intel_display.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/i2c.h>
  27. #include <linux/kernel.h>
  28. #include "drmP.h"
  29. #include "intel_drv.h"
  30. #include "i915_drm.h"
  31. #include "i915_drv.h"
  32. #include "intel_dp.h"
  33. #include "drm_crtc_helper.h"
  34. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  35. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  36. static void intel_update_watermarks(struct drm_device *dev);
  37. typedef struct {
  38. /* given values */
  39. int n;
  40. int m1, m2;
  41. int p1, p2;
  42. /* derived values */
  43. int dot;
  44. int vco;
  45. int m;
  46. int p;
  47. } intel_clock_t;
  48. typedef struct {
  49. int min, max;
  50. } intel_range_t;
  51. typedef struct {
  52. int dot_limit;
  53. int p2_slow, p2_fast;
  54. } intel_p2_t;
  55. #define INTEL_P2_NUM 2
  56. typedef struct intel_limit intel_limit_t;
  57. struct intel_limit {
  58. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  59. intel_p2_t p2;
  60. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  61. int, int, intel_clock_t *);
  62. };
  63. #define I8XX_DOT_MIN 25000
  64. #define I8XX_DOT_MAX 350000
  65. #define I8XX_VCO_MIN 930000
  66. #define I8XX_VCO_MAX 1400000
  67. #define I8XX_N_MIN 3
  68. #define I8XX_N_MAX 16
  69. #define I8XX_M_MIN 96
  70. #define I8XX_M_MAX 140
  71. #define I8XX_M1_MIN 18
  72. #define I8XX_M1_MAX 26
  73. #define I8XX_M2_MIN 6
  74. #define I8XX_M2_MAX 16
  75. #define I8XX_P_MIN 4
  76. #define I8XX_P_MAX 128
  77. #define I8XX_P1_MIN 2
  78. #define I8XX_P1_MAX 33
  79. #define I8XX_P1_LVDS_MIN 1
  80. #define I8XX_P1_LVDS_MAX 6
  81. #define I8XX_P2_SLOW 4
  82. #define I8XX_P2_FAST 2
  83. #define I8XX_P2_LVDS_SLOW 14
  84. #define I8XX_P2_LVDS_FAST 14 /* No fast option */
  85. #define I8XX_P2_SLOW_LIMIT 165000
  86. #define I9XX_DOT_MIN 20000
  87. #define I9XX_DOT_MAX 400000
  88. #define I9XX_VCO_MIN 1400000
  89. #define I9XX_VCO_MAX 2800000
  90. #define IGD_VCO_MIN 1700000
  91. #define IGD_VCO_MAX 3500000
  92. #define I9XX_N_MIN 1
  93. #define I9XX_N_MAX 6
  94. /* IGD's Ncounter is a ring counter */
  95. #define IGD_N_MIN 3
  96. #define IGD_N_MAX 6
  97. #define I9XX_M_MIN 70
  98. #define I9XX_M_MAX 120
  99. #define IGD_M_MIN 2
  100. #define IGD_M_MAX 256
  101. #define I9XX_M1_MIN 10
  102. #define I9XX_M1_MAX 22
  103. #define I9XX_M2_MIN 5
  104. #define I9XX_M2_MAX 9
  105. /* IGD M1 is reserved, and must be 0 */
  106. #define IGD_M1_MIN 0
  107. #define IGD_M1_MAX 0
  108. #define IGD_M2_MIN 0
  109. #define IGD_M2_MAX 254
  110. #define I9XX_P_SDVO_DAC_MIN 5
  111. #define I9XX_P_SDVO_DAC_MAX 80
  112. #define I9XX_P_LVDS_MIN 7
  113. #define I9XX_P_LVDS_MAX 98
  114. #define IGD_P_LVDS_MIN 7
  115. #define IGD_P_LVDS_MAX 112
  116. #define I9XX_P1_MIN 1
  117. #define I9XX_P1_MAX 8
  118. #define I9XX_P2_SDVO_DAC_SLOW 10
  119. #define I9XX_P2_SDVO_DAC_FAST 5
  120. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  121. #define I9XX_P2_LVDS_SLOW 14
  122. #define I9XX_P2_LVDS_FAST 7
  123. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  124. /*The parameter is for SDVO on G4x platform*/
  125. #define G4X_DOT_SDVO_MIN 25000
  126. #define G4X_DOT_SDVO_MAX 270000
  127. #define G4X_VCO_MIN 1750000
  128. #define G4X_VCO_MAX 3500000
  129. #define G4X_N_SDVO_MIN 1
  130. #define G4X_N_SDVO_MAX 4
  131. #define G4X_M_SDVO_MIN 104
  132. #define G4X_M_SDVO_MAX 138
  133. #define G4X_M1_SDVO_MIN 17
  134. #define G4X_M1_SDVO_MAX 23
  135. #define G4X_M2_SDVO_MIN 5
  136. #define G4X_M2_SDVO_MAX 11
  137. #define G4X_P_SDVO_MIN 10
  138. #define G4X_P_SDVO_MAX 30
  139. #define G4X_P1_SDVO_MIN 1
  140. #define G4X_P1_SDVO_MAX 3
  141. #define G4X_P2_SDVO_SLOW 10
  142. #define G4X_P2_SDVO_FAST 10
  143. #define G4X_P2_SDVO_LIMIT 270000
  144. /*The parameter is for HDMI_DAC on G4x platform*/
  145. #define G4X_DOT_HDMI_DAC_MIN 22000
  146. #define G4X_DOT_HDMI_DAC_MAX 400000
  147. #define G4X_N_HDMI_DAC_MIN 1
  148. #define G4X_N_HDMI_DAC_MAX 4
  149. #define G4X_M_HDMI_DAC_MIN 104
  150. #define G4X_M_HDMI_DAC_MAX 138
  151. #define G4X_M1_HDMI_DAC_MIN 16
  152. #define G4X_M1_HDMI_DAC_MAX 23
  153. #define G4X_M2_HDMI_DAC_MIN 5
  154. #define G4X_M2_HDMI_DAC_MAX 11
  155. #define G4X_P_HDMI_DAC_MIN 5
  156. #define G4X_P_HDMI_DAC_MAX 80
  157. #define G4X_P1_HDMI_DAC_MIN 1
  158. #define G4X_P1_HDMI_DAC_MAX 8
  159. #define G4X_P2_HDMI_DAC_SLOW 10
  160. #define G4X_P2_HDMI_DAC_FAST 5
  161. #define G4X_P2_HDMI_DAC_LIMIT 165000
  162. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  163. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  164. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  165. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  166. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  167. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  168. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  169. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  170. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  171. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  172. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  173. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  174. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  175. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  176. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  177. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  178. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  179. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  180. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  181. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  182. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  183. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  184. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  185. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  186. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  187. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  188. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  189. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  190. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  191. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  192. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  193. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  194. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  195. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  196. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  197. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  198. /*The parameter is for DISPLAY PORT on G4x platform*/
  199. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  200. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  201. #define G4X_N_DISPLAY_PORT_MIN 1
  202. #define G4X_N_DISPLAY_PORT_MAX 2
  203. #define G4X_M_DISPLAY_PORT_MIN 97
  204. #define G4X_M_DISPLAY_PORT_MAX 108
  205. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  206. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  207. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  208. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  209. #define G4X_P_DISPLAY_PORT_MIN 10
  210. #define G4X_P_DISPLAY_PORT_MAX 20
  211. #define G4X_P1_DISPLAY_PORT_MIN 1
  212. #define G4X_P1_DISPLAY_PORT_MAX 2
  213. #define G4X_P2_DISPLAY_PORT_SLOW 10
  214. #define G4X_P2_DISPLAY_PORT_FAST 10
  215. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  216. /* IGDNG */
  217. /* as we calculate clock using (register_value + 2) for
  218. N/M1/M2, so here the range value for them is (actual_value-2).
  219. */
  220. #define IGDNG_DOT_MIN 25000
  221. #define IGDNG_DOT_MAX 350000
  222. #define IGDNG_VCO_MIN 1760000
  223. #define IGDNG_VCO_MAX 3510000
  224. #define IGDNG_N_MIN 1
  225. #define IGDNG_N_MAX 5
  226. #define IGDNG_M_MIN 79
  227. #define IGDNG_M_MAX 118
  228. #define IGDNG_M1_MIN 12
  229. #define IGDNG_M1_MAX 23
  230. #define IGDNG_M2_MIN 5
  231. #define IGDNG_M2_MAX 9
  232. #define IGDNG_P_SDVO_DAC_MIN 5
  233. #define IGDNG_P_SDVO_DAC_MAX 80
  234. #define IGDNG_P_LVDS_MIN 28
  235. #define IGDNG_P_LVDS_MAX 112
  236. #define IGDNG_P1_MIN 1
  237. #define IGDNG_P1_MAX 8
  238. #define IGDNG_P2_SDVO_DAC_SLOW 10
  239. #define IGDNG_P2_SDVO_DAC_FAST 5
  240. #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
  241. #define IGDNG_P2_LVDS_FAST 7 /* double channel */
  242. #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
  243. static bool
  244. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  245. int target, int refclk, intel_clock_t *best_clock);
  246. static bool
  247. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  248. int target, int refclk, intel_clock_t *best_clock);
  249. static bool
  250. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  251. int target, int refclk, intel_clock_t *best_clock);
  252. static bool
  253. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  254. int target, int refclk, intel_clock_t *best_clock);
  255. static bool
  256. intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
  257. int target, int refclk, intel_clock_t *best_clock);
  258. static const intel_limit_t intel_limits_i8xx_dvo = {
  259. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  260. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  261. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  262. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  263. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  264. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  265. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  266. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  267. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  268. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  269. .find_pll = intel_find_best_PLL,
  270. };
  271. static const intel_limit_t intel_limits_i8xx_lvds = {
  272. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  273. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  274. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  275. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  276. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  277. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  278. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  279. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  280. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  281. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  282. .find_pll = intel_find_best_PLL,
  283. };
  284. static const intel_limit_t intel_limits_i9xx_sdvo = {
  285. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  286. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  287. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  288. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  289. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  290. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  291. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  292. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  293. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  294. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  295. .find_pll = intel_find_best_PLL,
  296. };
  297. static const intel_limit_t intel_limits_i9xx_lvds = {
  298. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  299. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  300. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  301. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  302. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  303. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  304. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  305. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  306. /* The single-channel range is 25-112Mhz, and dual-channel
  307. * is 80-224Mhz. Prefer single channel as much as possible.
