mmu.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "x86.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. char *audit_point_name[] = {
  58. "pre page fault",
  59. "post page fault",
  60. "pre pte write",
  61. "post pte write",
  62. "pre sync",
  63. "post sync"
  64. };
  65. #undef MMU_DEBUG
  66. #ifdef MMU_DEBUG
  67. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  68. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  69. #else
  70. #define pgprintk(x...) do { } while (0)
  71. #define rmap_printk(x...) do { } while (0)
  72. #endif
  73. #ifdef MMU_DEBUG
  74. static int dbg = 0;
  75. module_param(dbg, bool, 0644);
  76. #endif
  77. static int oos_shadow = 1;
  78. module_param(oos_shadow, bool, 0644);
  79. #ifndef MMU_DEBUG
  80. #define ASSERT(x) do { } while (0)
  81. #else
  82. #define ASSERT(x) \
  83. if (!(x)) { \
  84. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  85. __FILE__, __LINE__, #x); \
  86. }
  87. #endif
  88. #define PTE_PREFETCH_NUM 8
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define PT64_LEVEL_BITS 9
  92. #define PT64_LEVEL_SHIFT(level) \
  93. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94. #define PT64_INDEX(address, level)\
  95. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  96. #define PT32_LEVEL_BITS 10
  97. #define PT32_LEVEL_SHIFT(level) \
  98. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  99. #define PT32_LVL_OFFSET_MASK(level) \
  100. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT32_LEVEL_BITS))) - 1))
  102. #define PT32_INDEX(address, level)\
  103. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  104. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  105. #define PT64_DIR_BASE_ADDR_MASK \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  107. #define PT64_LVL_ADDR_MASK(level) \
  108. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT64_LEVEL_BITS))) - 1))
  110. #define PT64_LVL_OFFSET_MASK(level) \
  111. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  112. * PT64_LEVEL_BITS))) - 1))
  113. #define PT32_BASE_ADDR_MASK PAGE_MASK
  114. #define PT32_DIR_BASE_ADDR_MASK \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  116. #define PT32_LVL_ADDR_MASK(level) \
  117. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  118. * PT32_LEVEL_BITS))) - 1))
  119. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  120. | PT64_NX_MASK)
  121. #define RMAP_EXT 4
  122. #define ACC_EXEC_MASK 1
  123. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  124. #define ACC_USER_MASK PT_USER_MASK
  125. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  126. #include <trace/events/kvm.h>
  127. #define CREATE_TRACE_POINTS
  128. #include "mmutrace.h"
  129. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  130. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  131. struct kvm_rmap_desc {
  132. u64 *sptes[RMAP_EXT];
  133. struct kvm_rmap_desc *more;
  134. };
  135. struct kvm_shadow_walk_iterator {
  136. u64 addr;
  137. hpa_t shadow_addr;
  138. int level;
  139. u64 *sptep;
  140. unsigned index;
  141. };
  142. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  143. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  144. shadow_walk_okay(&(_walker)); \
  145. shadow_walk_next(&(_walker)))
  146. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  147. static struct kmem_cache *pte_chain_cache;
  148. static struct kmem_cache *rmap_desc_cache;
  149. static struct kmem_cache *mmu_page_header_cache;
  150. static struct percpu_counter kvm_total_used_mmu_pages;
  151. static u64 __read_mostly shadow_trap_nonpresent_pte;
  152. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  153. static u64 __read_mostly shadow_nx_mask;
  154. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  155. static u64 __read_mostly shadow_user_mask;
  156. static u64 __read_mostly shadow_accessed_mask;
  157. static u64 __read_mostly shadow_dirty_mask;
  158. static inline u64 rsvd_bits(int s, int e)
  159. {
  160. return ((1ULL << (e - s + 1)) - 1) << s;
  161. }
  162. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  163. {
  164. shadow_trap_nonpresent_pte = trap_pte;
  165. shadow_notrap_nonpresent_pte = notrap_pte;
  166. }
  167. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  168. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  169. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  170. {
  171. shadow_user_mask = user_mask;
  172. shadow_accessed_mask = accessed_mask;
  173. shadow_dirty_mask = dirty_mask;
  174. shadow_nx_mask = nx_mask;
  175. shadow_x_mask = x_mask;
  176. }
  177. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  178. static bool is_write_protection(struct kvm_vcpu *vcpu)
  179. {
  180. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  181. }
  182. static int is_cpuid_PSE36(void)
  183. {
  184. return 1;
  185. }
  186. static int is_nx(struct kvm_vcpu *vcpu)
  187. {
  188. return vcpu->arch.efer & EFER_NX;
  189. }
  190. static int is_shadow_present_pte(u64 pte)
  191. {
  192. return pte != shadow_trap_nonpresent_pte
  193. && pte != shadow_notrap_nonpresent_pte;
  194. }
  195. static int is_large_pte(u64 pte)
  196. {
  197. return pte & PT_PAGE_SIZE_MASK;
  198. }
  199. static int is_writable_pte(unsigned long pte)
  200. {
  201. return pte & PT_WRITABLE_MASK;
  202. }
  203. static int is_dirty_gpte(unsigned long pte)
  204. {
  205. return pte & PT_DIRTY_MASK;
  206. }
  207. static int is_rmap_spte(u64 pte)
  208. {
  209. return is_shadow_present_pte(pte);
  210. }
  211. static int is_last_spte(u64 pte, int level)
  212. {
  213. if (level == PT_PAGE_TABLE_LEVEL)
  214. return 1;
  215. if (is_large_pte(pte))
  216. return 1;
  217. return 0;
  218. }
  219. static pfn_t spte_to_pfn(u64 pte)
  220. {
  221. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  222. }
  223. static gfn_t pse36_gfn_delta(u32 gpte)
  224. {
  225. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  226. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  227. }
  228. static void __set_spte(u64 *sptep, u64 spte)
  229. {
  230. set_64bit(sptep, spte);
  231. }
  232. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  233. {
  234. #ifdef CONFIG_X86_64
  235. return xchg(sptep, new_spte);
  236. #else
  237. u64 old_spte;
  238. do {
  239. old_spte = *sptep;
  240. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  241. return old_spte;
  242. #endif
  243. }
  244. static bool spte_has_volatile_bits(u64 spte)
  245. {
  246. if (!shadow_accessed_mask)
  247. return false;
  248. if (!is_shadow_present_pte(spte))
  249. return false;
  250. if ((spte & shadow_accessed_mask) &&
  251. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  252. return false;
  253. return true;
  254. }
  255. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  256. {
  257. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  258. }
  259. static void update_spte(u64 *sptep, u64 new_spte)
  260. {
  261. u64 mask, old_spte = *sptep;
  262. WARN_ON(!is_rmap_spte(new_spte));
  263. new_spte |= old_spte & shadow_dirty_mask;
  264. mask = shadow_accessed_mask;
  265. if (is_writable_pte(old_spte))
  266. mask |= shadow_dirty_mask;
  267. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  268. __set_spte(sptep, new_spte);
  269. else
  270. old_spte = __xchg_spte(sptep, new_spte);
  271. if (!shadow_accessed_mask)
  272. return;
  273. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  274. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  275. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  276. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  277. }
  278. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  279. struct kmem_cache *base_cache, int min)
  280. {
  281. void *obj;
  282. if (cache->nobjs >= min)
  283. return 0;
  284. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  285. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  286. if (!obj)
  287. return -ENOMEM;
  288. cache->objects[cache->nobjs++] = obj;
  289. }
  290. return 0;
  291. }
  292. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  293. struct kmem_cache *cache)
  294. {
  295. while (mc->nobjs)
  296. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  297. }
  298. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  299. int min)
  300. {
  301. void *page;
  302. if (cache->nobjs >= min)
  303. return 0;
  304. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  305. page = (void *)__get_free_page(GFP_KERNEL);
  306. if (!page)
  307. return -ENOMEM;
  308. cache->objects[cache->nobjs++] = page;
  309. }
  310. return 0;
  311. }
  312. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  313. {
  314. while (mc->nobjs)
  315. free_page((unsigned long)mc->objects[--mc->nobjs]);
  316. }
  317. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  318. {
  319. int r;
  320. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  321. pte_chain_cache, 4);
  322. if (r)
  323. goto out;
  324. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  325. rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  329. if (r)
  330. goto out;
  331. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  332. mmu_page_header_cache, 4);
  333. out:
  334. return r;
  335. }
  336. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  337. {
  338. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  339. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  340. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  341. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  342. mmu_page_header_cache);
  343. }
  344. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  345. size_t size)
  346. {
  347. void *p;
  348. BUG_ON(!mc->nobjs);
  349. p = mc->objects[--mc->nobjs];
  350. return p;
  351. }
  352. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  353. {
  354. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  355. sizeof(struct kvm_pte_chain));
  356. }
  357. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  358. {
  359. kmem_cache_free(pte_chain_cache, pc);
  360. }
  361. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  362. {
  363. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  364. sizeof(struct kvm_rmap_desc));
  365. }
  366. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  367. {
  368. kmem_cache_free(rmap_desc_cache, rd);
  369. }
  370. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  371. {
  372. if (!sp->role.direct)
  373. return sp->gfns[index];
  374. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  375. }
  376. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  377. {
  378. if (sp->role.direct)
  379. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  380. else
  381. sp->gfns[index] = gfn;
  382. }
  383. /*
  384. * Return the pointer to the large page information for a given gfn,
  385. * handling slots that are not large page aligned.
  386. */
  387. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  388. struct kvm_memory_slot *slot,
  389. int level)
  390. {
  391. unsigned long idx;
  392. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  393. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  394. return &slot->lpage_info[level - 2][idx];
  395. }
  396. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  397. {
  398. struct kvm_memory_slot *slot;
  399. struct kvm_lpage_info *linfo;
  400. int i;
  401. slot = gfn_to_memslot(kvm, gfn);
  402. for (i = PT_DIRECTORY_LEVEL;
  403. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  404. linfo = lpage_info_slot(gfn, slot, i);
  405. linfo->write_count += 1;
  406. }
  407. kvm->arch.indirect_shadow_pages++;
  408. }
  409. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  410. {
  411. struct kvm_memory_slot *slot;
  412. struct kvm_lpage_info *linfo;
  413. int i;
  414. slot = gfn_to_memslot(kvm, gfn);
  415. for (i = PT_DIRECTORY_LEVEL;
  416. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  417. linfo = lpage_info_slot(gfn, slot, i);
  418. linfo->write_count -= 1;
  419. WARN_ON(linfo->write_count < 0);
  420. }
  421. kvm->arch.indirect_shadow_pages--;
  422. }
  423. static int has_wrprotected_page(struct kvm *kvm,
  424. gfn_t gfn,
  425. int level)
  426. {
  427. struct kvm_memory_slot *slot;
  428. struct kvm_lpage_info *linfo;
  429. slot = gfn_to_memslot(kvm, gfn);
  430. if (slot) {
  431. linfo = lpage_info_slot(gfn, slot, level);
  432. return linfo->write_count;
  433. }
  434. return 1;
  435. }
  436. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  437. {
  438. unsigned long page_size;
  439. int i, ret = 0;
  440. page_size = kvm_host_page_size(kvm, gfn);
  441. for (i = PT_PAGE_TABLE_LEVEL;
  442. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  443. if (page_size >= KVM_HPAGE_SIZE(i))
  444. ret = i;
  445. else
  446. break;
  447. }
  448. return ret;
  449. }
  450. static struct kvm_memory_slot *
  451. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  452. bool no_dirty_log)
  453. {
  454. struct kvm_memory_slot *slot;
  455. slot = gfn_to_memslot(vcpu->kvm, gfn);
  456. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  457. (no_dirty_log && slot->dirty_bitmap))
  458. slot = NULL;
  459. return slot;
  460. }
  461. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  462. {
  463. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  464. }
  465. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  466. {
  467. int host_level, level, max_level;
  468. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  469. if (host_level == PT_PAGE_TABLE_LEVEL)
  470. return host_level;
  471. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  472. kvm_x86_ops->get_lpage_level() : host_level;
  473. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  474. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  475. break;
  476. return level - 1;
  477. }
  478. /*
  479. * Take gfn and return the reverse mapping to it.
  480. */
  481. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  482. {
  483. struct kvm_memory_slot *slot;
  484. struct kvm_lpage_info *linfo;
  485. slot = gfn_to_memslot(kvm, gfn);
  486. if (likely(level == PT_PAGE_TABLE_LEVEL))
  487. return &slot->rmap[gfn - slot->base_gfn];
  488. linfo = lpage_info_slot(gfn, slot, level);
  489. return &linfo->rmap_pde;
  490. }
  491. /*
  492. * Reverse mapping data structures:
  493. *
  494. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  495. * that points to page_address(page).
