compaction.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659
  1. /*
  2. * linux/mm/compaction.c
  3. *
  4. * Memory compaction for the reduction of external fragmentation. Note that
  5. * this heavily depends upon page migration to do all the real heavy
  6. * lifting
  7. *
  8. * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9. */
  10. #include <linux/swap.h>
  11. #include <linux/migrate.h>
  12. #include <linux/compaction.h>
  13. #include <linux/mm_inline.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/sysctl.h>
  16. #include <linux/sysfs.h>
  17. #include "internal.h"
  18. #define CREATE_TRACE_POINTS
  19. #include <trace/events/compaction.h>
  20. /*
  21. * compact_control is used to track pages being migrated and the free pages
  22. * they are being migrated to during memory compaction. The free_pfn starts
  23. * at the end of a zone and migrate_pfn begins at the start. Movable pages
  24. * are moved to the end of a zone during a compaction run and the run
  25. * completes when free_pfn <= migrate_pfn
  26. */
  27. struct compact_control {
  28. struct list_head freepages; /* List of free pages to migrate to */
  29. struct list_head migratepages; /* List of pages being migrated */
  30. unsigned long nr_freepages; /* Number of isolated free pages */
  31. unsigned long nr_migratepages; /* Number of pages to migrate */
  32. unsigned long free_pfn; /* isolate_freepages search base */
  33. unsigned long migrate_pfn; /* isolate_migratepages search base */
  34. bool sync; /* Synchronous migration */
  35. /* Account for isolated anon and file pages */
  36. unsigned long nr_anon;
  37. unsigned long nr_file;
  38. unsigned int order; /* order a direct compactor needs */
  39. int migratetype; /* MOVABLE, RECLAIMABLE etc */
  40. struct zone *zone;
  41. };
  42. static unsigned long release_freepages(struct list_head *freelist)
  43. {
  44. struct page *page, *next;
  45. unsigned long count = 0;
  46. list_for_each_entry_safe(page, next, freelist, lru) {
  47. list_del(&page->lru);
  48. __free_page(page);
  49. count++;
  50. }
  51. return count;
  52. }
  53. /* Isolate free pages onto a private freelist. Must hold zone->lock */
  54. static unsigned long isolate_freepages_block(struct zone *zone,
  55. unsigned long blockpfn,
  56. struct list_head *freelist)
  57. {
  58. unsigned long zone_end_pfn, end_pfn;
  59. int nr_scanned = 0, total_isolated = 0;
  60. struct page *cursor;
  61. /* Get the last PFN we should scan for free pages at */
  62. zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  63. end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  64. /* Find the first usable PFN in the block to initialse page cursor */
  65. for (; blockpfn < end_pfn; blockpfn++) {
  66. if (pfn_valid_within(blockpfn))
  67. break;
  68. }
  69. cursor = pfn_to_page(blockpfn);
  70. /* Isolate free pages. This assumes the block is valid */
  71. for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  72. int isolated, i;
  73. struct page *page = cursor;
  74. if (!pfn_valid_within(blockpfn))
  75. continue;
  76. nr_scanned++;
  77. if (!PageBuddy(page))
  78. continue;
  79. /* Found a free page, break it into order-0 pages */
  80. isolated = split_free_page(page);
  81. total_isolated += isolated;
  82. for (i = 0; i < isolated; i++) {
  83. list_add(&page->lru, freelist);
  84. page++;
  85. }
  86. /* If a page was split, advance to the end of it */
  87. if (isolated) {
  88. blockpfn += isolated - 1;
  89. cursor += isolated - 1;
  90. }
  91. }
  92. trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
  93. return total_isolated;
  94. }
  95. /* Returns true if the page is within a block suitable for migration to */
  96. static bool suitable_migration_target(struct page *page)
  97. {
  98. int migratetype = get_pageblock_migratetype(page);
  99. /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
  100. if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
  101. return false;
  102. /* If the page is a large free page, then allow migration */
  103. if (PageBuddy(page) && page_order(page) >= pageblock_order)
  104. return true;
  105. /* If the block is MIGRATE_MOVABLE, allow migration */
  106. if (migratetype == MIGRATE_MOVABLE)
  107. return true;
  108. /* Otherwise skip the block */
  109. return false;
  110. }
  111. /*
  112. * Based on information in the current compact_control, find blocks
  113. * suitable for isolating free pages from and then isolate them.