  308. */
  309. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  310. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  311. .find_pll = intel_find_best_PLL,
  312. };
  313. /* below parameter and function is for G4X Chipset Family*/
  314. static const intel_limit_t intel_limits_g4x_sdvo = {
  315. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  316. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  317. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  318. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  319. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  320. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  321. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  322. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  323. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  324. .p2_slow = G4X_P2_SDVO_SLOW,
  325. .p2_fast = G4X_P2_SDVO_FAST
  326. },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_g4x_hdmi = {
  330. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  331. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  332. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  333. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  334. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  335. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  336. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  337. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  338. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  339. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  340. .p2_fast = G4X_P2_HDMI_DAC_FAST
  341. },
  342. .find_pll = intel_g4x_find_best_PLL,
  343. };
  344. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  345. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  346. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  347. .vco = { .min = G4X_VCO_MIN,
  348. .max = G4X_VCO_MAX },
  349. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  350. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  351. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  352. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  353. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  354. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  355. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  356. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  357. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  358. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  359. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  360. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  361. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  362. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  363. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  364. },
  365. .find_pll = intel_g4x_find_best_PLL,
  366. };
  367. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  368. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  369. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  370. .vco = { .min = G4X_VCO_MIN,
  371. .max = G4X_VCO_MAX },
  372. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  373. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  374. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  375. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  376. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  377. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  378. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  379. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  380. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  381. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  382. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  383. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  384. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  385. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  386. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  387. },
  388. .find_pll = intel_g4x_find_best_PLL,
  389. };
  390. static const intel_limit_t intel_limits_g4x_display_port = {
  391. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  392. .max = G4X_DOT_DISPLAY_PORT_MAX },
  393. .vco = { .min = G4X_VCO_MIN,
  394. .max = G4X_VCO_MAX},
  395. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  396. .max = G4X_N_DISPLAY_PORT_MAX },
  397. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  398. .max = G4X_M_DISPLAY_PORT_MAX },
  399. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  400. .max = G4X_M1_DISPLAY_PORT_MAX },
  401. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  402. .max = G4X_M2_DISPLAY_PORT_MAX },
  403. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  404. .max = G4X_P_DISPLAY_PORT_MAX },
  405. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  406. .max = G4X_P1_DISPLAY_PORT_MAX},
  407. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  408. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  409. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  410. .find_pll = intel_find_pll_g4x_dp,
  411. };
  412. static const intel_limit_t intel_limits_igd_sdvo = {
  413. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  414. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  415. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  416. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  417. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  418. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  419. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  420. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  421. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  422. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  423. .find_pll = intel_find_best_PLL,
  424. };
  425. static const intel_limit_t intel_limits_igd_lvds = {
  426. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  427. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  428. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  429. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  430. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  431. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  432. .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
  433. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  434. /* IGD only supports single-channel mode. */
  435. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  436. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  437. .find_pll = intel_find_best_PLL,
  438. };
  439. static const intel_limit_t intel_limits_igdng_sdvo = {
  440. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  441. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  442. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  443. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  444. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  445. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  446. .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
  447. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  448. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  449. .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
  450. .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
  451. .find_pll = intel_igdng_find_best_PLL,
  452. };
  453. static const intel_limit_t intel_limits_igdng_lvds = {
  454. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  455. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  456. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  457. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  458. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  459. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  460. .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
  461. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  462. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  463. .p2_slow = IGDNG_P2_LVDS_SLOW,
  464. .p2_fast = IGDNG_P2_LVDS_FAST },
  465. .find_pll = intel_igdng_find_best_PLL,
  466. };
  467. static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
  468. {
  469. const intel_limit_t *limit;
  470. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  471. limit = &intel_limits_igdng_lvds;
  472. else
  473. limit = &intel_limits_igdng_sdvo;
  474. return limit;
  475. }
  476. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  477. {
  478. struct drm_device *dev = crtc->dev;
  479. struct drm_i915_private *dev_priv = dev->dev_private;
  480. const intel_limit_t *limit;
  481. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  482. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  483. LVDS_CLKB_POWER_UP)
  484. /* LVDS with dual channel */
  485. limit = &intel_limits_g4x_dual_channel_lvds;
  486. else
  487. /* LVDS with dual channel */
  488. limit = &intel_limits_g4x_single_channel_lvds;
  489. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  490. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  491. limit = &intel_limits_g4x_hdmi;
  492. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  493. limit = &intel_limits_g4x_sdvo;
  494. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  495. limit = &intel_limits_g4x_display_port;
  496. } else /* The option is for other outputs */
  497. limit = &intel_limits_i9xx_sdvo;
  498. return limit;
  499. }
  500. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  501. {
  502. struct drm_device *dev = crtc->dev;
  503. const intel_limit_t *limit;
  504. if (IS_IGDNG(dev))
  505. limit = intel_igdng_limit(crtc);
  506. else if (IS_G4X(dev)) {
  507. limit = intel_g4x_limit(crtc);
  508. } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
  509. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  510. limit = &intel_limits_i9xx_lvds;
  511. else
  512. limit = &intel_limits_i9xx_sdvo;
  513. } else if (IS_IGD(dev)) {
  514. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  515. limit = &intel_limits_igd_lvds;
  516. else
  517. limit = &intel_limits_igd_sdvo;
  518. } else {
  519. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  520. limit = &intel_limits_i8xx_lvds;
  521. else
  522. limit = &intel_limits_i8xx_dvo;
  523. }
  524. return limit;
  525. }
  526. /* m1 is reserved as 0 in IGD, n is a ring counter */
  527. static void igd_clock(int refclk, intel_clock_t *clock)
  528. {
  529. clock->m = clock->m2 + 2;
  530. clock->p = clock->p1 * clock->p2;
  531. clock->vco = refclk * clock->m / clock->n;
  532. clock->dot = clock->vco / clock->p;
  533. }
  534. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  535. {
  536. if (IS_IGD(dev)) {
  537. igd_clock(refclk, clock);
  538. return;
  539. }
  540. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  541. clock->p = clock->p1 * clock->p2;
  542. clock->vco = refclk * clock->m / (clock->n + 2);
  543. clock->dot = clock->vco / clock->p;
  544. }
  545. /**
  546. * Returns whether any output on the specified pipe is of the specified type
  547. */
  548. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. struct drm_mode_config *mode_config = &dev->mode_config;
  552. struct drm_connector *l_entry;
  553. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  554. if (l_entry->encoder &&
  555. l_entry->encoder->crtc == crtc) {
  556. struct intel_output *intel_output = to_intel_output(l_entry);
  557. if (intel_output->type == type)
  558. return true;
  559. }
  560. }
  561. return false;
  562. }
  563. struct drm_connector *
  564. intel_pipe_get_output (struct drm_crtc *crtc)
  565. {
  566. struct drm_device *dev = crtc->dev;
  567. struct drm_mode_config *mode_config = &dev->mode_config;
  568. struct drm_connector *l_entry, *ret = NULL;
  569. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  570. if (l_entry->encoder &&
  571. l_entry->encoder->crtc == crtc) {
  572. ret = l_entry;
  573. break;
  574. }
  575. }
  576. return ret;
  577. }
  578. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  579. /**
  580. * Returns whether the given set of divisors are valid for a given refclk with
  581. * the given connectors.
  582. */
  583. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  584. {
  585. const intel_limit_t *limit = intel_limit (crtc);
  586. struct drm_device *dev = crtc->dev;
  587. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  588. INTELPllInvalid ("p1 out of range\n");
  589. if (clock->p < limit->p.min || limit->p.max < clock->p)
  590. INTELPllInvalid ("p out of range\n");
  591. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  592. INTELPllInvalid ("m2 out of range\n");
  593. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  594. INTELPllInvalid ("m1 out of range\n");
  595. if (clock->m1 <= clock->m2 && !IS_IGD(dev))
  596. INTELPllInvalid ("m1 <= m2\n");
  597. if (clock->m < limit->m.min || limit->m.max < clock->m)
  598. INTELPllInvalid ("m out of range\n");
  599. if (clock->n < limit->n.min || limit->n.max < clock->n)
  600. INTELPllInvalid ("n out of range\n");
  601. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  602. INTELPllInvalid ("vco out of range\n");
  603. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  604. * connector, etc., rather than just a single range.
  605. */
  606. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  607. INTELPllInvalid ("dot out of range\n");
  608. return true;
  609. }
  610. static bool
  611. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  612. int target, int refclk, intel_clock_t *best_clock)
  613. {
  614. struct drm_device *dev = crtc->dev;
  615. struct drm_i915_private *dev_priv = dev->dev_private;
  616. intel_clock_t clock;
  617. int err = target;
  618. if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  619. (I915_READ(LVDS)) != 0) {
  620. /*
  621. * For LVDS, if the panel is on, just rely on its current
  622. * settings for dual-channel. We haven't figured out how to
  623. * reliably set up different single/dual channel state, if we
  624. * even can.
  625. */
  626. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  627. LVDS_CLKB_POWER_UP)
  628. clock.p2 = limit->p2.p2_fast;
  629. else
  630. clock.p2 = limit->p2.p2_slow;
  631. } else {
  632. if (target < limit->p2.dot_limit)
  633. clock.p2 = limit->p2.p2_slow;
  634. else
  635. clock.p2 = limit->p2.p2_fast;
  636. }
  637. memset (best_clock, 0, sizeof (*best_clock));
  638. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  639. for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
  640. /* m1 is always 0 in IGD */
  641. if (clock.m2 >= clock.m1 && !IS_IGD(dev))
  642. break;
  643. for (clock.n = limit->n.min; clock.n <= limit->n.max;
  644. clock.n++) {
  645. for (clock.p1 = limit->p1.min;
  646. clock.p1 <= limit->p1.max; clock.p1++) {
  647. int this_err;
  648. intel_clock(dev, refclk, &clock);
  649. if (!intel_PLL_is_valid(crtc, &clock))
  650. continue;
  651. this_err = abs(clock.dot - target);
  652. if (this_err < err) {
