {
  2954. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2955. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2956. } else {
  2957. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2958. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2959. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2960. else
  2961. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2962. } else {
  2963. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2964. }
  2965. }
  2966. } else {
  2967. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2968. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2969. else
  2970. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2971. }
  2972. writel(txreg, base + NvRegTxDeferral);
  2973. if (np->desc_ver == DESC_VER_1) {
  2974. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2975. } else {
  2976. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2977. txreg = NVREG_TX_WM_DESC2_3_1000;
  2978. else
  2979. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2980. }
  2981. writel(txreg, base + NvRegTxWatermark);
  2982. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2983. base + NvRegMisc1);
  2984. pci_push(base);
  2985. writel(np->linkspeed, base + NvRegLinkSpeed);
  2986. pci_push(base);
  2987. pause_flags = 0;
  2988. /* setup pause frame */
  2989. if (np->duplex != 0) {
  2990. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2991. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2992. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2993. switch (adv_pause) {
  2994. case ADVERTISE_PAUSE_CAP:
  2995. if (lpa_pause & LPA_PAUSE_CAP) {
  2996. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2997. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2998. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2999. }
  3000. break;
  3001. case ADVERTISE_PAUSE_ASYM:
  3002. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3003. {
  3004. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3005. }
  3006. break;
  3007. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3008. if (lpa_pause & LPA_PAUSE_CAP)
  3009. {
  3010. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3011. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3012. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3013. }
  3014. if (lpa_pause == LPA_PAUSE_ASYM)
  3015. {
  3016. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3017. }
  3018. break;
  3019. }
  3020. } else {
  3021. pause_flags = np->pause_flags;
  3022. }
  3023. }
  3024. nv_update_pause(dev, pause_flags);
  3025. if (txrxFlags & NV_RESTART_TX)
  3026. nv_start_tx(dev);
  3027. if (txrxFlags & NV_RESTART_RX)
  3028. nv_start_rx(dev);
  3029. return retval;
  3030. }
  3031. static void nv_linkchange(struct net_device *dev)
  3032. {
  3033. if (nv_update_linkspeed(dev)) {
  3034. if (!netif_carrier_ok(dev)) {
  3035. netif_carrier_on(dev);
  3036. printk(KERN_INFO "%s: link up.\n", dev->name);
  3037. nv_start_rx(dev);
  3038. }
  3039. } else {
  3040. if (netif_carrier_ok(dev)) {
  3041. netif_carrier_off(dev);
  3042. printk(KERN_INFO "%s: link down.\n", dev->name);
  3043. nv_stop_rx(dev);
  3044. }
  3045. }
  3046. }
  3047. static void nv_link_irq(struct net_device *dev)
  3048. {
  3049. u8 __iomem *base = get_hwbase(dev);
  3050. u32 miistat;
  3051. miistat = readl(base + NvRegMIIStatus);
  3052. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3053. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3054. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3055. nv_linkchange(dev);
  3056. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3057. }
  3058. static void nv_msi_workaround(struct fe_priv *np)
  3059. {
  3060. /* Need to toggle the msi irq mask within the ethernet device,
  3061. * otherwise, future interrupts will not be detected.
  3062. */
  3063. if (np->msi_flags & NV_MSI_ENABLED) {
  3064. u8 __iomem *base = np->base;
  3065. writel(0, base + NvRegMSIIrqMask);
  3066. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3067. }
  3068. }
  3069. static irqreturn_t nv_nic_irq(int foo, void *data)
  3070. {
  3071. struct net_device *dev = (struct net_device *) data;
  3072. struct fe_priv *np = netdev_priv(dev);
  3073. u8 __iomem *base = get_hwbase(dev);
  3074. int i;
  3075. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3076. for (i=0; ; i++) {
  3077. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3078. np->events = readl(base + NvRegIrqStatus);
  3079. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3080. } else {
  3081. np->events = readl(base + NvRegMSIXIrqStatus);
  3082. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3083. }
  3084. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3085. if (!(np->events & np->irqmask))
  3086. break;
  3087. nv_msi_workaround(np);
  3088. spin_lock(&np->lock);
  3089. nv_tx_done(dev, np->tx_ring_size);
  3090. spin_unlock(&np->lock);
  3091. #ifdef CONFIG_FORCEDETH_NAPI
  3092. if (np->events & NVREG_IRQ_RX_ALL) {
  3093. spin_lock(&np->lock);
  3094. napi_schedule(&np->napi);
  3095. /* Disable furthur receive irq's */
  3096. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3097. if (np->msi_flags & NV_MSI_X_ENABLED)
  3098. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3099. else
  3100. writel(np->irqmask, base + NvRegIrqMask);
  3101. spin_unlock(&np->lock);
  3102. }
  3103. #else
  3104. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3105. if (unlikely(nv_alloc_rx(dev))) {
  3106. spin_lock(&np->lock);
  3107. if (!np->in_shutdown)
  3108. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3109. spin_unlock(&np->lock);
  3110. }
  3111. }
  3112. #endif
  3113. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3114. spin_lock(&np->lock);
  3115. nv_link_irq(dev);
  3116. spin_unlock(&np->lock);
  3117. }
  3118. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3119. spin_lock(&np->lock);
  3120. nv_linkchange(dev);
  3121. spin_unlock(&np->lock);
  3122. np->link_timeout = jiffies + LINK_TIMEOUT;
  3123. }
  3124. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3125. spin_lock(&np->lock);
  3126. /* disable interrupts on the nic */
  3127. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3128. writel(0, base + NvRegIrqMask);
  3129. else
  3130. writel(np->irqmask, base + NvRegIrqMask);
  3131. pci_push(base);
  3132. if (!np->in_shutdown) {
  3133. np->nic_poll_irq = np->irqmask;
  3134. np->recover_error = 1;
  3135. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3136. }
  3137. spin_unlock(&np->lock);
  3138. break;
  3139. }
  3140. if (unlikely(i > max_interrupt_work)) {
  3141. spin_lock(&np->lock);
  3142. /* disable interrupts on the nic */
  3143. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3144. writel(0, base + NvRegIrqMask);
  3145. else
  3146. writel(np->irqmask, base + NvRegIrqMask);
  3147. pci_push(base);
  3148. if (!np->in_shutdown) {
  3149. np->nic_poll_irq = np->irqmask;
  3150. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3151. }
  3152. spin_unlock(&np->lock);
  3153. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3154. break;
  3155. }
  3156. }
  3157. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3158. return IRQ_RETVAL(i);
  3159. }
  3160. /**
  3161. * All _optimized functions are used to help increase performance
  3162. * (reduce CPU and increase throughput). They use descripter version 3,
  3163. * compiler directives, and reduce memory accesses.
  3164. */
  3165. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3166. {
  3167. struct net_device *dev = (struct net_device *) data;
  3168. struct fe_priv *np = netdev_priv(dev);
  3169. u8 __iomem *base = get_hwbase(dev);
  3170. int i;
  3171. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3172. for (i=0; ; i++) {
  3173. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3174. np->events = readl(base + NvRegIrqStatus);
  3175. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3176. } else {
  3177. np->events = readl(base + NvRegMSIXIrqStatus);
  3178. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3179. }
  3180. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3181. if (!(np->events & np->irqmask))
  3182. break;
  3183. nv_msi_workaround(np);
  3184. spin_lock(&np->lock);
  3185. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3186. spin_unlock(&np->lock);
  3187. #ifdef CONFIG_FORCEDETH_NAPI
  3188. if (np->events & NVREG_IRQ_RX_ALL) {
  3189. spin_lock(&np->lock);
  3190. napi_schedule(&np->napi);
  3191. /* Disable furthur receive irq's */
  3192. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3193. if (np->msi_flags & NV_MSI_X_ENABLED)
  3194. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3195. else
  3196. writel(np->irqmask, base + NvRegIrqMask);
  3197. spin_unlock(&np->lock);
  3198. }
  3199. #else
  3200. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3201. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3202. spin_lock(&np->lock);
  3203. if (!np->in_shutdown)
  3204. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3205. spin_unlock(&np->lock);
  3206. }
  3207. }
  3208. #endif
  3209. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3210. spin_lock(&np->lock);
  3211. nv_link_irq(dev);
  3212. spin_unlock(&np->lock);
  3213. }
  3214. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3215. spin_lock(&np->lock);
  3216. nv_linkchange(dev);
  3217. spin_unlock(&np->lock);
  3218. np->link_timeout = jiffies + LINK_TIMEOUT;
  3219. }
  3220. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3221. spin_lock(&np->lock);
  3222. /* disable interrupts on the nic */
  3223. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3224. writel(0, base + NvRegIrqMask);
  3225. else
  3226. writel(np->irqmask, base + NvRegIrqMask);
  3227. pci_push(base);
  3228. if (!np->in_shutdown) {
  3229. np->nic_poll_irq = np->irqmask;
  3230. np->recover_error = 1;
  3231. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3232. }
  3233. spin_unlock(&np->lock);
  3234. break;
  3235. }
  3236. if (unlikely(i > max_interrupt_work)) {
  3237. spin_lock(&np->lock);
  3238. /* disable interrupts on the nic */
  3239. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3240. writel(0, base + NvRegIrqMask);
  3241. else
  3242. writel(np->irqmask, base + NvRegIrqMask);
  3243. pci_push(base);
  3244. if (!np->in_shutdown) {
  3245. np->nic_poll_irq = np->irqmask;
  3246. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3247. }
  3248. spin_unlock(&np->lock);
  3249. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3250. break;
  3251. }
  3252. }
  3253. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3254. return IRQ_RETVAL(i);
  3255. }
  3256. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3257. {
  3258. struct net_device *dev = (struct net_device *) data;
  3259. struct fe_priv *np = netdev_priv(dev);