  114. */
  115. static void isolate_freepages(struct zone *zone,
  116. struct compact_control *cc)
  117. {
  118. struct page *page;
  119. unsigned long high_pfn, low_pfn, pfn;
  120. unsigned long flags;
  121. int nr_freepages = cc->nr_freepages;
  122. struct list_head *freelist = &cc->freepages;
  123. pfn = cc->free_pfn;
  124. low_pfn = cc->migrate_pfn + pageblock_nr_pages;
  125. high_pfn = low_pfn;
  126. /*
  127. * Isolate free pages until enough are available to migrate the
  128. * pages on cc->migratepages. We stop searching if the migrate
  129. * and free page scanners meet or enough free pages are isolated.
  130. */
  131. spin_lock_irqsave(&zone->lock, flags);
  132. for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
  133. pfn -= pageblock_nr_pages) {
  134. unsigned long isolated;
  135. if (!pfn_valid(pfn))
  136. continue;
  137. /*
  138. * Check for overlapping nodes/zones. It's possible on some
  139. * configurations to have a setup like
  140. * node0 node1 node0
  141. * i.e. it's possible that all pages within a zones range of
  142. * pages do not belong to a single zone.
  143. */
  144. page = pfn_to_page(pfn);
  145. if (page_zone(page) != zone)
  146. continue;
  147. /* Check the block is suitable for migration */
  148. if (!suitable_migration_target(page))
  149. continue;
  150. /* Found a block suitable for isolating free pages from */
  151. isolated = isolate_freepages_block(zone, pfn, freelist);
  152. nr_freepages += isolated;
  153. /*
  154. * Record the highest PFN we isolated pages from. When next
  155. * looking for free pages, the search will restart here as
  156. * page migration may have returned some pages to the allocator
  157. */
  158. if (isolated)
  159. high_pfn = max(high_pfn, pfn);
  160. }
  161. spin_unlock_irqrestore(&zone->lock, flags);
  162. /* split_free_page does not map the pages */
  163. list_for_each_entry(page, freelist, lru) {
  164. arch_alloc_page(page, 0);
  165. kernel_map_pages(page, 1, 1);
  166. }
  167. cc->free_pfn = high_pfn;
  168. cc->nr_freepages = nr_freepages;
  169. }
  170. /* Update the number of anon and file isolated pages in the zone */
  171. static void acct_isolated(struct zone *zone, struct compact_control *cc)
  172. {
  173. struct page *page;
  174. unsigned int count[NR_LRU_LISTS] = { 0, };
  175. list_for_each_entry(page, &cc->migratepages, lru) {
  176. int lru = page_lru_base_type(page);
  177. count[lru]++;
  178. }
  179. cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
  180. cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
  181. __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
  182. __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
  183. }
  184. /* Similar to reclaim, but different enough that they don't share logic */
  185. static bool too_many_isolated(struct zone *zone)
  186. {
  187. unsigned long active, inactive, isolated;
  188. inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
  189. zone_page_state(zone, NR_INACTIVE_ANON);
  190. active = zone_page_state(zone, NR_ACTIVE_FILE) +
  191. zone_page_state(zone, NR_ACTIVE_ANON);
  192. isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
  193. zone_page_state(zone, NR_ISOLATED_ANON);
  194. return isolated > (inactive + active) / 2;
  195. }
  196. /*
  197. * Isolate all pages that can be migrated from the block pointed to by
  198. * the migrate scanner within compact_control.