  653. *best_clock = clock;
  654. err = this_err;
  655. }
  656. }
  657. }
  658. }
  659. }
  660. return (err != target);
  661. }
  662. static bool
  663. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  664. int target, int refclk, intel_clock_t *best_clock)
  665. {
  666. struct drm_device *dev = crtc->dev;
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. intel_clock_t clock;
  669. int max_n;
  670. bool found;
  671. /* approximately equals target * 0.00488 */
  672. int err_most = (target >> 8) + (target >> 10);
  673. found = false;
  674. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  675. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  676. LVDS_CLKB_POWER_UP)
  677. clock.p2 = limit->p2.p2_fast;
  678. else
  679. clock.p2 = limit->p2.p2_slow;
  680. } else {
  681. if (target < limit->p2.dot_limit)
  682. clock.p2 = limit->p2.p2_slow;
  683. else
  684. clock.p2 = limit->p2.p2_fast;
  685. }
  686. memset(best_clock, 0, sizeof(*best_clock));
  687. max_n = limit->n.max;
  688. /* based on hardware requriment prefer smaller n to precision */
  689. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  690. /* based on hardware requirment prefere larger m1,m2, p1 */
  691. for (clock.m1 = limit->m1.max;
  692. clock.m1 >= limit->m1.min; clock.m1--) {
  693. for (clock.m2 = limit->m2.max;
  694. clock.m2 >= limit->m2.min; clock.m2--) {
  695. for (clock.p1 = limit->p1.max;
  696. clock.p1 >= limit->p1.min; clock.p1--) {
  697. int this_err;
  698. intel_clock(dev, refclk, &clock);
  699. if (!intel_PLL_is_valid(crtc, &clock))
  700. continue;
  701. this_err = abs(clock.dot - target) ;
  702. if (this_err < err_most) {
  703. *best_clock = clock;
  704. err_most = this_err;
  705. max_n = clock.n;
  706. found = true;
  707. }
  708. }
  709. }
  710. }
  711. }
  712. return found;
  713. }
  714. static bool
  715. intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  716. int target, int refclk, intel_clock_t *best_clock)
  717. {
  718. struct drm_device *dev = crtc->dev;
  719. intel_clock_t clock;
  720. if (target < 200000) {
  721. clock.n = 1;
  722. clock.p1 = 2;
  723. clock.p2 = 10;
  724. clock.m1 = 12;
  725. clock.m2 = 9;
  726. } else {
  727. clock.n = 2;
  728. clock.p1 = 1;
  729. clock.p2 = 10;
  730. clock.m1 = 14;
  731. clock.m2 = 8;
  732. }
  733. intel_clock(dev, refclk, &clock);
  734. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  735. return true;
  736. }
  737. static bool
  738. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  739. int target, int refclk, intel_clock_t *best_clock)
  740. {
  741. struct drm_device *dev = crtc->dev;
  742. struct drm_i915_private *dev_priv = dev->dev_private;
  743. intel_clock_t clock;
  744. int max_n;
  745. bool found;
  746. int err_most = 47;
  747. found = false;
  748. /* eDP has only 2 clock choice, no n/m/p setting */
  749. if (HAS_eDP)
  750. return true;
  751. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  752. return intel_find_pll_igdng_dp(limit, crtc, target,
  753. refclk, best_clock);
  754. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  755. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  756. LVDS_CLKB_POWER_UP)
  757. clock.p2 = limit->p2.p2_fast;
  758. else
  759. clock.p2 = limit->p2.p2_slow;
  760. } else {
  761. if (target < limit->p2.dot_limit)
  762. clock.p2 = limit->p2.p2_slow;
  763. else
  764. clock.p2 = limit->p2.p2_fast;
  765. }
  766. memset(best_clock, 0, sizeof(*best_clock));
  767. max_n = limit->n.max;
  768. /* based on hardware requriment prefer smaller n to precision */
  769. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  770. /* based on hardware requirment prefere larger m1,m2, p1 */
  771. for (clock.m1 = limit->m1.max;
  772. clock.m1 >= limit->m1.min; clock.m1--) {
  773. for (clock.m2 = limit->m2.max;
  774. clock.m2 >= limit->m2.min; clock.m2--) {
  775. for (clock.p1 = limit->p1.max;
  776. clock.p1 >= limit->p1.min; clock.p1--) {
  777. int this_err;
  778. intel_clock(dev, refclk, &clock);
  779. if (!intel_PLL_is_valid(crtc, &clock))
  780. continue;
  781. this_err = abs((10000 - (target*10000/clock.dot)));
  782. if (this_err < err_most) {
  783. *best_clock = clock;
  784. err_most = this_err;
  785. max_n = clock.n;
  786. found = true;
  787. /* found on first matching */
  788. goto out;
  789. }
  790. }
  791. }
  792. }
  793. }
  794. out:
  795. return found;
  796. }
  797. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  798. static bool
  799. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  800. int target, int refclk, intel_clock_t *best_clock)
  801. {
  802. intel_clock_t clock;
  803. if (target < 200000) {
  804. clock.p1 = 2;
  805. clock.p2 = 10;
  806. clock.n = 2;
  807. clock.m1 = 23;
  808. clock.m2 = 8;
  809. } else {
  810. clock.p1 = 1;
  811. clock.p2 = 10;
  812. clock.n = 1;
  813. clock.m1 = 14;
  814. clock.m2 = 2;
  815. }
  816. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  817. clock.p = (clock.p1 * clock.p2);
  818. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  819. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  820. return true;
  821. }
  822. void
  823. intel_wait_for_vblank(struct drm_device *dev)
  824. {
  825. /* Wait for 20ms, i.e. one cycle at 50hz. */
  826. mdelay(20);
  827. }
  828. static int
  829. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  830. struct drm_framebuffer *old_fb)
  831. {
  832. struct drm_device *dev = crtc->dev;
  833. struct drm_i915_private *dev_priv = dev->dev_private;
  834. struct drm_i915_master_private *master_priv;
  835. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  836. struct intel_framebuffer *intel_fb;
  837. struct drm_i915_gem_object *obj_priv;
  838. struct drm_gem_object *obj;
  839. int pipe = intel_crtc->pipe;
  840. unsigned long Start, Offset;
  841. int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
  842. int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
  843. int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
  844. int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
  845. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  846. u32 dspcntr, alignment;
  847. int ret;
  848. /* no fb bound */
  849. if (!crtc->fb) {
  850. DRM_DEBUG("No FB bound\n");
  851. return 0;
  852. }
  853. switch (pipe) {
  854. case 0:
  855. case 1:
  856. break;
  857. default:
  858. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  859. return -EINVAL;
  860. }
  861. intel_fb = to_intel_framebuffer(crtc->fb);
  862. obj = intel_fb->obj;
  863. obj_priv = obj->driver_private;
  864. switch (obj_priv->tiling_mode) {
  865. case I915_TILING_NONE:
  866. alignment = 64 * 1024;
  867. break;
  868. case I915_TILING_X:
  869. /* pin() will align the object as required by fence */
  870. alignment = 0;
  871. break;
  872. case I915_TILING_Y:
  873. /* FIXME: Is this true? */
  874. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  875. return -EINVAL;
  876. default:
  877. BUG();
  878. }
  879. mutex_lock(&dev->struct_mutex);
  880. ret = i915_gem_object_pin(obj, alignment);
  881. if (ret != 0) {
  882. mutex_unlock(&dev->struct_mutex);
  883. return ret;
  884. }
  885. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  886. if (ret != 0) {
  887. i915_gem_object_unpin(obj);
  888. mutex_unlock(&dev->struct_mutex);
  889. return ret;
  890. }
  891. /* Pre-i965 needs to install a fence for tiled scan-out */
  892. if (!IS_I965G(dev) &&
  893. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  894. obj_priv->tiling_mode != I915_TILING_NONE) {
  895. ret = i915_gem_object_get_fence_reg(obj);
  896. if (ret != 0) {
  897. i915_gem_object_unpin(obj);
  898. mutex_unlock(&dev->struct_mutex);
  899. return ret;
  900. }
  901. }
  902. dspcntr = I915_READ(dspcntr_reg);
  903. /* Mask out pixel format bits in case we change it */
  904. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  905. switch (crtc->fb->bits_per_pixel) {
  906. case 8:
  907. dspcntr |= DISPPLANE_8BPP;
  908. break;
  909. case 16:
  910. if (crtc->fb->depth == 15)
  911. dspcntr |= DISPPLANE_15_16BPP;
  912. else
  913. dspcntr |= DISPPLANE_16BPP;
  914. break;
  915. case 24:
  916. case 32:
  917. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  918. break;
  919. default:
  920. DRM_ERROR("Unknown color depth\n");
  921. i915_gem_object_unpin(obj);
  922. mutex_unlock(&dev->struct_mutex);
  923. return -EINVAL;
  924. }
  925. if (IS_I965G(dev)) {
  926. if (obj_priv->tiling_mode != I915_TILING_NONE)
  927. dspcntr |= DISPPLANE_TILED;
  928. else
  929. dspcntr &= ~DISPPLANE_TILED;
  930. }
  931. I915_WRITE(dspcntr_reg, dspcntr);
  932. Start = obj_priv->gtt_offset;
  933. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  934. DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  935. I915_WRITE(dspstride, crtc->fb->pitch);
  936. if (IS_I965G(dev)) {
  937. I915_WRITE(dspbase, Offset);
  938. I915_READ(dspbase);
  939. I915_WRITE(dspsurf, Start);
  940. I915_READ(dspsurf);
  941. I915_WRITE(dsptileoff, (y << 16) | x);
  942. } else {
  943. I915_WRITE(dspbase, Start + Offset);
  944. I915_READ(dspbase);
  945. }
  946. intel_wait_for_vblank(dev);
  947. if (old_fb) {
  948. intel_fb = to_intel_framebuffer(old_fb);
  949. i915_gem_object_unpin(intel_fb->obj);
  950. }
  951. mutex_unlock(&dev->struct_mutex);
  952. if (!dev->primary->master)
  953. return 0;
  954. master_priv = dev->primary->master->driver_priv;
  955. if (!master_priv->sarea_priv)
  956. return 0;
  957. if (pipe) {
  958. master_priv->sarea_priv->pipeB_x = x;
  959. master_priv->sarea_priv->pipeB_y = y;
  960. } else {
  961. master_priv->sarea_priv->pipeA_x = x;
  962. master_priv->sarea_priv->pipeA_y = y;
  963. }
  964. return 0;
  965. }
  966. /* Disable the VGA plane that we never use */
  967. static void i915_disable_vga (struct drm_device *dev)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. u8 sr1;
  971. u32 vga_reg;
  972. if (IS_IGDNG(dev))
  973. vga_reg = CPU_VGACNTRL;
  974. else
  975. vga_reg = VGACNTRL;
  976. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  977. return;
  978. I915_WRITE8(VGA_SR_INDEX, 1);
  979. sr1 = I915_READ8(VGA_SR_DATA);
  980. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  981. udelay(100);
  982. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  983. }
  984. static void igdng_disable_pll_edp (struct drm_crtc *crtc)
  985. {
  986. struct drm_device *dev = crtc->dev;
  987. struct drm_i915_private *dev_priv = dev->dev_private;
  988. u32 dpa_ctl;
  989. DRM_DEBUG("\n");
  990. dpa_ctl = I915_READ(DP_A);
  991. dpa_ctl &= ~DP_PLL_ENABLE;
  992. I915_WRITE(DP_A, dpa_ctl);
  993. }
  994. static void igdng_enable_pll_edp (struct drm_crtc *crtc)
  995. {
  996. struct drm_device *dev = crtc->dev;
  997. struct drm_i915_private *dev_priv = dev->dev_private;
  998. u32 dpa_ctl;
  999. dpa_ctl = I915_READ(DP_A);
  1000. dpa_ctl |= DP_PLL_ENABLE;
  1001. I915_WRITE(DP_A, dpa_ctl);
  1002. udelay(200);
  1003. }
  1004. static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
  1005. {
  1006. struct drm_device *dev = crtc->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 dpa_ctl;
  1009. DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
  1010. dpa_ctl = I915_READ(DP_A);
  1011. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1012. if (clock < 200000) {
  1013. u32 temp;
  1014. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1015. /* workaround for 160Mhz:
  1016. 1) program 0x4600c bits 15:0 = 0x8124
  1017. 2) program 0x46010 bit 0 = 1
  1018. 3) program 0x46034 bit 24 = 1
  1019. 4) program 0x64000 bit 14 = 1
  1020. */
  1021. temp = I915_READ(0x4600c);
  1022. temp &= 0xffff0000;
  1023. I915_WRITE(0x4600c, temp | 0x8124);
  1024. temp = I915_READ(0x46010);
  1025. I915_WRITE(0x46010, temp | 1);
  1026. temp = I915_READ(0x46034);
  1027. I915_WRITE(0x46034, temp | (1 << 24));
  1028. } else {
  1029. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1030. }
  1031. I915_WRITE(DP_A, dpa_ctl);
  1032. udelay(500);
  1033. }
  1034. static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
  1035. {
  1036. struct drm_device *dev = crtc->dev;
  1037. struct drm_i915_private *dev_priv = dev->dev_private;
  1038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1039. int pipe = intel_crtc->pipe;
  1040. int plane = intel_crtc->plane;
  1041. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1042. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1043. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1044. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1045. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1046. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1047. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1048. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1049. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1050. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1051. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1052. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1053. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1054. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1055. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1056. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1057. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1058. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1059. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1060. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1061. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1062. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1063. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1064. u32 temp;
  1065. int tries = 5, j, n;
  1066. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1067. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1068. */
  1069. switch (mode) {
  1070. case DRM_MODE_DPMS_ON:
  1071. case DRM_MODE_DPMS_STANDBY:
  1072. case DRM_MODE_DPMS_SUSPEND:
  1073. DRM_DEBUG("crtc %d dpms on\n", pipe);
  1074. if (HAS_eDP) {
  1075. /* enable eDP PLL */
  1076. igdng_enable_pll_edp(crtc);
  1077. } else {
  1078. /* enable PCH DPLL */
  1079. temp = I915_READ(pch_dpll_reg);
  1080. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1081. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1082. I915_READ(pch_dpll_reg);
  1083. }
  1084. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1085. temp = I915_READ(fdi_rx_reg);
  1086. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
  1087. FDI_SEL_PCDCLK |
  1088. FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
  1089. I915_READ(fdi_rx_reg);
  1090. udelay(200);
  1091. /* Enable CPU FDI TX PLL, always on for IGDNG */
  1092. temp = I915_READ(fdi_tx_reg);
  1093. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1094. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1095. I915_READ(fdi_tx_reg);
  1096. udelay(100);
