memory.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/tlb.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/pgtable.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #ifndef CONFIG_NEED_MULTIPLE_NODES
  56. /* use the per-pgdat data instead for discontigmem - mbligh */
  57. unsigned long max_mapnr;
  58. struct page *mem_map;
  59. EXPORT_SYMBOL(max_mapnr);
  60. EXPORT_SYMBOL(mem_map);
  61. #endif
  62. unsigned long num_physpages;
  63. /*
  64. * A number of key systems in x86 including ioremap() rely on the assumption
  65. * that high_memory defines the upper bound on direct map memory, then end
  66. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  67. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  68. * and ZONE_HIGHMEM.
  69. */
  70. void * high_memory;
  71. EXPORT_SYMBOL(num_physpages);
  72. EXPORT_SYMBOL(high_memory);
  73. /*
  74. * Randomize the address space (stacks, mmaps, brk, etc.).
  75. *
  76. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  77. * as ancient (libc5 based) binaries can segfault. )
  78. */
  79. int randomize_va_space __read_mostly =
  80. #ifdef CONFIG_COMPAT_BRK
  81. 1;
  82. #else
  83. 2;
  84. #endif
  85. static int __init disable_randmaps(char *s)
  86. {
  87. randomize_va_space = 0;
  88. return 1;
  89. }
  90. __setup("norandmaps", disable_randmaps);
  91. /*
  92. * If a p?d_bad entry is found while walking page tables, report
  93. * the error, before resetting entry to p?d_none. Usually (but
  94. * very seldom) called out from the p?d_none_or_clear_bad macros.
  95. */
  96. void pgd_clear_bad(pgd_t *pgd)
  97. {
  98. pgd_ERROR(*pgd);
  99. pgd_clear(pgd);
  100. }
  101. void pud_clear_bad(pud_t *pud)
  102. {
  103. pud_ERROR(*pud);
  104. pud_clear(pud);
  105. }
  106. void pmd_clear_bad(pmd_t *pmd)
  107. {
  108. pmd_ERROR(*pmd);
  109. pmd_clear(pmd);
  110. }
  111. /*
  112. * Note: this doesn't free the actual pages themselves. That
  113. * has been handled earlier when unmapping all the memory regions.
  114. */
  115. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  116. {
  117. struct page *page = pmd_page(*pmd);
  118. pmd_clear(pmd);
  119. pte_lock_deinit(page);
  120. pte_free_tlb(tlb, page);
  121. dec_zone_page_state(page, NR_PAGETABLE);
  122. tlb->mm->nr_ptes--;
  123. }
  124. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  125. unsigned long addr, unsigned long end,
  126. unsigned long floor, unsigned long ceiling)
  127. {
  128. pmd_t *pmd;
  129. unsigned long next;
  130. unsigned long start;
  131. start = addr;
  132. pmd = pmd_offset(pud, addr);
  133. do {
  134. next = pmd_addr_end(addr, end);
  135. if (pmd_none_or_clear_bad(pmd))
  136. continue;
  137. free_pte_range(tlb, pmd);
  138. } while (pmd++, addr = next, addr != end);
  139. start &= PUD_MASK;
  140. if (start < floor)
  141. return;
  142. if (ceiling) {
  143. ceiling &= PUD_MASK;
  144. if (!ceiling)
  145. return;
  146. }
  147. if (end - 1 > ceiling - 1)
  148. return;
  149. pmd = pmd_offset(pud, start);
  150. pud_clear(pud);
  151. pmd_free_tlb(tlb, pmd);
  152. }
  153. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  154. unsigned long addr, unsigned long end,
  155. unsigned long floor, unsigned long ceiling)
  156. {
  157. pud_t *pud;
  158. unsigned long next;
  159. unsigned long start;
  160. start = addr;
  161. pud = pud_offset(pgd, addr);
  162. do {
  163. next = pud_addr_end(addr, end);
  164. if (pud_none_or_clear_bad(pud))
  165. continue;
  166. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  167. } while (pud++, addr = next, addr != end);
  168. start &= PGDIR_MASK;
  169. if (start < floor)
  170. return;
  171. if (ceiling) {
  172. ceiling &= PGDIR_MASK;
  173. if (!ceiling)
  174. return;
  175. }
  176. if (end - 1 > ceiling - 1)
  177. return;
  178. pud = pud_offset(pgd, start);
  179. pgd_clear(pgd);
  180. pud_free_tlb(tlb, pud);
  181. }
  182. /*
  183. * This function frees user-level page tables of a process.
  184. *
  185. * Must be called with pagetable lock held.
  186. */
  187. void free_pgd_range(struct mmu_gather **tlb,
  188. unsigned long addr, unsigned long end,
  189. unsigned long floor, unsigned long ceiling)
  190. {
  191. pgd_t *pgd;
  192. unsigned long next;
  193. unsigned long start;
  194. /*
  195. * The next few lines have given us lots of grief...
  196. *
  197. * Why are we testing PMD* at this top level? Because often
  198. * there will be no work to do at all, and we'd prefer not to
  199. * go all the way down to the bottom just to discover that.
  200. *
  201. * Why all these "- 1"s? Because 0 represents both the bottom
  202. * of the address space and the top of it (using -1 for the
  203. * top wouldn't help much: the masks would do the wrong thing).
  204. * The rule is that addr 0 and floor 0 refer to the bottom of
  205. * the address space, but end 0 and ceiling 0 refer to the top
  206. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  207. * that end 0 case should be mythical).
  208. *
  209. * Wherever addr is brought up or ceiling brought down, we must
  210. * be careful to reject "the opposite 0" before it confuses the
  211. * subsequent tests. But what about where end is brought down
  212. * by PMD_SIZE below? no, end can't go down to 0 there.
  213. *
  214. * Whereas we round start (addr) and ceiling down, by different
  215. * masks at different levels, in order to test whether a table
  216. * now has no other vmas using it, so can be freed, we don't
  217. * bother to round floor or end up - the tests don't need that.
  218. */
  219. addr &= PMD_MASK;
  220. if (addr < floor) {
  221. addr += PMD_SIZE;
  222. if (!addr)
  223. return;
  224. }
  225. if (ceiling) {
  226. ceiling &= PMD_MASK;
  227. if (!ceiling)
  228. return;
  229. }
  230. if (end - 1 > ceiling - 1)
  231. end -= PMD_SIZE;
  232. if (addr > end - 1)
  233. return;
  234. start = addr;
  235. pgd = pgd_offset((*tlb)->mm, addr);
  236. do {
  237. next = pgd_addr_end(addr, end);
  238. if (pgd_none_or_clear_bad(pgd))
  239. continue;
  240. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  241. } while (pgd++, addr = next, addr != end);
  242. }
  243. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  244. unsigned long floor, unsigned long ceiling)
  245. {
  246. while (vma) {
  247. struct vm_area_struct *next = vma->vm_next;
  248. unsigned long addr = vma->vm_start;
  249. /*
  250. * Hide vma from rmap and vmtruncate before freeing pgtables
  251. */
  252. anon_vma_unlink(vma);
  253. unlink_file_vma(vma);
  254. if (is_vm_hugetlb_page(vma)) {
  255. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  256. floor, next? next->vm_start: ceiling);
  257. } else {
  258. /*
  259. * Optimization: gather nearby vmas into one call down
  260. */
  261. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  262. && !is_vm_hugetlb_page(next)) {
  263. vma = next;
  264. next = vma->vm_next;
  265. anon_vma_unlink(vma);
  266. unlink_file_vma(vma);
  267. }
  268. free_pgd_range(tlb, addr, vma->vm_end,
  269. floor, next? next->vm_start: ceiling);
  270. }
  271. vma = next;
  272. }
  273. }
  274. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  275. {
  276. struct page *new = pte_alloc_one(mm, address);
  277. if (!new)
  278. return -ENOMEM;
  279. pte_lock_init(new);
  280. spin_lock(&mm->page_table_lock);
  281. if (pmd_present(*pmd)) { /* Another has populated it */
  282. pte_lock_deinit(new);
  283. pte_free(mm, new);
  284. } else {
  285. mm->nr_ptes++;
  286. inc_zone_page_state(new, NR_PAGETABLE);
  287. pmd_populate(mm, pmd, new);
  288. }
  289. spin_unlock(&mm->page_table_lock);
  290. return 0;
  291. }
  292. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  293. {
  294. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  295. if (!new)
  296. return -ENOMEM;
  297. spin_lock(&init_mm.page_table_lock);
  298. if (pmd_present(*pmd)) /* Another has populated it */
  299. pte_free_kernel(&init_mm, new);
  300. else
  301. pmd_populate_kernel(&init_mm, pmd, new);
  302. spin_unlock(&init_mm.page_table_lock);
  303. return 0;
  304. }
  305. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  306. {
  307. if (file_rss)
  308. add_mm_counter(mm, file_rss, file_rss);
  309. if (anon_rss)
  310. add_mm_counter(mm, anon_rss, anon_rss);
  311. }
  312. /*
  313. * This function is called to print an error when a bad pte
  314. * is found. For example, we might have a PFN-mapped pte in
  315. * a region that doesn't allow it.
  316. *
  317. * The calling function must still handle the error.
  318. */
  319. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  320. {
  321. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  322. "vm_flags = %lx, vaddr = %lx\n",
  323. (long long)pte_val(pte),
  324. (vma->vm_mm == current->mm ? current->comm : "???"),
  325. vma->vm_flags, vaddr);
  326. dump_stack();
  327. }
  328. static inline int is_cow_mapping(unsigned int flags)
  329. {
  330. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  331. }
  332. /*
  333. * This function gets the "struct page" associated with a pte.
  334. *
  335. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  336. * will have each page table entry just pointing to a raw page frame
  337. * number, and as far as the VM layer is concerned, those do not have
  338. * pages associated with them - even if the PFN might point to memory
  339. * that otherwise is perfectly fine and has a "struct page".
  340. *
  341. * The way we recognize those mappings is through the rules set up
  342. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  343. * and the vm_pgoff will point to the first PFN mapped: thus every
  344. * page that is a raw mapping will always honor the rule
  345. *
  346. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  347. *
  348. * and if that isn't true, the page has been COW'ed (in which case it
  349. * _does_ have a "struct page" associated with it even if it is in a
  350. * VM_PFNMAP range).