  496. *
  497. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  498. * containing more mappings.
  499. *
  500. * Returns the number of rmap entries before the spte was added or zero if
  501. * the spte was not added.
  502. *
  503. */
  504. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  505. {
  506. struct kvm_mmu_page *sp;
  507. struct kvm_rmap_desc *desc;
  508. unsigned long *rmapp;
  509. int i, count = 0;
  510. if (!is_rmap_spte(*spte))
  511. return count;
  512. sp = page_header(__pa(spte));
  513. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  514. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  515. if (!*rmapp) {
  516. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  517. *rmapp = (unsigned long)spte;
  518. } else if (!(*rmapp & 1)) {
  519. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  520. desc = mmu_alloc_rmap_desc(vcpu);
  521. desc->sptes[0] = (u64 *)*rmapp;
  522. desc->sptes[1] = spte;
  523. *rmapp = (unsigned long)desc | 1;
  524. ++count;
  525. } else {
  526. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  527. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  528. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  529. desc = desc->more;
  530. count += RMAP_EXT;
  531. }
  532. if (desc->sptes[RMAP_EXT-1]) {
  533. desc->more = mmu_alloc_rmap_desc(vcpu);
  534. desc = desc->more;
  535. }
  536. for (i = 0; desc->sptes[i]; ++i)
  537. ++count;
  538. desc->sptes[i] = spte;
  539. }
  540. return count;
  541. }
  542. static void rmap_desc_remove_entry(unsigned long *rmapp,
  543. struct kvm_rmap_desc *desc,
  544. int i,
  545. struct kvm_rmap_desc *prev_desc)
  546. {
  547. int j;
  548. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  549. ;
  550. desc->sptes[i] = desc->sptes[j];
  551. desc->sptes[j] = NULL;
  552. if (j != 0)
  553. return;
  554. if (!prev_desc && !desc->more)
  555. *rmapp = (unsigned long)desc->sptes[0];
  556. else
  557. if (prev_desc)
  558. prev_desc->more = desc->more;
  559. else
  560. *rmapp = (unsigned long)desc->more | 1;
  561. mmu_free_rmap_desc(desc);
  562. }
  563. static void rmap_remove(struct kvm *kvm, u64 *spte)
  564. {
  565. struct kvm_rmap_desc *desc;
  566. struct kvm_rmap_desc *prev_desc;
  567. struct kvm_mmu_page *sp;
  568. gfn_t gfn;
  569. unsigned long *rmapp;
  570. int i;
  571. sp = page_header(__pa(spte));
  572. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  573. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  574. if (!*rmapp) {
  575. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  576. BUG();
  577. } else if (!(*rmapp & 1)) {
  578. rmap_printk("rmap_remove: %p 1->0\n", spte);
  579. if ((u64 *)*rmapp != spte) {
  580. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  581. BUG();
  582. }
  583. *rmapp = 0;
  584. } else {
  585. rmap_printk("rmap_remove: %p many->many\n", spte);
  586. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  587. prev_desc = NULL;
  588. while (desc) {
  589. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  590. if (desc->sptes[i] == spte) {
  591. rmap_desc_remove_entry(rmapp,
  592. desc, i,
  593. prev_desc);
  594. return;
  595. }
  596. prev_desc = desc;
  597. desc = desc->more;
  598. }
  599. pr_err("rmap_remove: %p many->many\n", spte);
  600. BUG();
  601. }
  602. }
  603. static int set_spte_track_bits(u64 *sptep, u64 new_spte)
  604. {
  605. pfn_t pfn;
  606. u64 old_spte = *sptep;
  607. if (!spte_has_volatile_bits(old_spte))
  608. __set_spte(sptep, new_spte);
  609. else
  610. old_spte = __xchg_spte(sptep, new_spte);
  611. if (!is_rmap_spte(old_spte))
  612. return 0;
  613. pfn = spte_to_pfn(old_spte);
  614. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  615. kvm_set_pfn_accessed(pfn);
  616. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  617. kvm_set_pfn_dirty(pfn);
  618. return 1;
  619. }
  620. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  621. {
  622. if (set_spte_track_bits(sptep, new_spte))
  623. rmap_remove(kvm, sptep);
  624. }
  625. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  626. {
  627. struct kvm_rmap_desc *desc;
  628. u64 *prev_spte;
  629. int i;
  630. if (!*rmapp)
  631. return NULL;
  632. else if (!(*rmapp & 1)) {
  633. if (!spte)
  634. return (u64 *)*rmapp;
  635. return NULL;
  636. }
  637. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  638. prev_spte = NULL;
  639. while (desc) {
  640. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  641. if (prev_spte == spte)
  642. return desc->sptes[i];
  643. prev_spte = desc->sptes[i];
  644. }
  645. desc = desc->more;
  646. }
  647. return NULL;
  648. }
  649. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  650. {
  651. unsigned long *rmapp;
  652. u64 *spte;
  653. int i, write_protected = 0;
  654. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  655. spte = rmap_next(kvm, rmapp, NULL);
  656. while (spte) {
  657. BUG_ON(!spte);
  658. BUG_ON(!(*spte & PT_PRESENT_MASK));
  659. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  660. if (is_writable_pte(*spte)) {
  661. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  662. write_protected = 1;
  663. }
  664. spte = rmap_next(kvm, rmapp, spte);
  665. }
  666. /* check for huge page mappings */
  667. for (i = PT_DIRECTORY_LEVEL;
  668. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  669. rmapp = gfn_to_rmap(kvm, gfn, i);
  670. spte = rmap_next(kvm, rmapp, NULL);
  671. while (spte) {
  672. BUG_ON(!spte);
  673. BUG_ON(!(*spte & PT_PRESENT_MASK));
  674. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  675. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  676. if (is_writable_pte(*spte)) {
  677. drop_spte(kvm, spte,
  678. shadow_trap_nonpresent_pte);
  679. --kvm->stat.lpages;
  680. spte = NULL;
  681. write_protected = 1;
  682. }
  683. spte = rmap_next(kvm, rmapp, spte);
  684. }
  685. }
  686. return write_protected;
  687. }
  688. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  689. unsigned long data)
  690. {
  691. u64 *spte;
  692. int need_tlb_flush = 0;
  693. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  694. BUG_ON(!(*spte & PT_PRESENT_MASK));
  695. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  696. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  697. need_tlb_flush = 1;
  698. }
  699. return need_tlb_flush;
  700. }
  701. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  702. unsigned long data)
  703. {
  704. int need_flush = 0;
  705. u64 *spte, new_spte;
  706. pte_t *ptep = (pte_t *)data;
  707. pfn_t new_pfn;
  708. WARN_ON(pte_huge(*ptep));
  709. new_pfn = pte_pfn(*ptep);
  710. spte = rmap_next(kvm, rmapp, NULL);
  711. while (spte) {
  712. BUG_ON(!is_shadow_present_pte(*spte));
  713. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  714. need_flush = 1;
  715. if (pte_write(*ptep)) {
  716. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  717. spte = rmap_next(kvm, rmapp, NULL);
  718. } else {
  719. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  720. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  721. new_spte &= ~PT_WRITABLE_MASK;
  722. new_spte &= ~SPTE_HOST_WRITEABLE;
  723. new_spte &= ~shadow_accessed_mask;
  724. set_spte_track_bits(spte, new_spte);
  725. spte = rmap_next(kvm, rmapp, spte);
  726. }
  727. }
  728. if (need_flush)
  729. kvm_flush_remote_tlbs(kvm);
  730. return 0;
  731. }
  732. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  733. unsigned long data,
  734. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  735. unsigned long data))
  736. {
  737. int i, j;
  738. int ret;
  739. int retval = 0;
  740. struct kvm_memslots *slots;
  741. slots = kvm_memslots(kvm);
  742. for (i = 0; i < slots->nmemslots; i++) {
  743. struct kvm_memory_slot *memslot = &slots->memslots[i];
  744. unsigned long start = memslot->userspace_addr;
  745. unsigned long end;
  746. end = start + (memslot->npages << PAGE_SHIFT);
  747. if (hva >= start && hva < end) {
  748. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  749. gfn_t gfn = memslot->base_gfn + gfn_offset;
  750. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  751. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  752. struct kvm_lpage_info *linfo;
  753. linfo = lpage_info_slot(gfn, memslot,
  754. PT_DIRECTORY_LEVEL + j);
  755. ret |= handler(kvm, &linfo->rmap_pde, data);
  756. }
  757. trace_kvm_age_page(hva, memslot, ret);
  758. retval |= ret;
  759. }
  760. }
  761. return retval;
  762. }
  763. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  764. {
  765. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  766. }
  767. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  768. {
  769. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  770. }
  771. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  772. unsigned long data)
  773. {
  774. u64 *spte;
  775. int young = 0;
  776. /*
  777. * Emulate the accessed bit for EPT, by checking if this page has
  778. * an EPT mapping, and clearing it if it does. On the next access,
  779. * a new EPT mapping will be established.
  780. * This has some overhead, but not as much as the cost of swapping
  781. * out actively used pages or breaking up actively used hugepages.
  782. */
  783. if (!shadow_accessed_mask)
  784. return kvm_unmap_rmapp(kvm, rmapp, data);
  785. spte = rmap_next(kvm, rmapp, NULL);
  786. while (spte) {
  787. int _young;
  788. u64 _spte = *spte;
  789. BUG_ON(!(_spte & PT_PRESENT_MASK));
  790. _young = _spte & PT_ACCESSED_MASK;
  791. if (_young) {
  792. young = 1;
  793. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  794. }
  795. spte = rmap_next(kvm, rmapp, spte);
  796. }
  797. return young;
  798. }
  799. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  800. unsigned long data)
  801. {
  802. u64 *spte;
  803. int young = 0;
  804. /*
  805. * If there's no access bit in the secondary pte set by the
  806. * hardware it's up to gup-fast/gup to set the access bit in
  807. * the primary pte or in the page structure.