  1097. }
  1098. }
  1099. /* Enable CPU pipe */
  1100. temp = I915_READ(pipeconf_reg);
  1101. if ((temp & PIPEACONF_ENABLE) == 0) {
  1102. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1103. I915_READ(pipeconf_reg);
  1104. udelay(100);
  1105. }
  1106. /* configure and enable CPU plane */
  1107. temp = I915_READ(dspcntr_reg);
  1108. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1109. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1110. /* Flush the plane changes */
  1111. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1112. }
  1113. if (!HAS_eDP) {
  1114. /* enable CPU FDI TX and PCH FDI RX */
  1115. temp = I915_READ(fdi_tx_reg);
  1116. temp |= FDI_TX_ENABLE;
  1117. temp |= FDI_DP_PORT_WIDTH_X4; /* default */
  1118. temp &= ~FDI_LINK_TRAIN_NONE;
  1119. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1120. I915_WRITE(fdi_tx_reg, temp);
  1121. I915_READ(fdi_tx_reg);
  1122. temp = I915_READ(fdi_rx_reg);
  1123. temp &= ~FDI_LINK_TRAIN_NONE;
  1124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1125. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1126. I915_READ(fdi_rx_reg);
  1127. udelay(150);
  1128. /* Train FDI. */
  1129. /* umask FDI RX Interrupt symbol_lock and bit_lock bit
  1130. for train result */
  1131. temp = I915_READ(fdi_rx_imr_reg);
  1132. temp &= ~FDI_RX_SYMBOL_LOCK;
  1133. temp &= ~FDI_RX_BIT_LOCK;
  1134. I915_WRITE(fdi_rx_imr_reg, temp);
  1135. I915_READ(fdi_rx_imr_reg);
  1136. udelay(150);
  1137. temp = I915_READ(fdi_rx_iir_reg);
  1138. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1139. if ((temp & FDI_RX_BIT_LOCK) == 0) {
  1140. for (j = 0; j < tries; j++) {
  1141. temp = I915_READ(fdi_rx_iir_reg);
  1142. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1143. if (temp & FDI_RX_BIT_LOCK)
  1144. break;
  1145. udelay(200);
  1146. }
  1147. if (j != tries)
  1148. I915_WRITE(fdi_rx_iir_reg,
  1149. temp | FDI_RX_BIT_LOCK);
  1150. else
  1151. DRM_DEBUG("train 1 fail\n");
  1152. } else {
  1153. I915_WRITE(fdi_rx_iir_reg,
  1154. temp | FDI_RX_BIT_LOCK);
  1155. DRM_DEBUG("train 1 ok 2!\n");
  1156. }
  1157. temp = I915_READ(fdi_tx_reg);
  1158. temp &= ~FDI_LINK_TRAIN_NONE;
  1159. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1160. I915_WRITE(fdi_tx_reg, temp);
  1161. temp = I915_READ(fdi_rx_reg);
  1162. temp &= ~FDI_LINK_TRAIN_NONE;
  1163. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1164. I915_WRITE(fdi_rx_reg, temp);
  1165. udelay(150);
  1166. temp = I915_READ(fdi_rx_iir_reg);
  1167. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1168. if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
  1169. for (j = 0; j < tries; j++) {
  1170. temp = I915_READ(fdi_rx_iir_reg);
  1171. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1172. if (temp & FDI_RX_SYMBOL_LOCK)
  1173. break;
  1174. udelay(200);
  1175. }
  1176. if (j != tries) {
  1177. I915_WRITE(fdi_rx_iir_reg,
  1178. temp | FDI_RX_SYMBOL_LOCK);
  1179. DRM_DEBUG("train 2 ok 1!\n");
  1180. } else
  1181. DRM_DEBUG("train 2 fail\n");
  1182. } else {
  1183. I915_WRITE(fdi_rx_iir_reg,
  1184. temp | FDI_RX_SYMBOL_LOCK);
  1185. DRM_DEBUG("train 2 ok 2!\n");
  1186. }
  1187. DRM_DEBUG("train done\n");
  1188. /* set transcoder timing */
  1189. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1190. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1191. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1192. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1193. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1194. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1195. /* enable PCH transcoder */
  1196. temp = I915_READ(transconf_reg);
  1197. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1198. I915_READ(transconf_reg);
  1199. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1200. ;
  1201. /* enable normal */
  1202. temp = I915_READ(fdi_tx_reg);
  1203. temp &= ~FDI_LINK_TRAIN_NONE;
  1204. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1205. FDI_TX_ENHANCE_FRAME_ENABLE);
  1206. I915_READ(fdi_tx_reg);
  1207. temp = I915_READ(fdi_rx_reg);
  1208. temp &= ~FDI_LINK_TRAIN_NONE;
  1209. I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
  1210. FDI_RX_ENHANCE_FRAME_ENABLE);
  1211. I915_READ(fdi_rx_reg);
  1212. /* wait one idle pattern time */
  1213. udelay(100);
  1214. }
  1215. intel_crtc_load_lut(crtc);
  1216. break;
  1217. case DRM_MODE_DPMS_OFF:
  1218. DRM_DEBUG("crtc %d dpms off\n", pipe);
  1219. i915_disable_vga(dev);
  1220. /* Disable display plane */
  1221. temp = I915_READ(dspcntr_reg);
  1222. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1223. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1224. /* Flush the plane changes */
  1225. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1226. I915_READ(dspbase_reg);
  1227. }
  1228. /* disable cpu pipe, disable after all planes disabled */
  1229. temp = I915_READ(pipeconf_reg);
  1230. if ((temp & PIPEACONF_ENABLE) != 0) {
  1231. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1232. I915_READ(pipeconf_reg);
  1233. n = 0;
  1234. /* wait for cpu pipe off, pipe state */
  1235. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1236. n++;
  1237. if (n < 60) {
  1238. udelay(500);
  1239. continue;
  1240. } else {
  1241. DRM_DEBUG("pipe %d off delay\n", pipe);
  1242. break;
  1243. }
  1244. }
  1245. } else
  1246. DRM_DEBUG("crtc %d is disabled\n", pipe);
  1247. if (HAS_eDP) {
  1248. igdng_disable_pll_edp(crtc);
  1249. }
  1250. /* disable CPU FDI tx and PCH FDI rx */
  1251. temp = I915_READ(fdi_tx_reg);
  1252. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1253. I915_READ(fdi_tx_reg);
  1254. temp = I915_READ(fdi_rx_reg);
  1255. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1256. I915_READ(fdi_rx_reg);
  1257. udelay(100);
  1258. /* still set train pattern 1 */
  1259. temp = I915_READ(fdi_tx_reg);
  1260. temp &= ~FDI_LINK_TRAIN_NONE;
  1261. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1262. I915_WRITE(fdi_tx_reg, temp);
  1263. temp = I915_READ(fdi_rx_reg);
  1264. temp &= ~FDI_LINK_TRAIN_NONE;
  1265. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1266. I915_WRITE(fdi_rx_reg, temp);
  1267. udelay(100);
  1268. /* disable PCH transcoder */
  1269. temp = I915_READ(transconf_reg);
  1270. if ((temp & TRANS_ENABLE) != 0) {
  1271. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1272. I915_READ(transconf_reg);
  1273. n = 0;
  1274. /* wait for PCH transcoder off, transcoder state */
  1275. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1276. n++;
  1277. if (n < 60) {
  1278. udelay(500);
  1279. continue;
  1280. } else {
  1281. DRM_DEBUG("transcoder %d off delay\n", pipe);
  1282. break;
  1283. }
  1284. }
  1285. }
  1286. /* disable PCH DPLL */
  1287. temp = I915_READ(pch_dpll_reg);
  1288. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1289. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1290. I915_READ(pch_dpll_reg);
  1291. }
  1292. temp = I915_READ(fdi_rx_reg);
  1293. if ((temp & FDI_RX_PLL_ENABLE) != 0) {
  1294. temp &= ~FDI_SEL_PCDCLK;
  1295. temp &= ~FDI_RX_PLL_ENABLE;
  1296. I915_WRITE(fdi_rx_reg, temp);
  1297. I915_READ(fdi_rx_reg);
  1298. }
  1299. /* Disable CPU FDI TX PLL */
  1300. temp = I915_READ(fdi_tx_reg);
  1301. if ((temp & FDI_TX_PLL_ENABLE) != 0) {
  1302. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1303. I915_READ(fdi_tx_reg);
  1304. udelay(100);
  1305. }
  1306. /* Disable PF */
  1307. temp = I915_READ(pf_ctl_reg);
  1308. if ((temp & PF_ENABLE) != 0) {
  1309. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1310. I915_READ(pf_ctl_reg);
  1311. }
  1312. I915_WRITE(pf_win_size, 0);
  1313. /* Wait for the clocks to turn off. */
  1314. udelay(150);
  1315. break;
  1316. }
  1317. }
  1318. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1319. {
  1320. struct drm_device *dev = crtc->dev;
  1321. struct drm_i915_private *dev_priv = dev->dev_private;
  1322. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1323. int pipe = intel_crtc->pipe;
  1324. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1325. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  1326. int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
  1327. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1328. u32 temp;
  1329. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1330. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1331. */
  1332. switch (mode) {
  1333. case DRM_MODE_DPMS_ON:
  1334. case DRM_MODE_DPMS_STANDBY:
  1335. case DRM_MODE_DPMS_SUSPEND:
  1336. /* Enable the DPLL */
  1337. temp = I915_READ(dpll_reg);
  1338. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1339. I915_WRITE(dpll_reg, temp);
  1340. I915_READ(dpll_reg);
  1341. /* Wait for the clocks to stabilize. */
  1342. udelay(150);
  1343. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1344. I915_READ(dpll_reg);
  1345. /* Wait for the clocks to stabilize. */
  1346. udelay(150);
  1347. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1348. I915_READ(dpll_reg);
  1349. /* Wait for the clocks to stabilize. */
  1350. udelay(150);
  1351. }
  1352. /* Enable the pipe */
  1353. temp = I915_READ(pipeconf_reg);
  1354. if ((temp & PIPEACONF_ENABLE) == 0)
  1355. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1356. /* Enable the plane */
  1357. temp = I915_READ(dspcntr_reg);
  1358. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1359. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1360. /* Flush the plane changes */
  1361. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1362. }
  1363. intel_crtc_load_lut(crtc);
  1364. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1365. //intel_crtc_dpms_video(crtc, true); TODO
  1366. intel_update_watermarks(dev);
  1367. break;
  1368. case DRM_MODE_DPMS_OFF:
  1369. intel_update_watermarks(dev);
  1370. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1371. //intel_crtc_dpms_video(crtc, FALSE); TODO
  1372. /* Disable the VGA plane that we never use */
  1373. i915_disable_vga(dev);
  1374. /* Disable display plane */
  1375. temp = I915_READ(dspcntr_reg);
  1376. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1377. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1378. /* Flush the plane changes */
  1379. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1380. I915_READ(dspbase_reg);
  1381. }
  1382. if (!IS_I9XX(dev)) {
  1383. /* Wait for vblank for the disable to take effect */
  1384. intel_wait_for_vblank(dev);
  1385. }
  1386. /* Next, disable display pipes */
  1387. temp = I915_READ(pipeconf_reg);
  1388. if ((temp & PIPEACONF_ENABLE) != 0) {
  1389. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1390. I915_READ(pipeconf_reg);
  1391. }
  1392. /* Wait for vblank for the disable to take effect. */
  1393. intel_wait_for_vblank(dev);
  1394. temp = I915_READ(dpll_reg);
  1395. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1396. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1397. I915_READ(dpll_reg);
  1398. }
  1399. /* Wait for the clocks to turn off. */
  1400. udelay(150);
  1401. break;
  1402. }
  1403. }
  1404. /**
  1405. * Sets the power management mode of the pipe and plane.
  1406. *
  1407. * This code should probably grow support for turning the cursor off and back
  1408. * on appropriately at the same time as we're turning the pipe off/on.
  1409. */
  1410. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  1411. {
  1412. struct drm_device *dev = crtc->dev;
  1413. struct drm_i915_master_private *master_priv;
  1414. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1415. int pipe = intel_crtc->pipe;
  1416. bool enabled;
  1417. if (IS_IGDNG(dev))
  1418. igdng_crtc_dpms(crtc, mode);
  1419. else
  1420. i9xx_crtc_dpms(crtc, mode);
  1421. if (!dev->primary->master)
  1422. return;
  1423. master_priv = dev->primary->master->driver_priv;
  1424. if (!master_priv->sarea_priv)
  1425. return;
  1426. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  1427. switch (pipe) {
  1428. case 0:
  1429. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  1430. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  1431. break;
  1432. case 1:
  1433. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  1434. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  1435. break;
  1436. default:
  1437. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  1438. break;
  1439. }
  1440. intel_crtc->dpms_mode = mode;
  1441. }
  1442. static void intel_crtc_prepare (struct drm_crtc *crtc)
  1443. {
  1444. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1445. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  1446. }
  1447. static void intel_crtc_commit (struct drm_crtc *crtc)
  1448. {
  1449. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1450. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1451. }
  1452. void intel_encoder_prepare (struct drm_encoder *encoder)
  1453. {
  1454. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1455. /* lvds has its own version of prepare see intel_lvds_prepare */
  1456. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  1457. }
  1458. void intel_encoder_commit (struct drm_encoder *encoder)
  1459. {
  1460. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1461. /* lvds has its own version of commit see intel_lvds_commit */
  1462. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  1463. }
  1464. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  1465. struct drm_display_mode *mode,
  1466. struct drm_display_mode *adjusted_mode)
  1467. {
  1468. struct drm_device *dev = crtc->dev;
  1469. if (IS_IGDNG(dev)) {
  1470. /* FDI link clock is fixed at 2.7G */
  1471. if (mode->clock * 3 > 27000 * 4)
  1472. return MODE_CLOCK_HIGH;
  1473. }
  1474. return true;
  1475. }
  1476. /** Returns the core display clock speed for i830 - i945 */
  1477. static int intel_get_core_clock_speed(struct drm_device *dev)
  1478. {
  1479. /* Core clock values taken from the published datasheets.
  1480. * The 830 may go up to 166 Mhz, which we should check.
  1481. */
  1482. if (IS_I945G(dev))
  1483. return 400000;
  1484. else if (IS_I915G(dev))
  1485. return 333000;
  1486. else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
  1487. return 200000;
  1488. else if (IS_I915GM(dev)) {
  1489. u16 gcfgc = 0;
  1490. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  1491. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  1492. return 133000;
  1493. else {
  1494. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  1495. case GC_DISPLAY_CLOCK_333_MHZ:
  1496. return 333000;
  1497. default:
  1498. case GC_DISPLAY_CLOCK_190_200_MHZ:
  1499. return 190000;
  1500. }
  1501. }
  1502. } else if (IS_I865G(dev))
  1503. return 266000;
  1504. else if (IS_I855(dev)) {
  1505. u16 hpllcc = 0;
  1506. /* Assume that the hardware is in the high speed state. This
  1507. * should be the default.