  351. */
  352. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  353. {
  354. unsigned long pfn = pte_pfn(pte);
  355. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  356. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  357. if (pfn == vma->vm_pgoff + off)
  358. return NULL;
  359. if (!is_cow_mapping(vma->vm_flags))
  360. return NULL;
  361. }
  362. #ifdef CONFIG_DEBUG_VM
  363. /*
  364. * Add some anal sanity checks for now. Eventually,
  365. * we should just do "return pfn_to_page(pfn)", but
  366. * in the meantime we check that we get a valid pfn,
  367. * and that the resulting page looks ok.
  368. */
  369. if (unlikely(!pfn_valid(pfn))) {
  370. print_bad_pte(vma, pte, addr);
  371. return NULL;
  372. }
  373. #endif
  374. /*
  375. * NOTE! We still have PageReserved() pages in the page
  376. * tables.
  377. *
  378. * The PAGE_ZERO() pages and various VDSO mappings can
  379. * cause them to exist.
  380. */
  381. return pfn_to_page(pfn);
  382. }
  383. /*
  384. * copy one vm_area from one task to the other. Assumes the page tables
  385. * already present in the new task to be cleared in the whole range
  386. * covered by this vma.
  387. */
  388. static inline void
  389. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  390. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  391. unsigned long addr, int *rss)
  392. {
  393. unsigned long vm_flags = vma->vm_flags;
  394. pte_t pte = *src_pte;
  395. struct page *page;
  396. /* pte contains position in swap or file, so copy. */
  397. if (unlikely(!pte_present(pte))) {
  398. if (!pte_file(pte)) {
  399. swp_entry_t entry = pte_to_swp_entry(pte);
  400. swap_duplicate(entry);
  401. /* make sure dst_mm is on swapoff's mmlist. */
  402. if (unlikely(list_empty(&dst_mm->mmlist))) {
  403. spin_lock(&mmlist_lock);
  404. if (list_empty(&dst_mm->mmlist))
  405. list_add(&dst_mm->mmlist,
  406. &src_mm->mmlist);
  407. spin_unlock(&mmlist_lock);
  408. }
  409. if (is_write_migration_entry(entry) &&
  410. is_cow_mapping(vm_flags)) {
  411. /*
  412. * COW mappings require pages in both parent
  413. * and child to be set to read.
  414. */
  415. make_migration_entry_read(&entry);
  416. pte = swp_entry_to_pte(entry);
  417. set_pte_at(src_mm, addr, src_pte, pte);
  418. }
  419. }
  420. goto out_set_pte;
  421. }
  422. /*
  423. * If it's a COW mapping, write protect it both
  424. * in the parent and the child
  425. */
  426. if (is_cow_mapping(vm_flags)) {
  427. ptep_set_wrprotect(src_mm, addr, src_pte);
  428. pte = pte_wrprotect(pte);
  429. }
  430. /*
  431. * If it's a shared mapping, mark it clean in
  432. * the child
  433. */
  434. if (vm_flags & VM_SHARED)
  435. pte = pte_mkclean(pte);
  436. pte = pte_mkold(pte);
  437. page = vm_normal_page(vma, addr, pte);
  438. if (page) {
  439. get_page(page);
  440. page_dup_rmap(page, vma, addr);
  441. rss[!!PageAnon(page)]++;
  442. }
  443. out_set_pte:
  444. set_pte_at(dst_mm, addr, dst_pte, pte);
  445. }
  446. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  447. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  448. unsigned long addr, unsigned long end)
  449. {
  450. pte_t *src_pte, *dst_pte;
  451. spinlock_t *src_ptl, *dst_ptl;
  452. int progress = 0;
  453. int rss[2];
  454. again:
  455. rss[1] = rss[0] = 0;
  456. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  457. if (!dst_pte)
  458. return -ENOMEM;
  459. src_pte = pte_offset_map_nested(src_pmd, addr);
  460. src_ptl = pte_lockptr(src_mm, src_pmd);
  461. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  462. arch_enter_lazy_mmu_mode();
  463. do {
  464. /*
  465. * We are holding two locks at this point - either of them
  466. * could generate latencies in another task on another CPU.
  467. */
  468. if (progress >= 32) {
  469. progress = 0;
  470. if (need_resched() ||
  471. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  472. break;
  473. }
  474. if (pte_none(*src_pte)) {
  475. progress++;
  476. continue;
  477. }
  478. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  479. progress += 8;
  480. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  481. arch_leave_lazy_mmu_mode();
  482. spin_unlock(src_ptl);
  483. pte_unmap_nested(src_pte - 1);
  484. add_mm_rss(dst_mm, rss[0], rss[1]);
  485. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  486. cond_resched();
  487. if (addr != end)
  488. goto again;
  489. return 0;
  490. }
  491. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  492. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  493. unsigned long addr, unsigned long end)
  494. {
  495. pmd_t *src_pmd, *dst_pmd;
  496. unsigned long next;
  497. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  498. if (!dst_pmd)
  499. return -ENOMEM;
  500. src_pmd = pmd_offset(src_pud, addr);
  501. do {
  502. next = pmd_addr_end(addr, end);
  503. if (pmd_none_or_clear_bad(src_pmd))
  504. continue;
  505. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  506. vma, addr, next))
  507. return -ENOMEM;
  508. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  509. return 0;
  510. }
  511. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  512. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  513. unsigned long addr, unsigned long end)
  514. {
  515. pud_t *src_pud, *dst_pud;
  516. unsigned long next;
  517. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  518. if (!dst_pud)
  519. return -ENOMEM;
  520. src_pud = pud_offset(src_pgd, addr);
  521. do {
  522. next = pud_addr_end(addr, end);
  523. if (pud_none_or_clear_bad(src_pud))
  524. continue;
  525. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  526. vma, addr, next))
  527. return -ENOMEM;
  528. } while (dst_pud++, src_pud++, addr = next, addr != end);
  529. return 0;
  530. }
  531. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  532. struct vm_area_struct *vma)
  533. {
  534. pgd_t *src_pgd, *dst_pgd;
  535. unsigned long next;
  536. unsigned long addr = vma->vm_start;
  537. unsigned long end = vma->vm_end;
  538. /*
  539. * Don't copy ptes where a page fault will fill them correctly.
  540. * Fork becomes much lighter when there are big shared or private
  541. * readonly mappings. The tradeoff is that copy_page_range is more
  542. * efficient than faulting.
  543. */
  544. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  545. if (!vma->anon_vma)
  546. return 0;
  547. }
  548. if (is_vm_hugetlb_page(vma))
  549. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  550. dst_pgd = pgd_offset(dst_mm, addr);
  551. src_pgd = pgd_offset(src_mm, addr);
  552. do {
  553. next = pgd_addr_end(addr, end);
  554. if (pgd_none_or_clear_bad(src_pgd))
  555. continue;
  556. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  557. vma, addr, next))
  558. return -ENOMEM;
  559. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  560. return 0;
  561. }
  562. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  563. struct vm_area_struct *vma, pmd_t *pmd,
  564. unsigned long addr, unsigned long end,
  565. long *zap_work, struct zap_details *details)
  566. {
  567. struct mm_struct *mm = tlb->mm;
  568. pte_t *pte;
  569. spinlock_t *ptl;
  570. int file_rss = 0;
  571. int anon_rss = 0;
  572. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  573. arch_enter_lazy_mmu_mode();
  574. do {
  575. pte_t ptent = *pte;
  576. if (pte_none(ptent)) {
  577. (*zap_work)--;
  578. continue;
  579. }
  580. (*zap_work) -= PAGE_SIZE;
  581. if (pte_present(ptent)) {
  582. struct page *page;
  583. page = vm_normal_page(vma, addr, ptent);
  584. if (unlikely(details) && page) {
  585. /*
  586. * unmap_shared_mapping_pages() wants to
  587. * invalidate cache without truncating:
  588. * unmap shared but keep private pages.
  589. */
  590. if (details->check_mapping &&
  591. details->check_mapping != page->mapping)
  592. continue;
  593. /*
  594. * Each page->index must be checked when
  595. * invalidating or truncating nonlinear.
  596. */
  597. if (details->nonlinear_vma &&
  598. (page->index < details->first_index ||
  599. page->index > details->last_index))
  600. continue;
  601. }
  602. ptent = ptep_get_and_clear_full(mm, addr, pte,
  603. tlb->fullmm);
  604. tlb_remove_tlb_entry(tlb, pte, addr);
  605. if (unlikely(!page))
  606. continue;
  607. if (unlikely(details) && details->nonlinear_vma
  608. && linear_page_index(details->nonlinear_vma,
  609. addr) != page->index)
  610. set_pte_at(mm, addr, pte,
  611. pgoff_to_pte(page->index));
  612. if (PageAnon(page))
  613. anon_rss--;
  614. else {
  615. if (pte_dirty(ptent))
  616. set_page_dirty(page);
  617. if (pte_young(ptent))
  618. SetPageReferenced(page);
  619. file_rss--;
  620. }
  621. page_remove_rmap(page, vma);
  622. tlb_remove_page(tlb, page);
  623. continue;
  624. }
  625. /*
  626. * If details->check_mapping, we leave swap entries;
  627. * if details->nonlinear_vma, we leave file entries.