  808. */
  809. if (!shadow_accessed_mask)
  810. goto out;
  811. spte = rmap_next(kvm, rmapp, NULL);
  812. while (spte) {
  813. u64 _spte = *spte;
  814. BUG_ON(!(_spte & PT_PRESENT_MASK));
  815. young = _spte & PT_ACCESSED_MASK;
  816. if (young) {
  817. young = 1;
  818. break;
  819. }
  820. spte = rmap_next(kvm, rmapp, spte);
  821. }
  822. out:
  823. return young;
  824. }
  825. #define RMAP_RECYCLE_THRESHOLD 1000
  826. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  827. {
  828. unsigned long *rmapp;
  829. struct kvm_mmu_page *sp;
  830. sp = page_header(__pa(spte));
  831. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  832. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  833. kvm_flush_remote_tlbs(vcpu->kvm);
  834. }
  835. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  836. {
  837. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  838. }
  839. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  840. {
  841. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  842. }
  843. #ifdef MMU_DEBUG
  844. static int is_empty_shadow_page(u64 *spt)
  845. {
  846. u64 *pos;
  847. u64 *end;
  848. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  849. if (is_shadow_present_pte(*pos)) {
  850. printk(KERN_ERR "%s: %p %llx\n", __func__,
  851. pos, *pos);
  852. return 0;
  853. }
  854. return 1;
  855. }
  856. #endif
  857. /*
  858. * This value is the sum of all of the kvm instances's
  859. * kvm->arch.n_used_mmu_pages values. We need a global,
  860. * aggregate version in order to make the slab shrinker
  861. * faster
  862. */
  863. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  864. {
  865. kvm->arch.n_used_mmu_pages += nr;
  866. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  867. }
  868. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  869. {
  870. ASSERT(is_empty_shadow_page(sp->spt));
  871. hlist_del(&sp->hash_link);
  872. list_del(&sp->link);
  873. free_page((unsigned long)sp->spt);
  874. if (!sp->role.direct)
  875. free_page((unsigned long)sp->gfns);
  876. kmem_cache_free(mmu_page_header_cache, sp);
  877. kvm_mod_used_mmu_pages(kvm, -1);
  878. }
  879. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  880. {
  881. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  882. }
  883. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  884. u64 *parent_pte, int direct)
  885. {
  886. struct kvm_mmu_page *sp;
  887. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  888. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  889. if (!direct)
  890. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  891. PAGE_SIZE);
  892. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  893. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  894. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  895. sp->multimapped = 0;
  896. sp->parent_pte = parent_pte;
  897. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  898. return sp;
  899. }
  900. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  901. struct kvm_mmu_page *sp, u64 *parent_pte)
  902. {
  903. struct kvm_pte_chain *pte_chain;
  904. struct hlist_node *node;
  905. int i;
  906. if (!parent_pte)
  907. return;
  908. if (!sp->multimapped) {
  909. u64 *old = sp->parent_pte;
  910. if (!old) {
  911. sp->parent_pte = parent_pte;
  912. return;
  913. }
  914. sp->multimapped = 1;
  915. pte_chain = mmu_alloc_pte_chain(vcpu);
  916. INIT_HLIST_HEAD(&sp->parent_ptes);
  917. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  918. pte_chain->parent_ptes[0] = old;
  919. }
  920. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  921. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  922. continue;
  923. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  924. if (!pte_chain->parent_ptes[i]) {
  925. pte_chain->parent_ptes[i] = parent_pte;
  926. return;
  927. }
  928. }
  929. pte_chain = mmu_alloc_pte_chain(vcpu);
  930. BUG_ON(!pte_chain);
  931. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  932. pte_chain->parent_ptes[0] = parent_pte;
  933. }
  934. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  935. u64 *parent_pte)
  936. {
  937. struct kvm_pte_chain *pte_chain;
  938. struct hlist_node *node;
  939. int i;
  940. if (!sp->multimapped) {
  941. BUG_ON(sp->parent_pte != parent_pte);
  942. sp->parent_pte = NULL;
  943. return;
  944. }
  945. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  946. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  947. if (!pte_chain->parent_ptes[i])
  948. break;
  949. if (pte_chain->parent_ptes[i] != parent_pte)
  950. continue;
  951. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  952. && pte_chain->parent_ptes[i + 1]) {
  953. pte_chain->parent_ptes[i]
  954. = pte_chain->parent_ptes[i + 1];
  955. ++i;
  956. }
  957. pte_chain->parent_ptes[i] = NULL;
  958. if (i == 0) {
  959. hlist_del(&pte_chain->link);
  960. mmu_free_pte_chain(pte_chain);
  961. if (hlist_empty(&sp->parent_ptes)) {
  962. sp->multimapped = 0;
  963. sp->parent_pte = NULL;
  964. }
  965. }
  966. return;
  967. }
  968. BUG();
  969. }
  970. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  971. {
  972. struct kvm_pte_chain *pte_chain;
  973. struct hlist_node *node;
  974. struct kvm_mmu_page *parent_sp;
  975. int i;
  976. if (!sp->multimapped && sp->parent_pte) {
  977. parent_sp = page_header(__pa(sp->parent_pte));
  978. fn(parent_sp, sp->parent_pte);
  979. return;
  980. }
  981. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  982. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  983. u64 *spte = pte_chain->parent_ptes[i];
  984. if (!spte)
  985. break;
  986. parent_sp = page_header(__pa(spte));
  987. fn(parent_sp, spte);
  988. }
  989. }
  990. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  991. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  992. {
  993. mmu_parent_walk(sp, mark_unsync);
  994. }
  995. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  996. {
  997. unsigned int index;
  998. index = spte - sp->spt;
  999. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1000. return;
  1001. if (sp->unsync_children++)
  1002. return;
  1003. kvm_mmu_mark_parents_unsync(sp);
  1004. }
  1005. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1006. struct kvm_mmu_page *sp)
  1007. {
  1008. int i;
  1009. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1010. sp->spt[i] = shadow_trap_nonpresent_pte;
  1011. }
  1012. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1013. struct kvm_mmu_page *sp)
  1014. {
  1015. return 1;
  1016. }
  1017. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1018. {
  1019. }
  1020. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1021. struct kvm_mmu_page *sp, u64 *spte,
  1022. const void *pte)
  1023. {
  1024. WARN_ON(1);
  1025. }
  1026. #define KVM_PAGE_ARRAY_NR 16
  1027. struct kvm_mmu_pages {
  1028. struct mmu_page_and_offset {
  1029. struct kvm_mmu_page *sp;
  1030. unsigned int idx;
  1031. } page[KVM_PAGE_ARRAY_NR];
  1032. unsigned int nr;
  1033. };
  1034. #define for_each_unsync_children(bitmap, idx) \
  1035. for (idx = find_first_bit(bitmap, 512); \
  1036. idx < 512; \
  1037. idx = find_next_bit(bitmap, 512, idx+1))
  1038. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1039. int idx)
  1040. {
  1041. int i;
  1042. if (sp->unsync)
  1043. for (i=0; i < pvec->nr; i++)
  1044. if (pvec->page[i].sp == sp)
  1045. return 0;
  1046. pvec->page[pvec->nr].sp = sp;
  1047. pvec->page[pvec->nr].idx = idx;
  1048. pvec->nr++;
  1049. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1050. }
  1051. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1052. struct kvm_mmu_pages *pvec)
  1053. {
  1054. int i, ret, nr_unsync_leaf = 0;
  1055. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1056. struct kvm_mmu_page *child;
  1057. u64 ent = sp->spt[i];
  1058. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1059. goto clear_child_bitmap;
  1060. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1061. if (child->unsync_children) {
  1062. if (mmu_pages_add(pvec, child, i))
  1063. return -ENOSPC;
  1064. ret = __mmu_unsync_walk(child, pvec);
  1065. if (!ret)
  1066. goto clear_child_bitmap;
  1067. else if (ret > 0)
  1068. nr_unsync_leaf += ret;
  1069. else
  1070. return ret;
  1071. } else if (child->unsync) {
  1072. nr_unsync_leaf++;
  1073. if (mmu_pages_add(pvec, child, i))
  1074. return -ENOSPC;
  1075. } else
  1076. goto clear_child_bitmap;
  1077. continue;
  1078. clear_child_bitmap:
  1079. __clear_bit(i, sp->unsync_child_bitmap);
  1080. sp->unsync_children--;
  1081. WARN_ON((int)sp->unsync_children < 0);
  1082. }
  1083. return nr_unsync_leaf;
  1084. }
  1085. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1086. struct kvm_mmu_pages *pvec)
  1087. {
  1088. if (!sp->unsync_children)
  1089. return 0;
  1090. mmu_pages_add(pvec, sp, 0);
  1091. return __mmu_unsync_walk(sp, pvec);
  1092. }
  1093. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1094. {
  1095. WARN_ON(!sp->unsync);
  1096. trace_kvm_mmu_sync_page(sp);
  1097. sp->unsync = 0;
  1098. --kvm->stat.mmu_unsync;
  1099. }
  1100. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1101. struct list_head *invalid_list);
  1102. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1103. struct list_head *invalid_list);
  1104. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1105. hlist_for_each_entry(sp, pos, \
  1106. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1107. if ((sp)->gfn != (gfn)) {} else
  1108. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1109. hlist_for_each_entry(sp, pos, \
  1110. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1111. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1112. (sp)->role.invalid) {} else
  1113. /* @sp->gfn should be write-protected at the call site */
  1114. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1115. struct list_head *invalid_list, bool clear_unsync)
  1116. {
  1117. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1118. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1119. return 1;
  1120. }
  1121. if (clear_unsync)
  1122. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1123. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1124. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1125. return 1;
  1126. }
  1127. kvm_mmu_flush_tlb(vcpu);
  1128. return 0;
  1129. }
  1130. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1131. struct kvm_mmu_page *sp)
  1132. {
  1133. LIST_HEAD(invalid_list);
  1134. int ret;
  1135. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1136. if (ret)
  1137. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1138. return ret;
  1139. }
  1140. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1141. struct list_head *invalid_list)
  1142. {
  1143. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1144. }
  1145. /* @gfn should be write-protected at the call site */
  1146. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1147. {
  1148. struct kvm_mmu_page *s;
  1149. struct hlist_node *node;
  1150. LIST_HEAD(invalid_list);
  1151. bool flush = false;
  1152. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1153. if (!s->unsync)
  1154. continue;
  1155. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1156. kvm_unlink_unsync_page(vcpu->kvm, s);
  1157. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1158. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1159. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1160. continue;
  1161. }
  1162. flush = true;
  1163. }
  1164. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1165. if (flush)
  1166. kvm_mmu_flush_tlb(vcpu);
  1167. }
  1168. struct mmu_page_path {
  1169. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1170. unsigned int idx[PT64_ROOT_LEVEL-1];
  1171. };
  1172. #define for_each_sp(pvec, sp, parents, i) \
  1173. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1174. sp = pvec.page[i].sp; \
  1175. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1176. i = mmu_pages_next(&pvec, &parents, i))
  1177. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1178. struct mmu_page_path *parents,
  1179. int i)
  1180. {
  1181. int n;
  1182. for (n = i+1; n < pvec->nr; n++) {
  1183. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1184. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1185. parents->idx[0] = pvec->page[n].idx;
  1186. return n;
  1187. }
  1188. parents->parent[sp->role.level-2] = sp;
  1189. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1190. }
  1191. return n;
  1192. }
  1193. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1194. {
  1195. struct kvm_mmu_page *sp;
  1196. unsigned int level = 0;
  1197. do {
  1198. unsigned int idx = parents->idx[level];
  1199. sp = parents->parent[level];
  1200. if (!sp)
  1201. return;
  1202. --sp->unsync_children;
  1203. WARN_ON((int)sp->unsync_children < 0);
  1204. __clear_bit(idx, sp->unsync_child_bitmap);
  1205. level++;
  1206. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1207. }
  1208. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1209. struct mmu_page_path *parents,
  1210. struct kvm_mmu_pages *pvec)
  1211. {
  1212. parents->parent[parent->role.level-1] = NULL;
  1213. pvec->nr = 0;
  1214. }
  1215. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1216. struct kvm_mmu_page *parent)
  1217. {
  1218. int i;
  1219. struct kvm_mmu_page *sp;
  1220. struct mmu_page_path parents;
  1221. struct kvm_mmu_pages pages;
  1222. LIST_HEAD(invalid_list);
  1223. kvm_mmu_pages_init(parent, &parents, &pages);
  1224. while (mmu_unsync_walk(parent, &pages)) {
  1225. int protected = 0;
  1226. for_each_sp(pages, sp, parents, i)
  1227. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1228. if (protected)
  1229. kvm_flush_remote_tlbs(vcpu->kvm);
  1230. for_each_sp(pages, sp, parents, i) {
  1231. kvm_sync_page(vcpu, sp, &invalid_list);
  1232. mmu_pages_clear_parents(&parents);
  1233. }
  1234. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1235. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1236. kvm_mmu_pages_init(parent, &parents, &pages);
  1237. }
  1238. }
  1239. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1240. gfn_t gfn,
  1241. gva_t gaddr,
  1242. unsigned level,
  1243. int direct,
  1244. unsigned access,
  1245. u64 *parent_pte)
  1246. {
  1247. union kvm_mmu_page_role role;
  1248. unsigned quadrant;
  1249. struct kvm_mmu_page *sp;
  1250. struct hlist_node *node;
  1251. bool need_sync = false;
  1252. role = vcpu->arch.mmu.base_role;
  1253. role.level = level;
  1254. role.direct = direct;
  1255. if (role.direct)
  1256. role.cr4_pae = 0;
  1257. role.access = access;
  1258. if (!vcpu->arch.mmu.direct_map
  1259. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1260. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1261. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1262. role.quadrant = quadrant;
  1263. }
  1264. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1265. if (!need_sync && sp->unsync)
  1266. need_sync = true;
  1267. if (sp->role.word != role.word)
  1268. continue;
  1269. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1270. break;
  1271. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1272. if (sp->unsync_children) {
  1273. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1274. kvm_mmu_mark_parents_unsync(sp);
  1275. } else if (sp->unsync)
  1276. kvm_mmu_mark_parents_unsync(sp);
  1277. trace_kvm_mmu_get_page(sp, false);
  1278. return sp;
  1279. }
  1280. ++vcpu->kvm->stat.mmu_cache_miss;
  1281. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1282. if (!sp)
  1283. return sp;
  1284. sp->gfn = gfn;
  1285. sp->role = role;
  1286. hlist_add_head(&sp->hash_link,
  1287. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1288. if (!direct) {
  1289. if (rmap_write_protect(vcpu->kvm, gfn))
  1290. kvm_flush_remote_tlbs(vcpu->kvm);
  1291. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1292. kvm_sync_pages(vcpu, gfn);
  1293. account_shadowed(vcpu->kvm, gfn);
  1294. }
  1295. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1296. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1297. else
  1298. nonpaging_prefetch_page(vcpu, sp);
  1299. trace_kvm_mmu_get_page(sp, true);
  1300. return sp;
  1301. }
  1302. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1303. struct kvm_vcpu *vcpu, u64 addr)
  1304. {
  1305. iterator->addr = addr;
  1306. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1307. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1308. if (iterator->level == PT64_ROOT_LEVEL &&
  1309. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1310. !vcpu->arch.mmu.direct_map)
  1311. --iterator->level;
  1312. if (iterator->level == PT32E_ROOT_LEVEL) {
  1313. iterator->shadow_addr
  1314. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1315. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1316. --iterator->level;
  1317. if (!iterator->shadow_addr)
  1318. iterator->level = 0;
  1319. }
  1320. }
  1321. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1322. {
  1323. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1324. return false;
  1325. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1326. if (is_large_pte(*iterator->sptep))
  1327. return false;
  1328. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1329. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1330. return true;
  1331. }
  1332. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1333. {
  1334. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1335. --iterator->level;
  1336. }
  1337. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1338. {
  1339. u64 spte;
  1340. spte = __pa(sp->spt)
  1341. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1342. | PT_WRITABLE_MASK | PT_USER_MASK;
  1343. __set_spte(sptep, spte);
  1344. }
  1345. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1346. {
  1347. if (is_large_pte(*sptep)) {
  1348. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1349. kvm_flush_remote_tlbs(vcpu->kvm);
  1350. }
  1351. }
  1352. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1353. unsigned direct_access)
  1354. {
  1355. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1356. struct kvm_mmu_page *child;
  1357. /*
  1358. * For the direct sp, if the guest pte's dirty bit
  1359. * changed form clean to dirty, it will corrupt the
  1360. * sp's access: allow writable in the read-only sp,
  1361. * so we should update the spte at this point to get
  1362. * a new sp with the correct access.
