md.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. if (new)
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. bio_list_init(&new->write_list);
  188. spin_lock_init(&new->write_lock);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. if (mddev->thread)
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. if (bio->bi_size)
  272. return 1;
  273. complete((struct completion*)bio->bi_private);
  274. return 0;
  275. }
  276. static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  277. struct page *page, int rw)
  278. {
  279. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  280. struct completion event;
  281. int ret;
  282. rw |= (1 << BIO_RW_SYNC);
  283. bio->bi_bdev = bdev;
  284. bio->bi_sector = sector;
  285. bio_add_page(bio, page, size, 0);
  286. init_completion(&event);
  287. bio->bi_private = &event;
  288. bio->bi_end_io = bi_complete;
  289. submit_bio(rw, bio);
  290. wait_for_completion(&event);
  291. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  292. bio_put(bio);
  293. return ret;
  294. }
  295. static int read_disk_sb(mdk_rdev_t * rdev)
  296. {
  297. char b[BDEVNAME_SIZE];
  298. if (!rdev->sb_page) {
  299. MD_BUG();
  300. return -EINVAL;
  301. }
  302. if (rdev->sb_loaded)
  303. return 0;
  304. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  305. goto fail;
  306. rdev->sb_loaded = 1;
  307. return 0;
  308. fail:
  309. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  310. bdevname(rdev->bdev,b));
  311. return -EINVAL;
  312. }
  313. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  314. {
  315. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  316. (sb1->set_uuid1 == sb2->set_uuid1) &&
  317. (sb1->set_uuid2 == sb2->set_uuid2) &&
  318. (sb1->set_uuid3 == sb2->set_uuid3))
  319. return 1;
  320. return 0;
  321. }
  322. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  323. {
  324. int ret;
  325. mdp_super_t *tmp1, *tmp2;
  326. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  327. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  328. if (!tmp1 || !tmp2) {
  329. ret = 0;
  330. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  331. goto abort;
  332. }
  333. *tmp1 = *sb1;
  334. *tmp2 = *sb2;
  335. /*
  336. * nr_disks is not constant
  337. */
  338. tmp1->nr_disks = 0;
  339. tmp2->nr_disks = 0;
  340. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  341. ret = 0;
  342. else
  343. ret = 1;
  344. abort:
  345. if (tmp1)
  346. kfree(tmp1);
  347. if (tmp2)
  348. kfree(tmp2);
  349. return ret;
  350. }
  351. static unsigned int calc_sb_csum(mdp_super_t * sb)
  352. {
  353. unsigned int disk_csum, csum;
  354. disk_csum = sb->sb_csum;
  355. sb->sb_csum = 0;
  356. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  357. sb->sb_csum = disk_csum;
  358. return csum;
  359. }
  360. /*
  361. * Handle superblock details.
  362. * We want to be able to handle multiple superblock formats
  363. * so we have a common interface to them all, and an array of
  364. * different handlers.
  365. * We rely on user-space to write the initial superblock, and support
  366. * reading and updating of superblocks.
  367. * Interface methods are:
  368. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  369. * loads and validates a superblock on dev.
  370. * if refdev != NULL, compare superblocks on both devices
  371. * Return:
  372. * 0 - dev has a superblock that is compatible with refdev
  373. * 1 - dev has a superblock that is compatible and newer than refdev
  374. * so dev should be used as the refdev in future
  375. * -EINVAL superblock incompatible or invalid
  376. * -othererror e.g. -EIO
  377. *
  378. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  379. * Verify that dev is acceptable into mddev.
  380. * The first time, mddev->raid_disks will be 0, and data from
  381. * dev should be merged in. Subsequent calls check that dev
  382. * is new enough. Return 0 or -EINVAL
  383. *
  384. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  385. * Update the superblock for rdev with data in mddev
  386. * This does not write to disc.
  387. *
  388. */
  389. struct super_type {
  390. char *name;
  391. struct module *owner;
  392. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  393. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  394. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  395. };
  396. /*
  397. * load_super for 0.90.0
  398. */
  399. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  400. {
  401. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  402. mdp_super_t *sb;
  403. int ret;
  404. sector_t sb_offset;
  405. /*
  406. * Calculate the position of the superblock,
  407. * it's at the end of the disk.
  408. *
  409. * It also happens to be a multiple of 4Kb.
