kvm_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(&vcpu->host_fx_image);
  133. fx_restore(&vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(&vcpu->guest_fx_image);
  142. fx_restore(&vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. r = kvm_mmu_create(vcpu);
  226. if (r < 0)
  227. goto fail_free_pio_data;
  228. return 0;
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return -ENOMEM;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. /*
  259. * Free any memory in @free but not in @dont.
  260. */
  261. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  262. struct kvm_memory_slot *dont)
  263. {
  264. int i;
  265. if (!dont || free->phys_mem != dont->phys_mem)
  266. if (free->phys_mem) {
  267. for (i = 0; i < free->npages; ++i)
  268. if (free->phys_mem[i])
  269. __free_page(free->phys_mem[i]);
  270. vfree(free->phys_mem);
  271. }
  272. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  273. vfree(free->dirty_bitmap);
  274. free->phys_mem = NULL;
  275. free->npages = 0;
  276. free->dirty_bitmap = NULL;
  277. }
  278. static void kvm_free_physmem(struct kvm *kvm)
  279. {
  280. int i;
  281. for (i = 0; i < kvm->nmemslots; ++i)
  282. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  283. }
  284. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  285. {
  286. int i;
  287. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  288. if (vcpu->pio.guest_pages[i]) {
  289. __free_page(vcpu->pio.guest_pages[i]);
  290. vcpu->pio.guest_pages[i] = NULL;
  291. }
  292. }
  293. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  294. {
  295. vcpu_load(vcpu);
  296. kvm_mmu_unload(vcpu);
  297. vcpu_put(vcpu);
  298. }
  299. static void kvm_free_vcpus(struct kvm *kvm)
  300. {
  301. unsigned int i;
  302. /*
  303. * Unpin any mmu pages first.
  304. */
  305. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  306. if (kvm->vcpus[i])
  307. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  308. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  309. if (kvm->vcpus[i]) {
  310. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  311. kvm->vcpus[i] = NULL;
  312. }
  313. }
  314. }
  315. static void kvm_destroy_vm(struct kvm *kvm)
  316. {
  317. spin_lock(&kvm_lock);
  318. list_del(&kvm->vm_list);
  319. spin_unlock(&kvm_lock);
  320. kvm_io_bus_destroy(&kvm->pio_bus);
  321. kvm_io_bus_destroy(&kvm->mmio_bus);
  322. kvm_free_vcpus(kvm);
  323. kvm_free_physmem(kvm);
  324. kfree(kvm);
  325. }
  326. static int kvm_vm_release(struct inode *inode, struct file *filp)
  327. {
  328. struct kvm *kvm = filp->private_data;
  329. kvm_destroy_vm(kvm);
  330. return 0;
  331. }
  332. static void inject_gp(struct kvm_vcpu *vcpu)
  333. {
  334. kvm_arch_ops->inject_gp(vcpu, 0);
  335. }
  336. /*
  337. * Load the pae pdptrs. Return true is they are all valid.
  338. */
  339. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  340. {
  341. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  342. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  343. int i;
  344. u64 *pdpt;
  345. int ret;
  346. struct page *page;
  347. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  348. mutex_lock(&vcpu->kvm->lock);
  349. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  350. if (!page) {
  351. ret = 0;
  352. goto out;
  353. }
  354. pdpt = kmap_atomic(page, KM_USER0);
  355. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  356. kunmap_atomic(pdpt, KM_USER0);
  357. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  358. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  359. ret = 0;
  360. goto out;
  361. }
  362. }
  363. ret = 1;
  364. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  365. out:
  366. mutex_unlock(&vcpu->kvm->lock);
  367. return ret;
  368. }
  369. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  370. {
  371. if (cr0 & CR0_RESERVED_BITS) {
  372. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  373. cr0, vcpu->cr0);
  374. inject_gp(vcpu);
  375. return;
  376. }
  377. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  378. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  383. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  384. "and a clear PE flag\n");
  385. inject_gp(vcpu);
  386. return;
  387. }
  388. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  389. #ifdef CONFIG_X86_64
  390. if ((vcpu->shadow_efer & EFER_LME)) {
  391. int cs_db, cs_l;
  392. if (!is_pae(vcpu)) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while PAE is disabled\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  399. if (cs_l) {
  400. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  401. "in long mode while CS.L == 1\n");
  402. inject_gp(vcpu);
  403. return;
  404. }
  405. } else
  406. #endif
  407. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  408. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  409. "reserved bits\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. }
  414. kvm_arch_ops->set_cr0(vcpu, cr0);
  415. vcpu->cr0 = cr0;
  416. mutex_lock(&vcpu->kvm->lock);
  417. kvm_mmu_reset_context(vcpu);
  418. mutex_unlock(&vcpu->kvm->lock);
  419. return;
  420. }
  421. EXPORT_SYMBOL_GPL(set_cr0);
  422. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  423. {
  424. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  425. }
  426. EXPORT_SYMBOL_GPL(lmsw);
  427. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  428. {
  429. if (cr4 & CR4_RESERVED_BITS) {
  430. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. if (is_long_mode(vcpu)) {
  435. if (!(cr4 & X86_CR4_PAE)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  437. "in long mode\n");
  438. inject_gp(vcpu);
  439. return;
  440. }
  441. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  442. && !load_pdptrs(vcpu, vcpu->cr3)) {
  443. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  444. inject_gp(vcpu);
  445. return;
  446. }
  447. if (cr4 & X86_CR4_VMXE) {
  448. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  449. inject_gp(vcpu);
  450. return;
  451. }
  452. kvm_arch_ops->set_cr4(vcpu, cr4);
  453. mutex_lock(&vcpu->kvm->lock);
  454. kvm_mmu_reset_context(vcpu);
  455. mutex_unlock(&vcpu->kvm->lock);
  456. }
  457. EXPORT_SYMBOL_GPL(set_cr4);
  458. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  459. {
  460. if (is_long_mode(vcpu)) {
  461. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  462. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  463. inject_gp(vcpu);
  464. return;
  465. }
  466. } else {
  467. if (is_pae(vcpu)) {
  468. if (cr3 & CR3_PAE_RESERVED_BITS) {
  469. printk(KERN_DEBUG
  470. "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  475. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  476. "reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. } else {
  481. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  482. printk(KERN_DEBUG
  483. "set_cr3: #GP, reserved bits\n");
  484. inject_gp(vcpu);
  485. return;
  486. }
  487. }
  488. }
  489. mutex_lock(&vcpu->kvm->lock);
  490. /*
  491. * Does the new cr3 value map to physical memory? (Note, we
  492. * catch an invalid cr3 even in real-mode, because it would
  493. * cause trouble later on when we turn on paging anyway.)
  494. *
  495. * A real CPU would silently accept an invalid cr3 and would
  496. * attempt to use it - with largely undefined (and often hard
  497. * to debug) behavior on the guest side.
  498. */
  499. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  500. inject_gp(vcpu);
  501. else {
  502. vcpu->cr3 = cr3;
  503. vcpu->mmu.new_cr3(vcpu);
  504. }
  505. mutex_unlock(&vcpu->kvm->lock);
  506. }
  507. EXPORT_SYMBOL_GPL(set_cr3);
  508. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  509. {
  510. if (cr8 & CR8_RESERVED_BITS) {
  511. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  512. inject_gp(vcpu);
  513. return;
  514. }
  515. vcpu->cr8 = cr8;
  516. }
  517. EXPORT_SYMBOL_GPL(set_cr8);
  518. void fx_init(struct kvm_vcpu *vcpu)
  519. {
  520. unsigned after_mxcsr_mask;
  521. /* Initialize guest FPU by resetting ours and saving into guest's */
  522. preempt_disable();
  523. fx_save(&vcpu->host_fx_image);
  524. fpu_init();
  525. fx_save(&vcpu->guest_fx_image);
  526. fx_restore(&vcpu->host_fx_image);
  527. preempt_enable();
  528. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  529. vcpu->guest_fx_image.mxcsr = 0x1f80;
  530. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  531. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  532. }
  533. EXPORT_SYMBOL_GPL(fx_init);
  534. /*
  535. * Allocate some memory and give it an address in the guest physical address
  536. * space.
  537. *
  538. * Discontiguous memory is allowed, mostly for framebuffers.
  539. */
  540. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  541. struct kvm_memory_region *mem)
  542. {
  543. int r;
  544. gfn_t base_gfn;
  545. unsigned long npages;
  546. unsigned long i;
  547. struct kvm_memory_slot *memslot;
  548. struct kvm_memory_slot old, new;
  549. int memory_config_version;
  550. r = -EINVAL;
  551. /* General sanity checks */
  552. if (mem->memory_size & (PAGE_SIZE - 1))
  553. goto out;
  554. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  555. goto out;
  556. if (mem->slot >= KVM_MEMORY_SLOTS)
  557. goto out;
  558. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  559. goto out;
  560. memslot = &kvm->memslots[mem->slot];
  561. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  562. npages = mem->memory_size >> PAGE_SHIFT;
  563. if (!npages)
  564. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  565. raced:
  566. mutex_lock(&kvm->lock);
  567. memory_config_version = kvm->memory_config_version;
  568. new = old = *memslot;
  569. new.base_gfn = base_gfn;
  570. new.npages = npages;
  571. new.flags = mem->flags;
  572. /* Disallow changing a memory slot's size. */
  573. r = -EINVAL;
  574. if (npages && old.npages && npages != old.npages)
  575. goto out_unlock;
  576. /* Check for overlaps */
  577. r = -EEXIST;
  578. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  579. struct kvm_memory_slot *s = &kvm->memslots[i];
  580. if (s == memslot)
  581. continue;
  582. if (!((base_gfn + npages <= s->base_gfn) ||
  583. (base_gfn >= s->base_gfn + s->npages)))
  584. goto out_unlock;
  585. }
  586. /*
  587. * Do memory allocations outside lock. memory_config_version will
  588. * detect any races.