  1363. */
  1364. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1365. if (child->role.access == direct_access)
  1366. return;
  1367. mmu_page_remove_parent_pte(child, sptep);
  1368. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1369. kvm_flush_remote_tlbs(vcpu->kvm);
  1370. }
  1371. }
  1372. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1373. struct kvm_mmu_page *sp)
  1374. {
  1375. unsigned i;
  1376. u64 *pt;
  1377. u64 ent;
  1378. pt = sp->spt;
  1379. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1380. ent = pt[i];
  1381. if (is_shadow_present_pte(ent)) {
  1382. if (!is_last_spte(ent, sp->role.level)) {
  1383. ent &= PT64_BASE_ADDR_MASK;
  1384. mmu_page_remove_parent_pte(page_header(ent),
  1385. &pt[i]);
  1386. } else {
  1387. if (is_large_pte(ent))
  1388. --kvm->stat.lpages;
  1389. drop_spte(kvm, &pt[i],
  1390. shadow_trap_nonpresent_pte);
  1391. }
  1392. }
  1393. pt[i] = shadow_trap_nonpresent_pte;
  1394. }
  1395. }
  1396. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1397. {
  1398. mmu_page_remove_parent_pte(sp, parent_pte);
  1399. }
  1400. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1401. {
  1402. int i;
  1403. struct kvm_vcpu *vcpu;
  1404. kvm_for_each_vcpu(i, vcpu, kvm)
  1405. vcpu->arch.last_pte_updated = NULL;
  1406. }
  1407. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1408. {
  1409. u64 *parent_pte;
  1410. while (sp->multimapped || sp->parent_pte) {
  1411. if (!sp->multimapped)
  1412. parent_pte = sp->parent_pte;
  1413. else {
  1414. struct kvm_pte_chain *chain;
  1415. chain = container_of(sp->parent_ptes.first,
  1416. struct kvm_pte_chain, link);
  1417. parent_pte = chain->parent_ptes[0];
  1418. }
  1419. BUG_ON(!parent_pte);
  1420. kvm_mmu_put_page(sp, parent_pte);
  1421. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1422. }
  1423. }
  1424. static int mmu_zap_unsync_children(struct kvm *kvm,
  1425. struct kvm_mmu_page *parent,
  1426. struct list_head *invalid_list)
  1427. {
  1428. int i, zapped = 0;
  1429. struct mmu_page_path parents;
  1430. struct kvm_mmu_pages pages;
  1431. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1432. return 0;
  1433. kvm_mmu_pages_init(parent, &parents, &pages);
  1434. while (mmu_unsync_walk(parent, &pages)) {
  1435. struct kvm_mmu_page *sp;
  1436. for_each_sp(pages, sp, parents, i) {
  1437. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1438. mmu_pages_clear_parents(&parents);
  1439. zapped++;
  1440. }
  1441. kvm_mmu_pages_init(parent, &parents, &pages);
  1442. }
  1443. return zapped;
  1444. }
  1445. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1446. struct list_head *invalid_list)
  1447. {
  1448. int ret;
  1449. trace_kvm_mmu_prepare_zap_page(sp);
  1450. ++kvm->stat.mmu_shadow_zapped;
  1451. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1452. kvm_mmu_page_unlink_children(kvm, sp);
  1453. kvm_mmu_unlink_parents(kvm, sp);
  1454. if (!sp->role.invalid && !sp->role.direct)
  1455. unaccount_shadowed(kvm, sp->gfn);
  1456. if (sp->unsync)
  1457. kvm_unlink_unsync_page(kvm, sp);
  1458. if (!sp->root_count) {
  1459. /* Count self */
  1460. ret++;
  1461. list_move(&sp->link, invalid_list);
  1462. } else {
  1463. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1464. kvm_reload_remote_mmus(kvm);
  1465. }
  1466. sp->role.invalid = 1;
  1467. kvm_mmu_reset_last_pte_updated(kvm);
  1468. return ret;
  1469. }
  1470. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1471. struct list_head *invalid_list)
  1472. {
  1473. struct kvm_mmu_page *sp;
  1474. if (list_empty(invalid_list))
  1475. return;
  1476. kvm_flush_remote_tlbs(kvm);
  1477. do {
  1478. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1479. WARN_ON(!sp->role.invalid || sp->root_count);
  1480. kvm_mmu_free_page(kvm, sp);
  1481. } while (!list_empty(invalid_list));
  1482. }
  1483. /*
  1484. * Changing the number of mmu pages allocated to the vm
  1485. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1486. */
  1487. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1488. {
  1489. LIST_HEAD(invalid_list);
  1490. /*
  1491. * If we set the number of mmu pages to be smaller be than the
  1492. * number of actived pages , we must to free some mmu pages before we
  1493. * change the value
  1494. */
  1495. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1496. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1497. !list_empty(&kvm->arch.active_mmu_pages)) {
  1498. struct kvm_mmu_page *page;
  1499. page = container_of(kvm->arch.active_mmu_pages.prev,
  1500. struct kvm_mmu_page, link);
  1501. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1502. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1503. }
  1504. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1505. }
  1506. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1507. }
  1508. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1509. {
  1510. struct kvm_mmu_page *sp;
  1511. struct hlist_node *node;
  1512. LIST_HEAD(invalid_list);
  1513. int r;
  1514. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1515. r = 0;
  1516. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1517. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1518. sp->role.word);
  1519. r = 1;
  1520. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1521. }
  1522. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1523. return r;
  1524. }
  1525. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1526. {
  1527. struct kvm_mmu_page *sp;
  1528. struct hlist_node *node;
  1529. LIST_HEAD(invalid_list);
  1530. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1531. pgprintk("%s: zap %llx %x\n",
  1532. __func__, gfn, sp->role.word);
  1533. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1534. }
  1535. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1536. }
  1537. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1538. {
  1539. int slot = memslot_id(kvm, gfn);
  1540. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1541. __set_bit(slot, sp->slot_bitmap);
  1542. }
  1543. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1544. {
  1545. int i;
  1546. u64 *pt = sp->spt;
  1547. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1548. return;
  1549. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1550. if (pt[i] == shadow_notrap_nonpresent_pte)
  1551. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1552. }
  1553. }
  1554. /*
  1555. * The function is based on mtrr_type_lookup() in
  1556. * arch/x86/kernel/cpu/mtrr/generic.c
  1557. */
  1558. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1559. u64 start, u64 end)
  1560. {
  1561. int i;
  1562. u64 base, mask;
  1563. u8 prev_match, curr_match;
  1564. int num_var_ranges = KVM_NR_VAR_MTRR;
  1565. if (!mtrr_state->enabled)
  1566. return 0xFF;
  1567. /* Make end inclusive end, instead of exclusive */
  1568. end--;
  1569. /* Look in fixed ranges. Just return the type as per start */
  1570. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1571. int idx;
  1572. if (start < 0x80000) {
  1573. idx = 0;
  1574. idx += (start >> 16);
  1575. return mtrr_state->fixed_ranges[idx];
  1576. } else if (start < 0xC0000) {
  1577. idx = 1 * 8;
  1578. idx += ((start - 0x80000) >> 14);
  1579. return mtrr_state->fixed_ranges[idx];
  1580. } else if (start < 0x1000000) {
  1581. idx = 3 * 8;
  1582. idx += ((start - 0xC0000) >> 12);
  1583. return mtrr_state->fixed_ranges[idx];
  1584. }
  1585. }
  1586. /*
  1587. * Look in variable ranges
  1588. * Look of multiple ranges matching this address and pick type
  1589. * as per MTRR precedence
  1590. */
  1591. if (!(mtrr_state->enabled & 2))
  1592. return mtrr_state->def_type;
  1593. prev_match = 0xFF;
  1594. for (i = 0; i < num_var_ranges; ++i) {
  1595. unsigned short start_state, end_state;
  1596. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1597. continue;
  1598. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1599. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1600. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1601. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1602. start_state = ((start & mask) == (base & mask));
  1603. end_state = ((end & mask) == (base & mask));
  1604. if (start_state != end_state)
  1605. return 0xFE;
  1606. if ((start & mask) != (base & mask))
  1607. continue;
  1608. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1609. if (prev_match == 0xFF) {
  1610. prev_match = curr_match;
  1611. continue;
  1612. }
  1613. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1614. curr_match == MTRR_TYPE_UNCACHABLE)
  1615. return MTRR_TYPE_UNCACHABLE;
  1616. if ((prev_match == MTRR_TYPE_WRBACK &&
  1617. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1618. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1619. curr_match == MTRR_TYPE_WRBACK)) {
  1620. prev_match = MTRR_TYPE_WRTHROUGH;
  1621. curr_match = MTRR_TYPE_WRTHROUGH;
  1622. }
  1623. if (prev_match != curr_match)
  1624. return MTRR_TYPE_UNCACHABLE;
  1625. }
  1626. if (prev_match != 0xFF)
  1627. return prev_match;
  1628. return mtrr_state->def_type;
  1629. }
  1630. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1631. {
  1632. u8 mtrr;
  1633. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1634. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1635. if (mtrr == 0xfe || mtrr == 0xff)
  1636. mtrr = MTRR_TYPE_WRBACK;
  1637. return mtrr;
  1638. }
  1639. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1640. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1641. {
  1642. trace_kvm_mmu_unsync_page(sp);
  1643. ++vcpu->kvm->stat.mmu_unsync;
  1644. sp->unsync = 1;
  1645. kvm_mmu_mark_parents_unsync(sp);
  1646. mmu_convert_notrap(sp);
  1647. }
  1648. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1649. {
  1650. struct kvm_mmu_page *s;
  1651. struct hlist_node *node;
  1652. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1653. if (s->unsync)
  1654. continue;
  1655. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1656. __kvm_unsync_page(vcpu, s);
  1657. }
  1658. }
  1659. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1660. bool can_unsync)
  1661. {
  1662. struct kvm_mmu_page *s;
  1663. struct hlist_node *node;
  1664. bool need_unsync = false;
  1665. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1666. if (!can_unsync)
  1667. return 1;
  1668. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1669. return 1;
  1670. if (!need_unsync && !s->unsync) {
  1671. if (!oos_shadow)
  1672. return 1;
  1673. need_unsync = true;
  1674. }
  1675. }
  1676. if (need_unsync)
  1677. kvm_unsync_pages(vcpu, gfn);
  1678. return 0;
  1679. }
  1680. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1681. unsigned pte_access, int user_fault,
  1682. int write_fault, int dirty, int level,
  1683. gfn_t gfn, pfn_t pfn, bool speculative,
  1684. bool can_unsync, bool host_writable)
  1685. {
  1686. u64 spte, entry = *sptep;
  1687. int ret = 0;
  1688. /*
  1689. * We don't set the accessed bit, since we sometimes want to see
  1690. * whether the guest actually used the pte (in order to detect
  1691. * demand paging).