  199. */
  200. static unsigned long isolate_migratepages(struct zone *zone,
  201. struct compact_control *cc)
  202. {
  203. unsigned long low_pfn, end_pfn;
  204. unsigned long last_pageblock_nr = 0, pageblock_nr;
  205. unsigned long nr_scanned = 0, nr_isolated = 0;
  206. struct list_head *migratelist = &cc->migratepages;
  207. /* Do not scan outside zone boundaries */
  208. low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
  209. /* Only scan within a pageblock boundary */
  210. end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
  211. /* Do not cross the free scanner or scan within a memory hole */
  212. if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
  213. cc->migrate_pfn = end_pfn;
  214. return 0;
  215. }
  216. /*
  217. * Ensure that there are not too many pages isolated from the LRU
  218. * list by either parallel reclaimers or compaction. If there are,
  219. * delay for some time until fewer pages are isolated
  220. */
  221. while (unlikely(too_many_isolated(zone))) {
  222. congestion_wait(BLK_RW_ASYNC, HZ/10);
  223. if (fatal_signal_pending(current))
  224. return 0;
  225. }
  226. /* Time to isolate some pages for migration */
  227. spin_lock_irq(&zone->lru_lock);
  228. for (; low_pfn < end_pfn; low_pfn++) {
  229. struct page *page;
  230. if (!pfn_valid_within(low_pfn))
  231. continue;
  232. nr_scanned++;
  233. /* Get the page and skip if free */
  234. page = pfn_to_page(low_pfn);
  235. if (PageBuddy(page))
  236. continue;
  237. /*
  238. * For async migration, also only scan in MOVABLE blocks. Async
  239. * migration is optimistic to see if the minimum amount of work
  240. * satisfies the allocation
  241. */
  242. pageblock_nr = low_pfn >> pageblock_order;
  243. if (!cc->sync && last_pageblock_nr != pageblock_nr &&
  244. get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
  245. low_pfn += pageblock_nr_pages;
  246. low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
  247. last_pageblock_nr = pageblock_nr;
  248. continue;
  249. }
  250. /* Try isolate the page */
  251. if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
  252. continue;
  253. /* Successfully isolated */
  254. del_page_from_lru_list(zone, page, page_lru(page));
  255. list_add(&page->lru, migratelist);
  256. cc->nr_migratepages++;
  257. nr_isolated++;
  258. /* Avoid isolating too much */
  259. if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
  260. break;
  261. }
  262. acct_isolated(zone, cc);
  263. spin_unlock_irq(&zone->lru_lock);
  264. cc->migrate_pfn = low_pfn;
  265. trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
  266. return cc->nr_migratepages;
  267. }
  268. /*
  269. * This is a migrate-callback that "allocates" freepages by taking pages
  270. * from the isolated freelists in the block we are migrating to.
  271. */
  272. static struct page *compaction_alloc(struct page *migratepage,
  273. unsigned long data,
  274. int **result)
  275. {
  276. struct compact_control *cc = (struct compact_control *)data;
  277. struct page *freepage;
  278. /* Isolate free pages if necessary */
  279. if (list_empty(&cc->freepages)) {
  280. isolate_freepages(cc->zone, cc);
  281. if (list_empty(&cc->freepages))
  282. return NULL;
  283. }
  284. freepage = list_entry(cc->freepages.next, struct page, lru);
  285. list_del(&freepage->lru);
  286. cc->nr_freepages--;
  287. return freepage;
  288. }
  289. /*
  290. * We cannot control nr_migratepages and nr_freepages fully when migration is
  291. * running as migrate_pages() has no knowledge of compact_control. When
  292. * migration is complete, we count the number of pages on the lists by hand.
  293. */
  294. static void update_nr_listpages(struct compact_control *cc)
  295. {
  296. int nr_migratepages = 0;
  297. int nr_freepages = 0;
  298. struct page *page;
  299. list_for_each_entry(page, &cc->migratepages, lru)
  300. nr_migratepages++;
  301. list_for_each_entry(page, &cc->freepages, lru)
  302. nr_freepages++;
  303. cc->nr_migratepages = nr_migratepages;
  304. cc->nr_freepages = nr_freepages;
  305. }
  306. static int compact_finished(struct zone *zone,
  307. struct compact_control *cc)
  308. {
  309. unsigned int order;
  310. unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
  311. if (fatal_signal_pending(current))
  312. return COMPACT_PARTIAL;
  313. /* Compaction run completes if the migrate and free scanner meet */
  314. if (cc->free_pfn <= cc->migrate_pfn)
  315. return COMPACT_COMPLETE;
  316. /* Compaction run is not finished if the watermark is not met */
  317. if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
  318. return COMPACT_CONTINUE;
  319. if (cc->order == -1)
  320. return COMPACT_CONTINUE;
  321. /* Direct compactor: Is a suitable page free? */
  322. for (order = cc->order; order < MAX_ORDER; order++) {
  323. /* Job done if page is free of the right migratetype */
  324. if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
  325. return COMPACT_PARTIAL;
  326. /* Job done if allocation would set block type */
  327. if (order >= pageblock_order && zone->free_area[order].nr_free)
  328. return COMPACT_PARTIAL;
  329. }
  330. return COMPACT_CONTINUE;
  331. }
  332. /*
  333. * compaction_suitable: Is this suitable to run compaction on this zone now?