  589. */
  590. mutex_unlock(&kvm->lock);
  591. /* Deallocate if slot is being removed */
  592. if (!npages)
  593. new.phys_mem = NULL;
  594. /* Free page dirty bitmap if unneeded */
  595. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  596. new.dirty_bitmap = NULL;
  597. r = -ENOMEM;
  598. /* Allocate if a slot is being created */
  599. if (npages && !new.phys_mem) {
  600. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  601. if (!new.phys_mem)
  602. goto out_free;
  603. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  604. for (i = 0; i < npages; ++i) {
  605. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  606. | __GFP_ZERO);
  607. if (!new.phys_mem[i])
  608. goto out_free;
  609. set_page_private(new.phys_mem[i],0);
  610. }
  611. }
  612. /* Allocate page dirty bitmap if needed */
  613. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  614. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  615. new.dirty_bitmap = vmalloc(dirty_bytes);
  616. if (!new.dirty_bitmap)
  617. goto out_free;
  618. memset(new.dirty_bitmap, 0, dirty_bytes);
  619. }
  620. mutex_lock(&kvm->lock);
  621. if (memory_config_version != kvm->memory_config_version) {
  622. mutex_unlock(&kvm->lock);
  623. kvm_free_physmem_slot(&new, &old);
  624. goto raced;
  625. }
  626. r = -EAGAIN;
  627. if (kvm->busy)
  628. goto out_unlock;
  629. if (mem->slot >= kvm->nmemslots)
  630. kvm->nmemslots = mem->slot + 1;
  631. *memslot = new;
  632. ++kvm->memory_config_version;
  633. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  634. kvm_flush_remote_tlbs(kvm);
  635. mutex_unlock(&kvm->lock);
  636. kvm_free_physmem_slot(&old, &new);
  637. return 0;
  638. out_unlock:
  639. mutex_unlock(&kvm->lock);
  640. out_free:
  641. kvm_free_physmem_slot(&new, &old);
  642. out:
  643. return r;
  644. }
  645. /*
  646. * Get (and clear) the dirty memory log for a memory slot.
  647. */
  648. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  649. struct kvm_dirty_log *log)
  650. {
  651. struct kvm_memory_slot *memslot;
  652. int r, i;
  653. int n;
  654. unsigned long any = 0;
  655. mutex_lock(&kvm->lock);
  656. /*
  657. * Prevent changes to guest memory configuration even while the lock
  658. * is not taken.
  659. */
  660. ++kvm->busy;
  661. mutex_unlock(&kvm->lock);
  662. r = -EINVAL;
  663. if (log->slot >= KVM_MEMORY_SLOTS)
  664. goto out;
  665. memslot = &kvm->memslots[log->slot];
  666. r = -ENOENT;
  667. if (!memslot->dirty_bitmap)
  668. goto out;
  669. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  670. for (i = 0; !any && i < n/sizeof(long); ++i)
  671. any = memslot->dirty_bitmap[i];
  672. r = -EFAULT;
  673. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  674. goto out;
  675. /* If nothing is dirty, don't bother messing with page tables. */
  676. if (any) {
  677. mutex_lock(&kvm->lock);
  678. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  679. kvm_flush_remote_tlbs(kvm);
  680. memset(memslot->dirty_bitmap, 0, n);
  681. mutex_unlock(&kvm->lock);
  682. }
  683. r = 0;
  684. out:
  685. mutex_lock(&kvm->lock);
  686. --kvm->busy;
  687. mutex_unlock(&kvm->lock);
  688. return r;
  689. }
  690. /*
  691. * Set a new alias region. Aliases map a portion of physical memory into
  692. * another portion. This is useful for memory windows, for example the PC
  693. * VGA region.
  694. */
  695. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  696. struct kvm_memory_alias *alias)
  697. {
  698. int r, n;
  699. struct kvm_mem_alias *p;
  700. r = -EINVAL;
  701. /* General sanity checks */
  702. if (alias->memory_size & (PAGE_SIZE - 1))
  703. goto out;
  704. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  705. goto out;
  706. if (alias->slot >= KVM_ALIAS_SLOTS)
  707. goto out;
  708. if (alias->guest_phys_addr + alias->memory_size
  709. < alias->guest_phys_addr)
  710. goto out;
  711. if (alias->target_phys_addr + alias->memory_size
  712. < alias->target_phys_addr)
  713. goto out;
  714. mutex_lock(&kvm->lock);
  715. p = &kvm->aliases[alias->slot];
  716. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  717. p->npages = alias->memory_size >> PAGE_SHIFT;
  718. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  719. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  720. if (kvm->aliases[n - 1].npages)
  721. break;
  722. kvm->naliases = n;
  723. kvm_mmu_zap_all(kvm);
  724. mutex_unlock(&kvm->lock);
  725. return 0;
  726. out:
  727. return r;
  728. }
  729. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  730. {
  731. int i;
  732. struct kvm_mem_alias *alias;
  733. for (i = 0; i < kvm->naliases; ++i) {
  734. alias = &kvm->aliases[i];
  735. if (gfn >= alias->base_gfn
  736. && gfn < alias->base_gfn + alias->npages)
  737. return alias->target_gfn + gfn - alias->base_gfn;
  738. }
  739. return gfn;
  740. }
  741. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  742. {
  743. int i;
  744. for (i = 0; i < kvm->nmemslots; ++i) {
  745. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  746. if (gfn >= memslot->base_gfn
  747. && gfn < memslot->base_gfn + memslot->npages)
  748. return memslot;
  749. }
  750. return NULL;
  751. }
  752. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  753. {
  754. gfn = unalias_gfn(kvm, gfn);
  755. return __gfn_to_memslot(kvm, gfn);
  756. }
  757. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  758. {
  759. struct kvm_memory_slot *slot;
  760. gfn = unalias_gfn(kvm, gfn);
  761. slot = __gfn_to_memslot(kvm, gfn);
  762. if (!slot)
  763. return NULL;
  764. return slot->phys_mem[gfn - slot->base_gfn];
  765. }
  766. EXPORT_SYMBOL_GPL(gfn_to_page);
  767. /* WARNING: Does not work on aliased pages. */
  768. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  769. {
  770. struct kvm_memory_slot *memslot;
  771. memslot = __gfn_to_memslot(kvm, gfn);
  772. if (memslot && memslot->dirty_bitmap) {
  773. unsigned long rel_gfn = gfn - memslot->base_gfn;
  774. /* avoid RMW */
  775. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  776. set_bit(rel_gfn, memslot->dirty_bitmap);
  777. }
  778. }
  779. int emulator_read_std(unsigned long addr,
  780. void *val,
  781. unsigned int bytes,
  782. struct kvm_vcpu *vcpu)
  783. {
  784. void *data = val;
  785. while (bytes) {
  786. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  787. unsigned offset = addr & (PAGE_SIZE-1);
  788. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  789. unsigned long pfn;
  790. struct page *page;
  791. void *page_virt;
  792. if (gpa == UNMAPPED_GVA)
  793. return X86EMUL_PROPAGATE_FAULT;
  794. pfn = gpa >> PAGE_SHIFT;
  795. page = gfn_to_page(vcpu->kvm, pfn);
  796. if (!page)
  797. return X86EMUL_UNHANDLEABLE;
  798. page_virt = kmap_atomic(page, KM_USER0);
  799. memcpy(data, page_virt + offset, tocopy);
  800. kunmap_atomic(page_virt, KM_USER0);
  801. bytes -= tocopy;
  802. data += tocopy;
  803. addr += tocopy;
  804. }
  805. return X86EMUL_CONTINUE;
  806. }
  807. EXPORT_SYMBOL_GPL(emulator_read_std);
  808. static int emulator_write_std(unsigned long addr,
  809. const void *val,
  810. unsigned int bytes,
  811. struct kvm_vcpu *vcpu)
  812. {
  813. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  814. addr, bytes);
  815. return X86EMUL_UNHANDLEABLE;
  816. }
  817. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  818. gpa_t addr)
  819. {
  820. /*
  821. * Note that its important to have this wrapper function because
  822. * in the very near future we will be checking for MMIOs against
  823. * the LAPIC as well as the general MMIO bus
  824. */
  825. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  826. }
  827. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  828. gpa_t addr)
  829. {
  830. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  831. }
  832. static int emulator_read_emulated(unsigned long addr,
  833. void *val,
  834. unsigned int bytes,
  835. struct kvm_vcpu *vcpu)
  836. {
  837. struct kvm_io_device *mmio_dev;
  838. gpa_t gpa;
  839. if (vcpu->mmio_read_completed) {
  840. memcpy(val, vcpu->mmio_data, bytes);
  841. vcpu->mmio_read_completed = 0;
  842. return X86EMUL_CONTINUE;
  843. } else if (emulator_read_std(addr, val, bytes, vcpu)
  844. == X86EMUL_CONTINUE)
  845. return X86EMUL_CONTINUE;
  846. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  847. if (gpa == UNMAPPED_GVA)
  848. return X86EMUL_PROPAGATE_FAULT;
  849. /*
  850. * Is this MMIO handled locally?
  851. */
  852. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  853. if (mmio_dev) {
  854. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  855. return X86EMUL_CONTINUE;
  856. }
  857. vcpu->mmio_needed = 1;
  858. vcpu->mmio_phys_addr = gpa;
  859. vcpu->mmio_size = bytes;
  860. vcpu->mmio_is_write = 0;
  861. return X86EMUL_UNHANDLEABLE;
  862. }
  863. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  864. const void *val, int bytes)
  865. {
  866. struct page *page;
  867. void *virt;
  868. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  869. return 0;
  870. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  871. if (!page)
  872. return 0;
  873. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  874. virt = kmap_atomic(page, KM_USER0);
  875. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  876. memcpy(virt + offset_in_page(gpa), val, bytes);
  877. kunmap_atomic(virt, KM_USER0);
  878. return 1;
  879. }
  880. static int emulator_write_emulated_onepage(unsigned long addr,
  881. const void *val,
  882. unsigned int bytes,
  883. struct kvm_vcpu *vcpu)
  884. {
  885. struct kvm_io_device *mmio_dev;
  886. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  887. if (gpa == UNMAPPED_GVA) {
  888. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  889. return X86EMUL_PROPAGATE_FAULT;
  890. }
  891. if (emulator_write_phys(vcpu, gpa, val, bytes))
  892. return X86EMUL_CONTINUE;
  893. /*
  894. * Is this MMIO handled locally?