  1692. */
  1693. spte = PT_PRESENT_MASK;
  1694. if (!speculative)
  1695. spte |= shadow_accessed_mask;
  1696. if (!dirty)
  1697. pte_access &= ~ACC_WRITE_MASK;
  1698. if (pte_access & ACC_EXEC_MASK)
  1699. spte |= shadow_x_mask;
  1700. else
  1701. spte |= shadow_nx_mask;
  1702. if (pte_access & ACC_USER_MASK)
  1703. spte |= shadow_user_mask;
  1704. if (level > PT_PAGE_TABLE_LEVEL)
  1705. spte |= PT_PAGE_SIZE_MASK;
  1706. if (tdp_enabled)
  1707. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1708. kvm_is_mmio_pfn(pfn));
  1709. if (host_writable)
  1710. spte |= SPTE_HOST_WRITEABLE;
  1711. else
  1712. pte_access &= ~ACC_WRITE_MASK;
  1713. spte |= (u64)pfn << PAGE_SHIFT;
  1714. if ((pte_access & ACC_WRITE_MASK)
  1715. || (!vcpu->arch.mmu.direct_map && write_fault
  1716. && !is_write_protection(vcpu) && !user_fault)) {
  1717. if (level > PT_PAGE_TABLE_LEVEL &&
  1718. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1719. ret = 1;
  1720. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1721. goto done;
  1722. }
  1723. spte |= PT_WRITABLE_MASK;
  1724. if (!vcpu->arch.mmu.direct_map
  1725. && !(pte_access & ACC_WRITE_MASK))
  1726. spte &= ~PT_USER_MASK;
  1727. /*
  1728. * Optimization: for pte sync, if spte was writable the hash
  1729. * lookup is unnecessary (and expensive). Write protection
  1730. * is responsibility of mmu_get_page / kvm_sync_page.
  1731. * Same reasoning can be applied to dirty page accounting.
  1732. */
  1733. if (!can_unsync && is_writable_pte(*sptep))
  1734. goto set_pte;
  1735. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1736. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1737. __func__, gfn);
  1738. ret = 1;
  1739. pte_access &= ~ACC_WRITE_MASK;
  1740. if (is_writable_pte(spte))
  1741. spte &= ~PT_WRITABLE_MASK;
  1742. }
  1743. }
  1744. if (pte_access & ACC_WRITE_MASK)
  1745. mark_page_dirty(vcpu->kvm, gfn);
  1746. set_pte:
  1747. update_spte(sptep, spte);
  1748. /*
  1749. * If we overwrite a writable spte with a read-only one we
  1750. * should flush remote TLBs. Otherwise rmap_write_protect
  1751. * will find a read-only spte, even though the writable spte
  1752. * might be cached on a CPU's TLB.
  1753. */
  1754. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1755. kvm_flush_remote_tlbs(vcpu->kvm);
  1756. done:
  1757. return ret;
  1758. }
  1759. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1760. unsigned pt_access, unsigned pte_access,
  1761. int user_fault, int write_fault, int dirty,
  1762. int *ptwrite, int level, gfn_t gfn,
  1763. pfn_t pfn, bool speculative,
  1764. bool host_writable)
  1765. {
  1766. int was_rmapped = 0;
  1767. int rmap_count;
  1768. pgprintk("%s: spte %llx access %x write_fault %d"
  1769. " user_fault %d gfn %llx\n",
  1770. __func__, *sptep, pt_access,
  1771. write_fault, user_fault, gfn);
  1772. if (is_rmap_spte(*sptep)) {
  1773. /*
  1774. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1775. * the parent of the now unreachable PTE.
  1776. */
  1777. if (level > PT_PAGE_TABLE_LEVEL &&
  1778. !is_large_pte(*sptep)) {
  1779. struct kvm_mmu_page *child;
  1780. u64 pte = *sptep;
  1781. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1782. mmu_page_remove_parent_pte(child, sptep);
  1783. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1784. kvm_flush_remote_tlbs(vcpu->kvm);
  1785. } else if (pfn != spte_to_pfn(*sptep)) {
  1786. pgprintk("hfn old %llx new %llx\n",
  1787. spte_to_pfn(*sptep), pfn);
  1788. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1789. kvm_flush_remote_tlbs(vcpu->kvm);
  1790. } else
  1791. was_rmapped = 1;
  1792. }
  1793. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1794. dirty, level, gfn, pfn, speculative, true,
  1795. host_writable)) {
  1796. if (write_fault)
  1797. *ptwrite = 1;
  1798. kvm_mmu_flush_tlb(vcpu);
  1799. }
  1800. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1801. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1802. is_large_pte(*sptep)? "2MB" : "4kB",
  1803. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1804. *sptep, sptep);
  1805. if (!was_rmapped && is_large_pte(*sptep))
  1806. ++vcpu->kvm->stat.lpages;
  1807. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1808. if (!was_rmapped) {
  1809. rmap_count = rmap_add(vcpu, sptep, gfn);
  1810. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1811. rmap_recycle(vcpu, sptep, gfn);
  1812. }
  1813. kvm_release_pfn_clean(pfn);
  1814. if (speculative) {
  1815. vcpu->arch.last_pte_updated = sptep;
  1816. vcpu->arch.last_pte_gfn = gfn;
  1817. }
  1818. }
  1819. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1820. {
  1821. }
  1822. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1823. bool no_dirty_log)
  1824. {
  1825. struct kvm_memory_slot *slot;
  1826. unsigned long hva;
  1827. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1828. if (!slot) {
  1829. get_page(bad_page);
  1830. return page_to_pfn(bad_page);
  1831. }
  1832. hva = gfn_to_hva_memslot(slot, gfn);
  1833. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1834. }
  1835. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1836. struct kvm_mmu_page *sp,
  1837. u64 *start, u64 *end)
  1838. {
  1839. struct page *pages[PTE_PREFETCH_NUM];
  1840. unsigned access = sp->role.access;
  1841. int i, ret;
  1842. gfn_t gfn;
  1843. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1844. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1845. return -1;
  1846. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1847. if (ret <= 0)
  1848. return -1;
  1849. for (i = 0; i < ret; i++, gfn++, start++)
  1850. mmu_set_spte(vcpu, start, ACC_ALL,
  1851. access, 0, 0, 1, NULL,
  1852. sp->role.level, gfn,
  1853. page_to_pfn(pages[i]), true, true);
  1854. return 0;
  1855. }
  1856. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1857. struct kvm_mmu_page *sp, u64 *sptep)
  1858. {
  1859. u64 *spte, *start = NULL;
  1860. int i;
  1861. WARN_ON(!sp->role.direct);
  1862. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1863. spte = sp->spt + i;
  1864. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1865. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1866. if (!start)
  1867. continue;
  1868. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1869. break;
  1870. start = NULL;
  1871. } else if (!start)
  1872. start = spte;
  1873. }
  1874. }
  1875. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1876. {
  1877. struct kvm_mmu_page *sp;
  1878. /*
  1879. * Since it's no accessed bit on EPT, it's no way to
  1880. * distinguish between actually accessed translations
  1881. * and prefetched, so disable pte prefetch if EPT is
  1882. * enabled.
  1883. */
  1884. if (!shadow_accessed_mask)
  1885. return;
  1886. sp = page_header(__pa(sptep));
  1887. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1888. return;
  1889. __direct_pte_prefetch(vcpu, sp, sptep);
  1890. }
  1891. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1892. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  1893. bool prefault)
  1894. {
  1895. struct kvm_shadow_walk_iterator iterator;
  1896. struct kvm_mmu_page *sp;
  1897. int pt_write = 0;
  1898. gfn_t pseudo_gfn;
  1899. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1900. if (iterator.level == level) {
  1901. unsigned pte_access = ACC_ALL;
  1902. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  1903. 0, write, 1, &pt_write,
  1904. level, gfn, pfn, prefault, map_writable);
  1905. direct_pte_prefetch(vcpu, iterator.sptep);
  1906. ++vcpu->stat.pf_fixed;
  1907. break;
  1908. }
  1909. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1910. u64 base_addr = iterator.addr;
  1911. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1912. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1913. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1914. iterator.level - 1,
  1915. 1, ACC_ALL, iterator.sptep);
  1916. if (!sp) {
  1917. pgprintk("nonpaging_map: ENOMEM\n");
  1918. kvm_release_pfn_clean(pfn);
  1919. return -ENOMEM;
  1920. }
  1921. __set_spte(iterator.sptep,
  1922. __pa(sp->spt)
  1923. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1924. | shadow_user_mask | shadow_x_mask
  1925. | shadow_accessed_mask);
  1926. }
  1927. }
  1928. return pt_write;
  1929. }
  1930. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  1931. {
  1932. siginfo_t info;
  1933. info.si_signo = SIGBUS;
  1934. info.si_errno = 0;
  1935. info.si_code = BUS_MCEERR_AR;
  1936. info.si_addr = (void __user *)address;
  1937. info.si_addr_lsb = PAGE_SHIFT;
  1938. send_sig_info(SIGBUS, &info, tsk);
  1939. }
  1940. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1941. {
  1942. kvm_release_pfn_clean(pfn);
  1943. if (is_hwpoison_pfn(pfn)) {
  1944. kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
  1945. return 0;
  1946. } else if (is_fault_pfn(pfn))
  1947. return -EFAULT;
  1948. return 1;
  1949. }
  1950. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  1951. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  1952. {
  1953. pfn_t pfn = *pfnp;
  1954. gfn_t gfn = *gfnp;
  1955. int level = *levelp;
  1956. /*
  1957. * Check if it's a transparent hugepage. If this would be an
  1958. * hugetlbfs page, level wouldn't be set to
  1959. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  1960. * here.
  1961. */
  1962. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  1963. level == PT_PAGE_TABLE_LEVEL &&
  1964. PageTransCompound(pfn_to_page(pfn)) &&
  1965. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  1966. unsigned long mask;
  1967. /*
  1968. * mmu_notifier_retry was successful and we hold the
  1969. * mmu_lock here, so the pmd can't become splitting
  1970. * from under us, and in turn
  1971. * __split_huge_page_refcount() can't run from under
  1972. * us and we can safely transfer the refcount from
  1973. * PG_tail to PG_head as we switch the pfn to tail to
  1974. * head.
  1975. */
  1976. *levelp = level = PT_DIRECTORY_LEVEL;
  1977. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  1978. VM_BUG_ON((gfn & mask) != (pfn & mask));
  1979. if (pfn & mask) {
  1980. gfn &= ~mask;
  1981. *gfnp = gfn;
  1982. kvm_release_pfn_clean(pfn);
  1983. pfn &= ~mask;
  1984. if (!get_page_unless_zero(pfn_to_page(pfn)))
  1985. BUG();
  1986. *pfnp = pfn;
  1987. }
  1988. }
  1989. }
  1990. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  1991. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  1992. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  1993. bool prefault)
  1994. {
  1995. int r;
  1996. int level;
  1997. int force_pt_level;
  1998. pfn_t pfn;
  1999. unsigned long mmu_seq;
  2000. bool map_writable;
  2001. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2002. if (likely(!force_pt_level)) {
  2003. level = mapping_level(vcpu, gfn);
  2004. /*
  2005. * This path builds a PAE pagetable - so we can map
  2006. * 2mb pages at maximum. Therefore check if the level
  2007. * is larger than that.