  628. */
  629. if (unlikely(details))
  630. continue;
  631. if (!pte_file(ptent))
  632. free_swap_and_cache(pte_to_swp_entry(ptent));
  633. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  634. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  635. add_mm_rss(mm, file_rss, anon_rss);
  636. arch_leave_lazy_mmu_mode();
  637. pte_unmap_unlock(pte - 1, ptl);
  638. return addr;
  639. }
  640. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  641. struct vm_area_struct *vma, pud_t *pud,
  642. unsigned long addr, unsigned long end,
  643. long *zap_work, struct zap_details *details)
  644. {
  645. pmd_t *pmd;
  646. unsigned long next;
  647. pmd = pmd_offset(pud, addr);
  648. do {
  649. next = pmd_addr_end(addr, end);
  650. if (pmd_none_or_clear_bad(pmd)) {
  651. (*zap_work)--;
  652. continue;
  653. }
  654. next = zap_pte_range(tlb, vma, pmd, addr, next,
  655. zap_work, details);
  656. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  657. return addr;
  658. }
  659. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  660. struct vm_area_struct *vma, pgd_t *pgd,
  661. unsigned long addr, unsigned long end,
  662. long *zap_work, struct zap_details *details)
  663. {
  664. pud_t *pud;
  665. unsigned long next;
  666. pud = pud_offset(pgd, addr);
  667. do {
  668. next = pud_addr_end(addr, end);
  669. if (pud_none_or_clear_bad(pud)) {
  670. (*zap_work)--;
  671. continue;
  672. }
  673. next = zap_pmd_range(tlb, vma, pud, addr, next,
  674. zap_work, details);
  675. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  676. return addr;
  677. }
  678. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  679. struct vm_area_struct *vma,
  680. unsigned long addr, unsigned long end,
  681. long *zap_work, struct zap_details *details)
  682. {
  683. pgd_t *pgd;
  684. unsigned long next;
  685. if (details && !details->check_mapping && !details->nonlinear_vma)
  686. details = NULL;
  687. BUG_ON(addr >= end);
  688. tlb_start_vma(tlb, vma);
  689. pgd = pgd_offset(vma->vm_mm, addr);
  690. do {
  691. next = pgd_addr_end(addr, end);
  692. if (pgd_none_or_clear_bad(pgd)) {
  693. (*zap_work)--;
  694. continue;
  695. }
  696. next = zap_pud_range(tlb, vma, pgd, addr, next,
  697. zap_work, details);
  698. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  699. tlb_end_vma(tlb, vma);
  700. return addr;
  701. }
  702. #ifdef CONFIG_PREEMPT
  703. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  704. #else
  705. /* No preempt: go for improved straight-line efficiency */
  706. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  707. #endif
  708. /**
  709. * unmap_vmas - unmap a range of memory covered by a list of vma's
  710. * @tlbp: address of the caller's struct mmu_gather
  711. * @vma: the starting vma
  712. * @start_addr: virtual address at which to start unmapping
  713. * @end_addr: virtual address at which to end unmapping
  714. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  715. * @details: details of nonlinear truncation or shared cache invalidation
  716. *
  717. * Returns the end address of the unmapping (restart addr if interrupted).
  718. *
  719. * Unmap all pages in the vma list.
  720. *
  721. * We aim to not hold locks for too long (for scheduling latency reasons).
  722. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  723. * return the ending mmu_gather to the caller.
  724. *
  725. * Only addresses between `start' and `end' will be unmapped.
  726. *
  727. * The VMA list must be sorted in ascending virtual address order.
  728. *
  729. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  730. * range after unmap_vmas() returns. So the only responsibility here is to
  731. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  732. * drops the lock and schedules.
  733. */
  734. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  735. struct vm_area_struct *vma, unsigned long start_addr,
  736. unsigned long end_addr, unsigned long *nr_accounted,
  737. struct zap_details *details)
  738. {
  739. long zap_work = ZAP_BLOCK_SIZE;
  740. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  741. int tlb_start_valid = 0;
  742. unsigned long start = start_addr;
  743. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  744. int fullmm = (*tlbp)->fullmm;
  745. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  746. unsigned long end;
  747. start = max(vma->vm_start, start_addr);
  748. if (start >= vma->vm_end)
  749. continue;
  750. end = min(vma->vm_end, end_addr);
  751. if (end <= vma->vm_start)
  752. continue;
  753. if (vma->vm_flags & VM_ACCOUNT)
  754. *nr_accounted += (end - start) >> PAGE_SHIFT;
  755. while (start != end) {
  756. if (!tlb_start_valid) {
  757. tlb_start = start;
  758. tlb_start_valid = 1;
  759. }
  760. if (unlikely(is_vm_hugetlb_page(vma))) {
  761. unmap_hugepage_range(vma, start, end);
  762. zap_work -= (end - start) /
  763. (HPAGE_SIZE / PAGE_SIZE);
  764. start = end;
  765. } else
  766. start = unmap_page_range(*tlbp, vma,
  767. start, end, &zap_work, details);
  768. if (zap_work > 0) {
  769. BUG_ON(start != end);
  770. break;
  771. }
  772. tlb_finish_mmu(*tlbp, tlb_start, start);
  773. if (need_resched() ||
  774. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  775. if (i_mmap_lock) {
  776. *tlbp = NULL;
  777. goto out;
  778. }
  779. cond_resched();
  780. }
  781. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  782. tlb_start_valid = 0;
  783. zap_work = ZAP_BLOCK_SIZE;
  784. }
  785. }
  786. out:
  787. return start; /* which is now the end (or restart) address */
  788. }
  789. /**
  790. * zap_page_range - remove user pages in a given range
  791. * @vma: vm_area_struct holding the applicable pages
  792. * @address: starting address of pages to zap
  793. * @size: number of bytes to zap
  794. * @details: details of nonlinear truncation or shared cache invalidation
  795. */
  796. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  797. unsigned long size, struct zap_details *details)
  798. {
  799. struct mm_struct *mm = vma->vm_mm;
  800. struct mmu_gather *tlb;
  801. unsigned long end = address + size;
  802. unsigned long nr_accounted = 0;
  803. lru_add_drain();
  804. tlb = tlb_gather_mmu(mm, 0);
  805. update_hiwater_rss(mm);
  806. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  807. if (tlb)
  808. tlb_finish_mmu(tlb, address, end);
  809. return end;
  810. }
  811. /*
  812. * Do a quick page-table lookup for a single page.
  813. */
  814. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  815. unsigned int flags)
  816. {
  817. pgd_t *pgd;
  818. pud_t *pud;
  819. pmd_t *pmd;
  820. pte_t *ptep, pte;
  821. spinlock_t *ptl;
  822. struct page *page;
  823. struct mm_struct *mm = vma->vm_mm;
  824. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  825. if (!IS_ERR(page)) {
  826. BUG_ON(flags & FOLL_GET);
  827. goto out;
  828. }
  829. page = NULL;
  830. pgd = pgd_offset(mm, address);
  831. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  832. goto no_page_table;
  833. pud = pud_offset(pgd, address);
  834. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  835. goto no_page_table;
  836. pmd = pmd_offset(pud, address);
  837. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  838. goto no_page_table;
  839. if (pmd_huge(*pmd)) {
  840. BUG_ON(flags & FOLL_GET);
  841. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  842. goto out;
  843. }
  844. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  845. if (!ptep)
  846. goto out;
  847. pte = *ptep;
  848. if (!pte_present(pte))
  849. goto unlock;
  850. if ((flags & FOLL_WRITE) && !pte_write(pte))
  851. goto unlock;
  852. page = vm_normal_page(vma, address, pte);
  853. if (unlikely(!page))
  854. goto unlock;
  855. if (flags & FOLL_GET)
  856. get_page(page);
  857. if (flags & FOLL_TOUCH) {
  858. if ((flags & FOLL_WRITE) &&
  859. !pte_dirty(pte) && !PageDirty(page))
  860. set_page_dirty(page);
  861. mark_page_accessed(page);
  862. }
  863. unlock:
  864. pte_unmap_unlock(ptep, ptl);
  865. out:
  866. return page;
  867. no_page_table:
  868. /*
  869. * When core dumping an enormous anonymous area that nobody
  870. * has touched so far, we don't want to allocate page tables.
  871. */
  872. if (flags & FOLL_ANON) {
  873. page = ZERO_PAGE(0);
  874. if (flags & FOLL_GET)
  875. get_page(page);
  876. BUG_ON(flags & FOLL_WRITE);
  877. }
  878. return page;
  879. }
  880. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  881. unsigned long start, int len, int write, int force,
  882. struct page **pages, struct vm_area_struct **vmas)
  883. {
  884. int i;
  885. unsigned int vm_flags;
  886. /*
  887. * Require read or write permissions.
  888. * If 'force' is set, we only require the "MAY" flags.
  889. */
  890. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  891. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  892. i = 0;
  893. do {
  894. struct vm_area_struct *vma;
  895. unsigned int foll_flags;
  896. vma = find_extend_vma(mm, start);
  897. if (!vma && in_gate_area(tsk, start)) {
  898. unsigned long pg = start & PAGE_MASK;
  899. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  900. pgd_t *pgd;
  901. pud_t *pud;
  902. pmd_t *pmd;
  903. pte_t *pte;
  904. if (write) /* user gate pages are read-only */
  905. return i ? : -EFAULT;
  906. if (pg > TASK_SIZE)
  907. pgd = pgd_offset_k(pg);
  908. else
  909. pgd = pgd_offset_gate(mm, pg);
  910. BUG_ON(pgd_none(*pgd));
  911. pud = pud_offset(pgd, pg);
  912. BUG_ON(pud_none(*pud));
  913. pmd = pmd_offset(pud, pg);
  914. if (pmd_none(*pmd))
  915. return i ? : -EFAULT;
  916. pte = pte_offset_map(pmd, pg);
  917. if (pte_none(*pte)) {
  918. pte_unmap(pte);
  919. return i ? : -EFAULT;
  920. }
  921. if (pages) {
  922. struct page *page = vm_normal_page(gate_vma, start, *pte);
  923. pages[i] = page;
  924. if (page)
  925. get_page(page);
  926. }
  927. pte_unmap(pte);
  928. if (vmas)
  929. vmas[i] = gate_vma;
  930. i++;
  931. start += PAGE_SIZE;
  932. len--;
  933. continue;
  934. }
  935. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  936. || !(vm_flags & vma->vm_flags))
  937. return i ? : -EFAULT;
  938. if (is_vm_hugetlb_page(vma)) {
  939. i = follow_hugetlb_page(mm, vma, pages, vmas,
  940. &start, &len, i, write);
  941. continue;
  942. }
  943. foll_flags = FOLL_TOUCH;
  944. if (pages)
  945. foll_flags |= FOLL_GET;
  946. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  947. (!vma->vm_ops || (!vma->vm_ops->nopage &&
  948. !vma->vm_ops->fault)))
  949. foll_flags |= FOLL_ANON;
  950. do {
  951. struct page *page;
  952. /*
  953. * If tsk is ooming, cut off its access to large memory
  954. * allocations. It has a pending SIGKILL, but it can't
  955. * be processed until returning to user space.
  956. */
  957. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  958. return -ENOMEM;
  959. if (write)
  960. foll_flags |= FOLL_WRITE;
  961. cond_resched();
  962. while (!(page = follow_page(vma, start, foll_flags))) {
  963. int ret;
  964. ret = handle_mm_fault(mm, vma, start,
  965. foll_flags & FOLL_WRITE);
  966. if (ret & VM_FAULT_ERROR) {
  967. if (ret & VM_FAULT_OOM)
  968. return i ? i : -ENOMEM;
  969. else if (ret & VM_FAULT_SIGBUS)
  970. return i ? i : -EFAULT;
  971. BUG();
  972. }
  973. if (ret & VM_FAULT_MAJOR)
  974. tsk->maj_flt++;
  975. else
  976. tsk->min_flt++;
  977. /*
  978. * The VM_FAULT_WRITE bit tells us that
  979. * do_wp_page has broken COW when necessary,
  980. * even if maybe_mkwrite decided not to set
  981. * pte_write. We can thus safely do subsequent
  982. * page lookups as if they were reads.