  1508. */
  1509. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  1510. case GC_CLOCK_133_200:
  1511. case GC_CLOCK_100_200:
  1512. return 200000;
  1513. case GC_CLOCK_166_250:
  1514. return 250000;
  1515. case GC_CLOCK_100_133:
  1516. return 133000;
  1517. }
  1518. } else /* 852, 830 */
  1519. return 133000;
  1520. return 0; /* Silence gcc warning */
  1521. }
  1522. /**
  1523. * Return the pipe currently connected to the panel fitter,
  1524. * or -1 if the panel fitter is not present or not in use
  1525. */
  1526. static int intel_panel_fitter_pipe (struct drm_device *dev)
  1527. {
  1528. struct drm_i915_private *dev_priv = dev->dev_private;
  1529. u32 pfit_control;
  1530. /* i830 doesn't have a panel fitter */
  1531. if (IS_I830(dev))
  1532. return -1;
  1533. pfit_control = I915_READ(PFIT_CONTROL);
  1534. /* See if the panel fitter is in use */
  1535. if ((pfit_control & PFIT_ENABLE) == 0)
  1536. return -1;
  1537. /* 965 can place panel fitter on either pipe */
  1538. if (IS_I965G(dev))
  1539. return (pfit_control >> 29) & 0x3;
  1540. /* older chips can only use pipe 1 */
  1541. return 1;
  1542. }
  1543. struct fdi_m_n {
  1544. u32 tu;
  1545. u32 gmch_m;
  1546. u32 gmch_n;
  1547. u32 link_m;
  1548. u32 link_n;
  1549. };
  1550. static void
  1551. fdi_reduce_ratio(u32 *num, u32 *den)
  1552. {
  1553. while (*num > 0xffffff || *den > 0xffffff) {
  1554. *num >>= 1;
  1555. *den >>= 1;
  1556. }
  1557. }
  1558. #define DATA_N 0x800000
  1559. #define LINK_N 0x80000
  1560. static void
  1561. igdng_compute_m_n(int bytes_per_pixel, int nlanes,
  1562. int pixel_clock, int link_clock,
  1563. struct fdi_m_n *m_n)
  1564. {
  1565. u64 temp;
  1566. m_n->tu = 64; /* default size */
  1567. temp = (u64) DATA_N * pixel_clock;
  1568. temp = div_u64(temp, link_clock);
  1569. m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
  1570. m_n->gmch_n = DATA_N;
  1571. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  1572. temp = (u64) LINK_N * pixel_clock;
  1573. m_n->link_m = div_u64(temp, link_clock);
  1574. m_n->link_n = LINK_N;
  1575. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  1576. }
  1577. struct intel_watermark_params {
  1578. unsigned long fifo_size;
  1579. unsigned long max_wm;
  1580. unsigned long default_wm;
  1581. unsigned long guard_size;
  1582. unsigned long cacheline_size;
  1583. };
  1584. /* IGD has different values for various configs */
  1585. static struct intel_watermark_params igd_display_wm = {
  1586. IGD_DISPLAY_FIFO,
  1587. IGD_MAX_WM,
  1588. IGD_DFT_WM,
  1589. IGD_GUARD_WM,
  1590. IGD_FIFO_LINE_SIZE
  1591. };
  1592. static struct intel_watermark_params igd_display_hplloff_wm = {
  1593. IGD_DISPLAY_FIFO,
  1594. IGD_MAX_WM,
  1595. IGD_DFT_HPLLOFF_WM,
  1596. IGD_GUARD_WM,
  1597. IGD_FIFO_LINE_SIZE
  1598. };
  1599. static struct intel_watermark_params igd_cursor_wm = {
  1600. IGD_CURSOR_FIFO,
  1601. IGD_CURSOR_MAX_WM,
  1602. IGD_CURSOR_DFT_WM,
  1603. IGD_CURSOR_GUARD_WM,
  1604. IGD_FIFO_LINE_SIZE,
  1605. };
  1606. static struct intel_watermark_params igd_cursor_hplloff_wm = {
  1607. IGD_CURSOR_FIFO,
  1608. IGD_CURSOR_MAX_WM,
  1609. IGD_CURSOR_DFT_WM,
  1610. IGD_CURSOR_GUARD_WM,
  1611. IGD_FIFO_LINE_SIZE
  1612. };
  1613. static struct intel_watermark_params i945_wm_info = {
  1614. I945_FIFO_SIZE,
  1615. I915_MAX_WM,
  1616. 1,
  1617. 2,
  1618. I915_FIFO_LINE_SIZE
  1619. };
  1620. static struct intel_watermark_params i915_wm_info = {
  1621. I915_FIFO_SIZE,
  1622. I915_MAX_WM,
  1623. 1,
  1624. 2,
  1625. I915_FIFO_LINE_SIZE
  1626. };
  1627. static struct intel_watermark_params i855_wm_info = {
  1628. I855GM_FIFO_SIZE,
  1629. I915_MAX_WM,
  1630. 1,
  1631. 2,
  1632. I830_FIFO_LINE_SIZE
  1633. };
  1634. static struct intel_watermark_params i830_wm_info = {
  1635. I830_FIFO_SIZE,
  1636. I915_MAX_WM,
  1637. 1,
  1638. 2,
  1639. I830_FIFO_LINE_SIZE
  1640. };
  1641. /**
  1642. * intel_calculate_wm - calculate watermark level
  1643. * @clock_in_khz: pixel clock
  1644. * @wm: chip FIFO params
  1645. * @pixel_size: display pixel size
  1646. * @latency_ns: memory latency for the platform
  1647. *
  1648. * Calculate the watermark level (the level at which the display plane will
  1649. * start fetching from memory again). Each chip has a different display
  1650. * FIFO size and allocation, so the caller needs to figure that out and pass
  1651. * in the correct intel_watermark_params structure.
  1652. *
  1653. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  1654. * on the pixel size. When it reaches the watermark level, it'll start
  1655. * fetching FIFO line sized based chunks from memory until the FIFO fills
  1656. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  1657. * will occur, and a display engine hang could result.
  1658. */
  1659. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  1660. struct intel_watermark_params *wm,
  1661. int pixel_size,
  1662. unsigned long latency_ns)
  1663. {
  1664. long entries_required, wm_size;
  1665. entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
  1666. entries_required /= wm->cacheline_size;
  1667. DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
  1668. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  1669. DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
  1670. /* Don't promote wm_size to unsigned... */
  1671. if (wm_size > (long)wm->max_wm)
  1672. wm_size = wm->max_wm;
  1673. if (wm_size <= 0)
  1674. wm_size = wm->default_wm;
  1675. return wm_size;
  1676. }
  1677. struct cxsr_latency {
  1678. int is_desktop;
  1679. unsigned long fsb_freq;
  1680. unsigned long mem_freq;
  1681. unsigned long display_sr;
  1682. unsigned long display_hpll_disable;
  1683. unsigned long cursor_sr;
  1684. unsigned long cursor_hpll_disable;
  1685. };
  1686. static struct cxsr_latency cxsr_latency_table[] = {
  1687. {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  1688. {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  1689. {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  1690. {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  1691. {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  1692. {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  1693. {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  1694. {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  1695. {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  1696. {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  1697. {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  1698. {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  1699. {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  1700. {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  1701. {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  1702. {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  1703. {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  1704. {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  1705. };
  1706. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
  1707. int mem)
  1708. {
  1709. int i;
  1710. struct cxsr_latency *latency;
  1711. if (fsb == 0 || mem == 0)
  1712. return NULL;
  1713. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  1714. latency = &cxsr_latency_table[i];
  1715. if (is_desktop == latency->is_desktop &&
  1716. fsb == latency->fsb_freq && mem == latency->mem_freq)
  1717. break;
  1718. }
  1719. if (i >= ARRAY_SIZE(cxsr_latency_table)) {
  1720. DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
  1721. return NULL;
  1722. }
  1723. return latency;
  1724. }
  1725. static void igd_disable_cxsr(struct drm_device *dev)
  1726. {
  1727. struct drm_i915_private *dev_priv = dev->dev_private;
  1728. u32 reg;
  1729. /* deactivate cxsr */
  1730. reg = I915_READ(DSPFW3);
  1731. reg &= ~(IGD_SELF_REFRESH_EN);
  1732. I915_WRITE(DSPFW3, reg);
  1733. DRM_INFO("Big FIFO is disabled\n");
  1734. }
  1735. static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
  1736. int pixel_size)
  1737. {
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. u32 reg;
  1740. unsigned long wm;
  1741. struct cxsr_latency *latency;
  1742. latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
  1743. dev_priv->mem_freq);
  1744. if (!latency) {
  1745. DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
  1746. igd_disable_cxsr(dev);
  1747. return;
  1748. }
  1749. /* Display SR */
  1750. wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
  1751. latency->display_sr);
  1752. reg = I915_READ(DSPFW1);
  1753. reg &= 0x7fffff;
  1754. reg |= wm << 23;
  1755. I915_WRITE(DSPFW1, reg);
  1756. DRM_DEBUG("DSPFW1 register is %x\n", reg);
  1757. /* cursor SR */
  1758. wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
  1759. latency->cursor_sr);
  1760. reg = I915_READ(DSPFW3);
  1761. reg &= ~(0x3f << 24);
  1762. reg |= (wm & 0x3f) << 24;
  1763. I915_WRITE(DSPFW3, reg);
  1764. /* Display HPLL off SR */
  1765. wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
  1766. latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
  1767. reg = I915_READ(DSPFW3);
  1768. reg &= 0xfffffe00;
  1769. reg |= wm & 0x1ff;
  1770. I915_WRITE(DSPFW3, reg);
  1771. /* cursor HPLL off SR */
  1772. wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
  1773. latency->cursor_hpll_disable);
  1774. reg = I915_READ(DSPFW3);
  1775. reg &= ~(0x3f << 16);
  1776. reg |= (wm & 0x3f) << 16;
  1777. I915_WRITE(DSPFW3, reg);
  1778. DRM_DEBUG("DSPFW3 register is %x\n", reg);
  1779. /* activate cxsr */
  1780. reg = I915_READ(DSPFW3);
  1781. reg |= IGD_SELF_REFRESH_EN;
  1782. I915_WRITE(DSPFW3, reg);
  1783. DRM_INFO("Big FIFO is enabled\n");
  1784. return;
  1785. }
  1786. const static int latency_ns = 3000; /* default for non-igd platforms */
  1787. static int intel_get_fifo_size(struct drm_device *dev, int plane)
  1788. {
  1789. struct drm_i915_private *dev_priv = dev->dev_private;
  1790. uint32_t dsparb = I915_READ(DSPARB);
  1791. int size;
  1792. if (IS_I9XX(dev)) {
  1793. if (plane == 0)
  1794. size = dsparb & 0x7f;
  1795. else
  1796. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  1797. (dsparb & 0x7f);
  1798. } else if (IS_I85X(dev)) {
  1799. if (plane == 0)
  1800. size = dsparb & 0x1ff;
  1801. else
  1802. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  1803. (dsparb & 0x1ff);
  1804. size >>= 1; /* Convert to cachelines */
  1805. } else {
  1806. size = dsparb & 0x7f;
  1807. size >>= 1; /* Convert to cachelines */
  1808. }
  1809. DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
  1810. size);
  1811. return size;
  1812. }
  1813. static void i965_update_wm(struct drm_device *dev)
  1814. {
  1815. struct drm_i915_private *dev_priv = dev->dev_private;
  1816. DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
  1817. /* 965 has limitations... */
  1818. I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
  1819. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1820. }
  1821. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  1822. int planeb_clock, int sr_hdisplay, int pixel_size)
  1823. {
  1824. struct drm_i915_private *dev_priv = dev->dev_private;
  1825. uint32_t fwater_lo;
  1826. uint32_t fwater_hi;
  1827. int total_size, cacheline_size, cwm, srwm = 1;
  1828. int planea_wm, planeb_wm;
  1829. struct intel_watermark_params planea_params, planeb_params;
  1830. unsigned long line_time_us;
  1831. int sr_clock, sr_entries = 0;
  1832. /* Create copies of the base settings for each pipe */
  1833. if (IS_I965GM(dev) || IS_I945GM(dev))
  1834. planea_params = planeb_params = i945_wm_info;
  1835. else if (IS_I9XX(dev))
  1836. planea_params = planeb_params = i915_wm_info;
  1837. else
  1838. planea_params = planeb_params = i855_wm_info;
  1839. /* Grab a couple of global values before we overwrite them */
  1840. total_size = planea_params.fifo_size;
  1841. cacheline_size = planea_params.cacheline_size;
  1842. /* Update per-plane FIFO sizes */
  1843. planea_params.fifo_size = intel_get_fifo_size(dev, 0);
  1844. planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
  1845. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  1846. pixel_size, latency_ns);
  1847. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  1848. pixel_size, latency_ns);
  1849. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1850. /*
  1851. * Overlay gets an aggressive default since video jitter is bad.
  1852. */
  1853. cwm = 2;
  1854. /* Calc sr entries for one plane configs */
  1855. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  1856. /* self-refresh has much higher latency */
  1857. const static int sr_latency_ns = 6000;
  1858. sr_clock = planea_clock ? planea_clock : planeb_clock;
  1859. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  1860. /* Use ns/us then divide to preserve precision */
  1861. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  1862. pixel_size * sr_hdisplay) / 1000;
  1863. sr_entries = roundup(sr_entries / cacheline_size, 1);
  1864. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  1865. srwm = total_size - sr_entries;
  1866. if (srwm < 0)
  1867. srwm = 1;
  1868. if (IS_I9XX(dev))
  1869. I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
  1870. }
  1871. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1872. planea_wm, planeb_wm, cwm, srwm);
  1873. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1874. fwater_hi = (cwm & 0x1f);
  1875. /* Set request length to 8 cachelines per fetch */
  1876. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1877. fwater_hi = fwater_hi | (1 << 8);
  1878. I915_WRITE(FW_BLC, fwater_lo);
  1879. I915_WRITE(FW_BLC2, fwater_hi);
  1880. }
  1881. static void i830_update_wm(struct drm_device *dev, int planea_clock,
  1882. int pixel_size)
  1883. {
  1884. struct drm_i915_private *dev_priv = dev->dev_private;
  1885. uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
  1886. int planea_wm;
  1887. i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
  1888. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  1889. pixel_size, latency_ns);
  1890. fwater_lo = fwater_lo | planea_wm;
  1891. I915_WRITE(FW_BLC, fwater_lo);
  1892. }
  1893. /**
  1894. * intel_update_watermarks - update FIFO watermark values based on current modes
  1895. *
  1896. * Calculate watermark values for the various WM regs based on current mode
  1897. * and plane configuration.
  1898. *
  1899. * There are several cases to deal with here:
  1900. * - normal (i.e. non-self-refresh)
  1901. * - self-refresh (SR) mode
  1902. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1903. * - lines are small relative to FIFO size (buffer can hold more than 2
  1904. * lines), so need to account for TLB latency
  1905. *
  1906. * The normal calculation is:
  1907. * watermark = dotclock * bytes per pixel * latency
  1908. * where latency is platform & configuration dependent (we assume pessimal
  1909. * values here).
  1910. *
  1911. * The SR calculation is:
  1912. * watermark = (trunc(latency/line time)+1) * surface width *
  1913. * bytes per pixel
  1914. * where
  1915. * line time = htotal / dotclock
  1916. * and latency is assumed to be high, as above.
  1917. *
  1918. * The final value programmed to the register should always be rounded up,
  1919. * and include an extra 2 entries to account for clock crossings.
  1920. *
  1921. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1922. * to set the non-SR watermarks to 8.