  2008. */
  2009. if (level > PT_DIRECTORY_LEVEL)
  2010. level = PT_DIRECTORY_LEVEL;
  2011. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2012. } else
  2013. level = PT_PAGE_TABLE_LEVEL;
  2014. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2015. smp_rmb();
  2016. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2017. return 0;
  2018. /* mmio */
  2019. if (is_error_pfn(pfn))
  2020. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2021. spin_lock(&vcpu->kvm->mmu_lock);
  2022. if (mmu_notifier_retry(vcpu, mmu_seq))
  2023. goto out_unlock;
  2024. kvm_mmu_free_some_pages(vcpu);
  2025. if (likely(!force_pt_level))
  2026. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2027. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2028. prefault);
  2029. spin_unlock(&vcpu->kvm->mmu_lock);
  2030. return r;
  2031. out_unlock:
  2032. spin_unlock(&vcpu->kvm->mmu_lock);
  2033. kvm_release_pfn_clean(pfn);
  2034. return 0;
  2035. }
  2036. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2037. {
  2038. int i;
  2039. struct kvm_mmu_page *sp;
  2040. LIST_HEAD(invalid_list);
  2041. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2042. return;
  2043. spin_lock(&vcpu->kvm->mmu_lock);
  2044. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2045. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2046. vcpu->arch.mmu.direct_map)) {
  2047. hpa_t root = vcpu->arch.mmu.root_hpa;
  2048. sp = page_header(root);
  2049. --sp->root_count;
  2050. if (!sp->root_count && sp->role.invalid) {
  2051. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2052. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2053. }
  2054. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2055. spin_unlock(&vcpu->kvm->mmu_lock);
  2056. return;
  2057. }
  2058. for (i = 0; i < 4; ++i) {
  2059. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2060. if (root) {
  2061. root &= PT64_BASE_ADDR_MASK;
  2062. sp = page_header(root);
  2063. --sp->root_count;
  2064. if (!sp->root_count && sp->role.invalid)
  2065. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2066. &invalid_list);
  2067. }
  2068. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2069. }
  2070. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2071. spin_unlock(&vcpu->kvm->mmu_lock);
  2072. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2073. }
  2074. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2075. {
  2076. int ret = 0;
  2077. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2078. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2079. ret = 1;
  2080. }
  2081. return ret;
  2082. }
  2083. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2084. {
  2085. struct kvm_mmu_page *sp;
  2086. unsigned i;
  2087. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2088. spin_lock(&vcpu->kvm->mmu_lock);
  2089. kvm_mmu_free_some_pages(vcpu);
  2090. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2091. 1, ACC_ALL, NULL);
  2092. ++sp->root_count;
  2093. spin_unlock(&vcpu->kvm->mmu_lock);
  2094. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2095. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2096. for (i = 0; i < 4; ++i) {
  2097. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2098. ASSERT(!VALID_PAGE(root));
  2099. spin_lock(&vcpu->kvm->mmu_lock);
  2100. kvm_mmu_free_some_pages(vcpu);
  2101. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2102. i << 30,
  2103. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2104. NULL);
  2105. root = __pa(sp->spt);
  2106. ++sp->root_count;
  2107. spin_unlock(&vcpu->kvm->mmu_lock);
  2108. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2109. }
  2110. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2111. } else
  2112. BUG();
  2113. return 0;
  2114. }
  2115. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2116. {
  2117. struct kvm_mmu_page *sp;
  2118. u64 pdptr, pm_mask;
  2119. gfn_t root_gfn;
  2120. int i;
  2121. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2122. if (mmu_check_root(vcpu, root_gfn))
  2123. return 1;
  2124. /*
  2125. * Do we shadow a long mode page table? If so we need to
  2126. * write-protect the guests page table root.
  2127. */
  2128. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2129. hpa_t root = vcpu->arch.mmu.root_hpa;
  2130. ASSERT(!VALID_PAGE(root));
  2131. spin_lock(&vcpu->kvm->mmu_lock);
  2132. kvm_mmu_free_some_pages(vcpu);
  2133. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2134. 0, ACC_ALL, NULL);
  2135. root = __pa(sp->spt);
  2136. ++sp->root_count;
  2137. spin_unlock(&vcpu->kvm->mmu_lock);
  2138. vcpu->arch.mmu.root_hpa = root;
  2139. return 0;
  2140. }
  2141. /*
  2142. * We shadow a 32 bit page table. This may be a legacy 2-level
  2143. * or a PAE 3-level page table. In either case we need to be aware that
  2144. * the shadow page table may be a PAE or a long mode page table.
  2145. */
  2146. pm_mask = PT_PRESENT_MASK;
  2147. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2148. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2149. for (i = 0; i < 4; ++i) {
  2150. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2151. ASSERT(!VALID_PAGE(root));
  2152. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2153. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2154. if (!is_present_gpte(pdptr)) {
  2155. vcpu->arch.mmu.pae_root[i] = 0;
  2156. continue;
  2157. }
  2158. root_gfn = pdptr >> PAGE_SHIFT;
  2159. if (mmu_check_root(vcpu, root_gfn))
  2160. return 1;
  2161. }
  2162. spin_lock(&vcpu->kvm->mmu_lock);
  2163. kvm_mmu_free_some_pages(vcpu);
  2164. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2165. PT32_ROOT_LEVEL, 0,
  2166. ACC_ALL, NULL);
  2167. root = __pa(sp->spt);
  2168. ++sp->root_count;
  2169. spin_unlock(&vcpu->kvm->mmu_lock);
  2170. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2171. }
  2172. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2173. /*
  2174. * If we shadow a 32 bit page table with a long mode page
  2175. * table we enter this path.
  2176. */
  2177. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2178. if (vcpu->arch.mmu.lm_root == NULL) {
  2179. /*
  2180. * The additional page necessary for this is only
  2181. * allocated on demand.
  2182. */
  2183. u64 *lm_root;
  2184. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2185. if (lm_root == NULL)
  2186. return 1;
  2187. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2188. vcpu->arch.mmu.lm_root = lm_root;
  2189. }
  2190. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2191. }
  2192. return 0;
  2193. }
  2194. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2195. {
  2196. if (vcpu->arch.mmu.direct_map)
  2197. return mmu_alloc_direct_roots(vcpu);
  2198. else
  2199. return mmu_alloc_shadow_roots(vcpu);
  2200. }
  2201. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2202. {
  2203. int i;
  2204. struct kvm_mmu_page *sp;
  2205. if (vcpu->arch.mmu.direct_map)
  2206. return;
  2207. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2208. return;
  2209. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2210. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2211. hpa_t root = vcpu->arch.mmu.root_hpa;
  2212. sp = page_header(root);
  2213. mmu_sync_children(vcpu, sp);
  2214. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2215. return;
  2216. }
  2217. for (i = 0; i < 4; ++i) {
  2218. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2219. if (root && VALID_PAGE(root)) {
  2220. root &= PT64_BASE_ADDR_MASK;
  2221. sp = page_header(root);
  2222. mmu_sync_children(vcpu, sp);
  2223. }
  2224. }
  2225. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2226. }
  2227. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2228. {
  2229. spin_lock(&vcpu->kvm->mmu_lock);
  2230. mmu_sync_roots(vcpu);
  2231. spin_unlock(&vcpu->kvm->mmu_lock);
  2232. }
  2233. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2234. u32 access, struct x86_exception *exception)
  2235. {
  2236. if (exception)
  2237. exception->error_code = 0;
  2238. return vaddr;
  2239. }
  2240. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2241. u32 access,
  2242. struct x86_exception *exception)
  2243. {
  2244. if (exception)
  2245. exception->error_code = 0;
  2246. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2247. }
  2248. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2249. u32 error_code, bool prefault)
  2250. {
  2251. gfn_t gfn;
  2252. int r;
  2253. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2254. r = mmu_topup_memory_caches(vcpu);
  2255. if (r)
  2256. return r;
  2257. ASSERT(vcpu);
  2258. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2259. gfn = gva >> PAGE_SHIFT;
  2260. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2261. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2262. }
  2263. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2264. {
  2265. struct kvm_arch_async_pf arch;
  2266. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2267. arch.gfn = gfn;
  2268. arch.direct_map = vcpu->arch.mmu.direct_map;
  2269. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2270. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2271. }
  2272. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2273. {
  2274. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2275. kvm_event_needs_reinjection(vcpu)))
  2276. return false;
  2277. return kvm_x86_ops->interrupt_allowed(vcpu);
  2278. }
  2279. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2280. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2281. {
  2282. bool async;
  2283. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2284. if (!async)
  2285. return false; /* *pfn has correct page already */
  2286. put_page(pfn_to_page(*pfn));
  2287. if (!prefault && can_do_async_pf(vcpu)) {
  2288. trace_kvm_try_async_get_page(gva, gfn);
  2289. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2290. trace_kvm_async_pf_doublefault(gva, gfn);
  2291. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2292. return true;
  2293. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2294. return true;
  2295. }
  2296. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2297. return false;
  2298. }
  2299. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2300. bool prefault)
  2301. {
  2302. pfn_t pfn;
  2303. int r;
  2304. int level;
  2305. int force_pt_level;
  2306. gfn_t gfn = gpa >> PAGE_SHIFT;
  2307. unsigned long mmu_seq;
  2308. int write = error_code & PFERR_WRITE_MASK;
  2309. bool map_writable;
  2310. ASSERT(vcpu);
  2311. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2312. r = mmu_topup_memory_caches(vcpu);
  2313. if (r)
  2314. return r;
  2315. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2316. if (likely(!force_pt_level)) {
  2317. level = mapping_level(vcpu, gfn);
  2318. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2319. } else
  2320. level = PT_PAGE_TABLE_LEVEL;
  2321. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2322. smp_rmb();
  2323. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2324. return 0;
  2325. /* mmio */
  2326. if (is_error_pfn(pfn))
  2327. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2328. spin_lock(&vcpu->kvm->mmu_lock);
  2329. if (mmu_notifier_retry(vcpu, mmu_seq))
  2330. goto out_unlock;
  2331. kvm_mmu_free_some_pages(vcpu);
  2332. if (likely(!force_pt_level))
  2333. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2334. r = __direct_map(vcpu, gpa, write, map_writable,
  2335. level, gfn, pfn, prefault);
  2336. spin_unlock(&vcpu->kvm->mmu_lock);
  2337. return r;
  2338. out_unlock:
  2339. spin_unlock(&vcpu->kvm->mmu_lock);
  2340. kvm_release_pfn_clean(pfn);
  2341. return 0;
  2342. }
  2343. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2344. {
  2345. mmu_free_roots(vcpu);
  2346. }
  2347. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2348. struct kvm_mmu *context)
  2349. {
  2350. context->new_cr3 = nonpaging_new_cr3;
  2351. context->page_fault = nonpaging_page_fault;
  2352. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2353. context->free = nonpaging_free;
  2354. context->prefetch_page = nonpaging_prefetch_page;
  2355. context->sync_page = nonpaging_sync_page;
  2356. context->invlpg = nonpaging_invlpg;
  2357. context->update_pte = nonpaging_update_pte;
  2358. context->root_level = 0;
  2359. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2360. context->root_hpa = INVALID_PAGE;
  2361. context->direct_map = true;
  2362. context->nx = false;
  2363. return 0;
  2364. }
  2365. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2366. {
  2367. ++vcpu->stat.tlb_flush;
  2368. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2369. }
  2370. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2371. {
  2372. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2373. mmu_free_roots(vcpu);
  2374. }
  2375. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2376. {
  2377. return kvm_read_cr3(vcpu);
  2378. }
  2379. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2380. struct x86_exception *fault)
  2381. {
  2382. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2383. }
  2384. static void paging_free(struct kvm_vcpu *vcpu)
  2385. {
  2386. nonpaging_free(vcpu);
  2387. }
  2388. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2389. {
  2390. int bit7;
  2391. bit7 = (gpte >> 7) & 1;
  2392. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2393. }
  2394. #define PTTYPE 64
  2395. #include "paging_tmpl.h"
  2396. #undef PTTYPE
  2397. #define PTTYPE 32
  2398. #include "paging_tmpl.h"
  2399. #undef PTTYPE
  2400. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2401. struct kvm_mmu *context,
  2402. int level)
  2403. {
  2404. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2405. u64 exb_bit_rsvd = 0;
  2406. if (!context->nx)
  2407. exb_bit_rsvd = rsvd_bits(63, 63);
  2408. switch (level) {
  2409. case PT32_ROOT_LEVEL:
  2410. /* no rsvd bits for 2 level 4K page table entries */
  2411. context->rsvd_bits_mask[0][1] = 0;
  2412. context->rsvd_bits_mask[0][0] = 0;
  2413. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2414. if (!is_pse(vcpu)) {
  2415. context->rsvd_bits_mask[1][1] = 0;
  2416. break;
  2417. }
  2418. if (is_cpuid_PSE36())
  2419. /* 36bits PSE 4MB page */
  2420. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2421. else
  2422. /* 32 bits PSE 4MB page */
  2423. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2424. break;
  2425. case PT32E_ROOT_LEVEL:
  2426. context->rsvd_bits_mask[0][2] =
