dm-thin-metadata.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int __open_or_format_metadata(struct dm_pool_metadata *pmd,
  359. struct dm_block_manager *bm,
  360. dm_block_t nr_blocks, int create)
  361. {
  362. int r;
  363. struct dm_space_map *sm, *data_sm;
  364. struct dm_transaction_manager *tm;
  365. struct dm_block *sblock;
  366. if (create) {
  367. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION, &tm, &sm);
  368. if (r < 0) {
  369. DMERR("tm_create_with_sm failed");
  370. return r;
  371. }
  372. data_sm = dm_sm_disk_create(tm, nr_blocks);
  373. if (IS_ERR(data_sm)) {
  374. DMERR("sm_disk_create failed");
  375. r = PTR_ERR(data_sm);
  376. goto bad;
  377. }
  378. } else {
  379. struct thin_disk_superblock *disk_super;
  380. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION,
  381. &sb_validator, &sblock);
  382. if (r < 0) {
  383. DMERR("couldn't read superblock");
  384. return r;
  385. }
  386. disk_super = dm_block_data(sblock);
  387. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  388. disk_super->metadata_space_map_root,
  389. sizeof(disk_super->metadata_space_map_root),
  390. &tm, &sm);
  391. if (r < 0) {
  392. DMERR("tm_open_with_sm failed");
  393. dm_bm_unlock(sblock);
  394. return r;
  395. }
  396. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  397. sizeof(disk_super->data_space_map_root));
  398. if (IS_ERR(data_sm)) {
  399. DMERR("sm_disk_open failed");
  400. dm_bm_unlock(sblock);
  401. r = PTR_ERR(data_sm);
  402. goto bad;
  403. }
  404. dm_bm_unlock(sblock);
  405. }
  406. pmd->bm = bm;
  407. pmd->metadata_sm = sm;
  408. pmd->data_sm = data_sm;
  409. pmd->tm = tm;
  410. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  411. if (!pmd->nb_tm) {
  412. DMERR("could not create clone tm");
  413. r = -ENOMEM;
  414. goto bad_data_sm;
  415. }
  416. __setup_btree_details(pmd);
  417. pmd->root = 0;
  418. init_rwsem(&pmd->root_lock);
  419. pmd->time = 0;
  420. pmd->details_root = 0;
  421. pmd->trans_id = 0;
  422. pmd->flags = 0;
  423. INIT_LIST_HEAD(&pmd->thin_devices);
  424. return 0;
  425. bad_data_sm:
  426. dm_sm_destroy(data_sm);
  427. bad:
  428. dm_tm_destroy(tm);
  429. dm_sm_destroy(sm);
  430. return r;
  431. }
  432. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd,
  433. dm_block_t nr_blocks, int *create)
  434. {
  435. int r;
  436. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
  437. THIN_METADATA_CACHE_SIZE,
  438. THIN_MAX_CONCURRENT_LOCKS);
  439. if (IS_ERR(pmd->bm)) {
  440. DMERR("could not create block manager");
  441. return PTR_ERR(pmd->bm);
  442. }
  443. r = __superblock_all_zeroes(pmd->bm, create);
  444. if (r) {
  445. dm_block_manager_destroy(pmd->bm);
  446. return r;
  447. }
  448. r = __open_or_format_metadata(pmd, pmd->bm, nr_blocks, *create);
  449. if (r)
  450. dm_block_manager_destroy(pmd->bm);
  451. return r;
  452. }
  453. static int __begin_transaction(struct dm_pool_metadata *pmd)
  454. {
  455. int r;
  456. u32 features;
  457. struct thin_disk_superblock *disk_super;
  458. struct dm_block *sblock;
  459. /*
  460. * We re-read the superblock every time. Shouldn't need to do this
  461. * really.