  1923. */
  1924. static void intel_update_watermarks(struct drm_device *dev)
  1925. {
  1926. struct drm_crtc *crtc;
  1927. struct intel_crtc *intel_crtc;
  1928. int sr_hdisplay = 0;
  1929. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  1930. int enabled = 0, pixel_size = 0;
  1931. if (DSPARB_HWCONTROL(dev))
  1932. return;
  1933. /* Get the clock config from both planes */
  1934. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1935. intel_crtc = to_intel_crtc(crtc);
  1936. if (crtc->enabled) {
  1937. enabled++;
  1938. if (intel_crtc->plane == 0) {
  1939. DRM_DEBUG("plane A (pipe %d) clock: %d\n",
  1940. intel_crtc->pipe, crtc->mode.clock);
  1941. planea_clock = crtc->mode.clock;
  1942. } else {
  1943. DRM_DEBUG("plane B (pipe %d) clock: %d\n",
  1944. intel_crtc->pipe, crtc->mode.clock);
  1945. planeb_clock = crtc->mode.clock;
  1946. }
  1947. sr_hdisplay = crtc->mode.hdisplay;
  1948. sr_clock = crtc->mode.clock;
  1949. if (crtc->fb)
  1950. pixel_size = crtc->fb->bits_per_pixel / 8;
  1951. else
  1952. pixel_size = 4; /* by default */
  1953. }
  1954. }
  1955. if (enabled <= 0)
  1956. return;
  1957. /* Single plane configs can enable self refresh */
  1958. if (enabled == 1 && IS_IGD(dev))
  1959. igd_enable_cxsr(dev, sr_clock, pixel_size);
  1960. else if (IS_IGD(dev))
  1961. igd_disable_cxsr(dev);
  1962. if (IS_I965G(dev))
  1963. i965_update_wm(dev);
  1964. else if (IS_I9XX(dev) || IS_MOBILE(dev))
  1965. i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
  1966. pixel_size);
  1967. else
  1968. i830_update_wm(dev, planea_clock, pixel_size);
  1969. }
  1970. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  1971. struct drm_display_mode *mode,
  1972. struct drm_display_mode *adjusted_mode,
  1973. int x, int y,
  1974. struct drm_framebuffer *old_fb)
  1975. {
  1976. struct drm_device *dev = crtc->dev;
  1977. struct drm_i915_private *dev_priv = dev->dev_private;
  1978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1979. int pipe = intel_crtc->pipe;
  1980. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  1981. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1982. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  1983. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  1984. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1985. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1986. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1987. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1988. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1989. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1990. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1991. int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
  1992. int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
  1993. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  1994. int refclk, num_outputs = 0;
  1995. intel_clock_t clock;
  1996. u32 dpll = 0, fp = 0, dspcntr, pipeconf;
  1997. bool ok, is_sdvo = false, is_dvo = false;
  1998. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  1999. bool is_edp = false;
  2000. struct drm_mode_config *mode_config = &dev->mode_config;
  2001. struct drm_connector *connector;
  2002. const intel_limit_t *limit;
  2003. int ret;
  2004. struct fdi_m_n m_n = {0};
  2005. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2006. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2007. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2008. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2009. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2010. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2011. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2012. int lvds_reg = LVDS;
  2013. u32 temp;
  2014. int sdvo_pixel_multiply;
  2015. int target_clock;
  2016. drm_vblank_pre_modeset(dev, pipe);
  2017. list_for_each_entry(connector, &mode_config->connector_list, head) {
  2018. struct intel_output *intel_output = to_intel_output(connector);
  2019. if (!connector->encoder || connector->encoder->crtc != crtc)
  2020. continue;
  2021. switch (intel_output->type) {
  2022. case INTEL_OUTPUT_LVDS:
  2023. is_lvds = true;
  2024. break;
  2025. case INTEL_OUTPUT_SDVO:
  2026. case INTEL_OUTPUT_HDMI:
  2027. is_sdvo = true;
  2028. if (intel_output->needs_tv_clock)
  2029. is_tv = true;
  2030. break;
  2031. case INTEL_OUTPUT_DVO:
  2032. is_dvo = true;
  2033. break;
  2034. case INTEL_OUTPUT_TVOUT:
  2035. is_tv = true;
  2036. break;
  2037. case INTEL_OUTPUT_ANALOG:
  2038. is_crt = true;
  2039. break;
  2040. case INTEL_OUTPUT_DISPLAYPORT:
  2041. is_dp = true;
  2042. break;
  2043. case INTEL_OUTPUT_EDP:
  2044. is_edp = true;
  2045. break;
  2046. }
  2047. num_outputs++;
  2048. }
  2049. if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
  2050. refclk = dev_priv->lvds_ssc_freq * 1000;
  2051. DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
  2052. } else if (IS_I9XX(dev)) {
  2053. refclk = 96000;
  2054. if (IS_IGDNG(dev))
  2055. refclk = 120000; /* 120Mhz refclk */
  2056. } else {
  2057. refclk = 48000;
  2058. }
  2059. /*
  2060. * Returns a set of divisors for the desired target clock with the given
  2061. * refclk, or FALSE. The returned values represent the clock equation:
  2062. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2063. */
  2064. limit = intel_limit(crtc);
  2065. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2066. if (!ok) {
  2067. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2068. drm_vblank_post_modeset(dev, pipe);
  2069. return -EINVAL;
  2070. }
  2071. /* SDVO TV has fixed PLL values depend on its clock range,
  2072. this mirrors vbios setting. */
  2073. if (is_sdvo && is_tv) {
  2074. if (adjusted_mode->clock >= 100000
  2075. && adjusted_mode->clock < 140500) {
  2076. clock.p1 = 2;
  2077. clock.p2 = 10;
  2078. clock.n = 3;
  2079. clock.m1 = 16;
  2080. clock.m2 = 8;
  2081. } else if (adjusted_mode->clock >= 140500
  2082. && adjusted_mode->clock <= 200000) {
  2083. clock.p1 = 1;
  2084. clock.p2 = 10;
  2085. clock.n = 6;
  2086. clock.m1 = 12;
  2087. clock.m2 = 8;
  2088. }
  2089. }
  2090. /* FDI link */
  2091. if (IS_IGDNG(dev)) {
  2092. int lane, link_bw;
  2093. /* eDP doesn't require FDI link, so just set DP M/N
  2094. according to current link config */
  2095. if (is_edp) {
  2096. struct drm_connector *edp;
  2097. target_clock = mode->clock;
  2098. edp = intel_pipe_get_output(crtc);
  2099. intel_edp_link_config(to_intel_output(edp),
  2100. &lane, &link_bw);
  2101. } else {
  2102. /* DP over FDI requires target mode clock
  2103. instead of link clock */
  2104. if (is_dp)
  2105. target_clock = mode->clock;
  2106. else
  2107. target_clock = adjusted_mode->clock;
  2108. lane = 4;
  2109. link_bw = 270000;
  2110. }
  2111. igdng_compute_m_n(3, lane, target_clock,
  2112. link_bw, &m_n);
  2113. }
  2114. if (IS_IGD(dev))
  2115. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  2116. else
  2117. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  2118. if (!IS_IGDNG(dev))
  2119. dpll = DPLL_VGA_MODE_DIS;
  2120. if (IS_I9XX(dev)) {
  2121. if (is_lvds)
  2122. dpll |= DPLLB_MODE_LVDS;
  2123. else
  2124. dpll |= DPLLB_MODE_DAC_SERIAL;
  2125. if (is_sdvo) {
  2126. dpll |= DPLL_DVO_HIGH_SPEED;
  2127. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2128. if (IS_I945G(dev) || IS_I945GM(dev))
  2129. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  2130. else if (IS_IGDNG(dev))
  2131. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  2132. }
  2133. if (is_dp)
  2134. dpll |= DPLL_DVO_HIGH_SPEED;
  2135. /* compute bitmask from p1 value */
  2136. if (IS_IGD(dev))
  2137. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
  2138. else {
  2139. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2140. /* also FPA1 */
  2141. if (IS_IGDNG(dev))
  2142. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  2143. }
  2144. switch (clock.p2) {
  2145. case 5:
  2146. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  2147. break;
  2148. case 7:
  2149. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  2150. break;
  2151. case 10:
  2152. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  2153. break;
  2154. case 14:
  2155. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  2156. break;
  2157. }
  2158. if (IS_I965G(dev) && !IS_IGDNG(dev))
  2159. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  2160. } else {
  2161. if (is_lvds) {
  2162. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2163. } else {
  2164. if (clock.p1 == 2)
  2165. dpll |= PLL_P1_DIVIDE_BY_TWO;
  2166. else
  2167. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2168. if (clock.p2 == 4)
  2169. dpll |= PLL_P2_DIVIDE_BY_4;
  2170. }
  2171. }
  2172. if (is_sdvo && is_tv)
  2173. dpll |= PLL_REF_INPUT_TVCLKINBC;
  2174. else if (is_tv)
  2175. /* XXX: just matching BIOS for now */
  2176. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  2177. dpll |= 3;
  2178. else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
  2179. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  2180. else
  2181. dpll |= PLL_REF_INPUT_DREFCLK;
  2182. /* setup pipeconf */
  2183. pipeconf = I915_READ(pipeconf_reg);
  2184. /* Set up the display plane register */
  2185. dspcntr = DISPPLANE_GAMMA_ENABLE;
  2186. /* IGDNG's plane is forced to pipe, bit 24 is to
  2187. enable color space conversion */
  2188. if (!IS_IGDNG(dev)) {
  2189. if (pipe == 0)
  2190. dspcntr |= DISPPLANE_SEL_PIPE_A;
  2191. else
  2192. dspcntr |= DISPPLANE_SEL_PIPE_B;
  2193. }
  2194. if (pipe == 0 && !IS_I965G(dev)) {
  2195. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  2196. * core speed.
  2197. *
  2198. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  2199. * pipe == 0 check?
  2200. */
  2201. if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
  2202. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  2203. else
  2204. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  2205. }
  2206. dspcntr |= DISPLAY_PLANE_ENABLE;
  2207. pipeconf |= PIPEACONF_ENABLE;
  2208. dpll |= DPLL_VCO_ENABLE;
  2209. /* Disable the panel fitter if it was on our pipe */
  2210. if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
  2211. I915_WRITE(PFIT_CONTROL, 0);
  2212. DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  2213. drm_mode_debug_printmodeline(mode);
  2214. /* assign to IGDNG registers */
  2215. if (IS_IGDNG(dev)) {
  2216. fp_reg = pch_fp_reg;
  2217. dpll_reg = pch_dpll_reg;
  2218. }
  2219. if (is_edp) {
  2220. igdng_disable_pll_edp(crtc);
  2221. } else if ((dpll & DPLL_VCO_ENABLE)) {
  2222. I915_WRITE(fp_reg, fp);
  2223. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  2224. I915_READ(dpll_reg);
  2225. udelay(150);
  2226. }
  2227. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  2228. * This is an exception to the general rule that mode_set doesn't turn
  2229. * things on.
  2230. */
  2231. if (is_lvds) {
  2232. u32 lvds;
  2233. if (IS_IGDNG(dev))
  2234. lvds_reg = PCH_LVDS;
  2235. lvds = I915_READ(lvds_reg);
  2236. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
  2237. /* Set the B0-B3 data pairs corresponding to whether we're going to
  2238. * set the DPLLs for dual-channel mode or not.
  2239. */
  2240. if (clock.p2 == 7)
  2241. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  2242. else
  2243. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  2244. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  2245. * appropriately here, but we need to look more thoroughly into how
  2246. * panels behave in the two modes.
  2247. */
  2248. I915_WRITE(lvds_reg, lvds);
  2249. I915_READ(lvds_reg);
  2250. }
  2251. if (is_dp)
  2252. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  2253. if (!is_edp) {
  2254. I915_WRITE(fp_reg, fp);
  2255. I915_WRITE(dpll_reg, dpll);
  2256. I915_READ(dpll_reg);
  2257. /* Wait for the clocks to stabilize. */
  2258. udelay(150);
  2259. if (IS_I965G(dev) && !IS_IGDNG(dev)) {
  2260. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2261. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  2262. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  2263. } else {
  2264. /* write it again -- the BIOS does, after all */
  2265. I915_WRITE(dpll_reg, dpll);
  2266. }
  2267. I915_READ(dpll_reg);
  2268. /* Wait for the clocks to stabilize. */
  2269. udelay(150);
  2270. }
  2271. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  2272. ((adjusted_mode->crtc_htotal - 1) << 16));
  2273. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  2274. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  2275. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  2276. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  2277. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  2278. ((adjusted_mode->crtc_vtotal - 1) << 16));
  2279. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  2280. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  2281. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  2282. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  2283. /* pipesrc and dspsize control the size that is scaled from, which should
  2284. * always be the user's requested size.