  895. */
  896. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  897. if (mmio_dev) {
  898. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  899. return X86EMUL_CONTINUE;
  900. }
  901. vcpu->mmio_needed = 1;
  902. vcpu->mmio_phys_addr = gpa;
  903. vcpu->mmio_size = bytes;
  904. vcpu->mmio_is_write = 1;
  905. memcpy(vcpu->mmio_data, val, bytes);
  906. return X86EMUL_CONTINUE;
  907. }
  908. int emulator_write_emulated(unsigned long addr,
  909. const void *val,
  910. unsigned int bytes,
  911. struct kvm_vcpu *vcpu)
  912. {
  913. /* Crossing a page boundary? */
  914. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  915. int rc, now;
  916. now = -addr & ~PAGE_MASK;
  917. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  918. if (rc != X86EMUL_CONTINUE)
  919. return rc;
  920. addr += now;
  921. val += now;
  922. bytes -= now;
  923. }
  924. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  925. }
  926. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  927. static int emulator_cmpxchg_emulated(unsigned long addr,
  928. const void *old,
  929. const void *new,
  930. unsigned int bytes,
  931. struct kvm_vcpu *vcpu)
  932. {
  933. static int reported;
  934. if (!reported) {
  935. reported = 1;
  936. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  937. }
  938. return emulator_write_emulated(addr, new, bytes, vcpu);
  939. }
  940. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  941. {
  942. return kvm_arch_ops->get_segment_base(vcpu, seg);
  943. }
  944. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  945. {
  946. return X86EMUL_CONTINUE;
  947. }
  948. int emulate_clts(struct kvm_vcpu *vcpu)
  949. {
  950. unsigned long cr0;
  951. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  952. kvm_arch_ops->set_cr0(vcpu, cr0);
  953. return X86EMUL_CONTINUE;
  954. }
  955. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  956. {
  957. struct kvm_vcpu *vcpu = ctxt->vcpu;
  958. switch (dr) {
  959. case 0 ... 3:
  960. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  961. return X86EMUL_CONTINUE;
  962. default:
  963. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  964. __FUNCTION__, dr);
  965. return X86EMUL_UNHANDLEABLE;
  966. }
  967. }
  968. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  969. {
  970. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  971. int exception;
  972. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  973. if (exception) {
  974. /* FIXME: better handling */
  975. return X86EMUL_UNHANDLEABLE;
  976. }
  977. return X86EMUL_CONTINUE;
  978. }
  979. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  980. {
  981. static int reported;
  982. u8 opcodes[4];
  983. unsigned long rip = ctxt->vcpu->rip;
  984. unsigned long rip_linear;
  985. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  986. if (reported)
  987. return;
  988. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  989. printk(KERN_ERR "emulation failed but !mmio_needed?"
  990. " rip %lx %02x %02x %02x %02x\n",
  991. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  992. reported = 1;
  993. }
  994. struct x86_emulate_ops emulate_ops = {
  995. .read_std = emulator_read_std,
  996. .write_std = emulator_write_std,
  997. .read_emulated = emulator_read_emulated,
  998. .write_emulated = emulator_write_emulated,
  999. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1000. };
  1001. int emulate_instruction(struct kvm_vcpu *vcpu,
  1002. struct kvm_run *run,
  1003. unsigned long cr2,
  1004. u16 error_code)
  1005. {
  1006. struct x86_emulate_ctxt emulate_ctxt;
  1007. int r;
  1008. int cs_db, cs_l;
  1009. vcpu->mmio_fault_cr2 = cr2;
  1010. kvm_arch_ops->cache_regs(vcpu);
  1011. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1012. emulate_ctxt.vcpu = vcpu;
  1013. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1014. emulate_ctxt.cr2 = cr2;
  1015. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1016. ? X86EMUL_MODE_REAL : cs_l
  1017. ? X86EMUL_MODE_PROT64 : cs_db
  1018. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1019. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1020. emulate_ctxt.cs_base = 0;
  1021. emulate_ctxt.ds_base = 0;
  1022. emulate_ctxt.es_base = 0;
  1023. emulate_ctxt.ss_base = 0;
  1024. } else {
  1025. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1026. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1027. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1028. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1029. }
  1030. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1031. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1032. vcpu->mmio_is_write = 0;
  1033. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1034. if ((r || vcpu->mmio_is_write) && run) {
  1035. run->exit_reason = KVM_EXIT_MMIO;
  1036. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1037. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1038. run->mmio.len = vcpu->mmio_size;
  1039. run->mmio.is_write = vcpu->mmio_is_write;
  1040. }
  1041. if (r) {
  1042. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1043. return EMULATE_DONE;
  1044. if (!vcpu->mmio_needed) {
  1045. report_emulation_failure(&emulate_ctxt);
  1046. return EMULATE_FAIL;
  1047. }
  1048. return EMULATE_DO_MMIO;
  1049. }
  1050. kvm_arch_ops->decache_regs(vcpu);
  1051. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1052. if (vcpu->mmio_is_write) {
  1053. vcpu->mmio_needed = 0;
  1054. return EMULATE_DO_MMIO;
  1055. }
  1056. return EMULATE_DONE;
  1057. }
  1058. EXPORT_SYMBOL_GPL(emulate_instruction);
  1059. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1060. {
  1061. if (vcpu->irq_summary)
  1062. return 1;
  1063. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1064. ++vcpu->stat.halt_exits;
  1065. return 0;
  1066. }
  1067. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1068. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1069. {
  1070. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1071. kvm_arch_ops->cache_regs(vcpu);
  1072. ret = -KVM_EINVAL;
  1073. #ifdef CONFIG_X86_64
  1074. if (is_long_mode(vcpu)) {
  1075. nr = vcpu->regs[VCPU_REGS_RAX];
  1076. a0 = vcpu->regs[VCPU_REGS_RDI];
  1077. a1 = vcpu->regs[VCPU_REGS_RSI];
  1078. a2 = vcpu->regs[VCPU_REGS_RDX];
  1079. a3 = vcpu->regs[VCPU_REGS_RCX];
  1080. a4 = vcpu->regs[VCPU_REGS_R8];
  1081. a5 = vcpu->regs[VCPU_REGS_R9];
  1082. } else
  1083. #endif
  1084. {
  1085. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1086. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1087. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1088. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1089. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1090. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1091. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1092. }
  1093. switch (nr) {
  1094. default:
  1095. run->hypercall.nr = nr;
  1096. run->hypercall.args[0] = a0;
  1097. run->hypercall.args[1] = a1;
  1098. run->hypercall.args[2] = a2;
  1099. run->hypercall.args[3] = a3;
  1100. run->hypercall.args[4] = a4;
  1101. run->hypercall.args[5] = a5;
  1102. run->hypercall.ret = ret;
  1103. run->hypercall.longmode = is_long_mode(vcpu);
  1104. kvm_arch_ops->decache_regs(vcpu);
  1105. return 0;
  1106. }
  1107. vcpu->regs[VCPU_REGS_RAX] = ret;
  1108. kvm_arch_ops->decache_regs(vcpu);
  1109. return 1;
  1110. }
  1111. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1112. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1113. {
  1114. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1115. }
  1116. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1117. {
  1118. struct descriptor_table dt = { limit, base };
  1119. kvm_arch_ops->set_gdt(vcpu, &dt);
  1120. }
  1121. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1122. {
  1123. struct descriptor_table dt = { limit, base };
  1124. kvm_arch_ops->set_idt(vcpu, &dt);
  1125. }
  1126. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1127. unsigned long *rflags)
  1128. {
  1129. lmsw(vcpu, msw);
  1130. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1131. }
  1132. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1133. {
  1134. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1135. switch (cr) {
  1136. case 0:
  1137. return vcpu->cr0;
  1138. case 2:
  1139. return vcpu->cr2;
  1140. case 3:
  1141. return vcpu->cr3;
  1142. case 4:
  1143. return vcpu->cr4;
  1144. default:
  1145. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1146. return 0;
  1147. }
  1148. }
  1149. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1150. unsigned long *rflags)
  1151. {
  1152. switch (cr) {
  1153. case 0:
  1154. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1155. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1156. break;
  1157. case 2:
  1158. vcpu->cr2 = val;
  1159. break;
  1160. case 3:
  1161. set_cr3(vcpu, val);
  1162. break;
  1163. case 4:
  1164. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1165. break;
  1166. default:
  1167. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1168. }
  1169. }
  1170. /*
  1171. * Register the para guest with the host:
  1172. */
  1173. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1174. {
  1175. struct kvm_vcpu_para_state *para_state;
  1176. hpa_t para_state_hpa, hypercall_hpa;
  1177. struct page *para_state_page;
  1178. unsigned char *hypercall;
  1179. gpa_t hypercall_gpa;
  1180. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1181. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1182. /*
  1183. * Needs to be page aligned:
  1184. */
  1185. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1186. goto err_gp;
  1187. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1188. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1189. if (is_error_hpa(para_state_hpa))
  1190. goto err_gp;
  1191. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1192. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1193. para_state = kmap(para_state_page);
  1194. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1195. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1196. para_state->host_version = KVM_PARA_API_VERSION;
  1197. /*
  1198. * We cannot support guests that try to register themselves
  1199. * with a newer API version than the host supports:
  1200. */
  1201. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1202. para_state->ret = -KVM_EINVAL;
  1203. goto err_kunmap_skip;
  1204. }
  1205. hypercall_gpa = para_state->hypercall_gpa;
  1206. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1207. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1208. if (is_error_hpa(hypercall_hpa)) {
  1209. para_state->ret = -KVM_EINVAL;
  1210. goto err_kunmap_skip;
  1211. }
  1212. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1213. vcpu->para_state_page = para_state_page;
  1214. vcpu->para_state_gpa = para_state_gpa;
  1215. vcpu->hypercall_gpa = hypercall_gpa;
  1216. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1217. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1218. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1219. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1220. kunmap_atomic(hypercall, KM_USER1);
  1221. para_state->ret = 0;
  1222. err_kunmap_skip:
  1223. kunmap(para_state_page);
  1224. return 0;
  1225. err_gp:
  1226. return 1;
  1227. }
  1228. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1229. {
  1230. u64 data;
  1231. switch (msr) {
  1232. case 0xc0010010: /* SYSCFG */
  1233. case 0xc0010015: /* HWCR */
  1234. case MSR_IA32_PLATFORM_ID:
  1235. case MSR_IA32_P5_MC_ADDR:
  1236. case MSR_IA32_P5_MC_TYPE:
  1237. case MSR_IA32_MC0_CTL:
  1238. case MSR_IA32_MCG_STATUS:
  1239. case MSR_IA32_MCG_CAP:
  1240. case MSR_IA32_MC0_MISC:
  1241. case MSR_IA32_MC0_MISC+4:
  1242. case MSR_IA32_MC0_MISC+8:
  1243. case MSR_IA32_MC0_MISC+12:
  1244. case MSR_IA32_MC0_MISC+16:
  1245. case MSR_IA32_UCODE_REV:
  1246. case MSR_IA32_PERF_STATUS:
  1247. case MSR_IA32_EBL_CR_POWERON:
  1248. /* MTRR registers */
  1249. case 0xfe:
  1250. case 0x200 ... 0x2ff:
  1251. data = 0;
  1252. break;
  1253. case 0xcd: /* fsb frequency */
  1254. data = 3;
  1255. break;
  1256. case MSR_IA32_APICBASE:
  1257. data = vcpu->apic_base;
  1258. break;
  1259. case MSR_IA32_MISC_ENABLE:
  1260. data = vcpu->ia32_misc_enable_msr;
  1261. break;
  1262. #ifdef CONFIG_X86_64
  1263. case MSR_EFER:
  1264. data = vcpu->shadow_efer;
  1265. break;
  1266. #endif
  1267. default:
  1268. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1269. return 1;
  1270. }
  1271. *pdata = data;
  1272. return 0;
  1273. }
  1274. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1275. /*
  1276. * Reads an msr value (of 'msr_index') into 'pdata'.