  983. */
  984. if (ret & VM_FAULT_WRITE)
  985. foll_flags &= ~FOLL_WRITE;
  986. cond_resched();
  987. }
  988. if (pages) {
  989. pages[i] = page;
  990. flush_anon_page(vma, page, start);
  991. flush_dcache_page(page);
  992. }
  993. if (vmas)
  994. vmas[i] = vma;
  995. i++;
  996. start += PAGE_SIZE;
  997. len--;
  998. } while (len && start < vma->vm_end);
  999. } while (len);
  1000. return i;
  1001. }
  1002. EXPORT_SYMBOL(get_user_pages);
  1003. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1004. spinlock_t **ptl)
  1005. {
  1006. pgd_t * pgd = pgd_offset(mm, addr);
  1007. pud_t * pud = pud_alloc(mm, pgd, addr);
  1008. if (pud) {
  1009. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1010. if (pmd)
  1011. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1012. }
  1013. return NULL;
  1014. }
  1015. /*
  1016. * This is the old fallback for page remapping.
  1017. *
  1018. * For historical reasons, it only allows reserved pages. Only
  1019. * old drivers should use this, and they needed to mark their
  1020. * pages reserved for the old functions anyway.
  1021. */
  1022. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1023. {
  1024. int retval;
  1025. pte_t *pte;
  1026. spinlock_t *ptl;
  1027. retval = -EINVAL;
  1028. if (PageAnon(page))
  1029. goto out;
  1030. retval = -ENOMEM;
  1031. flush_dcache_page(page);
  1032. pte = get_locked_pte(mm, addr, &ptl);
  1033. if (!pte)
  1034. goto out;
  1035. retval = -EBUSY;
  1036. if (!pte_none(*pte))
  1037. goto out_unlock;
  1038. /* Ok, finally just insert the thing.. */
  1039. get_page(page);
  1040. inc_mm_counter(mm, file_rss);
  1041. page_add_file_rmap(page);
  1042. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1043. retval = 0;
  1044. out_unlock:
  1045. pte_unmap_unlock(pte, ptl);
  1046. out:
  1047. return retval;
  1048. }
  1049. /**
  1050. * vm_insert_page - insert single page into user vma
  1051. * @vma: user vma to map to
  1052. * @addr: target user address of this page
  1053. * @page: source kernel page
  1054. *
  1055. * This allows drivers to insert individual pages they've allocated
  1056. * into a user vma.
  1057. *
  1058. * The page has to be a nice clean _individual_ kernel allocation.
  1059. * If you allocate a compound page, you need to have marked it as
  1060. * such (__GFP_COMP), or manually just split the page up yourself
  1061. * (see split_page()).
  1062. *
  1063. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1064. * took an arbitrary page protection parameter. This doesn't allow
  1065. * that. Your vma protection will have to be set up correctly, which
  1066. * means that if you want a shared writable mapping, you'd better
  1067. * ask for a shared writable mapping!
  1068. *
  1069. * The page does not need to be reserved.
  1070. */
  1071. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1072. {
  1073. if (addr < vma->vm_start || addr >= vma->vm_end)
  1074. return -EFAULT;
  1075. if (!page_count(page))
  1076. return -EINVAL;
  1077. vma->vm_flags |= VM_INSERTPAGE;
  1078. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1079. }
  1080. EXPORT_SYMBOL(vm_insert_page);
  1081. /**
  1082. * vm_insert_pfn - insert single pfn into user vma
  1083. * @vma: user vma to map to
  1084. * @addr: target user address of this page
  1085. * @pfn: source kernel pfn
  1086. *
  1087. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1088. * they've allocated into a user vma. Same comments apply.
  1089. *
  1090. * This function should only be called from a vm_ops->fault handler, and
  1091. * in that case the handler should return NULL.
  1092. */
  1093. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1094. unsigned long pfn)
  1095. {
  1096. struct mm_struct *mm = vma->vm_mm;
  1097. int retval;
  1098. pte_t *pte, entry;
  1099. spinlock_t *ptl;
  1100. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  1101. BUG_ON(is_cow_mapping(vma->vm_flags));
  1102. retval = -ENOMEM;
  1103. pte = get_locked_pte(mm, addr, &ptl);
  1104. if (!pte)
  1105. goto out;
  1106. retval = -EBUSY;
  1107. if (!pte_none(*pte))
  1108. goto out_unlock;
  1109. /* Ok, finally just insert the thing.. */
  1110. entry = pfn_pte(pfn, vma->vm_page_prot);
  1111. set_pte_at(mm, addr, pte, entry);
  1112. update_mmu_cache(vma, addr, entry);
  1113. retval = 0;
  1114. out_unlock:
  1115. pte_unmap_unlock(pte, ptl);
  1116. out:
  1117. return retval;
  1118. }
  1119. EXPORT_SYMBOL(vm_insert_pfn);
  1120. /*
  1121. * maps a range of physical memory into the requested pages. the old
  1122. * mappings are removed. any references to nonexistent pages results
  1123. * in null mappings (currently treated as "copy-on-access")
  1124. */
  1125. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1126. unsigned long addr, unsigned long end,
  1127. unsigned long pfn, pgprot_t prot)
  1128. {
  1129. pte_t *pte;
  1130. spinlock_t *ptl;
  1131. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1132. if (!pte)
  1133. return -ENOMEM;
  1134. arch_enter_lazy_mmu_mode();
  1135. do {
  1136. BUG_ON(!pte_none(*pte));
  1137. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1138. pfn++;
  1139. } while (pte++, addr += PAGE_SIZE, addr != end);
  1140. arch_leave_lazy_mmu_mode();
  1141. pte_unmap_unlock(pte - 1, ptl);
  1142. return 0;
  1143. }
  1144. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1145. unsigned long addr, unsigned long end,
  1146. unsigned long pfn, pgprot_t prot)
  1147. {
  1148. pmd_t *pmd;
  1149. unsigned long next;
  1150. pfn -= addr >> PAGE_SHIFT;
  1151. pmd = pmd_alloc(mm, pud, addr);
  1152. if (!pmd)
  1153. return -ENOMEM;
  1154. do {
  1155. next = pmd_addr_end(addr, end);
  1156. if (remap_pte_range(mm, pmd, addr, next,
  1157. pfn + (addr >> PAGE_SHIFT), prot))
  1158. return -ENOMEM;
  1159. } while (pmd++, addr = next, addr != end);
  1160. return 0;
  1161. }
  1162. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1163. unsigned long addr, unsigned long end,
  1164. unsigned long pfn, pgprot_t prot)
  1165. {
  1166. pud_t *pud;
  1167. unsigned long next;
  1168. pfn -= addr >> PAGE_SHIFT;
  1169. pud = pud_alloc(mm, pgd, addr);
  1170. if (!pud)
  1171. return -ENOMEM;
  1172. do {
  1173. next = pud_addr_end(addr, end);
  1174. if (remap_pmd_range(mm, pud, addr, next,
  1175. pfn + (addr >> PAGE_SHIFT), prot))
  1176. return -ENOMEM;
  1177. } while (pud++, addr = next, addr != end);
  1178. return 0;
  1179. }
  1180. /**
  1181. * remap_pfn_range - remap kernel memory to userspace
  1182. * @vma: user vma to map to
  1183. * @addr: target user address to start at
  1184. * @pfn: physical address of kernel memory
  1185. * @size: size of map area
  1186. * @prot: page protection flags for this mapping
  1187. *
  1188. * Note: this is only safe if the mm semaphore is held when called.
  1189. */
  1190. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1191. unsigned long pfn, unsigned long size, pgprot_t prot)
  1192. {
  1193. pgd_t *pgd;
  1194. unsigned long next;
  1195. unsigned long end = addr + PAGE_ALIGN(size);
  1196. struct mm_struct *mm = vma->vm_mm;
  1197. int err;
  1198. /*
  1199. * Physically remapped pages are special. Tell the
  1200. * rest of the world about it:
  1201. * VM_IO tells people not to look at these pages
  1202. * (accesses can have side effects).
  1203. * VM_RESERVED is specified all over the place, because
  1204. * in 2.4 it kept swapout's vma scan off this vma; but
  1205. * in 2.6 the LRU scan won't even find its pages, so this
  1206. * flag means no more than count its pages in reserved_vm,
  1207. * and omit it from core dump, even when VM_IO turned off.
  1208. * VM_PFNMAP tells the core MM that the base pages are just
  1209. * raw PFN mappings, and do not have a "struct page" associated
  1210. * with them.
  1211. *
  1212. * There's a horrible special case to handle copy-on-write
  1213. * behaviour that some programs depend on. We mark the "original"
  1214. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1215. */
  1216. if (is_cow_mapping(vma->vm_flags)) {
  1217. if (addr != vma->vm_start || end != vma->vm_end)
  1218. return -EINVAL;
  1219. vma->vm_pgoff = pfn;
  1220. }
  1221. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1222. BUG_ON(addr >= end);
  1223. pfn -= addr >> PAGE_SHIFT;
  1224. pgd = pgd_offset(mm, addr);
  1225. flush_cache_range(vma, addr, end);
  1226. do {
  1227. next = pgd_addr_end(addr, end);
  1228. err = remap_pud_range(mm, pgd, addr, next,
  1229. pfn + (addr >> PAGE_SHIFT), prot);
  1230. if (err)
  1231. break;
  1232. } while (pgd++, addr = next, addr != end);
  1233. return err;
  1234. }
  1235. EXPORT_SYMBOL(remap_pfn_range);
  1236. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1237. unsigned long addr, unsigned long end,
  1238. pte_fn_t fn, void *data)
  1239. {
  1240. pte_t *pte;
  1241. int err;
  1242. struct page *pmd_page;
  1243. spinlock_t *uninitialized_var(ptl);
  1244. pte = (mm == &init_mm) ?