  2285. */
  2286. if (!IS_IGDNG(dev)) {
  2287. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  2288. (mode->hdisplay - 1));
  2289. I915_WRITE(dsppos_reg, 0);
  2290. }
  2291. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  2292. if (IS_IGDNG(dev)) {
  2293. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  2294. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  2295. I915_WRITE(link_m1_reg, m_n.link_m);
  2296. I915_WRITE(link_n1_reg, m_n.link_n);
  2297. if (is_edp) {
  2298. igdng_set_pll_edp(crtc, adjusted_mode->clock);
  2299. } else {
  2300. /* enable FDI RX PLL too */
  2301. temp = I915_READ(fdi_rx_reg);
  2302. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  2303. udelay(200);
  2304. }
  2305. }
  2306. I915_WRITE(pipeconf_reg, pipeconf);
  2307. I915_READ(pipeconf_reg);
  2308. intel_wait_for_vblank(dev);
  2309. I915_WRITE(dspcntr_reg, dspcntr);
  2310. /* Flush the plane changes */
  2311. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  2312. intel_update_watermarks(dev);
  2313. drm_vblank_post_modeset(dev, pipe);
  2314. return ret;
  2315. }
  2316. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2317. void intel_crtc_load_lut(struct drm_crtc *crtc)
  2318. {
  2319. struct drm_device *dev = crtc->dev;
  2320. struct drm_i915_private *dev_priv = dev->dev_private;
  2321. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2322. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  2323. int i;
  2324. /* The clocks have to be on to load the palette. */
  2325. if (!crtc->enabled)
  2326. return;
  2327. /* use legacy palette for IGDNG */
  2328. if (IS_IGDNG(dev))
  2329. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  2330. LGC_PALETTE_B;
  2331. for (i = 0; i < 256; i++) {
  2332. I915_WRITE(palreg + 4 * i,
  2333. (intel_crtc->lut_r[i] << 16) |
  2334. (intel_crtc->lut_g[i] << 8) |
  2335. intel_crtc->lut_b[i]);
  2336. }
  2337. }
  2338. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  2339. struct drm_file *file_priv,
  2340. uint32_t handle,
  2341. uint32_t width, uint32_t height)
  2342. {
  2343. struct drm_device *dev = crtc->dev;
  2344. struct drm_i915_private *dev_priv = dev->dev_private;
  2345. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2346. struct drm_gem_object *bo;
  2347. struct drm_i915_gem_object *obj_priv;
  2348. int pipe = intel_crtc->pipe;
  2349. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  2350. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  2351. uint32_t temp = I915_READ(control);
  2352. size_t addr;
  2353. int ret;
  2354. DRM_DEBUG("\n");
  2355. /* if we want to turn off the cursor ignore width and height */
  2356. if (!handle) {
  2357. DRM_DEBUG("cursor off\n");
  2358. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2359. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  2360. temp |= CURSOR_MODE_DISABLE;
  2361. } else {
  2362. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  2363. }
  2364. addr = 0;
  2365. bo = NULL;
  2366. mutex_lock(&dev->struct_mutex);
  2367. goto finish;
  2368. }
  2369. /* Currently we only support 64x64 cursors */
  2370. if (width != 64 || height != 64) {
  2371. DRM_ERROR("we currently only support 64x64 cursors\n");
  2372. return -EINVAL;
  2373. }
  2374. bo = drm_gem_object_lookup(dev, file_priv, handle);
  2375. if (!bo)
  2376. return -ENOENT;
  2377. obj_priv = bo->driver_private;
  2378. if (bo->size < width * height * 4) {
  2379. DRM_ERROR("buffer is to small\n");
  2380. ret = -ENOMEM;
  2381. goto fail;
  2382. }
  2383. /* we only need to pin inside GTT if cursor is non-phy */
  2384. mutex_lock(&dev->struct_mutex);
  2385. if (!dev_priv->cursor_needs_physical) {
  2386. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  2387. if (ret) {
  2388. DRM_ERROR("failed to pin cursor bo\n");
  2389. goto fail_locked;
  2390. }
  2391. addr = obj_priv->gtt_offset;
  2392. } else {
  2393. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  2394. if (ret) {
  2395. DRM_ERROR("failed to attach phys object\n");
  2396. goto fail_locked;
  2397. }
  2398. addr = obj_priv->phys_obj->handle->busaddr;
  2399. }
  2400. if (!IS_I9XX(dev))
  2401. I915_WRITE(CURSIZE, (height << 12) | width);
  2402. /* Hooray for CUR*CNTR differences */
  2403. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2404. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  2405. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  2406. temp |= (pipe << 28); /* Connect to correct pipe */
  2407. } else {
  2408. temp &= ~(CURSOR_FORMAT_MASK);
  2409. temp |= CURSOR_ENABLE;
  2410. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  2411. }
  2412. finish:
  2413. I915_WRITE(control, temp);
  2414. I915_WRITE(base, addr);
  2415. if (intel_crtc->cursor_bo) {
  2416. if (dev_priv->cursor_needs_physical) {
  2417. if (intel_crtc->cursor_bo != bo)
  2418. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  2419. } else
  2420. i915_gem_object_unpin(intel_crtc->cursor_bo);
  2421. drm_gem_object_unreference(intel_crtc->cursor_bo);
  2422. }
  2423. mutex_unlock(&dev->struct_mutex);
  2424. intel_crtc->cursor_addr = addr;
  2425. intel_crtc->cursor_bo = bo;
  2426. return 0;
  2427. fail:
  2428. mutex_lock(&dev->struct_mutex);
  2429. fail_locked:
  2430. drm_gem_object_unreference(bo);
  2431. mutex_unlock(&dev->struct_mutex);
  2432. return ret;
  2433. }
  2434. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  2435. {
  2436. struct drm_device *dev = crtc->dev;
  2437. struct drm_i915_private *dev_priv = dev->dev_private;
  2438. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2439. int pipe = intel_crtc->pipe;
  2440. uint32_t temp = 0;
  2441. uint32_t adder;
  2442. if (x < 0) {
  2443. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  2444. x = -x;
  2445. }
  2446. if (y < 0) {
  2447. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  2448. y = -y;
  2449. }
  2450. temp |= x << CURSOR_X_SHIFT;
  2451. temp |= y << CURSOR_Y_SHIFT;
  2452. adder = intel_crtc->cursor_addr;
  2453. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  2454. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  2455. return 0;
  2456. }
  2457. /** Sets the color ramps on behalf of RandR */
  2458. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  2459. u16 blue, int regno)
  2460. {
  2461. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2462. intel_crtc->lut_r[regno] = red >> 8;
  2463. intel_crtc->lut_g[regno] = green >> 8;
  2464. intel_crtc->lut_b[regno] = blue >> 8;
  2465. }
  2466. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  2467. u16 *blue, uint32_t size)
  2468. {
  2469. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2470. int i;
  2471. if (size != 256)
  2472. return;
  2473. for (i = 0; i < 256; i++) {
  2474. intel_crtc->lut_r[i] = red[i] >> 8;
  2475. intel_crtc->lut_g[i] = green[i] >> 8;
  2476. intel_crtc->lut_b[i] = blue[i] >> 8;
  2477. }
  2478. intel_crtc_load_lut(crtc);
  2479. }
  2480. /**
  2481. * Get a pipe with a simple mode set on it for doing load-based monitor
  2482. * detection.
  2483. *
  2484. * It will be up to the load-detect code to adjust the pipe as appropriate for
  2485. * its requirements. The pipe will be connected to no other outputs.
  2486. *
  2487. * Currently this code will only succeed if there is a pipe with no outputs
  2488. * configured for it. In the future, it could choose to temporarily disable
  2489. * some outputs to free up a pipe for its use.
  2490. *
  2491. * \return crtc, or NULL if no pipes are available.
  2492. */
  2493. /* VESA 640x480x72Hz mode to set on the pipe */
  2494. static struct drm_display_mode load_detect_mode = {
  2495. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  2496. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  2497. };
  2498. struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
  2499. struct drm_display_mode *mode,
  2500. int *dpms_mode)
  2501. {
  2502. struct intel_crtc *intel_crtc;
  2503. struct drm_crtc *possible_crtc;
  2504. struct drm_crtc *supported_crtc =NULL;
  2505. struct drm_encoder *encoder = &intel_output->enc;
  2506. struct drm_crtc *crtc = NULL;
  2507. struct drm_device *dev = encoder->dev;
  2508. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2509. struct drm_crtc_helper_funcs *crtc_funcs;
  2510. int i = -1;
  2511. /*
  2512. * Algorithm gets a little messy:
  2513. * - if the connector already has an assigned crtc, use it (but make
  2514. * sure it's on first)
  2515. * - try to find the first unused crtc that can drive this connector,
  2516. * and use that if we find one
  2517. * - if there are no unused crtcs available, try to use the first
  2518. * one we found that supports the connector
  2519. */
  2520. /* See if we already have a CRTC for this connector */
  2521. if (encoder->crtc) {
  2522. crtc = encoder->crtc;
  2523. /* Make sure the crtc and connector are running */
  2524. intel_crtc = to_intel_crtc(crtc);
  2525. *dpms_mode = intel_crtc->dpms_mode;
  2526. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  2527. crtc_funcs = crtc->helper_private;
  2528. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2529. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2530. }
  2531. return crtc;
  2532. }
  2533. /* Find an unused one (if possible) */
  2534. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  2535. i++;
  2536. if (!(encoder->possible_crtcs & (1 << i)))
  2537. continue;
  2538. if (!possible_crtc->enabled) {
  2539. crtc = possible_crtc;
  2540. break;
  2541. }
  2542. if (!supported_crtc)
  2543. supported_crtc = possible_crtc;
  2544. }
  2545. /*
  2546. * If we didn't find an unused CRTC, don't use any.
  2547. */
  2548. if (!crtc) {
  2549. return NULL;
  2550. }
  2551. encoder->crtc = crtc;
  2552. intel_output->base.encoder = encoder;
  2553. intel_output->load_detect_temp = true;
  2554. intel_crtc = to_intel_crtc(crtc);
  2555. *dpms_mode = intel_crtc->dpms_mode;
  2556. if (!crtc->enabled) {
  2557. if (!mode)
  2558. mode = &load_detect_mode;
  2559. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  2560. } else {
  2561. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  2562. crtc_funcs = crtc->helper_private;
  2563. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2564. }
  2565. /* Add this connector to the crtc */
  2566. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  2567. encoder_funcs->commit(encoder);
  2568. }
  2569. /* let the connector get through one full cycle before testing */
  2570. intel_wait_for_vblank(dev);
  2571. return crtc;
  2572. }
  2573. void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
  2574. {
  2575. struct drm_encoder *encoder = &intel_output->enc;
  2576. struct drm_device *dev = encoder->dev;
  2577. struct drm_crtc *crtc = encoder->crtc;
  2578. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2579. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2580. if (intel_output->load_detect_temp) {
  2581. encoder->crtc = NULL;
  2582. intel_output->base.encoder = NULL;
  2583. intel_output->load_detect_temp = false;
  2584. crtc->enabled = drm_helper_crtc_in_use(crtc);
  2585. drm_helper_disable_unused_functions(dev);
  2586. }
  2587. /* Switch crtc and output back off if necessary */
  2588. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  2589. if (encoder->crtc == crtc)
  2590. encoder_funcs->dpms(encoder, dpms_mode);
  2591. crtc_funcs->dpms(crtc, dpms_mode);
  2592. }
  2593. }
  2594. /* Returns the clock of the currently programmed mode of the given pipe. */
  2595. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  2596. {
  2597. struct drm_i915_private *dev_priv = dev->dev_private;
  2598. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2599. int pipe = intel_crtc->pipe;
  2600. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  2601. u32 fp;
  2602. intel_clock_t clock;
  2603. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  2604. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  2605. else
  2606. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  2607. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  2608. if (IS_IGD(dev)) {
  2609. clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  2610. clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
  2611. } else {
  2612. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  2613. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  2614. }
  2615. if (IS_I9XX(dev)) {
  2616. if (IS_IGD(dev))
  2617. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
  2618. DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
  2619. else
  2620. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  2621. DPLL_FPA01_P1_POST_DIV_SHIFT);
  2622. switch (dpll & DPLL_MODE_MASK) {
  2623. case DPLLB_MODE_DAC_SERIAL:
  2624. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  2625. 5 : 10;
  2626. break;
  2627. case DPLLB_MODE_LVDS:
  2628. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  2629. 7 : 14;
  2630. break;
  2631. default:
  2632. DRM_DEBUG("Unknown DPLL mode %08x in programmed "
  2633. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  2634. return 0;
  2635. }
  2636. /* XXX: Handle the 100Mhz refclk */
  2637. intel_clock(dev, 96000, &clock);
  2638. } else {
  2639. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  2640. if (is_lvds) {
  2641. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  2642. DPLL_FPA01_P1_POST_DIV_SHIFT);
  2643. clock.p2 = 14;
  2644. if ((dpll & PLL_REF_INPUT_MASK) ==
  2645. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  2646. /* XXX: might not be 66MHz */
  2647. intel_clock(dev, 66000, &clock);
  2648. } else
  2649. intel_clock(dev, 48000, &clock);
  2650. } else {
  2651. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  2652. clock.p1 = 2;
  2653. else {
  2654. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  2655. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  2656. }
  2657. if (dpll & PLL_P2_DIVIDE_BY_4)
  2658. clock.p2 = 4;
  2659. else
  2660. clock.p2 = 2;
  2661. intel_clock(dev, 48000, &clock);
  2662. }
  2663. }
  2664. /* XXX: It would be nice to validate the clocks, but we can't reuse
  2665. * i830PllIsValid() because it relies on the xf86_config connector
  2666. * configuration being accurate, which it isn't necessarily.