  3260. u8 __iomem *base = get_hwbase(dev);
  3261. u32 events;
  3262. int i;
  3263. unsigned long flags;
  3264. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3265. for (i=0; ; i++) {
  3266. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3267. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3268. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3269. if (!(events & np->irqmask))
  3270. break;
  3271. spin_lock_irqsave(&np->lock, flags);
  3272. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3273. spin_unlock_irqrestore(&np->lock, flags);
  3274. if (unlikely(i > max_interrupt_work)) {
  3275. spin_lock_irqsave(&np->lock, flags);
  3276. /* disable interrupts on the nic */
  3277. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3278. pci_push(base);
  3279. if (!np->in_shutdown) {
  3280. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3281. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3282. }
  3283. spin_unlock_irqrestore(&np->lock, flags);
  3284. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3285. break;
  3286. }
  3287. }
  3288. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3289. return IRQ_RETVAL(i);
  3290. }
  3291. #ifdef CONFIG_FORCEDETH_NAPI
  3292. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3293. {
  3294. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3295. struct net_device *dev = np->dev;
  3296. u8 __iomem *base = get_hwbase(dev);
  3297. unsigned long flags;
  3298. int pkts, retcode;
  3299. if (!nv_optimized(np)) {
  3300. pkts = nv_rx_process(dev, budget);
  3301. retcode = nv_alloc_rx(dev);
  3302. } else {
  3303. pkts = nv_rx_process_optimized(dev, budget);
  3304. retcode = nv_alloc_rx_optimized(dev);
  3305. }
  3306. if (retcode) {
  3307. spin_lock_irqsave(&np->lock, flags);
  3308. if (!np->in_shutdown)
  3309. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3310. spin_unlock_irqrestore(&np->lock, flags);
  3311. }
  3312. if (pkts < budget) {
  3313. /* re-enable receive interrupts */
  3314. spin_lock_irqsave(&np->lock, flags);
  3315. __napi_complete(napi);
  3316. np->irqmask |= NVREG_IRQ_RX_ALL;
  3317. if (np->msi_flags & NV_MSI_X_ENABLED)
  3318. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3319. else
  3320. writel(np->irqmask, base + NvRegIrqMask);
  3321. spin_unlock_irqrestore(&np->lock, flags);
  3322. }
  3323. return pkts;
  3324. }
  3325. #endif
  3326. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3327. {
  3328. struct net_device *dev = (struct net_device *) data;
  3329. struct fe_priv *np = netdev_priv(dev);
  3330. u8 __iomem *base = get_hwbase(dev);
  3331. u32 events;
  3332. int i;
  3333. unsigned long flags;
  3334. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3335. for (i=0; ; i++) {
  3336. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3337. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3338. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3339. if (!(events & np->irqmask))
  3340. break;
  3341. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3342. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3343. spin_lock_irqsave(&np->lock, flags);
  3344. if (!np->in_shutdown)
  3345. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3346. spin_unlock_irqrestore(&np->lock, flags);
  3347. }
  3348. }
  3349. if (unlikely(i > max_interrupt_work)) {
  3350. spin_lock_irqsave(&np->lock, flags);
  3351. /* disable interrupts on the nic */
  3352. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3353. pci_push(base);
  3354. if (!np->in_shutdown) {
  3355. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3356. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3357. }
  3358. spin_unlock_irqrestore(&np->lock, flags);
  3359. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3360. break;
  3361. }
  3362. }
  3363. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3364. return IRQ_RETVAL(i);
  3365. }
  3366. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3367. {
  3368. struct net_device *dev = (struct net_device *) data;
  3369. struct fe_priv *np = netdev_priv(dev);
  3370. u8 __iomem *base = get_hwbase(dev);
  3371. u32 events;
  3372. int i;
  3373. unsigned long flags;
  3374. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3375. for (i=0; ; i++) {
  3376. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3377. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3378. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3379. if (!(events & np->irqmask))
  3380. break;
  3381. /* check tx in case we reached max loop limit in tx isr */
  3382. spin_lock_irqsave(&np->lock, flags);
  3383. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3384. spin_unlock_irqrestore(&np->lock, flags);
  3385. if (events & NVREG_IRQ_LINK) {
  3386. spin_lock_irqsave(&np->lock, flags);
  3387. nv_link_irq(dev);
  3388. spin_unlock_irqrestore(&np->lock, flags);
  3389. }
  3390. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3391. spin_lock_irqsave(&np->lock, flags);
  3392. nv_linkchange(dev);
  3393. spin_unlock_irqrestore(&np->lock, flags);
  3394. np->link_timeout = jiffies + LINK_TIMEOUT;
  3395. }
  3396. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3397. spin_lock_irq(&np->lock);
  3398. /* disable interrupts on the nic */
  3399. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3400. pci_push(base);
  3401. if (!np->in_shutdown) {
  3402. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3403. np->recover_error = 1;
  3404. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3405. }
  3406. spin_unlock_irq(&np->lock);
  3407. break;
  3408. }
  3409. if (unlikely(i > max_interrupt_work)) {
  3410. spin_lock_irqsave(&np->lock, flags);
  3411. /* disable interrupts on the nic */
  3412. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3413. pci_push(base);
  3414. if (!np->in_shutdown) {
  3415. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3416. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3417. }
  3418. spin_unlock_irqrestore(&np->lock, flags);
  3419. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3420. break;
  3421. }
  3422. }
  3423. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3424. return IRQ_RETVAL(i);
  3425. }
  3426. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3427. {
  3428. struct net_device *dev = (struct net_device *) data;
  3429. struct fe_priv *np = netdev_priv(dev);
  3430. u8 __iomem *base = get_hwbase(dev);
  3431. u32 events;
  3432. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3433. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3434. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3435. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3436. } else {
  3437. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3438. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3439. }
  3440. pci_push(base);
  3441. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3442. if (!(events & NVREG_IRQ_TIMER))
  3443. return IRQ_RETVAL(0);
  3444. nv_msi_workaround(np);
  3445. spin_lock(&np->lock);
  3446. np->intr_test = 1;
  3447. spin_unlock(&np->lock);
  3448. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3449. return IRQ_RETVAL(1);
  3450. }
  3451. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3452. {
  3453. u8 __iomem *base = get_hwbase(dev);
  3454. int i;
  3455. u32 msixmap = 0;
  3456. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3457. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3458. * the remaining 8 interrupts.
  3459. */
  3460. for (i = 0; i < 8; i++) {
  3461. if ((irqmask >> i) & 0x1) {
  3462. msixmap |= vector << (i << 2);
  3463. }
  3464. }
  3465. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3466. msixmap = 0;
  3467. for (i = 0; i < 8; i++) {
  3468. if ((irqmask >> (i + 8)) & 0x1) {
  3469. msixmap |= vector << (i << 2);
  3470. }
  3471. }
  3472. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3473. }
  3474. static int nv_request_irq(struct net_device *dev, int intr_test)
  3475. {
  3476. struct fe_priv *np = get_nvpriv(dev);
  3477. u8 __iomem *base = get_hwbase(dev);
  3478. int ret = 1;
  3479. int i;
  3480. irqreturn_t (*handler)(int foo, void *data);
  3481. if (intr_test) {
  3482. handler = nv_nic_irq_test;
  3483. } else {
  3484. if (nv_optimized(np))
  3485. handler = nv_nic_irq_optimized;
  3486. else
  3487. handler = nv_nic_irq;
  3488. }
  3489. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3490. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3491. np->msi_x_entry[i].entry = i;
  3492. }
  3493. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3494. np->msi_flags |= NV_MSI_X_ENABLED;
  3495. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3496. /* Request irq for rx handling */
  3497. sprintf(np->name_rx, "%s-rx", dev->name);
  3498. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3499. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3500. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3501. pci_disable_msix(np->pci_dev);
  3502. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3503. goto out_err;
  3504. }
  3505. /* Request irq for tx handling */
  3506. sprintf(np->name_tx, "%s-tx", dev->name);
  3507. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3508. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3509. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3510. pci_disable_msix(np->pci_dev);
  3511. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3512. goto out_free_rx;
  3513. }
  3514. /* Request irq for link and timer handling */
  3515. sprintf(np->name_other, "%s-other", dev->name);
  3516. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3517. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3518. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3519. pci_disable_msix(np->pci_dev);
  3520. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3521. goto out_free_tx;
  3522. }
  3523. /* map interrupts to their respective vector */
  3524. writel(0, base + NvRegMSIXMap0);
  3525. writel(0, base + NvRegMSIXMap1);
  3526. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3527. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3528. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3529. } else {
  3530. /* Request irq for all interrupts */
  3531. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3532. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3533. pci_disable_msix(np->pci_dev);
  3534. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3535. goto out_err;
  3536. }
  3537. /* map interrupts to vector 0 */
  3538. writel(0, base + NvRegMSIXMap0);
  3539. writel(0, base + NvRegMSIXMap1);
  3540. }
  3541. }
  3542. }
  3543. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3544. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3545. np->msi_flags |= NV_MSI_ENABLED;
  3546. dev->irq = np->pci_dev->irq;