  1245. pte_alloc_kernel(pmd, addr) :
  1246. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1247. if (!pte)
  1248. return -ENOMEM;
  1249. BUG_ON(pmd_huge(*pmd));
  1250. pmd_page = pmd_page(*pmd);
  1251. do {
  1252. err = fn(pte, pmd_page, addr, data);
  1253. if (err)
  1254. break;
  1255. } while (pte++, addr += PAGE_SIZE, addr != end);
  1256. if (mm != &init_mm)
  1257. pte_unmap_unlock(pte-1, ptl);
  1258. return err;
  1259. }
  1260. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1261. unsigned long addr, unsigned long end,
  1262. pte_fn_t fn, void *data)
  1263. {
  1264. pmd_t *pmd;
  1265. unsigned long next;
  1266. int err;
  1267. pmd = pmd_alloc(mm, pud, addr);
  1268. if (!pmd)
  1269. return -ENOMEM;
  1270. do {
  1271. next = pmd_addr_end(addr, end);
  1272. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1273. if (err)
  1274. break;
  1275. } while (pmd++, addr = next, addr != end);
  1276. return err;
  1277. }
  1278. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1279. unsigned long addr, unsigned long end,
  1280. pte_fn_t fn, void *data)
  1281. {
  1282. pud_t *pud;
  1283. unsigned long next;
  1284. int err;
  1285. pud = pud_alloc(mm, pgd, addr);
  1286. if (!pud)
  1287. return -ENOMEM;
  1288. do {
  1289. next = pud_addr_end(addr, end);
  1290. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1291. if (err)
  1292. break;
  1293. } while (pud++, addr = next, addr != end);
  1294. return err;
  1295. }
  1296. /*
  1297. * Scan a region of virtual memory, filling in page tables as necessary
  1298. * and calling a provided function on each leaf page table.
  1299. */
  1300. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1301. unsigned long size, pte_fn_t fn, void *data)
  1302. {
  1303. pgd_t *pgd;
  1304. unsigned long next;
  1305. unsigned long end = addr + size;
  1306. int err;
  1307. BUG_ON(addr >= end);
  1308. pgd = pgd_offset(mm, addr);
  1309. do {
  1310. next = pgd_addr_end(addr, end);
  1311. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1312. if (err)
  1313. break;
  1314. } while (pgd++, addr = next, addr != end);
  1315. return err;
  1316. }
  1317. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1318. /*
  1319. * handle_pte_fault chooses page fault handler according to an entry
  1320. * which was read non-atomically. Before making any commitment, on
  1321. * those architectures or configurations (e.g. i386 with PAE) which
  1322. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1323. * must check under lock before unmapping the pte and proceeding
  1324. * (but do_wp_page is only called after already making such a check;
  1325. * and do_anonymous_page and do_no_page can safely check later on).
  1326. */
  1327. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1328. pte_t *page_table, pte_t orig_pte)
  1329. {
  1330. int same = 1;
  1331. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1332. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1333. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1334. spin_lock(ptl);
  1335. same = pte_same(*page_table, orig_pte);
  1336. spin_unlock(ptl);
  1337. }
  1338. #endif
  1339. pte_unmap(page_table);
  1340. return same;
  1341. }
  1342. /*
  1343. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1344. * servicing faults for write access. In the normal case, do always want
  1345. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1346. * that do not have writing enabled, when used by access_process_vm.
  1347. */
  1348. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1349. {
  1350. if (likely(vma->vm_flags & VM_WRITE))
  1351. pte = pte_mkwrite(pte);
  1352. return pte;
  1353. }
  1354. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1355. {
  1356. /*
  1357. * If the source page was a PFN mapping, we don't have
  1358. * a "struct page" for it. We do a best-effort copy by
  1359. * just copying from the original user address. If that
  1360. * fails, we just zero-fill it. Live with it.
  1361. */
  1362. if (unlikely(!src)) {
  1363. void *kaddr = kmap_atomic(dst, KM_USER0);
  1364. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1365. /*
  1366. * This really shouldn't fail, because the page is there
  1367. * in the page tables. But it might just be unreadable,
  1368. * in which case we just give up and fill the result with
  1369. * zeroes.
  1370. */
  1371. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1372. memset(kaddr, 0, PAGE_SIZE);
  1373. kunmap_atomic(kaddr, KM_USER0);
  1374. flush_dcache_page(dst);
  1375. } else
  1376. copy_user_highpage(dst, src, va, vma);
  1377. }
  1378. /*
  1379. * This routine handles present pages, when users try to write
  1380. * to a shared page. It is done by copying the page to a new address
  1381. * and decrementing the shared-page counter for the old page.
  1382. *
  1383. * Note that this routine assumes that the protection checks have been
  1384. * done by the caller (the low-level page fault routine in most cases).
  1385. * Thus we can safely just mark it writable once we've done any necessary
  1386. * COW.
  1387. *
  1388. * We also mark the page dirty at this point even though the page will
  1389. * change only once the write actually happens. This avoids a few races,
  1390. * and potentially makes it more efficient.
  1391. *
  1392. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1393. * but allow concurrent faults), with pte both mapped and locked.
  1394. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1395. */
  1396. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1397. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1398. spinlock_t *ptl, pte_t orig_pte)
  1399. {
  1400. struct page *old_page, *new_page;
  1401. pte_t entry;
  1402. int reuse = 0, ret = 0;
  1403. int page_mkwrite = 0;
  1404. struct page *dirty_page = NULL;
  1405. old_page = vm_normal_page(vma, address, orig_pte);
  1406. if (!old_page)
  1407. goto gotten;
  1408. /*
  1409. * Take out anonymous pages first, anonymous shared vmas are
  1410. * not dirty accountable.
  1411. */
  1412. if (PageAnon(old_page)) {
  1413. if (!TestSetPageLocked(old_page)) {
  1414. reuse = can_share_swap_page(old_page);
  1415. unlock_page(old_page);
  1416. }
  1417. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1418. (VM_WRITE|VM_SHARED))) {
  1419. /*
  1420. * Only catch write-faults on shared writable pages,
  1421. * read-only shared pages can get COWed by
  1422. * get_user_pages(.write=1, .force=1).
  1423. */
  1424. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1425. /*
  1426. * Notify the address space that the page is about to
  1427. * become writable so that it can prohibit this or wait
  1428. * for the page to get into an appropriate state.
  1429. *
  1430. * We do this without the lock held, so that it can
  1431. * sleep if it needs to.
  1432. */
  1433. page_cache_get(old_page);
  1434. pte_unmap_unlock(page_table, ptl);
  1435. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1436. goto unwritable_page;
  1437. /*
  1438. * Since we dropped the lock we need to revalidate
  1439. * the PTE as someone else may have changed it. If
  1440. * they did, we just return, as we can count on the
  1441. * MMU to tell us if they didn't also make it writable.
  1442. */
  1443. page_table = pte_offset_map_lock(mm, pmd, address,
  1444. &ptl);
  1445. page_cache_release(old_page);
  1446. if (!pte_same(*page_table, orig_pte))
  1447. goto unlock;
  1448. page_mkwrite = 1;
  1449. }
  1450. dirty_page = old_page;
  1451. get_page(dirty_page);
  1452. reuse = 1;
  1453. }
  1454. if (reuse) {
  1455. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1456. entry = pte_mkyoung(orig_pte);
  1457. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1458. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1459. update_mmu_cache(vma, address, entry);
  1460. ret |= VM_FAULT_WRITE;
  1461. goto unlock;
  1462. }
  1463. /*
  1464. * Ok, we need to copy. Oh, well..
  1465. */
  1466. page_cache_get(old_page);
  1467. gotten:
  1468. pte_unmap_unlock(page_table, ptl);
  1469. if (unlikely(anon_vma_prepare(vma)))
  1470. goto oom;
  1471. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1472. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1473. if (!new_page)
  1474. goto oom;
  1475. cow_user_page(new_page, old_page, address, vma);
  1476. __SetPageUptodate(new_page);
  1477. /*
  1478. * Re-check the pte - we dropped the lock
  1479. */
  1480. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1481. if (likely(pte_same(*page_table, orig_pte))) {
  1482. if (old_page) {
  1483. page_remove_rmap(old_page, vma);
  1484. if (!PageAnon(old_page)) {
  1485. dec_mm_counter(mm, file_rss);
  1486. inc_mm_counter(mm, anon_rss);
  1487. }
  1488. } else
  1489. inc_mm_counter(mm, anon_rss);
  1490. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1491. entry = mk_pte(new_page, vma->vm_page_prot);
  1492. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1493. /*
  1494. * Clear the pte entry and flush it first, before updating the
  1495. * pte with the new entry. This will avoid a race condition
  1496. * seen in the presence of one thread doing SMC and another
  1497. * thread doing COW.
  1498. */
  1499. ptep_clear_flush(vma, address, page_table);
  1500. set_pte_at(mm, address, page_table, entry);
  1501. update_mmu_cache(vma, address, entry);
  1502. lru_cache_add_active(new_page);
  1503. page_add_new_anon_rmap(new_page, vma, address);
  1504. /* Free the old page.. */
  1505. new_page = old_page;
  1506. ret |= VM_FAULT_WRITE;
  1507. }
  1508. if (new_page)
  1509. page_cache_release(new_page);
  1510. if (old_page)
  1511. page_cache_release(old_page);
  1512. unlock:
  1513. pte_unmap_unlock(page_table, ptl);
  1514. if (dirty_page) {
  1515. if (vma->vm_file)
  1516. file_update_time(vma->vm_file);
  1517. /*
  1518. * Yes, Virginia, this is actually required to prevent a race
  1519. * with clear_page_dirty_for_io() from clearing the page dirty
  1520. * bit after it clear all dirty ptes, but before a racing
  1521. * do_wp_page installs a dirty pte.
  1522. *
  1523. * do_no_page is protected similarly.
  1524. */
  1525. wait_on_page_locked(dirty_page);
  1526. set_page_dirty_balance(dirty_page, page_mkwrite);
  1527. put_page(dirty_page);
  1528. }
  1529. return ret;
  1530. oom:
  1531. if (old_page)
  1532. page_cache_release(old_page);
  1533. return VM_FAULT_OOM;
  1534. unwritable_page:
  1535. page_cache_release(old_page);
  1536. return VM_FAULT_SIGBUS;
  1537. }
  1538. /*
  1539. * Helper functions for unmap_mapping_range().
  1540. *
  1541. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1542. *
  1543. * We have to restart searching the prio_tree whenever we drop the lock,
  1544. * since the iterator is only valid while the lock is held, and anyway
  1545. * a later vma might be split and reinserted earlier while lock dropped.
  1546. *
  1547. * The list of nonlinear vmas could be handled more efficiently, using
  1548. * a placeholder, but handle it in the same way until a need is shown.
  1549. * It is important to search the prio_tree before nonlinear list: a vma
  1550. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1551. * while the lock is dropped; but never shifted from list to prio_tree.
  1552. *
  1553. * In order to make forward progress despite restarting the search,
  1554. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1555. * quickly skip it next time around. Since the prio_tree search only
  1556. * shows us those vmas affected by unmapping the range in question, we
  1557. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1558. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1559. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1560. * i_mmap_lock.