  2667. */
  2668. return clock.dot;
  2669. }
  2670. /** Returns the currently programmed mode of the given pipe. */
  2671. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  2672. struct drm_crtc *crtc)
  2673. {
  2674. struct drm_i915_private *dev_priv = dev->dev_private;
  2675. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2676. int pipe = intel_crtc->pipe;
  2677. struct drm_display_mode *mode;
  2678. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  2679. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  2680. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  2681. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  2682. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  2683. if (!mode)
  2684. return NULL;
  2685. mode->clock = intel_crtc_clock_get(dev, crtc);
  2686. mode->hdisplay = (htot & 0xffff) + 1;
  2687. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  2688. mode->hsync_start = (hsync & 0xffff) + 1;
  2689. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  2690. mode->vdisplay = (vtot & 0xffff) + 1;
  2691. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  2692. mode->vsync_start = (vsync & 0xffff) + 1;
  2693. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  2694. drm_mode_set_name(mode);
  2695. drm_mode_set_crtcinfo(mode, 0);
  2696. return mode;
  2697. }
  2698. static void intel_crtc_destroy(struct drm_crtc *crtc)
  2699. {
  2700. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2701. if (intel_crtc->mode_set.mode)
  2702. drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
  2703. drm_crtc_cleanup(crtc);
  2704. kfree(intel_crtc);
  2705. }
  2706. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  2707. .dpms = intel_crtc_dpms,
  2708. .mode_fixup = intel_crtc_mode_fixup,
  2709. .mode_set = intel_crtc_mode_set,
  2710. .mode_set_base = intel_pipe_set_base,
  2711. .prepare = intel_crtc_prepare,
  2712. .commit = intel_crtc_commit,
  2713. };
  2714. static const struct drm_crtc_funcs intel_crtc_funcs = {
  2715. .cursor_set = intel_crtc_cursor_set,
  2716. .cursor_move = intel_crtc_cursor_move,
  2717. .gamma_set = intel_crtc_gamma_set,
  2718. .set_config = drm_crtc_helper_set_config,
  2719. .destroy = intel_crtc_destroy,
  2720. };
  2721. static void intel_crtc_init(struct drm_device *dev, int pipe)
  2722. {
  2723. struct intel_crtc *intel_crtc;
  2724. int i;
  2725. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  2726. if (intel_crtc == NULL)
  2727. return;
  2728. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  2729. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  2730. intel_crtc->pipe = pipe;
  2731. intel_crtc->plane = pipe;
  2732. for (i = 0; i < 256; i++) {
  2733. intel_crtc->lut_r[i] = i;
  2734. intel_crtc->lut_g[i] = i;
  2735. intel_crtc->lut_b[i] = i;
  2736. }
  2737. intel_crtc->cursor_addr = 0;
  2738. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  2739. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  2740. intel_crtc->mode_set.crtc = &intel_crtc->base;
  2741. intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
  2742. intel_crtc->mode_set.num_connectors = 0;
  2743. if (i915_fbpercrtc) {
  2744. }
  2745. }
  2746. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  2747. struct drm_file *file_priv)
  2748. {
  2749. drm_i915_private_t *dev_priv = dev->dev_private;
  2750. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  2751. struct drm_crtc *crtc = NULL;
  2752. int pipe = -1;
  2753. if (!dev_priv) {
  2754. DRM_ERROR("called with no initialization\n");
  2755. return -EINVAL;
  2756. }
  2757. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2758. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2759. if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
  2760. pipe = intel_crtc->pipe;
  2761. break;
  2762. }
  2763. }
  2764. if (pipe == -1) {
  2765. DRM_ERROR("no such CRTC id\n");
  2766. return -EINVAL;
  2767. }
  2768. pipe_from_crtc_id->pipe = pipe;
  2769. return 0;
  2770. }
  2771. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  2772. {
  2773. struct drm_crtc *crtc = NULL;
  2774. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2775. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2776. if (intel_crtc->pipe == pipe)
  2777. break;
  2778. }
  2779. return crtc;
  2780. }
  2781. static int intel_connector_clones(struct drm_device *dev, int type_mask)
  2782. {
  2783. int index_mask = 0;
  2784. struct drm_connector *connector;
  2785. int entry = 0;
  2786. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2787. struct intel_output *intel_output = to_intel_output(connector);
  2788. if (type_mask & (1 << intel_output->type))
  2789. index_mask |= (1 << entry);
  2790. entry++;
  2791. }
  2792. return index_mask;
  2793. }
  2794. static void intel_setup_outputs(struct drm_device *dev)
  2795. {
  2796. struct drm_i915_private *dev_priv = dev->dev_private;
  2797. struct drm_connector *connector;
  2798. intel_crt_init(dev);
  2799. /* Set up integrated LVDS */
  2800. if (IS_MOBILE(dev) && !IS_I830(dev))
  2801. intel_lvds_init(dev);
  2802. if (IS_IGDNG(dev)) {
  2803. int found;
  2804. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  2805. intel_dp_init(dev, DP_A);
  2806. if (I915_READ(HDMIB) & PORT_DETECTED) {
  2807. /* check SDVOB */
  2808. /* found = intel_sdvo_init(dev, HDMIB); */
  2809. found = 0;
  2810. if (!found)
  2811. intel_hdmi_init(dev, HDMIB);
  2812. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  2813. intel_dp_init(dev, PCH_DP_B);
  2814. }
  2815. if (I915_READ(HDMIC) & PORT_DETECTED)
  2816. intel_hdmi_init(dev, HDMIC);
  2817. if (I915_READ(HDMID) & PORT_DETECTED)
  2818. intel_hdmi_init(dev, HDMID);
  2819. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  2820. intel_dp_init(dev, PCH_DP_C);
  2821. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  2822. intel_dp_init(dev, PCH_DP_D);
  2823. } else if (IS_I9XX(dev)) {
  2824. int found;
  2825. u32 reg;
  2826. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  2827. found = intel_sdvo_init(dev, SDVOB);
  2828. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  2829. intel_hdmi_init(dev, SDVOB);
  2830. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  2831. intel_dp_init(dev, DP_B);
  2832. }
  2833. /* Before G4X SDVOC doesn't have its own detect register */
  2834. if (IS_G4X(dev))
  2835. reg = SDVOC;
  2836. else
  2837. reg = SDVOB;
  2838. if (I915_READ(reg) & SDVO_DETECTED) {
  2839. found = intel_sdvo_init(dev, SDVOC);
  2840. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  2841. intel_hdmi_init(dev, SDVOC);
  2842. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  2843. intel_dp_init(dev, DP_C);
  2844. }
  2845. if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
  2846. intel_dp_init(dev, DP_D);
  2847. } else
  2848. intel_dvo_init(dev);
  2849. if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
  2850. intel_tv_init(dev);
  2851. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2852. struct intel_output *intel_output = to_intel_output(connector);
  2853. struct drm_encoder *encoder = &intel_output->enc;
  2854. int crtc_mask = 0, clone_mask = 0;
  2855. /* valid crtcs */
  2856. switch(intel_output->type) {
  2857. case INTEL_OUTPUT_HDMI:
  2858. crtc_mask = ((1 << 0)|
  2859. (1 << 1));
  2860. clone_mask = ((1 << INTEL_OUTPUT_HDMI));
  2861. break;
  2862. case INTEL_OUTPUT_DVO:
  2863. case INTEL_OUTPUT_SDVO:
  2864. crtc_mask = ((1 << 0)|
  2865. (1 << 1));
  2866. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  2867. (1 << INTEL_OUTPUT_DVO) |
  2868. (1 << INTEL_OUTPUT_SDVO));
  2869. break;
  2870. case INTEL_OUTPUT_ANALOG:
  2871. crtc_mask = ((1 << 0)|
  2872. (1 << 1));
  2873. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  2874. (1 << INTEL_OUTPUT_DVO) |
  2875. (1 << INTEL_OUTPUT_SDVO));
  2876. break;
  2877. case INTEL_OUTPUT_LVDS:
  2878. crtc_mask = (1 << 1);
  2879. clone_mask = (1 << INTEL_OUTPUT_LVDS);
  2880. break;
  2881. case INTEL_OUTPUT_TVOUT:
  2882. crtc_mask = ((1 << 0) |
  2883. (1 << 1));
  2884. clone_mask = (1 << INTEL_OUTPUT_TVOUT);
  2885. break;
  2886. case INTEL_OUTPUT_DISPLAYPORT:
  2887. crtc_mask = ((1 << 0) |
  2888. (1 << 1));
  2889. clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
  2890. break;
  2891. case INTEL_OUTPUT_EDP:
  2892. crtc_mask = (1 << 1);
  2893. clone_mask = (1 << INTEL_OUTPUT_EDP);
  2894. break;
  2895. }
  2896. encoder->possible_crtcs = crtc_mask;
  2897. encoder->possible_clones = intel_connector_clones(dev, clone_mask);
  2898. }
  2899. }
  2900. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  2901. {
  2902. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  2903. struct drm_device *dev = fb->dev;
  2904. if (fb->fbdev)
  2905. intelfb_remove(dev, fb);
  2906. drm_framebuffer_cleanup(fb);
  2907. mutex_lock(&dev->struct_mutex);
  2908. drm_gem_object_unreference(intel_fb->obj);
  2909. mutex_unlock(&dev->struct_mutex);
  2910. kfree(intel_fb);
  2911. }
  2912. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  2913. struct drm_file *file_priv,
  2914. unsigned int *handle)
  2915. {
  2916. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  2917. struct drm_gem_object *object = intel_fb->obj;
  2918. return drm_gem_handle_create(file_priv, object, handle);
  2919. }
  2920. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  2921. .destroy = intel_user_framebuffer_destroy,
  2922. .create_handle = intel_user_framebuffer_create_handle,
  2923. };
  2924. int intel_framebuffer_create(struct drm_device *dev,
  2925. struct drm_mode_fb_cmd *mode_cmd,
  2926. struct drm_framebuffer **fb,
  2927. struct drm_gem_object *obj)
  2928. {
  2929. struct intel_framebuffer *intel_fb;
  2930. int ret;
  2931. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  2932. if (!intel_fb)
  2933. return -ENOMEM;
  2934. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  2935. if (ret) {
  2936. DRM_ERROR("framebuffer init failed %d\n", ret);
  2937. return ret;
  2938. }
  2939. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  2940. intel_fb->obj = obj;
  2941. *fb = &intel_fb->base;
  2942. return 0;
  2943. }
  2944. static struct drm_framebuffer *
  2945. intel_user_framebuffer_create(struct drm_device *dev,
  2946. struct drm_file *filp,
  2947. struct drm_mode_fb_cmd *mode_cmd)
  2948. {
  2949. struct drm_gem_object *obj;
  2950. struct drm_framebuffer *fb;
  2951. int ret;
  2952. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  2953. if (!obj)
  2954. return NULL;
  2955. ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
  2956. if (ret) {
  2957. mutex_lock(&dev->struct_mutex);
  2958. drm_gem_object_unreference(obj);
  2959. mutex_unlock(&dev->struct_mutex);
  2960. return NULL;
  2961. }
  2962. return fb;
  2963. }
  2964. static const struct drm_mode_config_funcs intel_mode_funcs = {
  2965. .fb_create = intel_user_framebuffer_create,
  2966. .fb_changed = intelfb_probe,
  2967. };
  2968. void intel_modeset_init(struct drm_device *dev)
  2969. {
  2970. int num_pipe;
  2971. int i;
  2972. drm_mode_config_init(dev);
  2973. dev->mode_config.min_width = 0;
  2974. dev->mode_config.min_height = 0;
  2975. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  2976. if (IS_I965G(dev)) {
  2977. dev->mode_config.max_width = 8192;
  2978. dev->mode_config.max_height = 8192;
  2979. } else if (IS_I9XX(dev)) {
  2980. dev->mode_config.max_width = 4096;
  2981. dev->mode_config.max_height = 4096;
  2982. } else {
  2983. dev->mode_config.max_width = 2048;
  2984. dev->mode_config.max_height = 2048;
  2985. }
  2986. /* set memory base */
  2987. if (IS_I9XX(dev))
  2988. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  2989. else
  2990. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  2991. if (IS_MOBILE(dev) || IS_I9XX(dev))
  2992. num_pipe = 2;
  2993. else
  2994. num_pipe = 1;
  2995. DRM_DEBUG("%d display pipe%s available.\n",
  2996. num_pipe, num_pipe > 1 ? "s" : "");
  2997. for (i = 0; i < num_pipe; i++) {
  2998. intel_crtc_init(dev, i);
  2999. }
  3000. intel_setup_outputs(dev);
  3001. }
  3002. void intel_modeset_cleanup(struct drm_device *dev)
  3003. {
  3004. drm_mode_config_cleanup(dev);
  3005. }
  3006. /* current intel driver doesn't take advantage of encoders
  3007. always give back the encoder for the connector
  3008. */
  3009. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  3010. {
  3011. struct intel_output *intel_output = to_intel_output(connector);
  3012. return &intel_output->enc;
  3013. }