  3547. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3548. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3549. pci_disable_msi(np->pci_dev);
  3550. np->msi_flags &= ~NV_MSI_ENABLED;
  3551. dev->irq = np->pci_dev->irq;
  3552. goto out_err;
  3553. }
  3554. /* map interrupts to vector 0 */
  3555. writel(0, base + NvRegMSIMap0);
  3556. writel(0, base + NvRegMSIMap1);
  3557. /* enable msi vector 0 */
  3558. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3559. }
  3560. }
  3561. if (ret != 0) {
  3562. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3563. goto out_err;
  3564. }
  3565. return 0;
  3566. out_free_tx:
  3567. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3568. out_free_rx:
  3569. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3570. out_err:
  3571. return 1;
  3572. }
  3573. static void nv_free_irq(struct net_device *dev)
  3574. {
  3575. struct fe_priv *np = get_nvpriv(dev);
  3576. int i;
  3577. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3578. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3579. free_irq(np->msi_x_entry[i].vector, dev);
  3580. }
  3581. pci_disable_msix(np->pci_dev);
  3582. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3583. } else {
  3584. free_irq(np->pci_dev->irq, dev);
  3585. if (np->msi_flags & NV_MSI_ENABLED) {
  3586. pci_disable_msi(np->pci_dev);
  3587. np->msi_flags &= ~NV_MSI_ENABLED;
  3588. }
  3589. }
  3590. }
  3591. static void nv_do_nic_poll(unsigned long data)
  3592. {
  3593. struct net_device *dev = (struct net_device *) data;
  3594. struct fe_priv *np = netdev_priv(dev);
  3595. u8 __iomem *base = get_hwbase(dev);
  3596. u32 mask = 0;
  3597. /*
  3598. * First disable irq(s) and then
  3599. * reenable interrupts on the nic, we have to do this before calling
  3600. * nv_nic_irq because that may decide to do otherwise
  3601. */
  3602. if (!using_multi_irqs(dev)) {
  3603. if (np->msi_flags & NV_MSI_X_ENABLED)
  3604. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3605. else
  3606. disable_irq_lockdep(np->pci_dev->irq);
  3607. mask = np->irqmask;
  3608. } else {
  3609. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3610. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3611. mask |= NVREG_IRQ_RX_ALL;
  3612. }
  3613. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3614. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3615. mask |= NVREG_IRQ_TX_ALL;
  3616. }
  3617. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3618. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3619. mask |= NVREG_IRQ_OTHER;
  3620. }
  3621. }
  3622. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3623. if (np->recover_error) {
  3624. np->recover_error = 0;
  3625. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3626. if (netif_running(dev)) {
  3627. netif_tx_lock_bh(dev);
  3628. netif_addr_lock(dev);
  3629. spin_lock(&np->lock);
  3630. /* stop engines */
  3631. nv_stop_rxtx(dev);
  3632. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3633. nv_mac_reset(dev);
  3634. nv_txrx_reset(dev);
  3635. /* drain rx queue */
  3636. nv_drain_rxtx(dev);
  3637. /* reinit driver view of the rx queue */
  3638. set_bufsize(dev);
  3639. if (nv_init_ring(dev)) {
  3640. if (!np->in_shutdown)
  3641. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3642. }
  3643. /* reinit nic view of the rx queue */
  3644. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3645. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3646. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3647. base + NvRegRingSizes);
  3648. pci_push(base);
  3649. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3650. pci_push(base);
  3651. /* clear interrupts */
  3652. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3653. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3654. else
  3655. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3656. /* restart rx engine */
  3657. nv_start_rxtx(dev);
  3658. spin_unlock(&np->lock);
  3659. netif_addr_unlock(dev);
  3660. netif_tx_unlock_bh(dev);
  3661. }
  3662. }
  3663. writel(mask, base + NvRegIrqMask);
  3664. pci_push(base);
  3665. if (!using_multi_irqs(dev)) {
  3666. np->nic_poll_irq = 0;
  3667. if (nv_optimized(np))
  3668. nv_nic_irq_optimized(0, dev);
  3669. else
  3670. nv_nic_irq(0, dev);
  3671. if (np->msi_flags & NV_MSI_X_ENABLED)
  3672. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3673. else
  3674. enable_irq_lockdep(np->pci_dev->irq);
  3675. } else {
  3676. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3677. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3678. nv_nic_irq_rx(0, dev);
  3679. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3680. }
  3681. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3682. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3683. nv_nic_irq_tx(0, dev);
  3684. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3685. }
  3686. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3687. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3688. nv_nic_irq_other(0, dev);
  3689. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3690. }
  3691. }
  3692. }
  3693. #ifdef CONFIG_NET_POLL_CONTROLLER
  3694. static void nv_poll_controller(struct net_device *dev)
  3695. {
  3696. nv_do_nic_poll((unsigned long) dev);
  3697. }
  3698. #endif
  3699. static void nv_do_stats_poll(unsigned long data)
  3700. {
  3701. struct net_device *dev = (struct net_device *) data;
  3702. struct fe_priv *np = netdev_priv(dev);
  3703. nv_get_hw_stats(dev);
  3704. if (!np->in_shutdown)
  3705. mod_timer(&np->stats_poll,
  3706. round_jiffies(jiffies + STATS_INTERVAL));
  3707. }
  3708. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3709. {
  3710. struct fe_priv *np = netdev_priv(dev);
  3711. strcpy(info->driver, DRV_NAME);
  3712. strcpy(info->version, FORCEDETH_VERSION);
  3713. strcpy(info->bus_info, pci_name(np->pci_dev));
  3714. }
  3715. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3716. {
  3717. struct fe_priv *np = netdev_priv(dev);
  3718. wolinfo->supported = WAKE_MAGIC;
  3719. spin_lock_irq(&np->lock);
  3720. if (np->wolenabled)
  3721. wolinfo->wolopts = WAKE_MAGIC;
  3722. spin_unlock_irq(&np->lock);
  3723. }
  3724. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3725. {
  3726. struct fe_priv *np = netdev_priv(dev);
  3727. u8 __iomem *base = get_hwbase(dev);
  3728. u32 flags = 0;
  3729. if (wolinfo->wolopts == 0) {
  3730. np->wolenabled = 0;
  3731. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3732. np->wolenabled = 1;
  3733. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3734. }
  3735. if (netif_running(dev)) {
  3736. spin_lock_irq(&np->lock);
  3737. writel(flags, base + NvRegWakeUpFlags);
  3738. spin_unlock_irq(&np->lock);
  3739. }
  3740. return 0;
  3741. }
  3742. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3743. {
  3744. struct fe_priv *np = netdev_priv(dev);
  3745. int adv;
  3746. spin_lock_irq(&np->lock);
  3747. ecmd->port = PORT_MII;
  3748. if (!netif_running(dev)) {
  3749. /* We do not track link speed / duplex setting if the
  3750. * interface is disabled. Force a link check */
  3751. if (nv_update_linkspeed(dev)) {
  3752. if (!netif_carrier_ok(dev))
  3753. netif_carrier_on(dev);
  3754. } else {
  3755. if (netif_carrier_ok(dev))
  3756. netif_carrier_off(dev);
  3757. }
  3758. }
  3759. if (netif_carrier_ok(dev)) {
  3760. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3761. case NVREG_LINKSPEED_10:
  3762. ecmd->speed = SPEED_10;
  3763. break;
  3764. case NVREG_LINKSPEED_100:
  3765. ecmd->speed = SPEED_100;
  3766. break;
  3767. case NVREG_LINKSPEED_1000:
  3768. ecmd->speed = SPEED_1000;
  3769. break;
  3770. }
  3771. ecmd->duplex = DUPLEX_HALF;
  3772. if (np->duplex)
  3773. ecmd->duplex = DUPLEX_FULL;
  3774. } else {
  3775. ecmd->speed = -1;
  3776. ecmd->duplex = -1;
  3777. }
  3778. ecmd->autoneg = np->autoneg;
  3779. ecmd->advertising = ADVERTISED_MII;
  3780. if (np->autoneg) {
  3781. ecmd->advertising |= ADVERTISED_Autoneg;
  3782. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3783. if (adv & ADVERTISE_10HALF)
  3784. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3785. if (adv & ADVERTISE_10FULL)
  3786. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3787. if (adv & ADVERTISE_100HALF)
  3788. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3789. if (adv & ADVERTISE_100FULL)
  3790. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3791. if (np->gigabit == PHY_GIGABIT) {
  3792. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3793. if (adv & ADVERTISE_1000FULL)
  3794. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3795. }
  3796. }
  3797. ecmd->supported = (SUPPORTED_Autoneg |
  3798. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3799. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3800. SUPPORTED_MII);
  3801. if (np->gigabit == PHY_GIGABIT)
  3802. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3803. ecmd->phy_address = np->phyaddr;
  3804. ecmd->transceiver = XCVR_EXTERNAL;
  3805. /* ignore maxtxpkt, maxrxpkt for now */
  3806. spin_unlock_irq(&np->lock);
  3807. return 0;
  3808. }
  3809. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3810. {
  3811. struct fe_priv *np = netdev_priv(dev);
  3812. if (ecmd->port != PORT_MII)
  3813. return -EINVAL;
  3814. if (ecmd->transceiver != XCVR_EXTERNAL)
  3815. return -EINVAL;
  3816. if (ecmd->phy_address != np->phyaddr) {
  3817. /* TODO: support switching between multiple phys. Should be
  3818. * trivial, but not enabled due to lack of test hardware. */
  3819. return -EINVAL;
  3820. }
  3821. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3822. u32 mask;
  3823. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3824. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3825. if (np->gigabit == PHY_GIGABIT)
  3826. mask |= ADVERTISED_1000baseT_Full;
  3827. if ((ecmd->advertising & mask) == 0)
  3828. return -EINVAL;
  3829. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3830. /* Note: autonegotiation disable, speed 1000 intentionally
  3831. * forbidden - noone should need that. */
  3832. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3833. return -EINVAL;
  3834. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3835. return -EINVAL;
  3836. } else {
  3837. return -EINVAL;
  3838. }
  3839. netif_carrier_off(dev);
  3840. if (netif_running(dev)) {
  3841. unsigned long flags;
  3842. nv_disable_irq(dev);
  3843. netif_tx_lock_bh(dev);
  3844. netif_addr_lock(dev);
  3845. /* with plain spinlock lockdep complains */
  3846. spin_lock_irqsave(&np->lock, flags);
  3847. /* stop engines */
  3848. /* FIXME:
  3849. * this can take some time, and interrupts are disabled
  3850. * due to spin_lock_irqsave, but let's hope no daemon
  3851. * is going to change the settings very often...