  2427. rsvd_bits(maxphyaddr, 63) |
  2428. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2429. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2430. rsvd_bits(maxphyaddr, 62); /* PDE */
  2431. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2432. rsvd_bits(maxphyaddr, 62); /* PTE */
  2433. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2434. rsvd_bits(maxphyaddr, 62) |
  2435. rsvd_bits(13, 20); /* large page */
  2436. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2437. break;
  2438. case PT64_ROOT_LEVEL:
  2439. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2440. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2441. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2442. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2443. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2444. rsvd_bits(maxphyaddr, 51);
  2445. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2446. rsvd_bits(maxphyaddr, 51);
  2447. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2448. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2449. rsvd_bits(maxphyaddr, 51) |
  2450. rsvd_bits(13, 29);
  2451. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2452. rsvd_bits(maxphyaddr, 51) |
  2453. rsvd_bits(13, 20); /* large page */
  2454. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2455. break;
  2456. }
  2457. }
  2458. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2459. struct kvm_mmu *context,
  2460. int level)
  2461. {
  2462. context->nx = is_nx(vcpu);
  2463. reset_rsvds_bits_mask(vcpu, context, level);
  2464. ASSERT(is_pae(vcpu));
  2465. context->new_cr3 = paging_new_cr3;
  2466. context->page_fault = paging64_page_fault;
  2467. context->gva_to_gpa = paging64_gva_to_gpa;
  2468. context->prefetch_page = paging64_prefetch_page;
  2469. context->sync_page = paging64_sync_page;
  2470. context->invlpg = paging64_invlpg;
  2471. context->update_pte = paging64_update_pte;
  2472. context->free = paging_free;
  2473. context->root_level = level;
  2474. context->shadow_root_level = level;
  2475. context->root_hpa = INVALID_PAGE;
  2476. context->direct_map = false;
  2477. return 0;
  2478. }
  2479. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2480. struct kvm_mmu *context)
  2481. {
  2482. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2483. }
  2484. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2485. struct kvm_mmu *context)
  2486. {
  2487. context->nx = false;
  2488. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2489. context->new_cr3 = paging_new_cr3;
  2490. context->page_fault = paging32_page_fault;
  2491. context->gva_to_gpa = paging32_gva_to_gpa;
  2492. context->free = paging_free;
  2493. context->prefetch_page = paging32_prefetch_page;
  2494. context->sync_page = paging32_sync_page;
  2495. context->invlpg = paging32_invlpg;
  2496. context->update_pte = paging32_update_pte;
  2497. context->root_level = PT32_ROOT_LEVEL;
  2498. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2499. context->root_hpa = INVALID_PAGE;
  2500. context->direct_map = false;
  2501. return 0;
  2502. }
  2503. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2504. struct kvm_mmu *context)
  2505. {
  2506. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2507. }
  2508. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2509. {
  2510. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2511. context->base_role.word = 0;
  2512. context->new_cr3 = nonpaging_new_cr3;
  2513. context->page_fault = tdp_page_fault;
  2514. context->free = nonpaging_free;
  2515. context->prefetch_page = nonpaging_prefetch_page;
  2516. context->sync_page = nonpaging_sync_page;
  2517. context->invlpg = nonpaging_invlpg;
  2518. context->update_pte = nonpaging_update_pte;
  2519. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2520. context->root_hpa = INVALID_PAGE;
  2521. context->direct_map = true;
  2522. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2523. context->get_cr3 = get_cr3;
  2524. context->inject_page_fault = kvm_inject_page_fault;
  2525. context->nx = is_nx(vcpu);
  2526. if (!is_paging(vcpu)) {
  2527. context->nx = false;
  2528. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2529. context->root_level = 0;
  2530. } else if (is_long_mode(vcpu)) {
  2531. context->nx = is_nx(vcpu);
  2532. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2533. context->gva_to_gpa = paging64_gva_to_gpa;
  2534. context->root_level = PT64_ROOT_LEVEL;
  2535. } else if (is_pae(vcpu)) {
  2536. context->nx = is_nx(vcpu);
  2537. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2538. context->gva_to_gpa = paging64_gva_to_gpa;
  2539. context->root_level = PT32E_ROOT_LEVEL;
  2540. } else {
  2541. context->nx = false;
  2542. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2543. context->gva_to_gpa = paging32_gva_to_gpa;
  2544. context->root_level = PT32_ROOT_LEVEL;
  2545. }
  2546. return 0;
  2547. }
  2548. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2549. {
  2550. int r;
  2551. ASSERT(vcpu);
  2552. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2553. if (!is_paging(vcpu))
  2554. r = nonpaging_init_context(vcpu, context);
  2555. else if (is_long_mode(vcpu))
  2556. r = paging64_init_context(vcpu, context);
  2557. else if (is_pae(vcpu))
  2558. r = paging32E_init_context(vcpu, context);
  2559. else
  2560. r = paging32_init_context(vcpu, context);
  2561. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2562. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2563. return r;
  2564. }
  2565. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2566. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2567. {
  2568. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2569. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2570. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2571. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2572. return r;
  2573. }
  2574. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2575. {
  2576. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2577. g_context->get_cr3 = get_cr3;
  2578. g_context->inject_page_fault = kvm_inject_page_fault;
  2579. /*
  2580. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2581. * translation of l2_gpa to l1_gpa addresses is done using the
  2582. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2583. * functions between mmu and nested_mmu are swapped.
  2584. */
  2585. if (!is_paging(vcpu)) {
  2586. g_context->nx = false;
  2587. g_context->root_level = 0;
  2588. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2589. } else if (is_long_mode(vcpu)) {
  2590. g_context->nx = is_nx(vcpu);
  2591. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2592. g_context->root_level = PT64_ROOT_LEVEL;
  2593. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2594. } else if (is_pae(vcpu)) {
  2595. g_context->nx = is_nx(vcpu);
  2596. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2597. g_context->root_level = PT32E_ROOT_LEVEL;
  2598. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2599. } else {
  2600. g_context->nx = false;
  2601. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2602. g_context->root_level = PT32_ROOT_LEVEL;
  2603. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2604. }
  2605. return 0;
  2606. }
  2607. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2608. {
  2609. if (mmu_is_nested(vcpu))
  2610. return init_kvm_nested_mmu(vcpu);
  2611. else if (tdp_enabled)
  2612. return init_kvm_tdp_mmu(vcpu);
  2613. else
  2614. return init_kvm_softmmu(vcpu);
  2615. }
  2616. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2617. {
  2618. ASSERT(vcpu);
  2619. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2620. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2621. vcpu->arch.mmu.free(vcpu);
  2622. }
  2623. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2624. {
  2625. destroy_kvm_mmu(vcpu);
  2626. return init_kvm_mmu(vcpu);
  2627. }
  2628. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2629. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2630. {
  2631. int r;
  2632. r = mmu_topup_memory_caches(vcpu);
  2633. if (r)
  2634. goto out;
  2635. r = mmu_alloc_roots(vcpu);
  2636. spin_lock(&vcpu->kvm->mmu_lock);
  2637. mmu_sync_roots(vcpu);
  2638. spin_unlock(&vcpu->kvm->mmu_lock);
  2639. if (r)
  2640. goto out;
  2641. /* set_cr3() should ensure TLB has been flushed */
  2642. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2643. out:
  2644. return r;
  2645. }
  2646. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2647. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2648. {
  2649. mmu_free_roots(vcpu);
  2650. }
  2651. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2652. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2653. struct kvm_mmu_page *sp,
  2654. u64 *spte)
  2655. {
  2656. u64 pte;
  2657. struct kvm_mmu_page *child;
  2658. pte = *spte;
  2659. if (is_shadow_present_pte(pte)) {
  2660. if (is_last_spte(pte, sp->role.level))
  2661. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2662. else {
  2663. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2664. mmu_page_remove_parent_pte(child, spte);
  2665. }
  2666. }
  2667. __set_spte(spte, shadow_trap_nonpresent_pte);
  2668. if (is_large_pte(pte))
  2669. --vcpu->kvm->stat.lpages;
  2670. }
  2671. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2672. struct kvm_mmu_page *sp, u64 *spte,
  2673. const void *new)
  2674. {
  2675. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2676. ++vcpu->kvm->stat.mmu_pde_zapped;
  2677. return;
  2678. }
  2679. ++vcpu->kvm->stat.mmu_pte_updated;
  2680. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2681. }
  2682. static bool need_remote_flush(u64 old, u64 new)
  2683. {
  2684. if (!is_shadow_present_pte(old))
  2685. return false;
  2686. if (!is_shadow_present_pte(new))
  2687. return true;
  2688. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2689. return true;
  2690. old ^= PT64_NX_MASK;
  2691. new ^= PT64_NX_MASK;
  2692. return (old & ~new & PT64_PERM_MASK) != 0;
  2693. }
  2694. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2695. bool remote_flush, bool local_flush)
  2696. {
  2697. if (zap_page)
  2698. return;
  2699. if (remote_flush)
  2700. kvm_flush_remote_tlbs(vcpu->kvm);
  2701. else if (local_flush)
  2702. kvm_mmu_flush_tlb(vcpu);
  2703. }
  2704. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2705. {
  2706. u64 *spte = vcpu->arch.last_pte_updated;
  2707. return !!(spte && (*spte & shadow_accessed_mask));
  2708. }
  2709. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2710. {
  2711. u64 *spte = vcpu->arch.last_pte_updated;
  2712. if (spte
  2713. && vcpu->arch.last_pte_gfn == gfn
  2714. && shadow_accessed_mask
  2715. && !(*spte & shadow_accessed_mask)
  2716. && is_shadow_present_pte(*spte))
  2717. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2718. }
  2719. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2720. const u8 *new, int bytes,
  2721. bool guest_initiated)
  2722. {
  2723. gfn_t gfn = gpa >> PAGE_SHIFT;
  2724. union kvm_mmu_page_role mask = { .word = 0 };
  2725. struct kvm_mmu_page *sp;
  2726. struct hlist_node *node;
  2727. LIST_HEAD(invalid_list);
  2728. u64 entry, gentry, *spte;
  2729. unsigned pte_size, page_offset, misaligned, quadrant, offset;
  2730. int level, npte, invlpg_counter, r, flooded = 0;
  2731. bool remote_flush, local_flush, zap_page;
  2732. /*
  2733. * If we don't have indirect shadow pages, it means no page is
  2734. * write-protected, so we can exit simply.
  2735. */
  2736. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  2737. return;
  2738. zap_page = remote_flush = local_flush = false;
  2739. offset = offset_in_page(gpa);
  2740. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2741. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2742. /*
  2743. * Assume that the pte write on a page table of the same type
  2744. * as the current vcpu paging mode since we update the sptes only
  2745. * when they have the same mode.
  2746. */
  2747. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2748. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2749. if (is_pae(vcpu)) {
  2750. gpa &= ~(gpa_t)7;
  2751. bytes = 8;
  2752. }
  2753. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2754. if (r)
  2755. gentry = 0;
  2756. new = (const u8 *)&gentry;
  2757. }
  2758. switch (bytes) {
  2759. case 4:
  2760. gentry = *(const u32 *)new;
  2761. break;
  2762. case 8:
  2763. gentry = *(const u64 *)new;
  2764. break;
  2765. default:
  2766. gentry = 0;
  2767. break;
  2768. }
  2769. spin_lock(&vcpu->kvm->mmu_lock);
  2770. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2771. gentry = 0;
  2772. kvm_mmu_free_some_pages(vcpu);
  2773. ++vcpu->kvm->stat.mmu_pte_write;
  2774. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2775. if (guest_initiated) {
  2776. kvm_mmu_access_page(vcpu, gfn);
  2777. if (gfn == vcpu->arch.last_pt_write_gfn
  2778. && !last_updated_pte_accessed(vcpu)) {
  2779. ++vcpu->arch.last_pt_write_count;
  2780. if (vcpu->arch.last_pt_write_count >= 3)
  2781. flooded = 1;
  2782. } else {
  2783. vcpu->arch.last_pt_write_gfn = gfn;
  2784. vcpu->arch.last_pt_write_count = 1;
  2785. vcpu->arch.last_pte_updated = NULL;
  2786. }
  2787. }
  2788. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2789. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2790. pte_size = sp->role.cr4_pae ? 8 : 4;
  2791. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2792. misaligned |= bytes < 4;
  2793. if (misaligned || flooded) {
  2794. /*
  2795. * Misaligned accesses are too much trouble to fix
  2796. * up; also, they usually indicate a page is not used
  2797. * as a page table.
  2798. *
  2799. * If we're seeing too many writes to a page,
  2800. * it may no longer be a page table, or we may be
  2801. * forking, in which case it is better to unmap the
  2802. * page.
  2803. */
  2804. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2805. gpa, bytes, sp->role.word);
  2806. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2807. &invalid_list);
  2808. ++vcpu->kvm->stat.mmu_flooded;
  2809. continue;
  2810. }
  2811. page_offset = offset;
  2812. level = sp->role.level;
  2813. npte = 1;
  2814. if (!sp->role.cr4_pae) {
  2815. page_offset <<= 1; /* 32->64 */
  2816. /*
  2817. * A 32-bit pde maps 4MB while the shadow pdes map
  2818. * only 2MB. So we need to double the offset again
  2819. * and zap two pdes instead of one.