  1561. *
  1562. * In order to make forward progress despite repeatedly restarting some
  1563. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1564. * and restart from that address when we reach that vma again. It might
  1565. * have been split or merged, shrunk or extended, but never shifted: so
  1566. * restart_addr remains valid so long as it remains in the vma's range.
  1567. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1568. * values so we can save vma's restart_addr in its truncate_count field.
  1569. */
  1570. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1571. static void reset_vma_truncate_counts(struct address_space *mapping)
  1572. {
  1573. struct vm_area_struct *vma;
  1574. struct prio_tree_iter iter;
  1575. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1576. vma->vm_truncate_count = 0;
  1577. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1578. vma->vm_truncate_count = 0;
  1579. }
  1580. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1581. unsigned long start_addr, unsigned long end_addr,
  1582. struct zap_details *details)
  1583. {
  1584. unsigned long restart_addr;
  1585. int need_break;
  1586. /*
  1587. * files that support invalidating or truncating portions of the
  1588. * file from under mmaped areas must have their ->fault function
  1589. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1590. * This provides synchronisation against concurrent unmapping here.
  1591. */
  1592. again:
  1593. restart_addr = vma->vm_truncate_count;
  1594. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1595. start_addr = restart_addr;
  1596. if (start_addr >= end_addr) {
  1597. /* Top of vma has been split off since last time */
  1598. vma->vm_truncate_count = details->truncate_count;
  1599. return 0;
  1600. }
  1601. }
  1602. restart_addr = zap_page_range(vma, start_addr,
  1603. end_addr - start_addr, details);
  1604. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1605. if (restart_addr >= end_addr) {
  1606. /* We have now completed this vma: mark it so */
  1607. vma->vm_truncate_count = details->truncate_count;
  1608. if (!need_break)
  1609. return 0;
  1610. } else {
  1611. /* Note restart_addr in vma's truncate_count field */
  1612. vma->vm_truncate_count = restart_addr;
  1613. if (!need_break)
  1614. goto again;
  1615. }
  1616. spin_unlock(details->i_mmap_lock);
  1617. cond_resched();
  1618. spin_lock(details->i_mmap_lock);
  1619. return -EINTR;
  1620. }
  1621. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1622. struct zap_details *details)
  1623. {
  1624. struct vm_area_struct *vma;
  1625. struct prio_tree_iter iter;
  1626. pgoff_t vba, vea, zba, zea;
  1627. restart:
  1628. vma_prio_tree_foreach(vma, &iter, root,
  1629. details->first_index, details->last_index) {
  1630. /* Skip quickly over those we have already dealt with */
  1631. if (vma->vm_truncate_count == details->truncate_count)
  1632. continue;
  1633. vba = vma->vm_pgoff;
  1634. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1635. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1636. zba = details->first_index;
  1637. if (zba < vba)
  1638. zba = vba;
  1639. zea = details->last_index;
  1640. if (zea > vea)
  1641. zea = vea;
  1642. if (unmap_mapping_range_vma(vma,
  1643. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1644. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1645. details) < 0)
  1646. goto restart;
  1647. }
  1648. }
  1649. static inline void unmap_mapping_range_list(struct list_head *head,
  1650. struct zap_details *details)
  1651. {
  1652. struct vm_area_struct *vma;
  1653. /*
  1654. * In nonlinear VMAs there is no correspondence between virtual address
  1655. * offset and file offset. So we must perform an exhaustive search
  1656. * across *all* the pages in each nonlinear VMA, not just the pages
  1657. * whose virtual address lies outside the file truncation point.
  1658. */
  1659. restart:
  1660. list_for_each_entry(vma, head, shared.vm_set.list) {
  1661. /* Skip quickly over those we have already dealt with */
  1662. if (vma->vm_truncate_count == details->truncate_count)
  1663. continue;
  1664. details->nonlinear_vma = vma;
  1665. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1666. vma->vm_end, details) < 0)
  1667. goto restart;
  1668. }
  1669. }
  1670. /**
  1671. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1672. * @mapping: the address space containing mmaps to be unmapped.
  1673. * @holebegin: byte in first page to unmap, relative to the start of
  1674. * the underlying file. This will be rounded down to a PAGE_SIZE
  1675. * boundary. Note that this is different from vmtruncate(), which
  1676. * must keep the partial page. In contrast, we must get rid of
  1677. * partial pages.
  1678. * @holelen: size of prospective hole in bytes. This will be rounded
  1679. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1680. * end of the file.
  1681. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1682. * but 0 when invalidating pagecache, don't throw away private data.
  1683. */
  1684. void unmap_mapping_range(struct address_space *mapping,
  1685. loff_t const holebegin, loff_t const holelen, int even_cows)
  1686. {
  1687. struct zap_details details;
  1688. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1689. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1690. /* Check for overflow. */
  1691. if (sizeof(holelen) > sizeof(hlen)) {
  1692. long long holeend =
  1693. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1694. if (holeend & ~(long long)ULONG_MAX)
  1695. hlen = ULONG_MAX - hba + 1;
  1696. }
  1697. details.check_mapping = even_cows? NULL: mapping;
  1698. details.nonlinear_vma = NULL;
  1699. details.first_index = hba;
  1700. details.last_index = hba + hlen - 1;
  1701. if (details.last_index < details.first_index)
  1702. details.last_index = ULONG_MAX;
  1703. details.i_mmap_lock = &mapping->i_mmap_lock;
  1704. spin_lock(&mapping->i_mmap_lock);
  1705. /* Protect against endless unmapping loops */
  1706. mapping->truncate_count++;
  1707. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1708. if (mapping->truncate_count == 0)
  1709. reset_vma_truncate_counts(mapping);
  1710. mapping->truncate_count++;
  1711. }
  1712. details.truncate_count = mapping->truncate_count;
  1713. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1714. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1715. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1716. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1717. spin_unlock(&mapping->i_mmap_lock);
  1718. }
  1719. EXPORT_SYMBOL(unmap_mapping_range);
  1720. /**
  1721. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1722. * @inode: inode of the file used
  1723. * @offset: file offset to start truncating
  1724. *
  1725. * NOTE! We have to be ready to update the memory sharing
  1726. * between the file and the memory map for a potential last
  1727. * incomplete page. Ugly, but necessary.
  1728. */
  1729. int vmtruncate(struct inode * inode, loff_t offset)
  1730. {
  1731. if (inode->i_size < offset) {
  1732. unsigned long limit;
  1733. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1734. if (limit != RLIM_INFINITY && offset > limit)
  1735. goto out_sig;
  1736. if (offset > inode->i_sb->s_maxbytes)
  1737. goto out_big;
  1738. i_size_write(inode, offset);
  1739. } else {
  1740. struct address_space *mapping = inode->i_mapping;
  1741. /*
  1742. * truncation of in-use swapfiles is disallowed - it would
  1743. * cause subsequent swapout to scribble on the now-freed
  1744. * blocks.
  1745. */
  1746. if (IS_SWAPFILE(inode))
  1747. return -ETXTBSY;
  1748. i_size_write(inode, offset);
  1749. /*
  1750. * unmap_mapping_range is called twice, first simply for
  1751. * efficiency so that truncate_inode_pages does fewer
  1752. * single-page unmaps. However after this first call, and
  1753. * before truncate_inode_pages finishes, it is possible for
  1754. * private pages to be COWed, which remain after
  1755. * truncate_inode_pages finishes, hence the second
  1756. * unmap_mapping_range call must be made for correctness.
  1757. */
  1758. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1759. truncate_inode_pages(mapping, offset);
  1760. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1761. }
  1762. if (inode->i_op && inode->i_op->truncate)
  1763. inode->i_op->truncate(inode);
  1764. return 0;
  1765. out_sig:
  1766. send_sig(SIGXFSZ, current, 0);
  1767. out_big:
  1768. return -EFBIG;
  1769. }
  1770. EXPORT_SYMBOL(vmtruncate);
  1771. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1772. {
  1773. struct address_space *mapping = inode->i_mapping;
  1774. /*
  1775. * If the underlying filesystem is not going to provide
  1776. * a way to truncate a range of blocks (punch a hole) -
  1777. * we should return failure right now.
  1778. */
  1779. if (!inode->i_op || !inode->i_op->truncate_range)
  1780. return -ENOSYS;
  1781. mutex_lock(&inode->i_mutex);
  1782. down_write(&inode->i_alloc_sem);
  1783. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1784. truncate_inode_pages_range(mapping, offset, end);
  1785. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1786. inode->i_op->truncate_range(inode, offset, end);
  1787. up_write(&inode->i_alloc_sem);
  1788. mutex_unlock(&inode->i_mutex);
  1789. return 0;
  1790. }
  1791. /*
  1792. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1793. * but allow concurrent faults), and pte mapped but not yet locked.
  1794. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1795. */
  1796. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1797. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1798. int write_access, pte_t orig_pte)
  1799. {
  1800. spinlock_t *ptl;
  1801. struct page *page;
  1802. swp_entry_t entry;
  1803. pte_t pte;
  1804. int ret = 0;
  1805. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1806. goto out;
  1807. entry = pte_to_swp_entry(orig_pte);
  1808. if (is_migration_entry(entry)) {
  1809. migration_entry_wait(mm, pmd, address);
  1810. goto out;
  1811. }
  1812. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1813. page = lookup_swap_cache(entry);
  1814. if (!page) {
  1815. grab_swap_token(); /* Contend for token _before_ read-in */
  1816. page = swapin_readahead(entry,
  1817. GFP_HIGHUSER_MOVABLE, vma, address);
  1818. if (!page) {
  1819. /*
  1820. * Back out if somebody else faulted in this pte
  1821. * while we released the pte lock.
  1822. */
  1823. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1824. if (likely(pte_same(*page_table, orig_pte)))
  1825. ret = VM_FAULT_OOM;
  1826. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1827. goto unlock;
  1828. }
  1829. /* Had to read the page from swap area: Major fault */
  1830. ret = VM_FAULT_MAJOR;
  1831. count_vm_event(PGMAJFAULT);
  1832. }
  1833. mark_page_accessed(page);
  1834. lock_page(page);
  1835. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1836. /*
  1837. * Back out if somebody else already faulted in this pte.