  3852. * Worst case:
  3853. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3854. * + some minor delays, which is up to a second approximately
  3855. */
  3856. nv_stop_rxtx(dev);
  3857. spin_unlock_irqrestore(&np->lock, flags);
  3858. netif_addr_unlock(dev);
  3859. netif_tx_unlock_bh(dev);
  3860. }
  3861. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3862. int adv, bmcr;
  3863. np->autoneg = 1;
  3864. /* advertise only what has been requested */
  3865. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3866. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3867. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3868. adv |= ADVERTISE_10HALF;
  3869. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3870. adv |= ADVERTISE_10FULL;
  3871. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3872. adv |= ADVERTISE_100HALF;
  3873. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3874. adv |= ADVERTISE_100FULL;
  3875. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3876. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3877. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3878. adv |= ADVERTISE_PAUSE_ASYM;
  3879. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3880. if (np->gigabit == PHY_GIGABIT) {
  3881. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3882. adv &= ~ADVERTISE_1000FULL;
  3883. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3884. adv |= ADVERTISE_1000FULL;
  3885. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3886. }
  3887. if (netif_running(dev))
  3888. printk(KERN_INFO "%s: link down.\n", dev->name);
  3889. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3890. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3891. bmcr |= BMCR_ANENABLE;
  3892. /* reset the phy in order for settings to stick,
  3893. * and cause autoneg to start */
  3894. if (phy_reset(dev, bmcr)) {
  3895. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3896. return -EINVAL;
  3897. }
  3898. } else {
  3899. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3900. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3901. }
  3902. } else {
  3903. int adv, bmcr;
  3904. np->autoneg = 0;
  3905. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3906. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3907. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3908. adv |= ADVERTISE_10HALF;
  3909. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3910. adv |= ADVERTISE_10FULL;
  3911. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3912. adv |= ADVERTISE_100HALF;
  3913. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3914. adv |= ADVERTISE_100FULL;
  3915. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3916. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3917. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3918. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3919. }
  3920. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3921. adv |= ADVERTISE_PAUSE_ASYM;
  3922. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3923. }
  3924. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3925. np->fixed_mode = adv;
  3926. if (np->gigabit == PHY_GIGABIT) {
  3927. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3928. adv &= ~ADVERTISE_1000FULL;
  3929. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3930. }
  3931. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3932. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3933. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3934. bmcr |= BMCR_FULLDPLX;
  3935. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3936. bmcr |= BMCR_SPEED100;
  3937. if (np->phy_oui == PHY_OUI_MARVELL) {
  3938. /* reset the phy in order for forced mode settings to stick */
  3939. if (phy_reset(dev, bmcr)) {
  3940. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3941. return -EINVAL;
  3942. }
  3943. } else {
  3944. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3945. if (netif_running(dev)) {
  3946. /* Wait a bit and then reconfigure the nic. */
  3947. udelay(10);
  3948. nv_linkchange(dev);
  3949. }
  3950. }
  3951. }
  3952. if (netif_running(dev)) {
  3953. nv_start_rxtx(dev);
  3954. nv_enable_irq(dev);
  3955. }
  3956. return 0;
  3957. }
  3958. #define FORCEDETH_REGS_VER 1
  3959. static int nv_get_regs_len(struct net_device *dev)
  3960. {
  3961. struct fe_priv *np = netdev_priv(dev);
  3962. return np->register_size;
  3963. }
  3964. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3965. {
  3966. struct fe_priv *np = netdev_priv(dev);
  3967. u8 __iomem *base = get_hwbase(dev);
  3968. u32 *rbuf = buf;
  3969. int i;
  3970. regs->version = FORCEDETH_REGS_VER;
  3971. spin_lock_irq(&np->lock);
  3972. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3973. rbuf[i] = readl(base + i*sizeof(u32));
  3974. spin_unlock_irq(&np->lock);
  3975. }
  3976. static int nv_nway_reset(struct net_device *dev)
  3977. {
  3978. struct fe_priv *np = netdev_priv(dev);
  3979. int ret;
  3980. if (np->autoneg) {
  3981. int bmcr;
  3982. netif_carrier_off(dev);
  3983. if (netif_running(dev)) {
  3984. nv_disable_irq(dev);
  3985. netif_tx_lock_bh(dev);
  3986. netif_addr_lock(dev);
  3987. spin_lock(&np->lock);
  3988. /* stop engines */
  3989. nv_stop_rxtx(dev);
  3990. spin_unlock(&np->lock);
  3991. netif_addr_unlock(dev);
  3992. netif_tx_unlock_bh(dev);
  3993. printk(KERN_INFO "%s: link down.\n", dev->name);
  3994. }
  3995. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3996. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3997. bmcr |= BMCR_ANENABLE;
  3998. /* reset the phy in order for settings to stick*/
  3999. if (phy_reset(dev, bmcr)) {
  4000. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4001. return -EINVAL;
  4002. }
  4003. } else {
  4004. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4005. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4006. }
  4007. if (netif_running(dev)) {
  4008. nv_start_rxtx(dev);
  4009. nv_enable_irq(dev);
  4010. }
  4011. ret = 0;
  4012. } else {
  4013. ret = -EINVAL;
  4014. }
  4015. return ret;
  4016. }
  4017. static int nv_set_tso(struct net_device *dev, u32 value)
  4018. {
  4019. struct fe_priv *np = netdev_priv(dev);
  4020. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4021. return ethtool_op_set_tso(dev, value);
  4022. else
  4023. return -EOPNOTSUPP;
  4024. }
  4025. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4026. {
  4027. struct fe_priv *np = netdev_priv(dev);
  4028. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4029. ring->rx_mini_max_pending = 0;
  4030. ring->rx_jumbo_max_pending = 0;
  4031. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4032. ring->rx_pending = np->rx_ring_size;
  4033. ring->rx_mini_pending = 0;
  4034. ring->rx_jumbo_pending = 0;
  4035. ring->tx_pending = np->tx_ring_size;
  4036. }
  4037. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4038. {
  4039. struct fe_priv *np = netdev_priv(dev);
  4040. u8 __iomem *base = get_hwbase(dev);
  4041. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4042. dma_addr_t ring_addr;
  4043. if (ring->rx_pending < RX_RING_MIN ||
  4044. ring->tx_pending < TX_RING_MIN ||
  4045. ring->rx_mini_pending != 0 ||
  4046. ring->rx_jumbo_pending != 0 ||
  4047. (np->desc_ver == DESC_VER_1 &&
  4048. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4049. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4050. (np->desc_ver != DESC_VER_1 &&
  4051. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4052. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4053. return -EINVAL;
  4054. }
  4055. /* allocate new rings */
  4056. if (!nv_optimized(np)) {
  4057. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4058. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4059. &ring_addr);
  4060. } else {
  4061. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4062. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4063. &ring_addr);
  4064. }
  4065. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4066. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4067. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4068. /* fall back to old rings */
  4069. if (!nv_optimized(np)) {
  4070. if (rxtx_ring)
  4071. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4072. rxtx_ring, ring_addr);
  4073. } else {
  4074. if (rxtx_ring)
  4075. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4076. rxtx_ring, ring_addr);
  4077. }
  4078. if (rx_skbuff)
  4079. kfree(rx_skbuff);
  4080. if (tx_skbuff)
  4081. kfree(tx_skbuff);
  4082. goto exit;
  4083. }
  4084. if (netif_running(dev)) {
  4085. nv_disable_irq(dev);
  4086. nv_napi_disable(dev);
  4087. netif_tx_lock_bh(dev);
  4088. netif_addr_lock(dev);
  4089. spin_lock(&np->lock);
  4090. /* stop engines */
  4091. nv_stop_rxtx(dev);
  4092. nv_txrx_reset(dev);
  4093. /* drain queues */
  4094. nv_drain_rxtx(dev);
  4095. /* delete queues */
  4096. free_rings(dev);
  4097. }
  4098. /* set new values */
  4099. np->rx_ring_size = ring->rx_pending;
  4100. np->tx_ring_size = ring->tx_pending;
  4101. if (!nv_optimized(np)) {
  4102. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4103. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4104. } else {
  4105. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4106. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4107. }
  4108. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4109. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4110. np->ring_addr = ring_addr;
  4111. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4112. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4113. if (netif_running(dev)) {
  4114. /* reinit driver view of the queues */
  4115. set_bufsize(dev);
  4116. if (nv_init_ring(dev)) {
  4117. if (!np->in_shutdown)
  4118. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4119. }
  4120. /* reinit nic view of the queues */
  4121. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4122. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4123. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4124. base + NvRegRingSizes);
  4125. pci_push(base);
  4126. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4127. pci_push(base);
  4128. /* restart engines */
  4129. nv_start_rxtx(dev);
  4130. spin_unlock(&np->lock);
  4131. netif_addr_unlock(dev);
  4132. netif_tx_unlock_bh(dev);
  4133. nv_napi_enable(dev);
  4134. nv_enable_irq(dev);
  4135. }
  4136. return 0;
  4137. exit:
  4138. return -ENOMEM;
  4139. }
  4140. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4141. {
  4142. struct fe_priv *np = netdev_priv(dev);
  4143. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4144. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4145. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4146. }
  4147. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4148. {
  4149. struct fe_priv *np = netdev_priv(dev);
  4150. int adv, bmcr;
  4151. if ((!np->autoneg && np->duplex == 0) ||
  4152. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4153. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4154. dev->name);
  4155. return -EINVAL;
  4156. }
  4157. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4158. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4159. return -EINVAL;
  4160. }
  4161. netif_carrier_off(dev);
  4162. if (netif_running(dev)) {
  4163. nv_disable_irq(dev);
  4164. netif_tx_lock_bh(dev);
  4165. netif_addr_lock(dev);
  4166. spin_lock(&np->lock);
  4167. /* stop engines */
  4168. nv_stop_rxtx(dev);
  4169. spin_unlock(&np->lock);
  4170. netif_addr_unlock(dev);
  4171. netif_tx_unlock_bh(dev);
  4172. }
  4173. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4174. if (pause->rx_pause)
  4175. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4176. if (pause->tx_pause)
  4177. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4178. if (np->autoneg && pause->autoneg) {
  4179. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4180. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4181. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4182. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4183. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4184. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4185. adv |= ADVERTISE_PAUSE_ASYM;
  4186. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4187. if (netif_running(dev))
  4188. printk(KERN_INFO "%s: link down.\n", dev->name);
  4189. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4190. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4191. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4192. } else {
  4193. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4194. if (pause->rx_pause)
  4195. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4196. if (pause->tx_pause)
  4197. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4198. if (!netif_running(dev))
  4199. nv_update_linkspeed(dev);
  4200. else
  4201. nv_update_pause(dev, np->pause_flags);
  4202. }
  4203. if (netif_running(dev)) {
  4204. nv_start_rxtx(dev);
  4205. nv_enable_irq(dev);
  4206. }
  4207. return 0;
  4208. }
  4209. static u32 nv_get_rx_csum(struct net_device *dev)
  4210. {
  4211. struct fe_priv *np = netdev_priv(dev);
  4212. return (np->rx_csum) != 0;
  4213. }
  4214. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4215. {
  4216. struct fe_priv *np = netdev_priv(dev);
  4217. u8 __iomem *base = get_hwbase(dev);
  4218. int retcode = 0;
  4219. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4220. if (data) {
  4221. np->rx_csum = 1;
  4222. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4223. } else {
  4224. np->rx_csum = 0;