  1277. * Returns 0 on success, non-0 otherwise.
  1278. * Assumes vcpu_load() was already called.
  1279. */
  1280. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1281. {
  1282. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1283. }
  1284. #ifdef CONFIG_X86_64
  1285. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1286. {
  1287. if (efer & EFER_RESERVED_BITS) {
  1288. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1289. efer);
  1290. inject_gp(vcpu);
  1291. return;
  1292. }
  1293. if (is_paging(vcpu)
  1294. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1295. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1296. inject_gp(vcpu);
  1297. return;
  1298. }
  1299. kvm_arch_ops->set_efer(vcpu, efer);
  1300. efer &= ~EFER_LMA;
  1301. efer |= vcpu->shadow_efer & EFER_LMA;
  1302. vcpu->shadow_efer = efer;
  1303. }
  1304. #endif
  1305. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1306. {
  1307. switch (msr) {
  1308. #ifdef CONFIG_X86_64
  1309. case MSR_EFER:
  1310. set_efer(vcpu, data);
  1311. break;
  1312. #endif
  1313. case MSR_IA32_MC0_STATUS:
  1314. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1315. __FUNCTION__, data);
  1316. break;
  1317. case MSR_IA32_MCG_STATUS:
  1318. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1319. __FUNCTION__, data);
  1320. break;
  1321. case MSR_IA32_UCODE_REV:
  1322. case MSR_IA32_UCODE_WRITE:
  1323. case 0x200 ... 0x2ff: /* MTRRs */
  1324. break;
  1325. case MSR_IA32_APICBASE:
  1326. vcpu->apic_base = data;
  1327. break;
  1328. case MSR_IA32_MISC_ENABLE:
  1329. vcpu->ia32_misc_enable_msr = data;
  1330. break;
  1331. /*
  1332. * This is the 'probe whether the host is KVM' logic:
  1333. */
  1334. case MSR_KVM_API_MAGIC:
  1335. return vcpu_register_para(vcpu, data);
  1336. default:
  1337. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1338. return 1;
  1339. }
  1340. return 0;
  1341. }
  1342. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1343. /*
  1344. * Writes msr value into into the appropriate "register".
  1345. * Returns 0 on success, non-0 otherwise.
  1346. * Assumes vcpu_load() was already called.
  1347. */
  1348. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1349. {
  1350. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1351. }
  1352. void kvm_resched(struct kvm_vcpu *vcpu)
  1353. {
  1354. if (!need_resched())
  1355. return;
  1356. cond_resched();
  1357. }
  1358. EXPORT_SYMBOL_GPL(kvm_resched);
  1359. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1360. {
  1361. int i;
  1362. u32 function;
  1363. struct kvm_cpuid_entry *e, *best;
  1364. kvm_arch_ops->cache_regs(vcpu);
  1365. function = vcpu->regs[VCPU_REGS_RAX];
  1366. vcpu->regs[VCPU_REGS_RAX] = 0;
  1367. vcpu->regs[VCPU_REGS_RBX] = 0;
  1368. vcpu->regs[VCPU_REGS_RCX] = 0;
  1369. vcpu->regs[VCPU_REGS_RDX] = 0;
  1370. best = NULL;
  1371. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1372. e = &vcpu->cpuid_entries[i];
  1373. if (e->function == function) {
  1374. best = e;
  1375. break;
  1376. }
  1377. /*
  1378. * Both basic or both extended?
  1379. */
  1380. if (((e->function ^ function) & 0x80000000) == 0)
  1381. if (!best || e->function > best->function)
  1382. best = e;
  1383. }
  1384. if (best) {
  1385. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1386. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1387. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1388. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1389. }
  1390. kvm_arch_ops->decache_regs(vcpu);
  1391. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1392. }
  1393. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1394. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1395. {
  1396. void *p = vcpu->pio_data;
  1397. void *q;
  1398. unsigned bytes;
  1399. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1400. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1401. PAGE_KERNEL);
  1402. if (!q) {
  1403. free_pio_guest_pages(vcpu);
  1404. return -ENOMEM;
  1405. }
  1406. q += vcpu->pio.guest_page_offset;
  1407. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1408. if (vcpu->pio.in)
  1409. memcpy(q, p, bytes);
  1410. else
  1411. memcpy(p, q, bytes);
  1412. q -= vcpu->pio.guest_page_offset;
  1413. vunmap(q);
  1414. free_pio_guest_pages(vcpu);
  1415. return 0;
  1416. }
  1417. static int complete_pio(struct kvm_vcpu *vcpu)
  1418. {
  1419. struct kvm_pio_request *io = &vcpu->pio;
  1420. long delta;
  1421. int r;
  1422. kvm_arch_ops->cache_regs(vcpu);
  1423. if (!io->string) {
  1424. if (io->in)
  1425. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1426. io->size);
  1427. } else {
  1428. if (io->in) {
  1429. r = pio_copy_data(vcpu);
  1430. if (r) {
  1431. kvm_arch_ops->cache_regs(vcpu);
  1432. return r;
  1433. }
  1434. }
  1435. delta = 1;
  1436. if (io->rep) {
  1437. delta *= io->cur_count;
  1438. /*
  1439. * The size of the register should really depend on
  1440. * current address size.
  1441. */
  1442. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1443. }
  1444. if (io->down)
  1445. delta = -delta;
  1446. delta *= io->size;
  1447. if (io->in)
  1448. vcpu->regs[VCPU_REGS_RDI] += delta;
  1449. else
  1450. vcpu->regs[VCPU_REGS_RSI] += delta;
  1451. }
  1452. kvm_arch_ops->decache_regs(vcpu);
  1453. io->count -= io->cur_count;
  1454. io->cur_count = 0;
  1455. if (!io->count)
  1456. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1457. return 0;
  1458. }
  1459. static void kernel_pio(struct kvm_io_device *pio_dev,
  1460. struct kvm_vcpu *vcpu,
  1461. void *pd)
  1462. {
  1463. /* TODO: String I/O for in kernel device */
  1464. if (vcpu->pio.in)
  1465. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1466. vcpu->pio.size,
  1467. pd);
  1468. else
  1469. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1470. vcpu->pio.size,
  1471. pd);
  1472. }
  1473. static void pio_string_write(struct kvm_io_device *pio_dev,
  1474. struct kvm_vcpu *vcpu)
  1475. {
  1476. struct kvm_pio_request *io = &vcpu->pio;
  1477. void *pd = vcpu->pio_data;
  1478. int i;
  1479. for (i = 0; i < io->cur_count; i++) {
  1480. kvm_iodevice_write(pio_dev, io->port,
  1481. io->size,
  1482. pd);
  1483. pd += io->size;
  1484. }
  1485. }
  1486. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1487. int size, unsigned long count, int string, int down,
  1488. gva_t address, int rep, unsigned port)
  1489. {
  1490. unsigned now, in_page;
  1491. int i, ret = 0;
  1492. int nr_pages = 1;
  1493. struct page *page;
  1494. struct kvm_io_device *pio_dev;
  1495. vcpu->run->exit_reason = KVM_EXIT_IO;
  1496. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1497. vcpu->run->io.size = size;
  1498. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1499. vcpu->run->io.count = count;
  1500. vcpu->run->io.port = port;
  1501. vcpu->pio.count = count;
  1502. vcpu->pio.cur_count = count;
  1503. vcpu->pio.size = size;
  1504. vcpu->pio.in = in;
  1505. vcpu->pio.port = port;
  1506. vcpu->pio.string = string;
  1507. vcpu->pio.down = down;
  1508. vcpu->pio.guest_page_offset = offset_in_page(address);
  1509. vcpu->pio.rep = rep;
  1510. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1511. if (!string) {
  1512. kvm_arch_ops->cache_regs(vcpu);
  1513. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1514. kvm_arch_ops->decache_regs(vcpu);
  1515. if (pio_dev) {
  1516. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1517. complete_pio(vcpu);
  1518. return 1;
  1519. }
  1520. return 0;
  1521. }
  1522. if (!count) {
  1523. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1524. return 1;
  1525. }
  1526. now = min(count, PAGE_SIZE / size);
  1527. if (!down)
  1528. in_page = PAGE_SIZE - offset_in_page(address);
  1529. else
  1530. in_page = offset_in_page(address) + size;
  1531. now = min(count, (unsigned long)in_page / size);
  1532. if (!now) {
  1533. /*
  1534. * String I/O straddles page boundary. Pin two guest pages
  1535. * so that we satisfy atomicity constraints. Do just one
  1536. * transaction to avoid complexity.