  462. */
  463. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  464. &sb_validator, &sblock);
  465. if (r)
  466. return r;
  467. disk_super = dm_block_data(sblock);
  468. pmd->time = le32_to_cpu(disk_super->time);
  469. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  470. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  471. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  472. pmd->flags = le32_to_cpu(disk_super->flags);
  473. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  474. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  475. if (features) {
  476. DMERR("could not access metadata due to "
  477. "unsupported optional features (%lx).",
  478. (unsigned long)features);
  479. r = -EINVAL;
  480. goto out;
  481. }
  482. /*
  483. * Check for read-only metadata to skip the following RDWR checks.
  484. */
  485. if (get_disk_ro(pmd->bdev->bd_disk))
  486. goto out;
  487. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  488. if (features) {
  489. DMERR("could not access metadata RDWR due to "
  490. "unsupported optional features (%lx).",
  491. (unsigned long)features);
  492. r = -EINVAL;
  493. }
  494. out:
  495. dm_bm_unlock(sblock);
  496. return r;
  497. }
  498. static int __write_changed_details(struct dm_pool_metadata *pmd)
  499. {
  500. int r;
  501. struct dm_thin_device *td, *tmp;
  502. struct disk_device_details details;
  503. uint64_t key;
  504. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  505. if (!td->changed)
  506. continue;
  507. key = td->id;
  508. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  509. details.transaction_id = cpu_to_le64(td->transaction_id);
  510. details.creation_time = cpu_to_le32(td->creation_time);
  511. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  512. __dm_bless_for_disk(&details);
  513. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  514. &key, &details, &pmd->details_root);
  515. if (r)
  516. return r;
  517. if (td->open_count)
  518. td->changed = 0;
  519. else {
  520. list_del(&td->list);
  521. kfree(td);
  522. }
  523. }
  524. return 0;
  525. }
  526. static int __commit_transaction(struct dm_pool_metadata *pmd)
  527. {
  528. /*
  529. * FIXME: Associated pool should be made read-only on failure.
  530. */
  531. int r;
  532. size_t metadata_len, data_len;
  533. struct thin_disk_superblock *disk_super;
  534. struct dm_block *sblock;
  535. /*
  536. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  537. */
  538. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  539. r = __write_changed_details(pmd);
  540. if (r < 0)
  541. return r;
  542. r = dm_sm_commit(pmd->data_sm);
  543. if (r < 0)
  544. return r;
  545. r = dm_tm_pre_commit(pmd->tm);
  546. if (r < 0)
  547. return r;
  548. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  549. if (r < 0)
  550. return r;
  551. r = dm_sm_root_size(pmd->data_sm, &data_len);
  552. if (r < 0)
  553. return r;
  554. r = superblock_lock(pmd, &sblock);
  555. if (r)
  556. return r;
  557. disk_super = dm_block_data(sblock);
  558. disk_super->time = cpu_to_le32(pmd->time);
  559. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  560. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  561. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  562. disk_super->flags = cpu_to_le32(pmd->flags);
  563. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  564. metadata_len);
  565. if (r < 0)
  566. goto out_locked;
  567. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  568. data_len);
  569. if (r < 0)
  570. goto out_locked;
  571. return dm_tm_commit(pmd->tm, sblock);
  572. out_locked:
  573. dm_bm_unlock(sblock);
  574. return r;
  575. }
  576. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  577. sector_t data_block_size)
  578. {
  579. int r;
  580. struct thin_disk_superblock *disk_super;
  581. struct dm_pool_metadata *pmd;
  582. sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  583. int create;
  584. struct dm_block *sblock;
  585. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  586. if (!pmd) {
  587. DMERR("could not allocate metadata struct");
  588. return ERR_PTR(-ENOMEM);
  589. }
  590. pmd->bdev = bdev;
  591. r = __create_persistent_data_objects(pmd, 0, &create);
  592. if (r) {
  593. kfree(pmd);
  594. return ERR_PTR(r);
  595. }
  596. if (!create) {
  597. r = __begin_transaction(pmd);
  598. if (r < 0)
  599. goto bad;
  600. return pmd;
  601. }
  602. /*
  603. * Create.