  4225. /* vlan is dependent on rx checksum offload */
  4226. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4227. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4228. }
  4229. if (netif_running(dev)) {
  4230. spin_lock_irq(&np->lock);
  4231. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4232. spin_unlock_irq(&np->lock);
  4233. }
  4234. } else {
  4235. return -EINVAL;
  4236. }
  4237. return retcode;
  4238. }
  4239. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4240. {
  4241. struct fe_priv *np = netdev_priv(dev);
  4242. if (np->driver_data & DEV_HAS_CHECKSUM)
  4243. return ethtool_op_set_tx_csum(dev, data);
  4244. else
  4245. return -EOPNOTSUPP;
  4246. }
  4247. static int nv_set_sg(struct net_device *dev, u32 data)
  4248. {
  4249. struct fe_priv *np = netdev_priv(dev);
  4250. if (np->driver_data & DEV_HAS_CHECKSUM)
  4251. return ethtool_op_set_sg(dev, data);
  4252. else
  4253. return -EOPNOTSUPP;
  4254. }
  4255. static int nv_get_sset_count(struct net_device *dev, int sset)
  4256. {
  4257. struct fe_priv *np = netdev_priv(dev);
  4258. switch (sset) {
  4259. case ETH_SS_TEST:
  4260. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4261. return NV_TEST_COUNT_EXTENDED;
  4262. else
  4263. return NV_TEST_COUNT_BASE;
  4264. case ETH_SS_STATS:
  4265. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4266. return NV_DEV_STATISTICS_V3_COUNT;
  4267. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4268. return NV_DEV_STATISTICS_V2_COUNT;
  4269. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4270. return NV_DEV_STATISTICS_V1_COUNT;
  4271. else
  4272. return 0;
  4273. default:
  4274. return -EOPNOTSUPP;
  4275. }
  4276. }
  4277. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4278. {
  4279. struct fe_priv *np = netdev_priv(dev);
  4280. /* update stats */
  4281. nv_do_stats_poll((unsigned long)dev);
  4282. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4283. }
  4284. static int nv_link_test(struct net_device *dev)
  4285. {
  4286. struct fe_priv *np = netdev_priv(dev);
  4287. int mii_status;
  4288. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4289. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4290. /* check phy link status */
  4291. if (!(mii_status & BMSR_LSTATUS))
  4292. return 0;
  4293. else
  4294. return 1;
  4295. }
  4296. static int nv_register_test(struct net_device *dev)
  4297. {
  4298. u8 __iomem *base = get_hwbase(dev);
  4299. int i = 0;
  4300. u32 orig_read, new_read;
  4301. do {
  4302. orig_read = readl(base + nv_registers_test[i].reg);
  4303. /* xor with mask to toggle bits */
  4304. orig_read ^= nv_registers_test[i].mask;
  4305. writel(orig_read, base + nv_registers_test[i].reg);
  4306. new_read = readl(base + nv_registers_test[i].reg);
  4307. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4308. return 0;
  4309. /* restore original value */
  4310. orig_read ^= nv_registers_test[i].mask;
  4311. writel(orig_read, base + nv_registers_test[i].reg);
  4312. } while (nv_registers_test[++i].reg != 0);
  4313. return 1;
  4314. }
  4315. static int nv_interrupt_test(struct net_device *dev)
  4316. {
  4317. struct fe_priv *np = netdev_priv(dev);
  4318. u8 __iomem *base = get_hwbase(dev);
  4319. int ret = 1;
  4320. int testcnt;
  4321. u32 save_msi_flags, save_poll_interval = 0;
  4322. if (netif_running(dev)) {
  4323. /* free current irq */
  4324. nv_free_irq(dev);
  4325. save_poll_interval = readl(base+NvRegPollingInterval);
  4326. }
  4327. /* flag to test interrupt handler */
  4328. np->intr_test = 0;
  4329. /* setup test irq */
  4330. save_msi_flags = np->msi_flags;
  4331. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4332. np->msi_flags |= 0x001; /* setup 1 vector */
  4333. if (nv_request_irq(dev, 1))
  4334. return 0;
  4335. /* setup timer interrupt */
  4336. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4337. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4338. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4339. /* wait for at least one interrupt */
  4340. msleep(100);
  4341. spin_lock_irq(&np->lock);
  4342. /* flag should be set within ISR */
  4343. testcnt = np->intr_test;
  4344. if (!testcnt)
  4345. ret = 2;
  4346. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4347. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4348. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4349. else
  4350. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4351. spin_unlock_irq(&np->lock);
  4352. nv_free_irq(dev);
  4353. np->msi_flags = save_msi_flags;
  4354. if (netif_running(dev)) {
  4355. writel(save_poll_interval, base + NvRegPollingInterval);
  4356. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4357. /* restore original irq */
  4358. if (nv_request_irq(dev, 0))
  4359. return 0;
  4360. }
  4361. return ret;
  4362. }
  4363. static int nv_loopback_test(struct net_device *dev)
  4364. {
  4365. struct fe_priv *np = netdev_priv(dev);
  4366. u8 __iomem *base = get_hwbase(dev);
  4367. struct sk_buff *tx_skb, *rx_skb;
  4368. dma_addr_t test_dma_addr;
  4369. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4370. u32 flags;
  4371. int len, i, pkt_len;
  4372. u8 *pkt_data;
  4373. u32 filter_flags = 0;
  4374. u32 misc1_flags = 0;
  4375. int ret = 1;
  4376. if (netif_running(dev)) {
  4377. nv_disable_irq(dev);
  4378. filter_flags = readl(base + NvRegPacketFilterFlags);
  4379. misc1_flags = readl(base + NvRegMisc1);
  4380. } else {
  4381. nv_txrx_reset(dev);
  4382. }
  4383. /* reinit driver view of the rx queue */
  4384. set_bufsize(dev);
  4385. nv_init_ring(dev);
  4386. /* setup hardware for loopback */
  4387. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4388. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4389. /* reinit nic view of the rx queue */
  4390. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4391. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4392. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4393. base + NvRegRingSizes);
  4394. pci_push(base);
  4395. /* restart rx engine */
  4396. nv_start_rxtx(dev);
  4397. /* setup packet for tx */
  4398. pkt_len = ETH_DATA_LEN;
  4399. tx_skb = dev_alloc_skb(pkt_len);
  4400. if (!tx_skb) {
  4401. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4402. " of %s\n", dev->name);
  4403. ret = 0;
  4404. goto out;
  4405. }
  4406. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4407. skb_tailroom(tx_skb),
  4408. PCI_DMA_FROMDEVICE);
  4409. pkt_data = skb_put(tx_skb, pkt_len);
  4410. for (i = 0; i < pkt_len; i++)
  4411. pkt_data[i] = (u8)(i & 0xff);
  4412. if (!nv_optimized(np)) {
  4413. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4414. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4415. } else {
  4416. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4417. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4418. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4419. }
  4420. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4421. pci_push(get_hwbase(dev));
  4422. msleep(500);
  4423. /* check for rx of the packet */
  4424. if (!nv_optimized(np)) {
  4425. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4426. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4427. } else {
  4428. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4429. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4430. }
  4431. if (flags & NV_RX_AVAIL) {
  4432. ret = 0;
  4433. } else if (np->desc_ver == DESC_VER_1) {
  4434. if (flags & NV_RX_ERROR)
  4435. ret = 0;
  4436. } else {
  4437. if (flags & NV_RX2_ERROR) {
  4438. ret = 0;
  4439. }
  4440. }
  4441. if (ret) {
  4442. if (len != pkt_len) {
  4443. ret = 0;
  4444. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4445. dev->name, len, pkt_len);
  4446. } else {
  4447. rx_skb = np->rx_skb[0].skb;
  4448. for (i = 0; i < pkt_len; i++) {
  4449. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4450. ret = 0;
  4451. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4452. dev->name, i);
  4453. break;
  4454. }
  4455. }
  4456. }
  4457. } else {
  4458. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4459. }
  4460. pci_unmap_page(np->pci_dev, test_dma_addr,
  4461. (skb_end_pointer(tx_skb) - tx_skb->data),
  4462. PCI_DMA_TODEVICE);
  4463. dev_kfree_skb_any(tx_skb);
  4464. out:
  4465. /* stop engines */
  4466. nv_stop_rxtx(dev);
  4467. nv_txrx_reset(dev);
  4468. /* drain rx queue */
  4469. nv_drain_rxtx(dev);
  4470. if (netif_running(dev)) {
  4471. writel(misc1_flags, base + NvRegMisc1);
  4472. writel(filter_flags, base + NvRegPacketFilterFlags);
  4473. nv_enable_irq(dev);
  4474. }
  4475. return ret;
  4476. }
  4477. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4478. {
  4479. struct fe_priv *np = netdev_priv(dev);
  4480. u8 __iomem *base = get_hwbase(dev);
  4481. int result;
  4482. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4483. if (!nv_link_test(dev)) {
  4484. test->flags |= ETH_TEST_FL_FAILED;
  4485. buffer[0] = 1;
  4486. }
  4487. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4488. if (netif_running(dev)) {
  4489. netif_stop_queue(dev);
  4490. nv_napi_disable(dev);
  4491. netif_tx_lock_bh(dev);
  4492. netif_addr_lock(dev);
  4493. spin_lock_irq(&np->lock);
  4494. nv_disable_hw_interrupts(dev, np->irqmask);
  4495. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4496. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4497. } else {
  4498. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4499. }
  4500. /* stop engines */
  4501. nv_stop_rxtx(dev);
  4502. nv_txrx_reset(dev);
  4503. /* drain rx queue */
  4504. nv_drain_rxtx(dev);
  4505. spin_unlock_irq(&np->lock);
  4506. netif_addr_unlock(dev);
  4507. netif_tx_unlock_bh(dev);
  4508. }
  4509. if (!nv_register_test(dev)) {
  4510. test->flags |= ETH_TEST_FL_FAILED;
  4511. buffer[1] = 1;
  4512. }
  4513. result = nv_interrupt_test(dev);
  4514. if (result != 1) {
  4515. test->flags |= ETH_TEST_FL_FAILED;
  4516. buffer[2] = 1;
  4517. }
  4518. if (result == 0) {
  4519. /* bail out */
  4520. return;
  4521. }
  4522. if (!nv_loopback_test(dev)) {
  4523. test->flags |= ETH_TEST_FL_FAILED;
  4524. buffer[3] = 1;
  4525. }
  4526. if (netif_running(dev)) {
  4527. /* reinit driver view of the rx queue */
  4528. set_bufsize(dev);
  4529. if (nv_init_ring(dev)) {
  4530. if (!np->in_shutdown)
  4531. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4532. }
  4533. /* reinit nic view of the rx queue */
  4534. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4535. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4536. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4537. base + NvRegRingSizes);
  4538. pci_push(base);
  4539. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4540. pci_push(base);
  4541. /* restart rx engine */
  4542. nv_start_rxtx(dev);
  4543. netif_start_queue(dev);
  4544. nv_napi_enable(dev);
  4545. nv_enable_hw_interrupts(dev, np->irqmask);
  4546. }
  4547. }
  4548. }
  4549. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4550. {
  4551. switch (stringset) {
  4552. case ETH_SS_STATS:
  4553. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4554. break;
  4555. case ETH_SS_TEST:
  4556. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4557. break;
  4558. }
  4559. }
  4560. static const struct ethtool_ops ops = {
  4561. .get_drvinfo = nv_get_drvinfo,
  4562. .get_link = ethtool_op_get_link,
  4563. .get_wol = nv_get_wol,
  4564. .set_wol = nv_set_wol,
  4565. .get_settings = nv_get_settings,
  4566. .set_settings = nv_set_settings,
  4567. .get_regs_len = nv_get_regs_len,
  4568. .get_regs = nv_get_regs,
  4569. .nway_reset = nv_nway_reset,
  4570. .set_tso = nv_set_tso,
  4571. .get_ringparam = nv_get_ringparam,
  4572. .set_ringparam = nv_set_ringparam,
  4573. .get_pauseparam = nv_get_pauseparam,
  4574. .set_pauseparam = nv_set_pauseparam,
  4575. .get_rx_csum = nv_get_rx_csum,
  4576. .set_rx_csum = nv_set_rx_csum,
  4577. .set_tx_csum = nv_set_tx_csum,
  4578. .set_sg = nv_set_sg,
  4579. .get_strings = nv_get_strings,
  4580. .get_ethtool_stats = nv_get_ethtool_stats,
  4581. .get_sset_count = nv_get_sset_count,
  4582. .self_test = nv_self_test,
  4583. };
  4584. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4585. {
  4586. struct fe_priv *np = get_nvpriv(dev);
  4587. spin_lock_irq(&np->lock);
  4588. /* save vlan group */
  4589. np->vlangrp = grp;
  4590. if (grp) {
  4591. /* enable vlan on MAC */
  4592. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4593. } else {
  4594. /* disable vlan on MAC */
  4595. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4596. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4597. }
  4598. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4599. spin_unlock_irq(&np->lock);
  4600. }
  4601. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4602. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4603. {
  4604. struct fe_priv *np = netdev_priv(dev);
  4605. u8 __iomem *base = get_hwbase(dev);
  4606. int i;
  4607. u32 tx_ctrl, mgmt_sema;
  4608. for (i = 0; i < 10; i++) {
  4609. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4610. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4611. break;
  4612. msleep(500);
  4613. }
  4614. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4615. return 0;
  4616. for (i = 0; i < 2; i++) {
  4617. tx_ctrl = readl(base + NvRegTransmitterControl);
  4618. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4619. writel(tx_ctrl, base + NvRegTransmitterControl);
  4620. /* verify that semaphore was acquired */
  4621. tx_ctrl = readl(base + NvRegTransmitterControl);