  1537. */
  1538. nr_pages = 2;
  1539. now = 1;
  1540. }
  1541. if (down) {
  1542. /*
  1543. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1544. */
  1545. printk(KERN_ERR "kvm: guest string pio down\n");
  1546. inject_gp(vcpu);
  1547. return 1;
  1548. }
  1549. vcpu->run->io.count = now;
  1550. vcpu->pio.cur_count = now;
  1551. for (i = 0; i < nr_pages; ++i) {
  1552. mutex_lock(&vcpu->kvm->lock);
  1553. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1554. if (page)
  1555. get_page(page);
  1556. vcpu->pio.guest_pages[i] = page;
  1557. mutex_unlock(&vcpu->kvm->lock);
  1558. if (!page) {
  1559. inject_gp(vcpu);
  1560. free_pio_guest_pages(vcpu);
  1561. return 1;
  1562. }
  1563. }
  1564. if (!vcpu->pio.in) {
  1565. /* string PIO write */
  1566. ret = pio_copy_data(vcpu);
  1567. if (ret >= 0 && pio_dev) {
  1568. pio_string_write(pio_dev, vcpu);
  1569. complete_pio(vcpu);
  1570. if (vcpu->pio.count == 0)
  1571. ret = 1;
  1572. }
  1573. } else if (pio_dev)
  1574. printk(KERN_ERR "no string pio read support yet, "
  1575. "port %x size %d count %ld\n",
  1576. port, size, count);
  1577. return ret;
  1578. }
  1579. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1580. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1581. {
  1582. int r;
  1583. sigset_t sigsaved;
  1584. vcpu_load(vcpu);
  1585. if (vcpu->sigset_active)
  1586. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1587. /* re-sync apic's tpr */
  1588. vcpu->cr8 = kvm_run->cr8;
  1589. if (vcpu->pio.cur_count) {
  1590. r = complete_pio(vcpu);
  1591. if (r)
  1592. goto out;
  1593. }
  1594. if (vcpu->mmio_needed) {
  1595. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1596. vcpu->mmio_read_completed = 1;
  1597. vcpu->mmio_needed = 0;
  1598. r = emulate_instruction(vcpu, kvm_run,
  1599. vcpu->mmio_fault_cr2, 0);
  1600. if (r == EMULATE_DO_MMIO) {
  1601. /*
  1602. * Read-modify-write. Back to userspace.
  1603. */
  1604. r = 0;
  1605. goto out;
  1606. }
  1607. }
  1608. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1609. kvm_arch_ops->cache_regs(vcpu);
  1610. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1611. kvm_arch_ops->decache_regs(vcpu);
  1612. }
  1613. r = kvm_arch_ops->run(vcpu, kvm_run);
  1614. out:
  1615. if (vcpu->sigset_active)
  1616. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1617. vcpu_put(vcpu);
  1618. return r;
  1619. }
  1620. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1621. struct kvm_regs *regs)
  1622. {
  1623. vcpu_load(vcpu);
  1624. kvm_arch_ops->cache_regs(vcpu);
  1625. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1626. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1627. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1628. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1629. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1630. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1631. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1632. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1633. #ifdef CONFIG_X86_64
  1634. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1635. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1636. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1637. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1638. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1639. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1640. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1641. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1642. #endif
  1643. regs->rip = vcpu->rip;
  1644. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1645. /*
  1646. * Don't leak debug flags in case they were set for guest debugging
  1647. */
  1648. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1649. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1650. vcpu_put(vcpu);
  1651. return 0;
  1652. }
  1653. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1654. struct kvm_regs *regs)
  1655. {
  1656. vcpu_load(vcpu);
  1657. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1658. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1659. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1660. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1661. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1662. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1663. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1664. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1665. #ifdef CONFIG_X86_64
  1666. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1667. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1668. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1669. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1670. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1671. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1672. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1673. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1674. #endif
  1675. vcpu->rip = regs->rip;
  1676. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1677. kvm_arch_ops->decache_regs(vcpu);
  1678. vcpu_put(vcpu);
  1679. return 0;
  1680. }
  1681. static void get_segment(struct kvm_vcpu *vcpu,
  1682. struct kvm_segment *var, int seg)
  1683. {
  1684. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1685. }
  1686. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1687. struct kvm_sregs *sregs)
  1688. {
  1689. struct descriptor_table dt;
  1690. vcpu_load(vcpu);
  1691. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1692. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1693. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1694. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1695. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1696. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1697. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1698. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1699. kvm_arch_ops->get_idt(vcpu, &dt);
  1700. sregs->idt.limit = dt.limit;
  1701. sregs->idt.base = dt.base;
  1702. kvm_arch_ops->get_gdt(vcpu, &dt);
  1703. sregs->gdt.limit = dt.limit;
  1704. sregs->gdt.base = dt.base;
  1705. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1706. sregs->cr0 = vcpu->cr0;
  1707. sregs->cr2 = vcpu->cr2;
  1708. sregs->cr3 = vcpu->cr3;
  1709. sregs->cr4 = vcpu->cr4;
  1710. sregs->cr8 = vcpu->cr8;
  1711. sregs->efer = vcpu->shadow_efer;
  1712. sregs->apic_base = vcpu->apic_base;
  1713. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1714. sizeof sregs->interrupt_bitmap);
  1715. vcpu_put(vcpu);
  1716. return 0;
  1717. }
  1718. static void set_segment(struct kvm_vcpu *vcpu,
  1719. struct kvm_segment *var, int seg)
  1720. {
  1721. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1722. }
  1723. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1724. struct kvm_sregs *sregs)
  1725. {
  1726. int mmu_reset_needed = 0;
  1727. int i;
  1728. struct descriptor_table dt;
  1729. vcpu_load(vcpu);
  1730. dt.limit = sregs->idt.limit;
  1731. dt.base = sregs->idt.base;
  1732. kvm_arch_ops->set_idt(vcpu, &dt);
  1733. dt.limit = sregs->gdt.limit;
  1734. dt.base = sregs->gdt.base;
  1735. kvm_arch_ops->set_gdt(vcpu, &dt);
  1736. vcpu->cr2 = sregs->cr2;
  1737. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1738. vcpu->cr3 = sregs->cr3;
  1739. vcpu->cr8 = sregs->cr8;
  1740. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1741. #ifdef CONFIG_X86_64
  1742. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1743. #endif
  1744. vcpu->apic_base = sregs->apic_base;
  1745. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1746. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1747. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1748. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1749. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1750. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1751. load_pdptrs(vcpu, vcpu->cr3);
  1752. if (mmu_reset_needed)
  1753. kvm_mmu_reset_context(vcpu);
  1754. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1755. sizeof vcpu->irq_pending);
  1756. vcpu->irq_summary = 0;
  1757. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1758. if (vcpu->irq_pending[i])
  1759. __set_bit(i, &vcpu->irq_summary);
  1760. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1761. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1762. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1763. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1764. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1765. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1766. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1767. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1768. vcpu_put(vcpu);
  1769. return 0;
  1770. }
  1771. /*
  1772. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1773. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1774. *
  1775. * This list is modified at module load time to reflect the
  1776. * capabilities of the host cpu.
  1777. */
  1778. static u32 msrs_to_save[] = {
  1779. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1780. MSR_K6_STAR,
  1781. #ifdef CONFIG_X86_64
  1782. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1783. #endif
  1784. MSR_IA32_TIME_STAMP_COUNTER,
  1785. };
  1786. static unsigned num_msrs_to_save;
  1787. static u32 emulated_msrs[] = {
  1788. MSR_IA32_MISC_ENABLE,
  1789. };
  1790. static __init void kvm_init_msr_list(void)
  1791. {
  1792. u32 dummy[2];
  1793. unsigned i, j;
  1794. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1795. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1796. continue;
  1797. if (j < i)
  1798. msrs_to_save[j] = msrs_to_save[i];
  1799. j++;
  1800. }
  1801. num_msrs_to_save = j;
  1802. }
  1803. /*
  1804. * Adapt set_msr() to msr_io()'s calling convention
  1805. */
  1806. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1807. {
  1808. return kvm_set_msr(vcpu, index, *data);
  1809. }
  1810. /*
  1811. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1812. *
  1813. * @return number of msrs set successfully.
  1814. */
  1815. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1816. struct kvm_msr_entry *entries,
  1817. int (*do_msr)(struct kvm_vcpu *vcpu,
  1818. unsigned index, u64 *data))
  1819. {
  1820. int i;
  1821. vcpu_load(vcpu);
  1822. for (i = 0; i < msrs->nmsrs; ++i)
  1823. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1824. break;
  1825. vcpu_put(vcpu);
  1826. return i;
  1827. }
  1828. /*
  1829. * Read or write a bunch of msrs. Parameters are user addresses.