  410. */
  411. sb_offset = calc_dev_sboffset(rdev->bdev);
  412. rdev->sb_offset = sb_offset;
  413. ret = read_disk_sb(rdev);
  414. if (ret) return ret;
  415. ret = -EINVAL;
  416. bdevname(rdev->bdev, b);
  417. sb = (mdp_super_t*)page_address(rdev->sb_page);
  418. if (sb->md_magic != MD_SB_MAGIC) {
  419. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  420. b);
  421. goto abort;
  422. }
  423. if (sb->major_version != 0 ||
  424. sb->minor_version != 90) {
  425. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  426. sb->major_version, sb->minor_version,
  427. b);
  428. goto abort;
  429. }
  430. if (sb->raid_disks <= 0)
  431. goto abort;
  432. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  433. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  434. b);
  435. goto abort;
  436. }
  437. rdev->preferred_minor = sb->md_minor;
  438. rdev->data_offset = 0;
  439. if (sb->level == LEVEL_MULTIPATH)
  440. rdev->desc_nr = -1;
  441. else
  442. rdev->desc_nr = sb->this_disk.number;
  443. if (refdev == 0)
  444. ret = 1;
  445. else {
  446. __u64 ev1, ev2;
  447. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  448. if (!uuid_equal(refsb, sb)) {
  449. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  450. b, bdevname(refdev->bdev,b2));
  451. goto abort;
  452. }
  453. if (!sb_equal(refsb, sb)) {
  454. printk(KERN_WARNING "md: %s has same UUID"
  455. " but different superblock to %s\n",
  456. b, bdevname(refdev->bdev, b2));
  457. goto abort;
  458. }
  459. ev1 = md_event(sb);
  460. ev2 = md_event(refsb);
  461. if (ev1 > ev2)
  462. ret = 1;
  463. else
  464. ret = 0;
  465. }
  466. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  467. abort:
  468. return ret;
  469. }
  470. /*
  471. * validate_super for 0.90.0
  472. */
  473. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  474. {
  475. mdp_disk_t *desc;
  476. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  477. if (mddev->raid_disks == 0) {
  478. mddev->major_version = 0;
  479. mddev->minor_version = sb->minor_version;
  480. mddev->patch_version = sb->patch_version;
  481. mddev->persistent = ! sb->not_persistent;
  482. mddev->chunk_size = sb->chunk_size;
  483. mddev->ctime = sb->ctime;
  484. mddev->utime = sb->utime;
  485. mddev->level = sb->level;
  486. mddev->layout = sb->layout;
  487. mddev->raid_disks = sb->raid_disks;
  488. mddev->size = sb->size;
  489. mddev->events = md_event(sb);
  490. if (sb->state & (1<<MD_SB_CLEAN))
  491. mddev->recovery_cp = MaxSector;
  492. else {
  493. if (sb->events_hi == sb->cp_events_hi &&
  494. sb->events_lo == sb->cp_events_lo) {
  495. mddev->recovery_cp = sb->recovery_cp;
  496. } else
  497. mddev->recovery_cp = 0;
  498. }
  499. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  500. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  501. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  502. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  503. mddev->max_disks = MD_SB_DISKS;
  504. } else {
  505. __u64 ev1;
  506. ev1 = md_event(sb);
  507. ++ev1;
  508. if (ev1 < mddev->events)
  509. return -EINVAL;
  510. }
  511. if (mddev->level != LEVEL_MULTIPATH) {
  512. rdev->raid_disk = -1;
  513. rdev->in_sync = rdev->faulty = 0;
  514. desc = sb->disks + rdev->desc_nr;
  515. if (desc->state & (1<<MD_DISK_FAULTY))
  516. rdev->faulty = 1;
  517. else if (desc->state & (1<<MD_DISK_SYNC) &&
  518. desc->raid_disk < mddev->raid_disks) {
  519. rdev->in_sync = 1;
  520. rdev->raid_disk = desc->raid_disk;
  521. }
  522. }
  523. return 0;
  524. }
  525. /*
  526. * sync_super for 0.90.0
  527. */
  528. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  529. {
  530. mdp_super_t *sb;
  531. struct list_head *tmp;
  532. mdk_rdev_t *rdev2;
  533. int next_spare = mddev->raid_disks;
  534. /* make rdev->sb match mddev data..
  535. *
  536. * 1/ zero out disks
  537. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  538. * 3/ any empty disks < next_spare become removed
  539. *
  540. * disks[0] gets initialised to REMOVED because
  541. * we cannot be sure from other fields if it has
  542. * been initialised or not.