  4622. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4623. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4624. np->mgmt_sema = 1;
  4625. return 1;
  4626. }
  4627. else
  4628. udelay(50);
  4629. }
  4630. return 0;
  4631. }
  4632. static void nv_mgmt_release_sema(struct net_device *dev)
  4633. {
  4634. struct fe_priv *np = netdev_priv(dev);
  4635. u8 __iomem *base = get_hwbase(dev);
  4636. u32 tx_ctrl;
  4637. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4638. if (np->mgmt_sema) {
  4639. tx_ctrl = readl(base + NvRegTransmitterControl);
  4640. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4641. writel(tx_ctrl, base + NvRegTransmitterControl);
  4642. }
  4643. }
  4644. }
  4645. static int nv_mgmt_get_version(struct net_device *dev)
  4646. {
  4647. struct fe_priv *np = netdev_priv(dev);
  4648. u8 __iomem *base = get_hwbase(dev);
  4649. u32 data_ready = readl(base + NvRegTransmitterControl);
  4650. u32 data_ready2 = 0;
  4651. unsigned long start;
  4652. int ready = 0;
  4653. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4654. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4655. start = jiffies;
  4656. while (time_before(jiffies, start + 5*HZ)) {
  4657. data_ready2 = readl(base + NvRegTransmitterControl);
  4658. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4659. ready = 1;
  4660. break;
  4661. }
  4662. schedule_timeout_uninterruptible(1);
  4663. }
  4664. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4665. return 0;
  4666. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4667. return 1;
  4668. }
  4669. static int nv_open(struct net_device *dev)
  4670. {
  4671. struct fe_priv *np = netdev_priv(dev);
  4672. u8 __iomem *base = get_hwbase(dev);
  4673. int ret = 1;
  4674. int oom, i;
  4675. u32 low;
  4676. dprintk(KERN_DEBUG "nv_open: begin\n");
  4677. /* power up phy */
  4678. mii_rw(dev, np->phyaddr, MII_BMCR,
  4679. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4680. /* erase previous misconfiguration */
  4681. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4682. nv_mac_reset(dev);
  4683. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4684. writel(0, base + NvRegMulticastAddrB);
  4685. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4686. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4687. writel(0, base + NvRegPacketFilterFlags);
  4688. writel(0, base + NvRegTransmitterControl);
  4689. writel(0, base + NvRegReceiverControl);
  4690. writel(0, base + NvRegAdapterControl);
  4691. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4692. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4693. /* initialize descriptor rings */
  4694. set_bufsize(dev);
  4695. oom = nv_init_ring(dev);
  4696. writel(0, base + NvRegLinkSpeed);
  4697. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4698. nv_txrx_reset(dev);
  4699. writel(0, base + NvRegUnknownSetupReg6);
  4700. np->in_shutdown = 0;
  4701. /* give hw rings */
  4702. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4703. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4704. base + NvRegRingSizes);
  4705. writel(np->linkspeed, base + NvRegLinkSpeed);
  4706. if (np->desc_ver == DESC_VER_1)
  4707. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4708. else
  4709. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4710. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4711. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4712. pci_push(base);
  4713. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4714. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4715. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4716. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4717. writel(0, base + NvRegMIIMask);
  4718. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4719. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4720. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4721. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4722. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4723. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4724. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4725. get_random_bytes(&low, sizeof(low));
  4726. low &= NVREG_SLOTTIME_MASK;
  4727. if (np->desc_ver == DESC_VER_1) {
  4728. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4729. } else {
  4730. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4731. /* setup legacy backoff */
  4732. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4733. } else {
  4734. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4735. nv_gear_backoff_reseed(dev);
  4736. }
  4737. }
  4738. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4739. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4740. if (poll_interval == -1) {
  4741. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4742. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4743. else
  4744. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4745. }
  4746. else
  4747. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4748. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4749. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4750. base + NvRegAdapterControl);
  4751. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4752. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4753. if (np->wolenabled)
  4754. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4755. i = readl(base + NvRegPowerState);
  4756. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4757. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4758. pci_push(base);
  4759. udelay(10);
  4760. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4761. nv_disable_hw_interrupts(dev, np->irqmask);
  4762. pci_push(base);
  4763. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4764. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4765. pci_push(base);
  4766. if (nv_request_irq(dev, 0)) {
  4767. goto out_drain;
  4768. }
  4769. /* ask for interrupts */
  4770. nv_enable_hw_interrupts(dev, np->irqmask);
  4771. spin_lock_irq(&np->lock);
  4772. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4773. writel(0, base + NvRegMulticastAddrB);
  4774. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4775. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4776. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4777. /* One manual link speed update: Interrupts are enabled, future link
  4778. * speed changes cause interrupts and are handled by nv_link_irq().
  4779. */
  4780. {
  4781. u32 miistat;
  4782. miistat = readl(base + NvRegMIIStatus);
  4783. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4784. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4785. }
  4786. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4787. * to init hw */
  4788. np->linkspeed = 0;
  4789. ret = nv_update_linkspeed(dev);
  4790. nv_start_rxtx(dev);
  4791. netif_start_queue(dev);
  4792. nv_napi_enable(dev);
  4793. if (ret) {
  4794. netif_carrier_on(dev);
  4795. } else {
  4796. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4797. netif_carrier_off(dev);
  4798. }
  4799. if (oom)
  4800. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4801. /* start statistics timer */
  4802. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4803. mod_timer(&np->stats_poll,
  4804. round_jiffies(jiffies + STATS_INTERVAL));
  4805. spin_unlock_irq(&np->lock);
  4806. return 0;
  4807. out_drain:
  4808. nv_drain_rxtx(dev);
  4809. return ret;
  4810. }
  4811. static int nv_close(struct net_device *dev)
  4812. {
  4813. struct fe_priv *np = netdev_priv(dev);
  4814. u8 __iomem *base;
  4815. spin_lock_irq(&np->lock);
  4816. np->in_shutdown = 1;
  4817. spin_unlock_irq(&np->lock);
  4818. nv_napi_disable(dev);
  4819. synchronize_irq(np->pci_dev->irq);
  4820. del_timer_sync(&np->oom_kick);
  4821. del_timer_sync(&np->nic_poll);
  4822. del_timer_sync(&np->stats_poll);
  4823. netif_stop_queue(dev);
  4824. spin_lock_irq(&np->lock);
  4825. nv_stop_rxtx(dev);
  4826. nv_txrx_reset(dev);
  4827. /* disable interrupts on the nic or we will lock up */
  4828. base = get_hwbase(dev);
  4829. nv_disable_hw_interrupts(dev, np->irqmask);
  4830. pci_push(base);
  4831. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4832. spin_unlock_irq(&np->lock);
  4833. nv_free_irq(dev);
  4834. nv_drain_rxtx(dev);
  4835. if (np->wolenabled) {
  4836. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4837. nv_start_rx(dev);
  4838. } else {
  4839. /* power down phy */
  4840. mii_rw(dev, np->phyaddr, MII_BMCR,
  4841. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4842. }
  4843. /* FIXME: power down nic */
  4844. return 0;
  4845. }
  4846. static const struct net_device_ops nv_netdev_ops = {
  4847. .ndo_open = nv_open,
  4848. .ndo_stop = nv_close,
  4849. .ndo_get_stats = nv_get_stats,
  4850. .ndo_start_xmit = nv_start_xmit,
  4851. .ndo_tx_timeout = nv_tx_timeout,
  4852. .ndo_change_mtu = nv_change_mtu,
  4853. .ndo_validate_addr = eth_validate_addr,
  4854. .ndo_set_mac_address = nv_set_mac_address,
  4855. .ndo_set_multicast_list = nv_set_multicast,
  4856. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4857. #ifdef CONFIG_NET_POLL_CONTROLLER
  4858. .ndo_poll_controller = nv_poll_controller,
  4859. #endif
  4860. };
  4861. static const struct net_device_ops nv_netdev_ops_optimized = {
  4862. .ndo_open = nv_open,
  4863. .ndo_stop = nv_close,
  4864. .ndo_get_stats = nv_get_stats,
  4865. .ndo_start_xmit = nv_start_xmit_optimized,
  4866. .ndo_tx_timeout = nv_tx_timeout,
  4867. .ndo_change_mtu = nv_change_mtu,
  4868. .ndo_validate_addr = eth_validate_addr,
  4869. .ndo_set_mac_address = nv_set_mac_address,
  4870. .ndo_set_multicast_list = nv_set_multicast,
  4871. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4872. #ifdef CONFIG_NET_POLL_CONTROLLER
  4873. .ndo_poll_controller = nv_poll_controller,
  4874. #endif
  4875. };
  4876. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4877. {
  4878. struct net_device *dev;
  4879. struct fe_priv *np;
  4880. unsigned long addr;
  4881. u8 __iomem *base;
  4882. int err, i;
  4883. u32 powerstate, txreg;
  4884. u32 phystate_orig = 0, phystate;
  4885. int phyinitialized = 0;
  4886. static int printed_version;
  4887. if (!printed_version++)
  4888. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4889. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4890. dev = alloc_etherdev(sizeof(struct fe_priv));
  4891. err = -ENOMEM;
  4892. if (!dev)
  4893. goto out;
  4894. np = netdev_priv(dev);
  4895. np->dev = dev;
  4896. np->pci_dev = pci_dev;
  4897. spin_lock_init(&np->lock);
  4898. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4899. init_timer(&np->oom_kick);
  4900. np->oom_kick.data = (unsigned long) dev;
  4901. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4902. init_timer(&np->nic_poll);
  4903. np->nic_poll.data = (unsigned long) dev;
  4904. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4905. init_timer(&np->stats_poll);
  4906. np->stats_poll.data = (unsigned long) dev;
  4907. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4908. err = pci_enable_device(pci_dev);
  4909. if (err)
  4910. goto out_free;
  4911. pci_set_master(pci_dev);
  4912. err = pci_request_regions(pci_dev, DRV_NAME);
  4913. if (err < 0)
  4914. goto out_disable;
  4915. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4916. np->register_size = NV_PCI_REGSZ_VER3;
  4917. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4918. np->register_size = NV_PCI_REGSZ_VER2;
  4919. else
  4920. np->register_size = NV_PCI_REGSZ_VER1;
  4921. err = -EINVAL;
  4922. addr = 0;
  4923. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4924. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4925. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4926. pci_resource_len(pci_dev, i),
  4927. pci_resource_flags(pci_dev, i));
  4928. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4929. pci_resource_len(pci_dev, i) >= np->register_size) {
  4930. addr = pci_resource_start(pci_dev, i);
  4931. break;
  4932. }
  4933. }
  4934. if (i == DEVICE_COUNT_RESOURCE) {
  4935. dev_printk(KERN_INFO, &pci_dev->dev,
  4936. "Couldn't find register window\n");
  4937. goto out_relreg;
  4938. }
  4939. /* copy of driver data */
  4940. np->driver_data = id->driver_data;
  4941. /* copy of device id */
  4942. np->device_id = id->device;
  4943. /* handle different descriptor versions */
  4944. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4945. /* packet format 3: supports 40-bit addressing */
  4946. np->desc_ver = DESC_VER_3;
  4947. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4948. if (dma_64bit) {
  4949. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4950. dev_printk(KERN_INFO, &pci_dev->dev,
  4951. "64-bit DMA failed, using 32-bit addressing\n");
  4952. else
  4953. dev->features |= NETIF_F_HIGHDMA;
  4954. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4955. dev_printk(KERN_INFO, &pci_dev->dev,
  4956. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4957. }
  4958. }
  4959. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4960. /* packet format 2: supports jumbo frames */
  4961. np->desc_ver = DESC_VER_2;
  4962. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4963. } else {
  4964. /* original packet format */
  4965. np->desc_ver = DESC_VER_1;
  4966. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4967. }
  4968. np->pkt_limit = NV_PKTLIMIT_1;
  4969. if (id->driver_data & DEV_HAS_LARGEDESC)
  4970. np->pkt_limit = NV_PKTLIMIT_2;
  4971. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4972. np->rx_csum = 1;