  1830. *
  1831. * @return number of msrs set successfully.
  1832. */
  1833. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1834. int (*do_msr)(struct kvm_vcpu *vcpu,
  1835. unsigned index, u64 *data),
  1836. int writeback)
  1837. {
  1838. struct kvm_msrs msrs;
  1839. struct kvm_msr_entry *entries;
  1840. int r, n;
  1841. unsigned size;
  1842. r = -EFAULT;
  1843. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1844. goto out;
  1845. r = -E2BIG;
  1846. if (msrs.nmsrs >= MAX_IO_MSRS)
  1847. goto out;
  1848. r = -ENOMEM;
  1849. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1850. entries = vmalloc(size);
  1851. if (!entries)
  1852. goto out;
  1853. r = -EFAULT;
  1854. if (copy_from_user(entries, user_msrs->entries, size))
  1855. goto out_free;
  1856. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1857. if (r < 0)
  1858. goto out_free;
  1859. r = -EFAULT;
  1860. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1861. goto out_free;
  1862. r = n;
  1863. out_free:
  1864. vfree(entries);
  1865. out:
  1866. return r;
  1867. }
  1868. /*
  1869. * Translate a guest virtual address to a guest physical address.
  1870. */
  1871. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1872. struct kvm_translation *tr)
  1873. {
  1874. unsigned long vaddr = tr->linear_address;
  1875. gpa_t gpa;
  1876. vcpu_load(vcpu);
  1877. mutex_lock(&vcpu->kvm->lock);
  1878. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1879. tr->physical_address = gpa;
  1880. tr->valid = gpa != UNMAPPED_GVA;
  1881. tr->writeable = 1;
  1882. tr->usermode = 0;
  1883. mutex_unlock(&vcpu->kvm->lock);
  1884. vcpu_put(vcpu);
  1885. return 0;
  1886. }
  1887. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1888. struct kvm_interrupt *irq)
  1889. {
  1890. if (irq->irq < 0 || irq->irq >= 256)
  1891. return -EINVAL;
  1892. vcpu_load(vcpu);
  1893. set_bit(irq->irq, vcpu->irq_pending);
  1894. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1895. vcpu_put(vcpu);
  1896. return 0;
  1897. }
  1898. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1899. struct kvm_debug_guest *dbg)
  1900. {
  1901. int r;
  1902. vcpu_load(vcpu);
  1903. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1904. vcpu_put(vcpu);
  1905. return r;
  1906. }
  1907. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1908. unsigned long address,
  1909. int *type)
  1910. {
  1911. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1912. unsigned long pgoff;
  1913. struct page *page;
  1914. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1915. if (pgoff == 0)
  1916. page = virt_to_page(vcpu->run);
  1917. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1918. page = virt_to_page(vcpu->pio_data);
  1919. else
  1920. return NOPAGE_SIGBUS;
  1921. get_page(page);
  1922. if (type != NULL)
  1923. *type = VM_FAULT_MINOR;
  1924. return page;
  1925. }
  1926. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1927. .nopage = kvm_vcpu_nopage,
  1928. };
  1929. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1930. {
  1931. vma->vm_ops = &kvm_vcpu_vm_ops;
  1932. return 0;
  1933. }
  1934. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1935. {
  1936. struct kvm_vcpu *vcpu = filp->private_data;
  1937. fput(vcpu->kvm->filp);
  1938. return 0;
  1939. }
  1940. static struct file_operations kvm_vcpu_fops = {
  1941. .release = kvm_vcpu_release,
  1942. .unlocked_ioctl = kvm_vcpu_ioctl,
  1943. .compat_ioctl = kvm_vcpu_ioctl,
  1944. .mmap = kvm_vcpu_mmap,
  1945. };
  1946. /*
  1947. * Allocates an inode for the vcpu.
  1948. */
  1949. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1950. {
  1951. int fd, r;
  1952. struct inode *inode;
  1953. struct file *file;
  1954. r = anon_inode_getfd(&fd, &inode, &file,
  1955. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1956. if (r)
  1957. return r;
  1958. atomic_inc(&vcpu->kvm->filp->f_count);
  1959. return fd;
  1960. }
  1961. /*
  1962. * Creates some virtual cpus. Good luck creating more than one.
  1963. */
  1964. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1965. {
  1966. int r;
  1967. struct kvm_vcpu *vcpu;
  1968. if (!valid_vcpu(n))
  1969. return -EINVAL;
  1970. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1971. if (IS_ERR(vcpu))
  1972. return PTR_ERR(vcpu);
  1973. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1974. /* We do fxsave: this must be aligned. */
  1975. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1976. vcpu_load(vcpu);
  1977. r = kvm_mmu_setup(vcpu);
  1978. vcpu_put(vcpu);
  1979. if (r < 0)
  1980. goto free_vcpu;
  1981. mutex_lock(&kvm->lock);
  1982. if (kvm->vcpus[n]) {
  1983. r = -EEXIST;
  1984. mutex_unlock(&kvm->lock);
  1985. goto mmu_unload;
  1986. }
  1987. kvm->vcpus[n] = vcpu;
  1988. mutex_unlock(&kvm->lock);
  1989. /* Now it's all set up, let userspace reach it */
  1990. r = create_vcpu_fd(vcpu);
  1991. if (r < 0)
  1992. goto unlink;
  1993. return r;
  1994. unlink:
  1995. mutex_lock(&kvm->lock);
  1996. kvm->vcpus[n] = NULL;
  1997. mutex_unlock(&kvm->lock);
  1998. mmu_unload:
  1999. vcpu_load(vcpu);
  2000. kvm_mmu_unload(vcpu);
  2001. vcpu_put(vcpu);
  2002. free_vcpu:
  2003. kvm_arch_ops->vcpu_free(vcpu);
  2004. return r;
  2005. }
  2006. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2007. {
  2008. u64 efer;
  2009. int i;
  2010. struct kvm_cpuid_entry *e, *entry;
  2011. rdmsrl(MSR_EFER, efer);
  2012. entry = NULL;
  2013. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2014. e = &vcpu->cpuid_entries[i];
  2015. if (e->function == 0x80000001) {
  2016. entry = e;
  2017. break;
  2018. }
  2019. }
  2020. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2021. entry->edx &= ~(1 << 20);
  2022. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2023. }
  2024. }
  2025. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2026. struct kvm_cpuid *cpuid,
  2027. struct kvm_cpuid_entry __user *entries)
  2028. {
  2029. int r;
  2030. r = -E2BIG;
  2031. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2032. goto out;
  2033. r = -EFAULT;
  2034. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2035. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2036. goto out;
  2037. vcpu->cpuid_nent = cpuid->nent;
  2038. cpuid_fix_nx_cap(vcpu);
  2039. return 0;
  2040. out:
  2041. return r;
  2042. }
  2043. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2044. {
  2045. if (sigset) {
  2046. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2047. vcpu->sigset_active = 1;
  2048. vcpu->sigset = *sigset;
  2049. } else
  2050. vcpu->sigset_active = 0;
  2051. return 0;
  2052. }
  2053. /*
  2054. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2055. * we have asm/x86/processor.h
  2056. */
  2057. struct fxsave {
  2058. u16 cwd;
  2059. u16 swd;
  2060. u16 twd;
  2061. u16 fop;
  2062. u64 rip;
  2063. u64 rdp;
  2064. u32 mxcsr;
  2065. u32 mxcsr_mask;
  2066. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2067. #ifdef CONFIG_X86_64
  2068. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2069. #else
  2070. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2071. #endif
  2072. };
  2073. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2074. {
  2075. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2076. vcpu_load(vcpu);
  2077. memcpy(fpu->fpr, fxsave->st_space, 128);
  2078. fpu->fcw = fxsave->cwd;
  2079. fpu->fsw = fxsave->swd;
  2080. fpu->ftwx = fxsave->twd;
  2081. fpu->last_opcode = fxsave->fop;
  2082. fpu->last_ip = fxsave->rip;
  2083. fpu->last_dp = fxsave->rdp;
  2084. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2085. vcpu_put(vcpu);
  2086. return 0;
  2087. }
  2088. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2089. {
  2090. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2091. vcpu_load(vcpu);
  2092. memcpy(fxsave->st_space, fpu->fpr, 128);
  2093. fxsave->cwd = fpu->fcw;
  2094. fxsave->swd = fpu->fsw;
  2095. fxsave->twd = fpu->ftwx;
  2096. fxsave->fop = fpu->last_opcode;
  2097. fxsave->rip = fpu->last_ip;
  2098. fxsave->rdp = fpu->last_dp;
  2099. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2100. vcpu_put(vcpu);
  2101. return 0;
  2102. }
  2103. static long kvm_vcpu_ioctl(struct file *filp,
  2104. unsigned int ioctl, unsigned long arg)
  2105. {
  2106. struct kvm_vcpu *vcpu = filp->private_data;
  2107. void __user *argp = (void __user *)arg;
  2108. int r = -EINVAL;
  2109. switch (ioctl) {
  2110. case KVM_RUN:
  2111. r = -EINVAL;
  2112. if (arg)
  2113. goto out;
  2114. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2115. break;
  2116. case KVM_GET_REGS: {
  2117. struct kvm_regs kvm_regs;
  2118. memset(&kvm_regs, 0, sizeof kvm_regs);
  2119. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2120. if (r)
  2121. goto out;
  2122. r = -EFAULT;
  2123. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2124. goto out;
  2125. r = 0;
  2126. break;
  2127. }