  604. */
  605. r = superblock_lock_zero(pmd, &sblock);
  606. if (r)
  607. goto bad;
  608. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  609. bdev_size = THIN_METADATA_MAX_SECTORS;
  610. disk_super = dm_block_data(sblock);
  611. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  612. disk_super->version = cpu_to_le32(THIN_VERSION);
  613. disk_super->time = 0;
  614. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  615. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  616. disk_super->data_block_size = cpu_to_le32(data_block_size);
  617. r = dm_bm_unlock(sblock);
  618. if (r < 0)
  619. goto bad;
  620. r = dm_btree_empty(&pmd->info, &pmd->root);
  621. if (r < 0)
  622. goto bad;
  623. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  624. if (r < 0) {
  625. DMERR("couldn't create devices root");
  626. goto bad;
  627. }
  628. pmd->flags = 0;
  629. r = dm_pool_commit_metadata(pmd);
  630. if (r < 0) {
  631. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  632. __func__, r);
  633. goto bad;
  634. }
  635. return pmd;
  636. bad:
  637. if (dm_pool_metadata_close(pmd) < 0)
  638. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  639. return ERR_PTR(r);
  640. }
  641. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  642. {
  643. int r;
  644. unsigned open_devices = 0;
  645. struct dm_thin_device *td, *tmp;
  646. down_read(&pmd->root_lock);
  647. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  648. if (td->open_count)
  649. open_devices++;
  650. else {
  651. list_del(&td->list);
  652. kfree(td);
  653. }
  654. }
  655. up_read(&pmd->root_lock);
  656. if (open_devices) {
  657. DMERR("attempt to close pmd when %u device(s) are still open",
  658. open_devices);
  659. return -EBUSY;
  660. }
  661. r = __commit_transaction(pmd);
  662. if (r < 0)
  663. DMWARN("%s: __commit_transaction() failed, error = %d",
  664. __func__, r);
  665. dm_tm_destroy(pmd->tm);
  666. dm_tm_destroy(pmd->nb_tm);
  667. dm_block_manager_destroy(pmd->bm);
  668. dm_sm_destroy(pmd->metadata_sm);
  669. dm_sm_destroy(pmd->data_sm);
  670. kfree(pmd);
  671. return 0;
  672. }
  673. /*
  674. * __open_device: Returns @td corresponding to device with id @dev,
  675. * creating it if @create is set and incrementing @td->open_count.
  676. * On failure, @td is undefined.
  677. */
  678. static int __open_device(struct dm_pool_metadata *pmd,
  679. dm_thin_id dev, int create,
  680. struct dm_thin_device **td)
  681. {
  682. int r, changed = 0;
  683. struct dm_thin_device *td2;
  684. uint64_t key = dev;
  685. struct disk_device_details details_le;
  686. /*
  687. * If the device is already open, return it.
  688. */
  689. list_for_each_entry(td2, &pmd->thin_devices, list)
  690. if (td2->id == dev) {
  691. /*
  692. * May not create an already-open device.
  693. */
  694. if (create)
  695. return -EEXIST;
  696. td2->open_count++;
  697. *td = td2;
  698. return 0;
  699. }
  700. /*
  701. * Check the device exists.
  702. */
  703. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  704. &key, &details_le);
  705. if (r) {
  706. if (r != -ENODATA || !create)
  707. return r;
  708. /*
  709. * Create new device.