  4973. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4974. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  4975. dev->features |= NETIF_F_TSO;
  4976. }
  4977. np->vlanctl_bits = 0;
  4978. if (id->driver_data & DEV_HAS_VLAN) {
  4979. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4980. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4981. }
  4982. np->msi_flags = 0;
  4983. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4984. np->msi_flags |= NV_MSI_CAPABLE;
  4985. }
  4986. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4987. /* msix has had reported issues when modifying irqmask
  4988. as in the case of napi, therefore, disable for now
  4989. */
  4990. #ifndef CONFIG_FORCEDETH_NAPI
  4991. np->msi_flags |= NV_MSI_X_CAPABLE;
  4992. #endif
  4993. }
  4994. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4995. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4996. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4997. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4998. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4999. }
  5000. err = -ENOMEM;
  5001. np->base = ioremap(addr, np->register_size);
  5002. if (!np->base)
  5003. goto out_relreg;
  5004. dev->base_addr = (unsigned long)np->base;
  5005. dev->irq = pci_dev->irq;
  5006. np->rx_ring_size = RX_RING_DEFAULT;
  5007. np->tx_ring_size = TX_RING_DEFAULT;
  5008. if (!nv_optimized(np)) {
  5009. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5010. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5011. &np->ring_addr);
  5012. if (!np->rx_ring.orig)
  5013. goto out_unmap;
  5014. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5015. } else {
  5016. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5017. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5018. &np->ring_addr);
  5019. if (!np->rx_ring.ex)
  5020. goto out_unmap;
  5021. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5022. }
  5023. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5024. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5025. if (!np->rx_skb || !np->tx_skb)
  5026. goto out_freering;
  5027. if (!nv_optimized(np))
  5028. dev->netdev_ops = &nv_netdev_ops;
  5029. else
  5030. dev->netdev_ops = &nv_netdev_ops_optimized;
  5031. #ifdef CONFIG_FORCEDETH_NAPI
  5032. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5033. #endif
  5034. SET_ETHTOOL_OPS(dev, &ops);
  5035. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5036. pci_set_drvdata(pci_dev, dev);
  5037. /* read the mac address */
  5038. base = get_hwbase(dev);
  5039. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5040. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5041. /* check the workaround bit for correct mac address order */
  5042. txreg = readl(base + NvRegTransmitPoll);
  5043. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5044. /* mac address is already in correct order */
  5045. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5046. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5047. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5048. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5049. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5050. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5051. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5052. /* mac address is already in correct order */
  5053. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5054. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5055. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5056. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5057. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5058. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5059. /*
  5060. * Set orig mac address back to the reversed version.
  5061. * This flag will be cleared during low power transition.
  5062. * Therefore, we should always put back the reversed address.
  5063. */
  5064. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5065. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5066. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5067. } else {
  5068. /* need to reverse mac address to correct order */
  5069. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5070. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5071. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5072. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5073. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5074. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5075. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5076. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5077. }
  5078. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5079. if (!is_valid_ether_addr(dev->perm_addr)) {
  5080. /*
  5081. * Bad mac address. At least one bios sets the mac address
  5082. * to 01:23:45:67:89:ab
  5083. */
  5084. dev_printk(KERN_ERR, &pci_dev->dev,
  5085. "Invalid Mac address detected: %pM\n",
  5086. dev->dev_addr);
  5087. dev_printk(KERN_ERR, &pci_dev->dev,
  5088. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5089. dev->dev_addr[0] = 0x00;
  5090. dev->dev_addr[1] = 0x00;
  5091. dev->dev_addr[2] = 0x6c;
  5092. get_random_bytes(&dev->dev_addr[3], 3);
  5093. }
  5094. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5095. pci_name(pci_dev), dev->dev_addr);
  5096. /* set mac address */
  5097. nv_copy_mac_to_hw(dev);
  5098. /* Workaround current PCI init glitch: wakeup bits aren't
  5099. * being set from PCI PM capability.
  5100. */
  5101. device_init_wakeup(&pci_dev->dev, 1);
  5102. /* disable WOL */
  5103. writel(0, base + NvRegWakeUpFlags);
  5104. np->wolenabled = 0;
  5105. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5106. /* take phy and nic out of low power mode */
  5107. powerstate = readl(base + NvRegPowerState2);
  5108. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5109. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5110. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5111. pci_dev->revision >= 0xA3)
  5112. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5113. writel(powerstate, base + NvRegPowerState2);
  5114. }
  5115. if (np->desc_ver == DESC_VER_1) {
  5116. np->tx_flags = NV_TX_VALID;
  5117. } else {
  5118. np->tx_flags = NV_TX2_VALID;
  5119. }
  5120. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5121. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5122. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5123. np->msi_flags |= 0x0003;
  5124. } else {
  5125. np->irqmask = NVREG_IRQMASK_CPU;
  5126. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5127. np->msi_flags |= 0x0001;
  5128. }
  5129. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5130. np->irqmask |= NVREG_IRQ_TIMER;
  5131. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5132. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5133. np->need_linktimer = 1;
  5134. np->link_timeout = jiffies + LINK_TIMEOUT;
  5135. } else {
  5136. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5137. np->need_linktimer = 0;
  5138. }
  5139. /* Limit the number of tx's outstanding for hw bug */
  5140. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5141. np->tx_limit = 1;
  5142. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5143. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5144. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5145. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5146. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5147. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5148. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5149. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5150. pci_dev->revision >= 0xA2)
  5151. np->tx_limit = 0;
  5152. }
  5153. /* clear phy state and temporarily halt phy interrupts */
  5154. writel(0, base + NvRegMIIMask);
  5155. phystate = readl(base + NvRegAdapterControl);
  5156. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5157. phystate_orig = 1;
  5158. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5159. writel(phystate, base + NvRegAdapterControl);
  5160. }
  5161. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5162. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5163. /* management unit running on the mac? */
  5164. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5165. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5166. nv_mgmt_acquire_sema(dev) &&
  5167. nv_mgmt_get_version(dev)) {
  5168. np->mac_in_use = 1;
  5169. if (np->mgmt_version > 0) {
  5170. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5171. }
  5172. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5173. pci_name(pci_dev), np->mac_in_use);
  5174. /* management unit setup the phy already? */
  5175. if (np->mac_in_use &&
  5176. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5177. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5178. /* phy is inited by mgmt unit */
  5179. phyinitialized = 1;
  5180. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5181. pci_name(pci_dev));
  5182. } else {
  5183. /* we need to init the phy */
  5184. }
  5185. }
  5186. }
  5187. /* find a suitable phy */
  5188. for (i = 1; i <= 32; i++) {
  5189. int id1, id2;
  5190. int phyaddr = i & 0x1F;
  5191. spin_lock_irq(&np->lock);
  5192. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5193. spin_unlock_irq(&np->lock);
  5194. if (id1 < 0 || id1 == 0xffff)
  5195. continue;
  5196. spin_lock_irq(&np->lock);
  5197. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5198. spin_unlock_irq(&np->lock);
  5199. if (id2 < 0 || id2 == 0xffff)
  5200. continue;
  5201. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5202. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5203. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5204. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5205. pci_name(pci_dev), id1, id2, phyaddr);
  5206. np->phyaddr = phyaddr;
  5207. np->phy_oui = id1 | id2;
  5208. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5209. if (np->phy_oui == PHY_OUI_REALTEK2)
  5210. np->phy_oui = PHY_OUI_REALTEK;
  5211. /* Setup phy revision for Realtek */
  5212. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5213. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5214. break;
  5215. }
  5216. if (i == 33) {
  5217. dev_printk(KERN_INFO, &pci_dev->dev,
  5218. "open: Could not find a valid PHY.\n");
  5219. goto out_error;
  5220. }
  5221. if (!phyinitialized) {
  5222. /* reset it */
  5223. phy_init(dev);
  5224. } else {
  5225. /* see if it is a gigabit phy */
  5226. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5227. if (mii_status & PHY_GIGABIT) {
  5228. np->gigabit = PHY_GIGABIT;
  5229. }
  5230. }
  5231. /* set default link speed settings */
  5232. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5233. np->duplex = 0;
  5234. np->autoneg = 1;
  5235. err = register_netdev(dev);
  5236. if (err) {
  5237. dev_printk(KERN_INFO, &pci_dev->dev,
  5238. "unable to register netdev: %d\n", err);
  5239. goto out_error;
  5240. }
  5241. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5242. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5243. dev->name,
  5244. np->phy_oui,
  5245. np->phyaddr,
  5246. dev->dev_addr[0],
  5247. dev->dev_addr[1],
  5248. dev->dev_addr[2],
  5249. dev->dev_addr[3],
  5250. dev->dev_addr[4],
  5251. dev->dev_addr[5]);
  5252. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5253. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5254. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5255. "csum " : "",
  5256. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5257. "vlan " : "",
  5258. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5259. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5260. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5261. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5262. np->need_linktimer ? "lnktim " : "",
  5263. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5264. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5265. np->desc_ver);
  5266. return 0;
  5267. out_error:
  5268. if (phystate_orig)
  5269. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5270. pci_set_drvdata(pci_dev, NULL);
  5271. out_freering:
  5272. free_rings(dev);
  5273. out_unmap:
  5274. iounmap(get_hwbase(dev));
  5275. out_relreg:
  5276. pci_release_regions(pci_dev);
  5277. out_disable:
  5278. pci_disable_device(pci_dev);
  5279. out_free:
  5280. free_netdev(dev);
  5281. out:
  5282. return err;
  5283. }
  5284. static void nv_restore_phy(struct net_device *dev)
  5285. {
  5286. struct fe_priv *np = netdev_priv(dev);
  5287. u16 phy_reserved, mii_control;
  5288. if (np->phy_oui == PHY_OUI_REALTEK &&
  5289. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5290. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5291. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5292. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5293. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5294. phy_reserved |= PHY_REALTEK_INIT8;
  5295. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5296. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5297. /* restart auto negotiation */
  5298. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5299. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5300. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5301. }
  5302. }
  5303. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5304. {
  5305. struct net_device *dev = pci_get_drvdata(pci_dev);
  5306. struct fe_priv *np = netdev_priv(dev);
  5307. u8 __iomem *base = get_hwbase(dev);
  5308. /* special op: write back the misordered MAC address - otherwise
  5309. * the next nv_probe would see a wrong address.