  1838. */
  1839. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1840. if (unlikely(!pte_same(*page_table, orig_pte)))
  1841. goto out_nomap;
  1842. if (unlikely(!PageUptodate(page))) {
  1843. ret = VM_FAULT_SIGBUS;
  1844. goto out_nomap;
  1845. }
  1846. /* The page isn't present yet, go ahead with the fault. */
  1847. inc_mm_counter(mm, anon_rss);
  1848. pte = mk_pte(page, vma->vm_page_prot);
  1849. if (write_access && can_share_swap_page(page)) {
  1850. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1851. write_access = 0;
  1852. }
  1853. flush_icache_page(vma, page);
  1854. set_pte_at(mm, address, page_table, pte);
  1855. page_add_anon_rmap(page, vma, address);
  1856. swap_free(entry);
  1857. if (vm_swap_full())
  1858. remove_exclusive_swap_page(page);
  1859. unlock_page(page);
  1860. if (write_access) {
  1861. /* XXX: We could OR the do_wp_page code with this one? */
  1862. if (do_wp_page(mm, vma, address,
  1863. page_table, pmd, ptl, pte) & VM_FAULT_OOM)
  1864. ret = VM_FAULT_OOM;
  1865. goto out;
  1866. }
  1867. /* No need to invalidate - it was non-present before */
  1868. update_mmu_cache(vma, address, pte);
  1869. unlock:
  1870. pte_unmap_unlock(page_table, ptl);
  1871. out:
  1872. return ret;
  1873. out_nomap:
  1874. pte_unmap_unlock(page_table, ptl);
  1875. unlock_page(page);
  1876. page_cache_release(page);
  1877. return ret;
  1878. }
  1879. /*
  1880. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1881. * but allow concurrent faults), and pte mapped but not yet locked.
  1882. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1883. */
  1884. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1885. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1886. int write_access)
  1887. {
  1888. struct page *page;
  1889. spinlock_t *ptl;
  1890. pte_t entry;
  1891. /* Allocate our own private page. */
  1892. pte_unmap(page_table);
  1893. if (unlikely(anon_vma_prepare(vma)))
  1894. goto oom;
  1895. page = alloc_zeroed_user_highpage_movable(vma, address);
  1896. if (!page)
  1897. goto oom;
  1898. __SetPageUptodate(page);
  1899. entry = mk_pte(page, vma->vm_page_prot);
  1900. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1901. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1902. if (!pte_none(*page_table))
  1903. goto release;
  1904. inc_mm_counter(mm, anon_rss);
  1905. lru_cache_add_active(page);
  1906. page_add_new_anon_rmap(page, vma, address);
  1907. set_pte_at(mm, address, page_table, entry);
  1908. /* No need to invalidate - it was non-present before */
  1909. update_mmu_cache(vma, address, entry);
  1910. unlock:
  1911. pte_unmap_unlock(page_table, ptl);
  1912. return 0;
  1913. release:
  1914. page_cache_release(page);
  1915. goto unlock;
  1916. oom:
  1917. return VM_FAULT_OOM;
  1918. }
  1919. /*
  1920. * __do_fault() tries to create a new page mapping. It aggressively
  1921. * tries to share with existing pages, but makes a separate copy if
  1922. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  1923. * the next page fault.
  1924. *
  1925. * As this is called only for pages that do not currently exist, we
  1926. * do not need to flush old virtual caches or the TLB.
  1927. *
  1928. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1929. * but allow concurrent faults), and pte neither mapped nor locked.
  1930. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1931. */
  1932. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1933. unsigned long address, pmd_t *pmd,
  1934. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  1935. {
  1936. pte_t *page_table;
  1937. spinlock_t *ptl;
  1938. struct page *page;
  1939. pte_t entry;
  1940. int anon = 0;
  1941. struct page *dirty_page = NULL;
  1942. struct vm_fault vmf;
  1943. int ret;
  1944. int page_mkwrite = 0;
  1945. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1946. vmf.pgoff = pgoff;
  1947. vmf.flags = flags;
  1948. vmf.page = NULL;
  1949. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1950. if (likely(vma->vm_ops->fault)) {
  1951. ret = vma->vm_ops->fault(vma, &vmf);
  1952. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1953. return ret;
  1954. } else {
  1955. /* Legacy ->nopage path */
  1956. ret = 0;
  1957. vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1958. /* no page was available -- either SIGBUS or OOM */
  1959. if (unlikely(vmf.page == NOPAGE_SIGBUS))
  1960. return VM_FAULT_SIGBUS;
  1961. else if (unlikely(vmf.page == NOPAGE_OOM))
  1962. return VM_FAULT_OOM;
  1963. }
  1964. /*
  1965. * For consistency in subsequent calls, make the faulted page always
  1966. * locked.
  1967. */
  1968. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  1969. lock_page(vmf.page);
  1970. else
  1971. VM_BUG_ON(!PageLocked(vmf.page));
  1972. /*
  1973. * Should we do an early C-O-W break?
  1974. */
  1975. page = vmf.page;
  1976. if (flags & FAULT_FLAG_WRITE) {
  1977. if (!(vma->vm_flags & VM_SHARED)) {
  1978. anon = 1;
  1979. if (unlikely(anon_vma_prepare(vma))) {
  1980. ret = VM_FAULT_OOM;
  1981. goto out;
  1982. }
  1983. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  1984. vma, address);
  1985. if (!page) {
  1986. ret = VM_FAULT_OOM;
  1987. goto out;
  1988. }
  1989. copy_user_highpage(page, vmf.page, address, vma);
  1990. __SetPageUptodate(page);
  1991. } else {
  1992. /*
  1993. * If the page will be shareable, see if the backing
  1994. * address space wants to know that the page is about
  1995. * to become writable
  1996. */
  1997. if (vma->vm_ops->page_mkwrite) {
  1998. unlock_page(page);
  1999. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2000. ret = VM_FAULT_SIGBUS;
  2001. anon = 1; /* no anon but release vmf.page */
  2002. goto out_unlocked;
  2003. }
  2004. lock_page(page);
  2005. /*
  2006. * XXX: this is not quite right (racy vs
  2007. * invalidate) to unlock and relock the page
  2008. * like this, however a better fix requires
  2009. * reworking page_mkwrite locking API, which
  2010. * is better done later.
  2011. */
  2012. if (!page->mapping) {
  2013. ret = 0;
  2014. anon = 1; /* no anon but release vmf.page */
  2015. goto out;
  2016. }
  2017. page_mkwrite = 1;
  2018. }
  2019. }
  2020. }
  2021. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2022. /*
  2023. * This silly early PAGE_DIRTY setting removes a race
  2024. * due to the bad i386 page protection. But it's valid
  2025. * for other architectures too.
  2026. *
  2027. * Note that if write_access is true, we either now have
  2028. * an exclusive copy of the page, or this is a shared mapping,
  2029. * so we can make it writable and dirty to avoid having to
  2030. * handle that later.
  2031. */
  2032. /* Only go through if we didn't race with anybody else... */
  2033. if (likely(pte_same(*page_table, orig_pte))) {
  2034. flush_icache_page(vma, page);
  2035. entry = mk_pte(page, vma->vm_page_prot);
  2036. if (flags & FAULT_FLAG_WRITE)
  2037. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2038. set_pte_at(mm, address, page_table, entry);
  2039. if (anon) {
  2040. inc_mm_counter(mm, anon_rss);
  2041. lru_cache_add_active(page);
  2042. page_add_new_anon_rmap(page, vma, address);
  2043. } else {
  2044. inc_mm_counter(mm, file_rss);
  2045. page_add_file_rmap(page);
  2046. if (flags & FAULT_FLAG_WRITE) {
  2047. dirty_page = page;
  2048. get_page(dirty_page);
  2049. }
  2050. }
  2051. /* no need to invalidate: a not-present page won't be cached */
  2052. update_mmu_cache(vma, address, entry);
  2053. } else {
  2054. if (anon)
  2055. page_cache_release(page);
  2056. else
  2057. anon = 1; /* no anon but release faulted_page */
  2058. }
  2059. pte_unmap_unlock(page_table, ptl);
  2060. out:
  2061. unlock_page(vmf.page);
  2062. out_unlocked:
  2063. if (anon)
  2064. page_cache_release(vmf.page);
  2065. else if (dirty_page) {
  2066. if (vma->vm_file)
  2067. file_update_time(vma->vm_file);
  2068. set_page_dirty_balance(dirty_page, page_mkwrite);
  2069. put_page(dirty_page);
  2070. }
  2071. return ret;
  2072. }
  2073. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2074. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2075. int write_access, pte_t orig_pte)
  2076. {
  2077. pgoff_t pgoff = (((address & PAGE_MASK)
  2078. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2079. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2080. pte_unmap(page_table);
  2081. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2082. }
  2083. /*
  2084. * do_no_pfn() tries to create a new page mapping for a page without
  2085. * a struct_page backing it
  2086. *
  2087. * As this is called only for pages that do not currently exist, we
  2088. * do not need to flush old virtual caches or the TLB.
  2089. *
  2090. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2091. * but allow concurrent faults), and pte mapped but not yet locked.
  2092. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2093. *
  2094. * It is expected that the ->nopfn handler always returns the same pfn
  2095. * for a given virtual mapping.
  2096. *
  2097. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2098. */
  2099. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2100. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2101. int write_access)
  2102. {
  2103. spinlock_t *ptl;
  2104. pte_t entry;
  2105. unsigned long pfn;
  2106. pte_unmap(page_table);
  2107. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  2108. BUG_ON(is_cow_mapping(vma->vm_flags));
  2109. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2110. if (unlikely(pfn == NOPFN_OOM))
  2111. return VM_FAULT_OOM;
  2112. else if (unlikely(pfn == NOPFN_SIGBUS))
  2113. return VM_FAULT_SIGBUS;
  2114. else if (unlikely(pfn == NOPFN_REFAULT))
  2115. return 0;
  2116. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2117. /* Only go through if we didn't race with anybody else... */
  2118. if (pte_none(*page_table)) {
  2119. entry = pfn_pte(pfn, vma->vm_page_prot);
  2120. if (write_access)
  2121. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2122. set_pte_at(mm, address, page_table, entry);
  2123. }
  2124. pte_unmap_unlock(page_table, ptl);
  2125. return 0;
  2126. }
  2127. /*
  2128. * Fault of a previously existing named mapping. Repopulate the pte
  2129. * from the encoded file_pte if possible. This enables swappable
  2130. * nonlinear vmas.
  2131. *
  2132. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2133. * but allow concurrent faults), and pte mapped but not yet locked.