  710. */
  711. changed = 1;
  712. details_le.mapped_blocks = 0;
  713. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  714. details_le.creation_time = cpu_to_le32(pmd->time);
  715. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  716. }
  717. *td = kmalloc(sizeof(**td), GFP_NOIO);
  718. if (!*td)
  719. return -ENOMEM;
  720. (*td)->pmd = pmd;
  721. (*td)->id = dev;
  722. (*td)->open_count = 1;
  723. (*td)->changed = changed;
  724. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  725. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  726. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  727. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  728. list_add(&(*td)->list, &pmd->thin_devices);
  729. return 0;
  730. }
  731. static void __close_device(struct dm_thin_device *td)
  732. {
  733. --td->open_count;
  734. }
  735. static int __create_thin(struct dm_pool_metadata *pmd,
  736. dm_thin_id dev)
  737. {
  738. int r;
  739. dm_block_t dev_root;
  740. uint64_t key = dev;
  741. struct disk_device_details details_le;
  742. struct dm_thin_device *td;
  743. __le64 value;
  744. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  745. &key, &details_le);
  746. if (!r)
  747. return -EEXIST;
  748. /*
  749. * Create an empty btree for the mappings.
  750. */
  751. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  752. if (r)
  753. return r;
  754. /*
  755. * Insert it into the main mapping tree.
  756. */
  757. value = cpu_to_le64(dev_root);
  758. __dm_bless_for_disk(&value);
  759. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  760. if (r) {
  761. dm_btree_del(&pmd->bl_info, dev_root);
  762. return r;
  763. }
  764. r = __open_device(pmd, dev, 1, &td);
  765. if (r) {
  766. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  767. dm_btree_del(&pmd->bl_info, dev_root);
  768. return r;
  769. }
  770. __close_device(td);
  771. return r;
  772. }
  773. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  774. {
  775. int r;
  776. down_write(&pmd->root_lock);
  777. r = __create_thin(pmd, dev);
  778. up_write(&pmd->root_lock);
  779. return r;
  780. }
  781. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  782. struct dm_thin_device *snap,
  783. dm_thin_id origin, uint32_t time)
  784. {
  785. int r;
  786. struct dm_thin_device *td;
  787. r = __open_device(pmd, origin, 0, &td);
  788. if (r)
  789. return r;
  790. td->changed = 1;
  791. td->snapshotted_time = time;
  792. snap->mapped_blocks = td->mapped_blocks;
  793. snap->snapshotted_time = time;
  794. __close_device(td);
  795. return 0;
  796. }
  797. static int __create_snap(struct dm_pool_metadata *pmd,
  798. dm_thin_id dev, dm_thin_id origin)
  799. {
  800. int r;
  801. dm_block_t origin_root;
  802. uint64_t key = origin, dev_key = dev;
  803. struct dm_thin_device *td;
  804. struct disk_device_details details_le;
  805. __le64 value;
  806. /* check this device is unused */
  807. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  808. &dev_key, &details_le);
  809. if (!r)
  810. return -EEXIST;
  811. /* find the mapping tree for the origin */
  812. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  813. if (r)
  814. return r;
  815. origin_root = le64_to_cpu(value);
  816. /* clone the origin, an inc will do */
  817. dm_tm_inc(pmd->tm, origin_root);
  818. /* insert into the main mapping tree */
  819. value = cpu_to_le64(origin_root);
  820. __dm_bless_for_disk(&value);
  821. key = dev;
  822. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  823. if (r) {