  5310. */
  5311. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5312. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5313. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5314. base + NvRegTransmitPoll);
  5315. }
  5316. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5317. {
  5318. struct net_device *dev = pci_get_drvdata(pci_dev);
  5319. unregister_netdev(dev);
  5320. nv_restore_mac_addr(pci_dev);
  5321. /* restore any phy related changes */
  5322. nv_restore_phy(dev);
  5323. nv_mgmt_release_sema(dev);
  5324. /* free all structures */
  5325. free_rings(dev);
  5326. iounmap(get_hwbase(dev));
  5327. pci_release_regions(pci_dev);
  5328. pci_disable_device(pci_dev);
  5329. free_netdev(dev);
  5330. pci_set_drvdata(pci_dev, NULL);
  5331. }
  5332. #ifdef CONFIG_PM
  5333. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5334. {
  5335. struct net_device *dev = pci_get_drvdata(pdev);
  5336. struct fe_priv *np = netdev_priv(dev);
  5337. u8 __iomem *base = get_hwbase(dev);
  5338. int i;
  5339. if (netif_running(dev)) {
  5340. // Gross.
  5341. nv_close(dev);
  5342. }
  5343. netif_device_detach(dev);
  5344. /* save non-pci configuration space */
  5345. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5346. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5347. pci_save_state(pdev);
  5348. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5349. pci_disable_device(pdev);
  5350. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5351. return 0;
  5352. }
  5353. static int nv_resume(struct pci_dev *pdev)
  5354. {
  5355. struct net_device *dev = pci_get_drvdata(pdev);
  5356. struct fe_priv *np = netdev_priv(dev);
  5357. u8 __iomem *base = get_hwbase(dev);
  5358. int i, rc = 0;
  5359. pci_set_power_state(pdev, PCI_D0);
  5360. pci_restore_state(pdev);
  5361. /* ack any pending wake events, disable PME */
  5362. pci_enable_wake(pdev, PCI_D0, 0);
  5363. /* restore non-pci configuration space */
  5364. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5365. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5366. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5367. netif_device_attach(dev);
  5368. if (netif_running(dev)) {
  5369. rc = nv_open(dev);
  5370. nv_set_multicast(dev);
  5371. }
  5372. return rc;
  5373. }
  5374. static void nv_shutdown(struct pci_dev *pdev)
  5375. {
  5376. struct net_device *dev = pci_get_drvdata(pdev);
  5377. struct fe_priv *np = netdev_priv(dev);
  5378. if (netif_running(dev))
  5379. nv_close(dev);
  5380. /*
  5381. * Restore the MAC so a kernel started by kexec won't get confused.
  5382. * If we really go for poweroff, we must not restore the MAC,
  5383. * otherwise the MAC for WOL will be reversed at least on some boards.
  5384. */
  5385. if (system_state != SYSTEM_POWER_OFF) {
  5386. nv_restore_mac_addr(pdev);
  5387. }
  5388. pci_disable_device(pdev);
  5389. /*
  5390. * Apparently it is not possible to reinitialise from D3 hot,
  5391. * only put the device into D3 if we really go for poweroff.
  5392. */
  5393. if (system_state == SYSTEM_POWER_OFF) {
  5394. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5395. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5396. pci_set_power_state(pdev, PCI_D3hot);
  5397. }
  5398. }
  5399. #else
  5400. #define nv_suspend NULL
  5401. #define nv_shutdown NULL
  5402. #define nv_resume NULL
  5403. #endif /* CONFIG_PM */
  5404. static struct pci_device_id pci_tbl[] = {
  5405. { /* nForce Ethernet Controller */
  5406. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5407. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5408. },
  5409. { /* nForce2 Ethernet Controller */
  5410. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5411. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5412. },
  5413. { /* nForce3 Ethernet Controller */
  5414. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5415. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5416. },
  5417. { /* nForce3 Ethernet Controller */
  5418. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5419. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5420. },
  5421. { /* nForce3 Ethernet Controller */
  5422. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5423. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5424. },
  5425. { /* nForce3 Ethernet Controller */
  5426. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5427. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5428. },
  5429. { /* nForce3 Ethernet Controller */
  5430. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5431. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5432. },
  5433. { /* CK804 Ethernet Controller */
  5434. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5435. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5436. },
  5437. { /* CK804 Ethernet Controller */
  5438. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5439. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5440. },
  5441. { /* MCP04 Ethernet Controller */
  5442. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5443. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5444. },
  5445. { /* MCP04 Ethernet Controller */
  5446. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5447. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5448. },
  5449. { /* MCP51 Ethernet Controller */
  5450. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5451. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5452. },
  5453. { /* MCP51 Ethernet Controller */
  5454. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5455. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5456. },
  5457. { /* MCP55 Ethernet Controller */
  5458. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5459. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5460. },
  5461. { /* MCP55 Ethernet Controller */
  5462. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5463. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5464. },
  5465. { /* MCP61 Ethernet Controller */
  5466. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5467. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5468. },
  5469. { /* MCP61 Ethernet Controller */
  5470. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5471. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5472. },
  5473. { /* MCP61 Ethernet Controller */
  5474. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5475. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5476. },
  5477. { /* MCP61 Ethernet Controller */
  5478. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5479. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5480. },
  5481. { /* MCP65 Ethernet Controller */
  5482. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5483. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5484. },
  5485. { /* MCP65 Ethernet Controller */
  5486. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5487. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5488. },
  5489. { /* MCP65 Ethernet Controller */
  5490. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5491. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5492. },
  5493. { /* MCP65 Ethernet Controller */
  5494. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5495. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5496. },
  5497. { /* MCP67 Ethernet Controller */
  5498. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5499. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5500. },
  5501. { /* MCP67 Ethernet Controller */
  5502. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5503. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5504. },
  5505. { /* MCP67 Ethernet Controller */
  5506. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5507. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5508. },
  5509. { /* MCP67 Ethernet Controller */
  5510. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5511. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5512. },
  5513. { /* MCP73 Ethernet Controller */
  5514. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5515. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5516. },
  5517. { /* MCP73 Ethernet Controller */
  5518. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5519. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5520. },
  5521. { /* MCP73 Ethernet Controller */
  5522. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5523. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5524. },
  5525. { /* MCP73 Ethernet Controller */
  5526. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5527. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5528. },
  5529. { /* MCP77 Ethernet Controller */
  5530. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5531. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5532. },
  5533. { /* MCP77 Ethernet Controller */
  5534. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5535. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5536. },
  5537. { /* MCP77 Ethernet Controller */
  5538. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5539. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5540. },
  5541. { /* MCP77 Ethernet Controller */
  5542. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5543. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5544. },
  5545. { /* MCP79 Ethernet Controller */
  5546. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5547. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5548. },
  5549. { /* MCP79 Ethernet Controller */
  5550. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5551. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5552. },
  5553. { /* MCP79 Ethernet Controller */
  5554. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5555. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5556. },
  5557. { /* MCP79 Ethernet Controller */
  5558. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5559. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5560. },
  5561. {0,},
  5562. };
  5563. static struct pci_driver driver = {
  5564. .name = DRV_NAME,
  5565. .id_table = pci_tbl,
  5566. .probe = nv_probe,
  5567. .remove = __devexit_p(nv_remove),
  5568. .suspend = nv_suspend,
  5569. .resume = nv_resume,
  5570. .shutdown = nv_shutdown,
  5571. };
  5572. static int __init init_nic(void)
  5573. {
  5574. return pci_register_driver(&driver);
  5575. }
  5576. static void __exit exit_nic(void)
  5577. {
  5578. pci_unregister_driver(&driver);
  5579. }
  5580. module_param(max_interrupt_work, int, 0);
  5581. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5582. module_param(optimization_mode, int, 0);
  5583. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5584. module_param(poll_interval, int, 0);
  5585. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5586. module_param(msi, int, 0);
  5587. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5588. module_param(msix, int, 0);
  5589. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5590. module_param(dma_64bit, int, 0);
  5591. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5592. module_param(phy_cross, int, 0);
  5593. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5594. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5595. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5596. MODULE_LICENSE("GPL");
  5597. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5598. module_init(init_nic);
  5599. module_exit(exit_nic);