  2134. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2135. */
  2136. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2137. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2138. int write_access, pte_t orig_pte)
  2139. {
  2140. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2141. (write_access ? FAULT_FLAG_WRITE : 0);
  2142. pgoff_t pgoff;
  2143. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2144. return 0;
  2145. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2146. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2147. /*
  2148. * Page table corrupted: show pte and kill process.
  2149. */
  2150. print_bad_pte(vma, orig_pte, address);
  2151. return VM_FAULT_OOM;
  2152. }
  2153. pgoff = pte_to_pgoff(orig_pte);
  2154. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2155. }
  2156. /*
  2157. * These routines also need to handle stuff like marking pages dirty
  2158. * and/or accessed for architectures that don't do it in hardware (most
  2159. * RISC architectures). The early dirtying is also good on the i386.
  2160. *
  2161. * There is also a hook called "update_mmu_cache()" that architectures
  2162. * with external mmu caches can use to update those (ie the Sparc or
  2163. * PowerPC hashed page tables that act as extended TLBs).
  2164. *
  2165. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2166. * but allow concurrent faults), and pte mapped but not yet locked.
  2167. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2168. */
  2169. static inline int handle_pte_fault(struct mm_struct *mm,
  2170. struct vm_area_struct *vma, unsigned long address,
  2171. pte_t *pte, pmd_t *pmd, int write_access)
  2172. {
  2173. pte_t entry;
  2174. spinlock_t *ptl;
  2175. entry = *pte;
  2176. if (!pte_present(entry)) {
  2177. if (pte_none(entry)) {
  2178. if (vma->vm_ops) {
  2179. if (vma->vm_ops->fault || vma->vm_ops->nopage)
  2180. return do_linear_fault(mm, vma, address,
  2181. pte, pmd, write_access, entry);
  2182. if (unlikely(vma->vm_ops->nopfn))
  2183. return do_no_pfn(mm, vma, address, pte,
  2184. pmd, write_access);
  2185. }
  2186. return do_anonymous_page(mm, vma, address,
  2187. pte, pmd, write_access);
  2188. }
  2189. if (pte_file(entry))
  2190. return do_nonlinear_fault(mm, vma, address,
  2191. pte, pmd, write_access, entry);
  2192. return do_swap_page(mm, vma, address,
  2193. pte, pmd, write_access, entry);
  2194. }
  2195. ptl = pte_lockptr(mm, pmd);
  2196. spin_lock(ptl);
  2197. if (unlikely(!pte_same(*pte, entry)))
  2198. goto unlock;
  2199. if (write_access) {
  2200. if (!pte_write(entry))
  2201. return do_wp_page(mm, vma, address,
  2202. pte, pmd, ptl, entry);
  2203. entry = pte_mkdirty(entry);
  2204. }
  2205. entry = pte_mkyoung(entry);
  2206. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2207. update_mmu_cache(vma, address, entry);
  2208. } else {
  2209. /*
  2210. * This is needed only for protection faults but the arch code
  2211. * is not yet telling us if this is a protection fault or not.
  2212. * This still avoids useless tlb flushes for .text page faults
  2213. * with threads.
  2214. */
  2215. if (write_access)
  2216. flush_tlb_page(vma, address);
  2217. }
  2218. unlock:
  2219. pte_unmap_unlock(pte, ptl);
  2220. return 0;
  2221. }
  2222. /*
  2223. * By the time we get here, we already hold the mm semaphore
  2224. */
  2225. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2226. unsigned long address, int write_access)
  2227. {
  2228. pgd_t *pgd;
  2229. pud_t *pud;
  2230. pmd_t *pmd;
  2231. pte_t *pte;
  2232. __set_current_state(TASK_RUNNING);
  2233. count_vm_event(PGFAULT);
  2234. if (unlikely(is_vm_hugetlb_page(vma)))
  2235. return hugetlb_fault(mm, vma, address, write_access);
  2236. pgd = pgd_offset(mm, address);
  2237. pud = pud_alloc(mm, pgd, address);
  2238. if (!pud)
  2239. return VM_FAULT_OOM;
  2240. pmd = pmd_alloc(mm, pud, address);
  2241. if (!pmd)
  2242. return VM_FAULT_OOM;
  2243. pte = pte_alloc_map(mm, pmd, address);
  2244. if (!pte)
  2245. return VM_FAULT_OOM;
  2246. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2247. }
  2248. #ifndef __PAGETABLE_PUD_FOLDED
  2249. /*
  2250. * Allocate page upper directory.
  2251. * We've already handled the fast-path in-line.
  2252. */
  2253. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2254. {
  2255. pud_t *new = pud_alloc_one(mm, address);
  2256. if (!new)
  2257. return -ENOMEM;
  2258. spin_lock(&mm->page_table_lock);
  2259. if (pgd_present(*pgd)) /* Another has populated it */
  2260. pud_free(mm, new);
  2261. else
  2262. pgd_populate(mm, pgd, new);
  2263. spin_unlock(&mm->page_table_lock);
  2264. return 0;
  2265. }
  2266. #endif /* __PAGETABLE_PUD_FOLDED */
  2267. #ifndef __PAGETABLE_PMD_FOLDED
  2268. /*
  2269. * Allocate page middle directory.
  2270. * We've already handled the fast-path in-line.
  2271. */
  2272. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2273. {
  2274. pmd_t *new = pmd_alloc_one(mm, address);
  2275. if (!new)
  2276. return -ENOMEM;
  2277. spin_lock(&mm->page_table_lock);
  2278. #ifndef __ARCH_HAS_4LEVEL_HACK
  2279. if (pud_present(*pud)) /* Another has populated it */
  2280. pmd_free(mm, new);
  2281. else
  2282. pud_populate(mm, pud, new);
  2283. #else
  2284. if (pgd_present(*pud)) /* Another has populated it */
  2285. pmd_free(mm, new);
  2286. else
  2287. pgd_populate(mm, pud, new);
  2288. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2289. spin_unlock(&mm->page_table_lock);
  2290. return 0;
  2291. }
  2292. #endif /* __PAGETABLE_PMD_FOLDED */
  2293. int make_pages_present(unsigned long addr, unsigned long end)
  2294. {
  2295. int ret, len, write;
  2296. struct vm_area_struct * vma;
  2297. vma = find_vma(current->mm, addr);
  2298. if (!vma)
  2299. return -1;
  2300. write = (vma->vm_flags & VM_WRITE) != 0;
  2301. BUG_ON(addr >= end);
  2302. BUG_ON(end > vma->vm_end);
  2303. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2304. ret = get_user_pages(current, current->mm, addr,
  2305. len, write, 0, NULL, NULL);
  2306. if (ret < 0)
  2307. return ret;
  2308. return ret == len ? 0 : -1;
  2309. }
  2310. #if !defined(__HAVE_ARCH_GATE_AREA)
  2311. #if defined(AT_SYSINFO_EHDR)
  2312. static struct vm_area_struct gate_vma;
  2313. static int __init gate_vma_init(void)
  2314. {
  2315. gate_vma.vm_mm = NULL;
  2316. gate_vma.vm_start = FIXADDR_USER_START;
  2317. gate_vma.vm_end = FIXADDR_USER_END;
  2318. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2319. gate_vma.vm_page_prot = __P101;
  2320. /*
  2321. * Make sure the vDSO gets into every core dump.
  2322. * Dumping its contents makes post-mortem fully interpretable later
  2323. * without matching up the same kernel and hardware config to see
  2324. * what PC values meant.
  2325. */
  2326. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2327. return 0;
  2328. }
  2329. __initcall(gate_vma_init);
  2330. #endif
  2331. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2332. {
  2333. #ifdef AT_SYSINFO_EHDR
  2334. return &gate_vma;
  2335. #else
  2336. return NULL;
  2337. #endif
  2338. }
  2339. int in_gate_area_no_task(unsigned long addr)
  2340. {
  2341. #ifdef AT_SYSINFO_EHDR
  2342. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2343. return 1;
  2344. #endif
  2345. return 0;
  2346. }
  2347. #endif /* __HAVE_ARCH_GATE_AREA */
  2348. /*
  2349. * Access another process' address space.
  2350. * Source/target buffer must be kernel space,
  2351. * Do not walk the page table directly, use get_user_pages
  2352. */
  2353. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2354. {
  2355. struct mm_struct *mm;
  2356. struct vm_area_struct *vma;
  2357. struct page *page;
  2358. void *old_buf = buf;
  2359. mm = get_task_mm(tsk);
  2360. if (!mm)
  2361. return 0;
  2362. down_read(&mm->mmap_sem);
  2363. /* ignore errors, just check how much was successfully transferred */
  2364. while (len) {
  2365. int bytes, ret, offset;
  2366. void *maddr;
  2367. ret = get_user_pages(tsk, mm, addr, 1,
  2368. write, 1, &page, &vma);
  2369. if (ret <= 0)
  2370. break;
  2371. bytes = len;
  2372. offset = addr & (PAGE_SIZE-1);
  2373. if (bytes > PAGE_SIZE-offset)
  2374. bytes = PAGE_SIZE-offset;
  2375. maddr = kmap(page);
  2376. if (write) {
  2377. copy_to_user_page(vma, page, addr,
  2378. maddr + offset, buf, bytes);
  2379. set_page_dirty_lock(page);
  2380. } else {
  2381. copy_from_user_page(vma, page, addr,
  2382. buf, maddr + offset, bytes);
  2383. }
  2384. kunmap(page);
  2385. page_cache_release(page);
  2386. len -= bytes;
  2387. buf += bytes;
  2388. addr += bytes;
  2389. }
  2390. up_read(&mm->mmap_sem);
  2391. mmput(mm);
  2392. return buf - old_buf;
  2393. }
  2394. /*
  2395. * Print the name of a VMA.
  2396. */
  2397. void print_vma_addr(char *prefix, unsigned long ip)
  2398. {
  2399. struct mm_struct *mm = current->mm;
  2400. struct vm_area_struct *vma;
  2401. down_read(&mm->mmap_sem);
  2402. vma = find_vma(mm, ip);
  2403. if (vma && vma->vm_file) {
  2404. struct file *f = vma->vm_file;
  2405. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2406. if (buf) {
  2407. char *p, *s;
  2408. p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
  2409. if (IS_ERR(p))
  2410. p = "?";
  2411. s = strrchr(p, '/');
  2412. if (s)
  2413. p = s+1;
  2414. printk("%s%s[%lx+%lx]", prefix, p,
  2415. vma->vm_start,
  2416. vma->vm_end - vma->vm_start);
  2417. free_page((unsigned long)buf);
  2418. }
  2419. }
  2420. up_read(&current->mm->mmap_sem);
  2421. }