  824. dm_tm_dec(pmd->tm, origin_root);
  825. return r;
  826. }
  827. pmd->time++;
  828. r = __open_device(pmd, dev, 1, &td);
  829. if (r)
  830. goto bad;
  831. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  832. __close_device(td);
  833. if (r)
  834. goto bad;
  835. return 0;
  836. bad:
  837. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  838. dm_btree_remove(&pmd->details_info, pmd->details_root,
  839. &key, &pmd->details_root);
  840. return r;
  841. }
  842. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  843. dm_thin_id dev,
  844. dm_thin_id origin)
  845. {
  846. int r;
  847. down_write(&pmd->root_lock);
  848. r = __create_snap(pmd, dev, origin);
  849. up_write(&pmd->root_lock);
  850. return r;
  851. }
  852. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  853. {
  854. int r;
  855. uint64_t key = dev;
  856. struct dm_thin_device *td;
  857. /* TODO: failure should mark the transaction invalid */
  858. r = __open_device(pmd, dev, 0, &td);
  859. if (r)
  860. return r;
  861. if (td->open_count > 1) {
  862. __close_device(td);
  863. return -EBUSY;
  864. }
  865. list_del(&td->list);
  866. kfree(td);
  867. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  868. &key, &pmd->details_root);
  869. if (r)
  870. return r;
  871. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  872. if (r)
  873. return r;
  874. return 0;
  875. }
  876. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  877. dm_thin_id dev)
  878. {
  879. int r;
  880. down_write(&pmd->root_lock);
  881. r = __delete_device(pmd, dev);
  882. up_write(&pmd->root_lock);
  883. return r;
  884. }
  885. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  886. uint64_t current_id,
  887. uint64_t new_id)
  888. {
  889. down_write(&pmd->root_lock);
  890. if (pmd->trans_id != current_id) {
  891. up_write(&pmd->root_lock);
  892. DMERR("mismatched transaction id");
  893. return -EINVAL;
  894. }
  895. pmd->trans_id = new_id;
  896. up_write(&pmd->root_lock);
  897. return 0;
  898. }
  899. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  900. uint64_t *result)
  901. {
  902. down_read(&pmd->root_lock);
  903. *result = pmd->trans_id;
  904. up_read(&pmd->root_lock);
  905. return 0;
  906. }
  907. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  908. {
  909. int r, inc;
  910. struct thin_disk_superblock *disk_super;
  911. struct dm_block *copy, *sblock;
  912. dm_block_t held_root;
  913. /*
  914. * Copy the superblock.
  915. */
  916. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  917. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  918. &sb_validator, &copy, &inc);
  919. if (r)
  920. return r;
  921. BUG_ON(!inc);
  922. held_root = dm_block_location(copy);
  923. disk_super = dm_block_data(copy);
  924. if (le64_to_cpu(disk_super->held_root)) {
  925. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  926. dm_tm_dec(pmd->tm, held_root);
  927. dm_tm_unlock(pmd->tm, copy);
  928. return -EBUSY;
  929. }
  930. /*
  931. * Wipe the spacemap since we're not publishing this.
  932. */
  933. memset(&disk_super->data_space_map_root, 0,
  934. sizeof(disk_super->data_space_map_root));
  935. memset(&disk_super->metadata_space_map_root, 0,
  936. sizeof(disk_super->metadata_space_map_root));
  937. /*
  938. * Increment the data structures that need to be preserved.
  939. */
  940. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  941. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  942. dm_tm_unlock(pmd->tm, copy);
  943. /*
  944. * Write the held root into the superblock.