  2128. case KVM_SET_REGS: {
  2129. struct kvm_regs kvm_regs;
  2130. r = -EFAULT;
  2131. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2132. goto out;
  2133. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2134. if (r)
  2135. goto out;
  2136. r = 0;
  2137. break;
  2138. }
  2139. case KVM_GET_SREGS: {
  2140. struct kvm_sregs kvm_sregs;
  2141. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2142. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2143. if (r)
  2144. goto out;
  2145. r = -EFAULT;
  2146. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2147. goto out;
  2148. r = 0;
  2149. break;
  2150. }
  2151. case KVM_SET_SREGS: {
  2152. struct kvm_sregs kvm_sregs;
  2153. r = -EFAULT;
  2154. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2155. goto out;
  2156. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2157. if (r)
  2158. goto out;
  2159. r = 0;
  2160. break;
  2161. }
  2162. case KVM_TRANSLATE: {
  2163. struct kvm_translation tr;
  2164. r = -EFAULT;
  2165. if (copy_from_user(&tr, argp, sizeof tr))
  2166. goto out;
  2167. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2168. if (r)
  2169. goto out;
  2170. r = -EFAULT;
  2171. if (copy_to_user(argp, &tr, sizeof tr))
  2172. goto out;
  2173. r = 0;
  2174. break;
  2175. }
  2176. case KVM_INTERRUPT: {
  2177. struct kvm_interrupt irq;
  2178. r = -EFAULT;
  2179. if (copy_from_user(&irq, argp, sizeof irq))
  2180. goto out;
  2181. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2182. if (r)
  2183. goto out;
  2184. r = 0;
  2185. break;
  2186. }
  2187. case KVM_DEBUG_GUEST: {
  2188. struct kvm_debug_guest dbg;
  2189. r = -EFAULT;
  2190. if (copy_from_user(&dbg, argp, sizeof dbg))
  2191. goto out;
  2192. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2193. if (r)
  2194. goto out;
  2195. r = 0;
  2196. break;
  2197. }
  2198. case KVM_GET_MSRS:
  2199. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2200. break;
  2201. case KVM_SET_MSRS:
  2202. r = msr_io(vcpu, argp, do_set_msr, 0);
  2203. break;
  2204. case KVM_SET_CPUID: {
  2205. struct kvm_cpuid __user *cpuid_arg = argp;
  2206. struct kvm_cpuid cpuid;
  2207. r = -EFAULT;
  2208. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2209. goto out;
  2210. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2211. if (r)
  2212. goto out;
  2213. break;
  2214. }
  2215. case KVM_SET_SIGNAL_MASK: {
  2216. struct kvm_signal_mask __user *sigmask_arg = argp;
  2217. struct kvm_signal_mask kvm_sigmask;
  2218. sigset_t sigset, *p;
  2219. p = NULL;
  2220. if (argp) {
  2221. r = -EFAULT;
  2222. if (copy_from_user(&kvm_sigmask, argp,
  2223. sizeof kvm_sigmask))
  2224. goto out;
  2225. r = -EINVAL;
  2226. if (kvm_sigmask.len != sizeof sigset)
  2227. goto out;
  2228. r = -EFAULT;
  2229. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2230. sizeof sigset))
  2231. goto out;
  2232. p = &sigset;
  2233. }
  2234. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2235. break;
  2236. }
  2237. case KVM_GET_FPU: {
  2238. struct kvm_fpu fpu;
  2239. memset(&fpu, 0, sizeof fpu);
  2240. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2241. if (r)
  2242. goto out;
  2243. r = -EFAULT;
  2244. if (copy_to_user(argp, &fpu, sizeof fpu))
  2245. goto out;
  2246. r = 0;
  2247. break;
  2248. }
  2249. case KVM_SET_FPU: {
  2250. struct kvm_fpu fpu;
  2251. r = -EFAULT;
  2252. if (copy_from_user(&fpu, argp, sizeof fpu))
  2253. goto out;
  2254. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2255. if (r)
  2256. goto out;
  2257. r = 0;
  2258. break;
  2259. }
  2260. default:
  2261. ;
  2262. }
  2263. out:
  2264. return r;
  2265. }
  2266. static long kvm_vm_ioctl(struct file *filp,
  2267. unsigned int ioctl, unsigned long arg)
  2268. {
  2269. struct kvm *kvm = filp->private_data;
  2270. void __user *argp = (void __user *)arg;
  2271. int r = -EINVAL;
  2272. switch (ioctl) {
  2273. case KVM_CREATE_VCPU:
  2274. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2275. if (r < 0)
  2276. goto out;
  2277. break;
  2278. case KVM_SET_MEMORY_REGION: {
  2279. struct kvm_memory_region kvm_mem;
  2280. r = -EFAULT;
  2281. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2282. goto out;
  2283. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2284. if (r)
  2285. goto out;
  2286. break;
  2287. }
  2288. case KVM_GET_DIRTY_LOG: {
  2289. struct kvm_dirty_log log;
  2290. r = -EFAULT;
  2291. if (copy_from_user(&log, argp, sizeof log))
  2292. goto out;
  2293. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2294. if (r)
  2295. goto out;
  2296. break;
  2297. }
  2298. case KVM_SET_MEMORY_ALIAS: {
  2299. struct kvm_memory_alias alias;
  2300. r = -EFAULT;
  2301. if (copy_from_user(&alias, argp, sizeof alias))
  2302. goto out;
  2303. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2304. if (r)
  2305. goto out;
  2306. break;
  2307. }
  2308. default:
  2309. ;
  2310. }
  2311. out:
  2312. return r;
  2313. }
  2314. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2315. unsigned long address,
  2316. int *type)
  2317. {
  2318. struct kvm *kvm = vma->vm_file->private_data;
  2319. unsigned long pgoff;
  2320. struct page *page;
  2321. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2322. page = gfn_to_page(kvm, pgoff);
  2323. if (!page)
  2324. return NOPAGE_SIGBUS;
  2325. get_page(page);
  2326. if (type != NULL)
  2327. *type = VM_FAULT_MINOR;
  2328. return page;
  2329. }
  2330. static struct vm_operations_struct kvm_vm_vm_ops = {
  2331. .nopage = kvm_vm_nopage,
  2332. };
  2333. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2334. {
  2335. vma->vm_ops = &kvm_vm_vm_ops;
  2336. return 0;
  2337. }
  2338. static struct file_operations kvm_vm_fops = {
  2339. .release = kvm_vm_release,
  2340. .unlocked_ioctl = kvm_vm_ioctl,
  2341. .compat_ioctl = kvm_vm_ioctl,
  2342. .mmap = kvm_vm_mmap,
  2343. };
  2344. static int kvm_dev_ioctl_create_vm(void)
  2345. {
  2346. int fd, r;
  2347. struct inode *inode;
  2348. struct file *file;
  2349. struct kvm *kvm;
  2350. kvm = kvm_create_vm();
  2351. if (IS_ERR(kvm))
  2352. return PTR_ERR(kvm);
  2353. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2354. if (r) {
  2355. kvm_destroy_vm(kvm);
  2356. return r;
  2357. }
  2358. kvm->filp = file;
  2359. return fd;
  2360. }
  2361. static long kvm_dev_ioctl(struct file *filp,
  2362. unsigned int ioctl, unsigned long arg)
  2363. {
  2364. void __user *argp = (void __user *)arg;
  2365. long r = -EINVAL;
  2366. switch (ioctl) {
  2367. case KVM_GET_API_VERSION:
  2368. r = -EINVAL;
  2369. if (arg)
  2370. goto out;
  2371. r = KVM_API_VERSION;
  2372. break;
  2373. case KVM_CREATE_VM:
  2374. r = -EINVAL;
  2375. if (arg)
  2376. goto out;
  2377. r = kvm_dev_ioctl_create_vm();
  2378. break;
  2379. case KVM_GET_MSR_INDEX_LIST: {
  2380. struct kvm_msr_list __user *user_msr_list = argp;
  2381. struct kvm_msr_list msr_list;
  2382. unsigned n;
  2383. r = -EFAULT;
  2384. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2385. goto out;
  2386. n = msr_list.nmsrs;
  2387. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2388. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2389. goto out;
  2390. r = -E2BIG;
  2391. if (n < num_msrs_to_save)
  2392. goto out;
  2393. r = -EFAULT;
  2394. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2395. num_msrs_to_save * sizeof(u32)))
  2396. goto out;
  2397. if (copy_to_user(user_msr_list->indices
  2398. + num_msrs_to_save * sizeof(u32),
  2399. &emulated_msrs,
  2400. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2401. goto out;
  2402. r = 0;
  2403. break;
  2404. }
  2405. case KVM_CHECK_EXTENSION:
  2406. /*
  2407. * No extensions defined at present.
  2408. */
  2409. r = 0;
  2410. break;
  2411. case KVM_GET_VCPU_MMAP_SIZE:
  2412. r = -EINVAL;
  2413. if (arg)
  2414. goto out;
  2415. r = 2 * PAGE_SIZE;
  2416. break;
  2417. default:
  2418. ;
  2419. }
  2420. out:
  2421. return r;
  2422. }
  2423. static struct file_operations kvm_chardev_ops = {
  2424. .unlocked_ioctl = kvm_dev_ioctl,
  2425. .compat_ioctl = kvm_dev_ioctl,
  2426. };
  2427. static struct miscdevice kvm_dev = {
  2428. KVM_MINOR,
  2429. "kvm",
  2430. &kvm_chardev_ops,
  2431. };
  2432. /*
  2433. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2434. * cached on it.
  2435. */
  2436. static void decache_vcpus_on_cpu(int cpu)
  2437. {
  2438. struct kvm *vm;
  2439. struct kvm_vcpu *vcpu;
  2440. int i;
  2441. spin_lock(&kvm_lock);
  2442. list_for_each_entry(vm, &vm_list, vm_list)
  2443. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2444. vcpu = vm->vcpus[i];
  2445. if (!vcpu)
  2446. continue;
  2447. /*
  2448. * If the vcpu is locked, then it is running on some
  2449. * other cpu and therefore it is not cached on the
  2450. * cpu in question.
  2451. *
  2452. * If it's not locked, check the last cpu it executed
  2453. * on.