  334. * Returns
  335. * COMPACT_SKIPPED - If there are too few free pages for compaction
  336. * COMPACT_PARTIAL - If the allocation would succeed without compaction
  337. * COMPACT_CONTINUE - If compaction should run now
  338. */
  339. unsigned long compaction_suitable(struct zone *zone, int order)
  340. {
  341. int fragindex;
  342. unsigned long watermark;
  343. /*
  344. * Watermarks for order-0 must be met for compaction. Note the 2UL.
  345. * This is because during migration, copies of pages need to be
  346. * allocated and for a short time, the footprint is higher
  347. */
  348. watermark = low_wmark_pages(zone) + (2UL << order);
  349. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  350. return COMPACT_SKIPPED;
  351. /*
  352. * fragmentation index determines if allocation failures are due to
  353. * low memory or external fragmentation
  354. *
  355. * index of -1 implies allocations might succeed dependingon watermarks
  356. * index towards 0 implies failure is due to lack of memory
  357. * index towards 1000 implies failure is due to fragmentation
  358. *
  359. * Only compact if a failure would be due to fragmentation.
  360. */
  361. fragindex = fragmentation_index(zone, order);
  362. if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
  363. return COMPACT_SKIPPED;
  364. if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0))
  365. return COMPACT_PARTIAL;
  366. return COMPACT_CONTINUE;
  367. }
  368. static int compact_zone(struct zone *zone, struct compact_control *cc)
  369. {
  370. int ret;
  371. ret = compaction_suitable(zone, cc->order);
  372. switch (ret) {
  373. case COMPACT_PARTIAL:
  374. case COMPACT_SKIPPED:
  375. /* Compaction is likely to fail */
  376. return ret;
  377. case COMPACT_CONTINUE:
  378. /* Fall through to compaction */
  379. ;
  380. }
  381. /* Setup to move all movable pages to the end of the zone */
  382. cc->migrate_pfn = zone->zone_start_pfn;
  383. cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
  384. cc->free_pfn &= ~(pageblock_nr_pages-1);
  385. migrate_prep_local();
  386. while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
  387. unsigned long nr_migrate, nr_remaining;
  388. if (!isolate_migratepages(zone, cc))
  389. continue;
  390. nr_migrate = cc->nr_migratepages;
  391. migrate_pages(&cc->migratepages, compaction_alloc,
  392. (unsigned long)cc, false,
  393. cc->sync);
  394. update_nr_listpages(cc);
  395. nr_remaining = cc->nr_migratepages;
  396. count_vm_event(COMPACTBLOCKS);
  397. count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
  398. if (nr_remaining)
  399. count_vm_events(COMPACTPAGEFAILED, nr_remaining);
  400. trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
  401. nr_remaining);
  402. /* Release LRU pages not migrated */
  403. if (!list_empty(&cc->migratepages)) {
  404. putback_lru_pages(&cc->migratepages);
  405. cc->nr_migratepages = 0;
  406. }
  407. }
  408. /* Release free pages and check accounting */
  409. cc->nr_freepages -= release_freepages(&cc->freepages);
  410. VM_BUG_ON(cc->nr_freepages != 0);
  411. return ret;
  412. }
  413. unsigned long compact_zone_order(struct zone *zone,
  414. int order, gfp_t gfp_mask,
  415. bool sync)
  416. {
  417. struct compact_control cc = {
  418. .nr_freepages = 0,
  419. .nr_migratepages = 0,
  420. .order = order,
  421. .migratetype = allocflags_to_migratetype(gfp_mask),
  422. .zone = zone,
  423. .sync = sync,
  424. };
  425. INIT_LIST_HEAD(&cc.freepages);
  426. INIT_LIST_HEAD(&cc.migratepages);
  427. return compact_zone(zone, &cc);
  428. }
  429. int sysctl_extfrag_threshold = 500;
  430. /**
  431. * try_to_compact_pages - Direct compact to satisfy a high-order allocation
  432. * @zonelist: The zonelist used for the current allocation
  433. * @order: The order of the current allocation
  434. * @gfp_mask: The GFP mask of the current allocation
  435. * @nodemask: The allowed nodes to allocate from
  436. * @sync: Whether migration is synchronous or not
  437. *
  438. * This is the main entry point for direct page compaction.