  945. */
  946. r = superblock_lock(pmd, &sblock);
  947. if (r) {
  948. dm_tm_dec(pmd->tm, held_root);
  949. return r;
  950. }
  951. disk_super = dm_block_data(sblock);
  952. disk_super->held_root = cpu_to_le64(held_root);
  953. dm_bm_unlock(sblock);
  954. return 0;
  955. }
  956. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  957. {
  958. int r;
  959. down_write(&pmd->root_lock);
  960. r = __reserve_metadata_snap(pmd);
  961. up_write(&pmd->root_lock);
  962. return r;
  963. }
  964. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  965. {
  966. int r;
  967. struct thin_disk_superblock *disk_super;
  968. struct dm_block *sblock, *copy;
  969. dm_block_t held_root;
  970. r = superblock_lock(pmd, &sblock);
  971. if (r)
  972. return r;
  973. disk_super = dm_block_data(sblock);
  974. held_root = le64_to_cpu(disk_super->held_root);
  975. disk_super->held_root = cpu_to_le64(0);
  976. dm_bm_unlock(sblock);
  977. if (!held_root) {
  978. DMWARN("No pool metadata snapshot found: nothing to release.");
  979. return -EINVAL;
  980. }
  981. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  982. if (r)
  983. return r;
  984. disk_super = dm_block_data(copy);
  985. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  986. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  987. dm_sm_dec_block(pmd->metadata_sm, held_root);
  988. return dm_tm_unlock(pmd->tm, copy);
  989. }
  990. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  991. {
  992. int r;
  993. down_write(&pmd->root_lock);
  994. r = __release_metadata_snap(pmd);
  995. up_write(&pmd->root_lock);
  996. return r;
  997. }
  998. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  999. dm_block_t *result)
  1000. {
  1001. int r;
  1002. struct thin_disk_superblock *disk_super;
  1003. struct dm_block *sblock;
  1004. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1005. &sb_validator, &sblock);
  1006. if (r)
  1007. return r;
  1008. disk_super = dm_block_data(sblock);
  1009. *result = le64_to_cpu(disk_super->held_root);
  1010. return dm_bm_unlock(sblock);
  1011. }
  1012. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1013. dm_block_t *result)
  1014. {
  1015. int r;
  1016. down_read(&pmd->root_lock);
  1017. r = __get_metadata_snap(pmd, result);
  1018. up_read(&pmd->root_lock);
  1019. return r;
  1020. }
  1021. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1022. struct dm_thin_device **td)
  1023. {
  1024. int r;
  1025. down_write(&pmd->root_lock);
  1026. r = __open_device(pmd, dev, 0, td);
  1027. up_write(&pmd->root_lock);
  1028. return r;
  1029. }
  1030. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1031. {
  1032. down_write(&td->pmd->root_lock);
  1033. __close_device(td);
  1034. up_write(&td->pmd->root_lock);
  1035. return 0;
  1036. }
  1037. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1038. {
  1039. return td->id;
  1040. }
  1041. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1042. {
  1043. return td->snapshotted_time > time;
  1044. }
  1045. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1046. int can_block, struct dm_thin_lookup_result *result)
  1047. {
  1048. int r;
  1049. uint64_t block_time = 0;
  1050. __le64 value;
  1051. struct dm_pool_metadata *pmd = td->pmd;
  1052. dm_block_t keys[2] = { td->id, block };
  1053. if (can_block) {
  1054. down_read(&pmd->root_lock);
  1055. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1056. if (!r)
  1057. block_time = le64_to_cpu(value);
  1058. up_read(&pmd->root_lock);
  1059. } else if (down_read_trylock(&pmd->root_lock)) {
  1060. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1061. if (!r)
  1062. block_time = le64_to_cpu(value);
  1063. up_read(&pmd->root_lock);
  1064. } else
  1065. return -EWOULDBLOCK;
  1066. if (!r) {
  1067. dm_block_t exception_block;
  1068. uint32_t exception_time;
  1069. unpack_block_time(block_time, &exception_block,
  1070. &exception_time);
  1071. result->block = exception_block;
  1072. result->shared = __snapshotted_since(td, exception_time);
  1073. }
  1074. return r;
  1075. }
  1076. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1077. dm_block_t data_block)
  1078. {
  1079. int r, inserted;
  1080. __le64 value;
  1081. struct dm_pool_metadata *pmd = td->pmd;
  1082. dm_block_t keys[2] = { td->id, block };
  1083. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1084. __dm_bless_for_disk(&value);