  2820. */
  2821. if (level == PT32_ROOT_LEVEL) {
  2822. page_offset &= ~7; /* kill rounding error */
  2823. page_offset <<= 1;
  2824. npte = 2;
  2825. }
  2826. quadrant = page_offset >> PAGE_SHIFT;
  2827. page_offset &= ~PAGE_MASK;
  2828. if (quadrant != sp->role.quadrant)
  2829. continue;
  2830. }
  2831. local_flush = true;
  2832. spte = &sp->spt[page_offset / sizeof(*spte)];
  2833. while (npte--) {
  2834. entry = *spte;
  2835. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2836. if (gentry &&
  2837. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2838. & mask.word))
  2839. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2840. if (!remote_flush && need_remote_flush(entry, *spte))
  2841. remote_flush = true;
  2842. ++spte;
  2843. }
  2844. }
  2845. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2846. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2847. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2848. spin_unlock(&vcpu->kvm->mmu_lock);
  2849. }
  2850. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2851. {
  2852. gpa_t gpa;
  2853. int r;
  2854. if (vcpu->arch.mmu.direct_map)
  2855. return 0;
  2856. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2857. spin_lock(&vcpu->kvm->mmu_lock);
  2858. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2859. spin_unlock(&vcpu->kvm->mmu_lock);
  2860. return r;
  2861. }
  2862. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2863. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2864. {
  2865. LIST_HEAD(invalid_list);
  2866. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2867. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2868. struct kvm_mmu_page *sp;
  2869. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2870. struct kvm_mmu_page, link);
  2871. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2872. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2873. ++vcpu->kvm->stat.mmu_recycled;
  2874. }
  2875. }
  2876. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  2877. void *insn, int insn_len)
  2878. {
  2879. int r;
  2880. enum emulation_result er;
  2881. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  2882. if (r < 0)
  2883. goto out;
  2884. if (!r) {
  2885. r = 1;
  2886. goto out;
  2887. }
  2888. r = mmu_topup_memory_caches(vcpu);
  2889. if (r)
  2890. goto out;
  2891. er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
  2892. switch (er) {
  2893. case EMULATE_DONE:
  2894. return 1;
  2895. case EMULATE_DO_MMIO:
  2896. ++vcpu->stat.mmio_exits;
  2897. /* fall through */
  2898. case EMULATE_FAIL:
  2899. return 0;
  2900. default:
  2901. BUG();
  2902. }
  2903. out:
  2904. return r;
  2905. }
  2906. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2907. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2908. {
  2909. vcpu->arch.mmu.invlpg(vcpu, gva);
  2910. kvm_mmu_flush_tlb(vcpu);
  2911. ++vcpu->stat.invlpg;
  2912. }
  2913. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2914. void kvm_enable_tdp(void)
  2915. {
  2916. tdp_enabled = true;
  2917. }
  2918. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2919. void kvm_disable_tdp(void)
  2920. {
  2921. tdp_enabled = false;
  2922. }
  2923. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2924. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2925. {
  2926. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2927. if (vcpu->arch.mmu.lm_root != NULL)
  2928. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  2929. }
  2930. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2931. {
  2932. struct page *page;
  2933. int i;
  2934. ASSERT(vcpu);
  2935. /*
  2936. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2937. * Therefore we need to allocate shadow page tables in the first
  2938. * 4GB of memory, which happens to fit the DMA32 zone.
  2939. */
  2940. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2941. if (!page)
  2942. return -ENOMEM;
  2943. vcpu->arch.mmu.pae_root = page_address(page);
  2944. for (i = 0; i < 4; ++i)
  2945. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2946. return 0;
  2947. }
  2948. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2949. {
  2950. ASSERT(vcpu);
  2951. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2952. return alloc_mmu_pages(vcpu);
  2953. }
  2954. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2955. {
  2956. ASSERT(vcpu);
  2957. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2958. return init_kvm_mmu(vcpu);
  2959. }
  2960. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2961. {
  2962. struct kvm_mmu_page *sp;
  2963. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2964. int i;
  2965. u64 *pt;
  2966. if (!test_bit(slot, sp->slot_bitmap))
  2967. continue;
  2968. pt = sp->spt;
  2969. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2970. if (!is_shadow_present_pte(pt[i]) ||
  2971. !is_last_spte(pt[i], sp->role.level))
  2972. continue;
  2973. if (is_large_pte(pt[i])) {
  2974. drop_spte(kvm, &pt[i],
  2975. shadow_trap_nonpresent_pte);
  2976. --kvm->stat.lpages;
  2977. continue;
  2978. }
  2979. /* avoid RMW */
  2980. if (is_writable_pte(pt[i]))
  2981. update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
  2982. }
  2983. }
  2984. kvm_flush_remote_tlbs(kvm);
  2985. }
  2986. void kvm_mmu_zap_all(struct kvm *kvm)
  2987. {
  2988. struct kvm_mmu_page *sp, *node;
  2989. LIST_HEAD(invalid_list);
  2990. spin_lock(&kvm->mmu_lock);
  2991. restart:
  2992. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2993. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2994. goto restart;
  2995. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2996. spin_unlock(&kvm->mmu_lock);
  2997. }
  2998. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2999. struct list_head *invalid_list)
  3000. {
  3001. struct kvm_mmu_page *page;
  3002. page = container_of(kvm->arch.active_mmu_pages.prev,
  3003. struct kvm_mmu_page, link);
  3004. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3005. }
  3006. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3007. {
  3008. struct kvm *kvm;
  3009. struct kvm *kvm_freed = NULL;
  3010. int nr_to_scan = sc->nr_to_scan;
  3011. if (nr_to_scan == 0)
  3012. goto out;
  3013. raw_spin_lock(&kvm_lock);
  3014. list_for_each_entry(kvm, &vm_list, vm_list) {
  3015. int idx, freed_pages;
  3016. LIST_HEAD(invalid_list);
  3017. idx = srcu_read_lock(&kvm->srcu);
  3018. spin_lock(&kvm->mmu_lock);
  3019. if (!kvm_freed && nr_to_scan > 0 &&
  3020. kvm->arch.n_used_mmu_pages > 0) {
  3021. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  3022. &invalid_list);
  3023. kvm_freed = kvm;
  3024. }
  3025. nr_to_scan--;
  3026. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3027. spin_unlock(&kvm->mmu_lock);
  3028. srcu_read_unlock(&kvm->srcu, idx);
  3029. }
  3030. if (kvm_freed)
  3031. list_move_tail(&kvm_freed->vm_list, &vm_list);
  3032. raw_spin_unlock(&kvm_lock);
  3033. out:
  3034. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3035. }
  3036. static struct shrinker mmu_shrinker = {
  3037. .shrink = mmu_shrink,
  3038. .seeks = DEFAULT_SEEKS * 10,
  3039. };
  3040. static void mmu_destroy_caches(void)
  3041. {
  3042. if (pte_chain_cache)
  3043. kmem_cache_destroy(pte_chain_cache);
  3044. if (rmap_desc_cache)
  3045. kmem_cache_destroy(rmap_desc_cache);
  3046. if (mmu_page_header_cache)
  3047. kmem_cache_destroy(mmu_page_header_cache);
  3048. }
  3049. int kvm_mmu_module_init(void)
  3050. {
  3051. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  3052. sizeof(struct kvm_pte_chain),
  3053. 0, 0, NULL);
  3054. if (!pte_chain_cache)
  3055. goto nomem;
  3056. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  3057. sizeof(struct kvm_rmap_desc),
  3058. 0, 0, NULL);
  3059. if (!rmap_desc_cache)
  3060. goto nomem;
  3061. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3062. sizeof(struct kvm_mmu_page),
  3063. 0, 0, NULL);
  3064. if (!mmu_page_header_cache)
  3065. goto nomem;
  3066. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3067. goto nomem;
  3068. register_shrinker(&mmu_shrinker);
  3069. return 0;
  3070. nomem:
  3071. mmu_destroy_caches();
  3072. return -ENOMEM;
  3073. }
  3074. /*
  3075. * Caculate mmu pages needed for kvm.
  3076. */
  3077. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3078. {
  3079. int i;
  3080. unsigned int nr_mmu_pages;
  3081. unsigned int nr_pages = 0;
  3082. struct kvm_memslots *slots;
  3083. slots = kvm_memslots(kvm);
  3084. for (i = 0; i < slots->nmemslots; i++)
  3085. nr_pages += slots->memslots[i].npages;
  3086. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3087. nr_mmu_pages = max(nr_mmu_pages,
  3088. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3089. return nr_mmu_pages;
  3090. }
  3091. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3092. unsigned len)
  3093. {
  3094. if (len > buffer->len)
  3095. return NULL;
  3096. return buffer->ptr;
  3097. }
  3098. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3099. unsigned len)
  3100. {
  3101. void *ret;
  3102. ret = pv_mmu_peek_buffer(buffer, len);
  3103. if (!ret)
  3104. return ret;
  3105. buffer->ptr += len;
  3106. buffer->len -= len;
  3107. buffer->processed += len;
  3108. return ret;
  3109. }
  3110. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3111. gpa_t addr, gpa_t value)
  3112. {
  3113. int bytes = 8;
  3114. int r;
  3115. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3116. bytes = 4;
  3117. r = mmu_topup_memory_caches(vcpu);
  3118. if (r)
  3119. return r;
  3120. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3121. return -EFAULT;
  3122. return 1;
  3123. }
  3124. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3125. {
  3126. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3127. return 1;
  3128. }
  3129. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3130. {
  3131. spin_lock(&vcpu->kvm->mmu_lock);
  3132. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3133. spin_unlock(&vcpu->kvm->mmu_lock);
  3134. return 1;
  3135. }
  3136. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3137. struct kvm_pv_mmu_op_buffer *buffer)
  3138. {
  3139. struct kvm_mmu_op_header *header;
  3140. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3141. if (!header)
  3142. return 0;
  3143. switch (header->op) {
  3144. case KVM_MMU_OP_WRITE_PTE: {
  3145. struct kvm_mmu_op_write_pte *wpte;
  3146. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3147. if (!wpte)
  3148. return 0;
  3149. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3150. wpte->pte_val);
  3151. }
  3152. case KVM_MMU_OP_FLUSH_TLB: {
  3153. struct kvm_mmu_op_flush_tlb *ftlb;
  3154. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3155. if (!ftlb)
  3156. return 0;
  3157. return kvm_pv_mmu_flush_tlb(vcpu);
  3158. }
  3159. case KVM_MMU_OP_RELEASE_PT: {
  3160. struct kvm_mmu_op_release_pt *rpt;
  3161. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3162. if (!rpt)
  3163. return 0;
  3164. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3165. }
  3166. default: return 0;
  3167. }
  3168. }
  3169. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3170. gpa_t addr, unsigned long *ret)
  3171. {
  3172. int r;
  3173. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3174. buffer->ptr = buffer->buf;
  3175. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3176. buffer->processed = 0;
  3177. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3178. if (r)
  3179. goto out;
  3180. while (buffer->len) {
  3181. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3182. if (r < 0)
  3183. goto out;
  3184. if (r == 0)
  3185. break;
  3186. }
  3187. r = 1;
  3188. out:
  3189. *ret = buffer->processed;
  3190. return r;
  3191. }
  3192. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3193. {
  3194. struct kvm_shadow_walk_iterator iterator;
  3195. int nr_sptes = 0;
  3196. spin_lock(&vcpu->kvm->mmu_lock);
  3197. for_each_shadow_entry(vcpu, addr, iterator) {
  3198. sptes[iterator.level-1] = *iterator.sptep;
  3199. nr_sptes++;
  3200. if (!is_shadow_present_pte(*iterator.sptep))
  3201. break;
  3202. }
  3203. spin_unlock(&vcpu->kvm->mmu_lock);
  3204. return nr_sptes;
  3205. }
  3206. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3207. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3208. {
  3209. ASSERT(vcpu);
  3210. destroy_kvm_mmu(vcpu);
  3211. free_mmu_pages(vcpu);
  3212. mmu_free_memory_caches(vcpu);
  3213. }
  3214. #ifdef CONFIG_KVM_MMU_AUDIT
  3215. #include "mmu_audit.c"
  3216. #else
  3217. static void mmu_audit_disable(void) { }
  3218. #endif
  3219. void kvm_mmu_module_exit(void)
  3220. {
  3221. mmu_destroy_caches();
  3222. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3223. unregister_shrinker(&mmu_shrinker);
  3224. mmu_audit_disable();
  3225. }