  439. */
  440. unsigned long try_to_compact_pages(struct zonelist *zonelist,
  441. int order, gfp_t gfp_mask, nodemask_t *nodemask,
  442. bool sync)
  443. {
  444. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  445. int may_enter_fs = gfp_mask & __GFP_FS;
  446. int may_perform_io = gfp_mask & __GFP_IO;
  447. struct zoneref *z;
  448. struct zone *zone;
  449. int rc = COMPACT_SKIPPED;
  450. /*
  451. * Check whether it is worth even starting compaction. The order check is
  452. * made because an assumption is made that the page allocator can satisfy
  453. * the "cheaper" orders without taking special steps
  454. */
  455. if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
  456. return rc;
  457. count_vm_event(COMPACTSTALL);
  458. /* Compact each zone in the list */
  459. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  460. nodemask) {
  461. int status;
  462. status = compact_zone_order(zone, order, gfp_mask, sync);
  463. rc = max(status, rc);
  464. /* If a normal allocation would succeed, stop compacting */
  465. if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
  466. break;
  467. }
  468. return rc;
  469. }
  470. /* Compact all zones within a node */
  471. static int compact_node(int nid)
  472. {
  473. int zoneid;
  474. pg_data_t *pgdat;
  475. struct zone *zone;
  476. if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
  477. return -EINVAL;
  478. pgdat = NODE_DATA(nid);
  479. /* Flush pending updates to the LRU lists */
  480. lru_add_drain_all();
  481. for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
  482. struct compact_control cc = {
  483. .nr_freepages = 0,
  484. .nr_migratepages = 0,
  485. .order = -1,
  486. };
  487. zone = &pgdat->node_zones[zoneid];
  488. if (!populated_zone(zone))
  489. continue;
  490. cc.zone = zone;
  491. INIT_LIST_HEAD(&cc.freepages);
  492. INIT_LIST_HEAD(&cc.migratepages);
  493. compact_zone(zone, &cc);
  494. VM_BUG_ON(!list_empty(&cc.freepages));
  495. VM_BUG_ON(!list_empty(&cc.migratepages));
  496. }
  497. return 0;
  498. }
  499. /* Compact all nodes in the system */
  500. static int compact_nodes(void)
  501. {
  502. int nid;
  503. for_each_online_node(nid)
  504. compact_node(nid);
  505. return COMPACT_COMPLETE;
  506. }
  507. /* The written value is actually unused, all memory is compacted */
  508. int sysctl_compact_memory;
  509. /* This is the entry point for compacting all nodes via /proc/sys/vm */
  510. int sysctl_compaction_handler(struct ctl_table *table, int write,
  511. void __user *buffer, size_t *length, loff_t *ppos)
  512. {
  513. if (write)
  514. return compact_nodes();
  515. return 0;
  516. }
  517. int sysctl_extfrag_handler(struct ctl_table *table, int write,
  518. void __user *buffer, size_t *length, loff_t *ppos)
  519. {
  520. proc_dointvec_minmax(table, write, buffer, length, ppos);
  521. return 0;
  522. }
  523. #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
  524. ssize_t sysfs_compact_node(struct sys_device *dev,
  525. struct sysdev_attribute *attr,
  526. const char *buf, size_t count)
  527. {
  528. compact_node(dev->id);
  529. return count;
  530. }
  531. static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
  532. int compaction_register_node(struct node *node)
  533. {
  534. return sysdev_create_file(&node->sysdev, &attr_compact);
  535. }
  536. void compaction_unregister_node(struct node *node)
  537. {
  538. return sysdev_remove_file(&node->sysdev, &attr_compact);
  539. }
  540. #endif /* CONFIG_SYSFS && CONFIG_NUMA */