  1085. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1086. &pmd->root, &inserted);
  1087. if (r)
  1088. return r;
  1089. if (inserted) {
  1090. td->mapped_blocks++;
  1091. td->changed = 1;
  1092. }
  1093. return 0;
  1094. }
  1095. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1096. dm_block_t data_block)
  1097. {
  1098. int r;
  1099. down_write(&td->pmd->root_lock);
  1100. r = __insert(td, block, data_block);
  1101. up_write(&td->pmd->root_lock);
  1102. return r;
  1103. }
  1104. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1105. {
  1106. int r;
  1107. struct dm_pool_metadata *pmd = td->pmd;
  1108. dm_block_t keys[2] = { td->id, block };
  1109. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1110. if (r)
  1111. return r;
  1112. td->mapped_blocks--;
  1113. td->changed = 1;
  1114. return 0;
  1115. }
  1116. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1117. {
  1118. int r;
  1119. down_write(&td->pmd->root_lock);
  1120. r = __remove(td, block);
  1121. up_write(&td->pmd->root_lock);
  1122. return r;
  1123. }
  1124. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1125. {
  1126. int r;
  1127. down_write(&pmd->root_lock);
  1128. r = dm_sm_new_block(pmd->data_sm, result);
  1129. up_write(&pmd->root_lock);
  1130. return r;
  1131. }
  1132. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1133. {
  1134. int r;
  1135. down_write(&pmd->root_lock);
  1136. r = __commit_transaction(pmd);
  1137. if (r <= 0)
  1138. goto out;
  1139. /*
  1140. * Open the next transaction.
  1141. */
  1142. r = __begin_transaction(pmd);
  1143. out:
  1144. up_write(&pmd->root_lock);
  1145. return r;
  1146. }
  1147. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1148. {
  1149. int r;
  1150. down_read(&pmd->root_lock);
  1151. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1152. up_read(&pmd->root_lock);
  1153. return r;
  1154. }
  1155. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1156. dm_block_t *result)
  1157. {
  1158. int r;
  1159. down_read(&pmd->root_lock);
  1160. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1161. up_read(&pmd->root_lock);
  1162. return r;
  1163. }
  1164. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1165. dm_block_t *result)
  1166. {
  1167. int r;
  1168. down_read(&pmd->root_lock);
  1169. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1170. up_read(&pmd->root_lock);
  1171. return r;
  1172. }
  1173. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1174. {
  1175. down_read(&pmd->root_lock);
  1176. *result = pmd->data_block_size;
  1177. up_read(&pmd->root_lock);
  1178. return 0;
  1179. }
  1180. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1181. {
  1182. int r;
  1183. down_read(&pmd->root_lock);
  1184. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1185. up_read(&pmd->root_lock);
  1186. return r;
  1187. }
  1188. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1189. {
  1190. struct dm_pool_metadata *pmd = td->pmd;
  1191. down_read(&pmd->root_lock);
  1192. *result = td->mapped_blocks;
  1193. up_read(&pmd->root_lock);
  1194. return 0;
  1195. }
  1196. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1197. {
  1198. int r;
  1199. __le64 value_le;
  1200. dm_block_t thin_root;
  1201. struct dm_pool_metadata *pmd = td->pmd;
  1202. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1203. if (r)
  1204. return r;
  1205. thin_root = le64_to_cpu(value_le);
  1206. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1207. }
  1208. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1209. dm_block_t *result)
  1210. {
  1211. int r;
  1212. struct dm_pool_metadata *pmd = td->pmd;
  1213. down_read(&pmd->root_lock);
  1214. r = __highest_block(td, result);
  1215. up_read(&pmd->root_lock);
  1216. return r;
  1217. }
  1218. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1219. {
  1220. int r;
  1221. dm_block_t old_count;
  1222. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1223. if (r)
  1224. return r;
  1225. if (new_count == old_count)
  1226. return 0;
  1227. if (new_count < old_count) {
  1228. DMERR("cannot reduce size of data device");
  1229. return -EINVAL;
  1230. }
  1231. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1232. }
  1233. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1234. {
  1235. int r;
  1236. down_write(&pmd->root_lock);
  1237. r = __resize_data_dev(pmd, new_count);
  1238. up_write(&pmd->root_lock);
  1239. return r;
  1240. }