  2454. */
  2455. if (mutex_trylock(&vcpu->mutex)) {
  2456. if (vcpu->cpu == cpu) {
  2457. kvm_arch_ops->vcpu_decache(vcpu);
  2458. vcpu->cpu = -1;
  2459. }
  2460. mutex_unlock(&vcpu->mutex);
  2461. }
  2462. }
  2463. spin_unlock(&kvm_lock);
  2464. }
  2465. static void hardware_enable(void *junk)
  2466. {
  2467. int cpu = raw_smp_processor_id();
  2468. if (cpu_isset(cpu, cpus_hardware_enabled))
  2469. return;
  2470. cpu_set(cpu, cpus_hardware_enabled);
  2471. kvm_arch_ops->hardware_enable(NULL);
  2472. }
  2473. static void hardware_disable(void *junk)
  2474. {
  2475. int cpu = raw_smp_processor_id();
  2476. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2477. return;
  2478. cpu_clear(cpu, cpus_hardware_enabled);
  2479. decache_vcpus_on_cpu(cpu);
  2480. kvm_arch_ops->hardware_disable(NULL);
  2481. }
  2482. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2483. void *v)
  2484. {
  2485. int cpu = (long)v;
  2486. switch (val) {
  2487. case CPU_DYING:
  2488. case CPU_DYING_FROZEN:
  2489. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2490. cpu);
  2491. hardware_disable(NULL);
  2492. break;
  2493. case CPU_UP_CANCELED:
  2494. case CPU_UP_CANCELED_FROZEN:
  2495. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2496. cpu);
  2497. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2498. break;
  2499. case CPU_ONLINE:
  2500. case CPU_ONLINE_FROZEN:
  2501. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2502. cpu);
  2503. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2504. break;
  2505. }
  2506. return NOTIFY_OK;
  2507. }
  2508. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2509. void *v)
  2510. {
  2511. if (val == SYS_RESTART) {
  2512. /*
  2513. * Some (well, at least mine) BIOSes hang on reboot if
  2514. * in vmx root mode.
  2515. */
  2516. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2517. on_each_cpu(hardware_disable, NULL, 0, 1);
  2518. }
  2519. return NOTIFY_OK;
  2520. }
  2521. static struct notifier_block kvm_reboot_notifier = {
  2522. .notifier_call = kvm_reboot,
  2523. .priority = 0,
  2524. };
  2525. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2526. {
  2527. memset(bus, 0, sizeof(*bus));
  2528. }
  2529. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2530. {
  2531. int i;
  2532. for (i = 0; i < bus->dev_count; i++) {
  2533. struct kvm_io_device *pos = bus->devs[i];
  2534. kvm_iodevice_destructor(pos);
  2535. }
  2536. }
  2537. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2538. {
  2539. int i;
  2540. for (i = 0; i < bus->dev_count; i++) {
  2541. struct kvm_io_device *pos = bus->devs[i];
  2542. if (pos->in_range(pos, addr))
  2543. return pos;
  2544. }
  2545. return NULL;
  2546. }
  2547. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2548. {
  2549. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2550. bus->devs[bus->dev_count++] = dev;
  2551. }
  2552. static struct notifier_block kvm_cpu_notifier = {
  2553. .notifier_call = kvm_cpu_hotplug,
  2554. .priority = 20, /* must be > scheduler priority */
  2555. };
  2556. static u64 stat_get(void *_offset)
  2557. {
  2558. unsigned offset = (long)_offset;
  2559. u64 total = 0;
  2560. struct kvm *kvm;
  2561. struct kvm_vcpu *vcpu;
  2562. int i;
  2563. spin_lock(&kvm_lock);
  2564. list_for_each_entry(kvm, &vm_list, vm_list)
  2565. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2566. vcpu = kvm->vcpus[i];
  2567. if (vcpu)
  2568. total += *(u32 *)((void *)vcpu + offset);
  2569. }
  2570. spin_unlock(&kvm_lock);
  2571. return total;
  2572. }
  2573. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2574. static __init void kvm_init_debug(void)
  2575. {
  2576. struct kvm_stats_debugfs_item *p;
  2577. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2578. for (p = debugfs_entries; p->name; ++p)
  2579. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2580. (void *)(long)p->offset,
  2581. &stat_fops);
  2582. }
  2583. static void kvm_exit_debug(void)
  2584. {
  2585. struct kvm_stats_debugfs_item *p;
  2586. for (p = debugfs_entries; p->name; ++p)
  2587. debugfs_remove(p->dentry);
  2588. debugfs_remove(debugfs_dir);
  2589. }
  2590. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2591. {
  2592. hardware_disable(NULL);
  2593. return 0;
  2594. }
  2595. static int kvm_resume(struct sys_device *dev)
  2596. {
  2597. hardware_enable(NULL);
  2598. return 0;
  2599. }
  2600. static struct sysdev_class kvm_sysdev_class = {
  2601. set_kset_name("kvm"),
  2602. .suspend = kvm_suspend,
  2603. .resume = kvm_resume,
  2604. };
  2605. static struct sys_device kvm_sysdev = {
  2606. .id = 0,
  2607. .cls = &kvm_sysdev_class,
  2608. };
  2609. hpa_t bad_page_address;
  2610. static inline
  2611. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2612. {
  2613. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2614. }
  2615. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2616. {
  2617. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2618. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2619. }
  2620. static void kvm_sched_out(struct preempt_notifier *pn,
  2621. struct task_struct *next)
  2622. {
  2623. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2624. kvm_arch_ops->vcpu_put(vcpu);
  2625. }
  2626. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2627. struct module *module)
  2628. {
  2629. int r;
  2630. int cpu;
  2631. if (kvm_arch_ops) {
  2632. printk(KERN_ERR "kvm: already loaded the other module\n");
  2633. return -EEXIST;
  2634. }
  2635. if (!ops->cpu_has_kvm_support()) {
  2636. printk(KERN_ERR "kvm: no hardware support\n");
  2637. return -EOPNOTSUPP;
  2638. }
  2639. if (ops->disabled_by_bios()) {
  2640. printk(KERN_ERR "kvm: disabled by bios\n");
  2641. return -EOPNOTSUPP;
  2642. }
  2643. kvm_arch_ops = ops;
  2644. r = kvm_arch_ops->hardware_setup();
  2645. if (r < 0)
  2646. goto out;
  2647. for_each_online_cpu(cpu) {
  2648. smp_call_function_single(cpu,
  2649. kvm_arch_ops->check_processor_compatibility,
  2650. &r, 0, 1);
  2651. if (r < 0)
  2652. goto out_free_0;
  2653. }
  2654. on_each_cpu(hardware_enable, NULL, 0, 1);
  2655. r = register_cpu_notifier(&kvm_cpu_notifier);
  2656. if (r)
  2657. goto out_free_1;
  2658. register_reboot_notifier(&kvm_reboot_notifier);
  2659. r = sysdev_class_register(&kvm_sysdev_class);
  2660. if (r)
  2661. goto out_free_2;
  2662. r = sysdev_register(&kvm_sysdev);
  2663. if (r)
  2664. goto out_free_3;
  2665. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2666. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2667. __alignof__(struct kvm_vcpu), 0, 0);
  2668. if (!kvm_vcpu_cache) {
  2669. r = -ENOMEM;
  2670. goto out_free_4;
  2671. }
  2672. kvm_chardev_ops.owner = module;
  2673. r = misc_register(&kvm_dev);
  2674. if (r) {
  2675. printk (KERN_ERR "kvm: misc device register failed\n");
  2676. goto out_free;
  2677. }
  2678. kvm_preempt_ops.sched_in = kvm_sched_in;
  2679. kvm_preempt_ops.sched_out = kvm_sched_out;
  2680. return r;
  2681. out_free:
  2682. kmem_cache_destroy(kvm_vcpu_cache);
  2683. out_free_4:
  2684. sysdev_unregister(&kvm_sysdev);
  2685. out_free_3:
  2686. sysdev_class_unregister(&kvm_sysdev_class);
  2687. out_free_2:
  2688. unregister_reboot_notifier(&kvm_reboot_notifier);
  2689. unregister_cpu_notifier(&kvm_cpu_notifier);
  2690. out_free_1:
  2691. on_each_cpu(hardware_disable, NULL, 0, 1);
  2692. out_free_0:
  2693. kvm_arch_ops->hardware_unsetup();
  2694. out:
  2695. kvm_arch_ops = NULL;
  2696. return r;
  2697. }
  2698. void kvm_exit_arch(void)
  2699. {
  2700. misc_deregister(&kvm_dev);
  2701. kmem_cache_destroy(kvm_vcpu_cache);
  2702. sysdev_unregister(&kvm_sysdev);
  2703. sysdev_class_unregister(&kvm_sysdev_class);
  2704. unregister_reboot_notifier(&kvm_reboot_notifier);
  2705. unregister_cpu_notifier(&kvm_cpu_notifier);
  2706. on_each_cpu(hardware_disable, NULL, 0, 1);
  2707. kvm_arch_ops->hardware_unsetup();
  2708. kvm_arch_ops = NULL;
  2709. }
  2710. static __init int kvm_init(void)
  2711. {
  2712. static struct page *bad_page;
  2713. int r;
  2714. r = kvm_mmu_module_init();
  2715. if (r)
  2716. goto out4;
  2717. kvm_init_debug();
  2718. kvm_init_msr_list();
  2719. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2720. r = -ENOMEM;
  2721. goto out;
  2722. }
  2723. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2724. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2725. return 0;
  2726. out:
  2727. kvm_exit_debug();
  2728. kvm_mmu_module_exit();
  2729. out4:
  2730. return r;
  2731. }
  2732. static __exit void kvm_exit(void)
  2733. {
  2734. kvm_exit_debug();
  2735. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2736. kvm_mmu_module_exit();
  2737. }
  2738. module_init(kvm_init)
  2739. module_exit(kvm_exit)
  2740. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2741. EXPORT_SYMBOL_GPL(kvm_exit_arch);