  543. */
  544. int i;
  545. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  546. sb = (mdp_super_t*)page_address(rdev->sb_page);
  547. memset(sb, 0, sizeof(*sb));
  548. sb->md_magic = MD_SB_MAGIC;
  549. sb->major_version = mddev->major_version;
  550. sb->minor_version = mddev->minor_version;
  551. sb->patch_version = mddev->patch_version;
  552. sb->gvalid_words = 0; /* ignored */
  553. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  554. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  555. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  556. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  557. sb->ctime = mddev->ctime;
  558. sb->level = mddev->level;
  559. sb->size = mddev->size;
  560. sb->raid_disks = mddev->raid_disks;
  561. sb->md_minor = mddev->md_minor;
  562. sb->not_persistent = !mddev->persistent;
  563. sb->utime = mddev->utime;
  564. sb->state = 0;
  565. sb->events_hi = (mddev->events>>32);
  566. sb->events_lo = (u32)mddev->events;
  567. if (mddev->in_sync)
  568. {
  569. sb->recovery_cp = mddev->recovery_cp;
  570. sb->cp_events_hi = (mddev->events>>32);
  571. sb->cp_events_lo = (u32)mddev->events;
  572. if (mddev->recovery_cp == MaxSector)
  573. sb->state = (1<< MD_SB_CLEAN);
  574. } else
  575. sb->recovery_cp = 0;
  576. sb->layout = mddev->layout;
  577. sb->chunk_size = mddev->chunk_size;
  578. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  579. ITERATE_RDEV(mddev,rdev2,tmp) {
  580. mdp_disk_t *d;
  581. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  582. rdev2->desc_nr = rdev2->raid_disk;
  583. else
  584. rdev2->desc_nr = next_spare++;
  585. d = &sb->disks[rdev2->desc_nr];
  586. nr_disks++;
  587. d->number = rdev2->desc_nr;
  588. d->major = MAJOR(rdev2->bdev->bd_dev);
  589. d->minor = MINOR(rdev2->bdev->bd_dev);
  590. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  591. d->raid_disk = rdev2->raid_disk;
  592. else
  593. d->raid_disk = rdev2->desc_nr; /* compatibility */
  594. if (rdev2->faulty) {
  595. d->state = (1<<MD_DISK_FAULTY);
  596. failed++;
  597. } else if (rdev2->in_sync) {
  598. d->state = (1<<MD_DISK_ACTIVE);
  599. d->state |= (1<<MD_DISK_SYNC);
  600. active++;
  601. working++;
  602. } else {
  603. d->state = 0;
  604. spare++;
  605. working++;
  606. }
  607. }
  608. /* now set the "removed" and "faulty" bits on any missing devices */
  609. for (i=0 ; i < mddev->raid_disks ; i++) {
  610. mdp_disk_t *d = &sb->disks[i];
  611. if (d->state == 0 && d->number == 0) {
  612. d->number = i;
  613. d->raid_disk = i;
  614. d->state = (1<<MD_DISK_REMOVED);
  615. d->state |= (1<<MD_DISK_FAULTY);
  616. failed++;
  617. }
  618. }
  619. sb->nr_disks = nr_disks;
  620. sb->active_disks = active;
  621. sb->working_disks = working;
  622. sb->failed_disks = failed;
  623. sb->spare_disks = spare;
  624. sb->this_disk = sb->disks[rdev->desc_nr];
  625. sb->sb_csum = calc_sb_csum(sb);
  626. }
  627. /*
  628. * version 1 superblock
  629. */
  630. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  631. {
  632. unsigned int disk_csum, csum;
  633. unsigned long long newcsum;
  634. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  635. unsigned int *isuper = (unsigned int*)sb;
  636. int i;
  637. disk_csum = sb->sb_csum;
  638. sb->sb_csum = 0;
  639. newcsum = 0;
  640. for (i=0; size>=4; size -= 4 )
  641. newcsum += le32_to_cpu(*isuper++);
  642. if (size == 2)
  643. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  644. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  645. sb->sb_csum = disk_csum;
  646. return cpu_to_le32(csum);
  647. }
  648. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  649. {
  650. struct mdp_superblock_1 *sb;
  651. int ret;
  652. sector_t sb_offset;
  653. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  654. /*
  655. * Calculate the position of the superblock.
  656. * It is always aligned to a 4K boundary and
  657. * depeding on minor_version, it can be:
  658. * 0: At least 8K, but less than 12K, from end of device
  659. * 1: At start of device
  660. * 2: 4K from start of device.
  661. */
  662. switch(minor_version) {
  663. case 0:
  664. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  665. sb_offset -= 8*2;
  666. sb_offset &= ~(4*2-1);
  667. /* convert from sectors to K */
  668. sb_offset /= 2;
  669. break;
  670. case 1:
  671. sb_offset = 0;
  672. break;
  673. case 2:
  674. sb_offset = 4;
  675. break;
  676. default:
  677. return -EINVAL;
  678. }
  679. rdev->sb_offset = sb_offset;
  680. ret = read_disk_sb(rdev);
  681. if (ret) return ret;
  682. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  683. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  684. sb->major_version != cpu_to_le32(1) ||
  685. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  686. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  687. sb->feature_map != 0)
  688. return -EINVAL;
  689. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  690. printk("md: invalid superblock checksum on %s\n",
  691. bdevname(rdev->bdev,b));
  692. return -EINVAL;
  693. }
  694. if (le64_to_cpu(sb->data_size) < 10) {
  695. printk("md: data_size too small on %s\n",
  696. bdevname(rdev->bdev,b));
  697. return -EINVAL;
  698. }
  699. rdev->preferred_minor = 0xffff;
  700. rdev->data_offset = le64_to_cpu(sb->data_offset);
  701. if (refdev == 0)
  702. return 1;
  703. else {
  704. __u64 ev1, ev2;
  705. struct mdp_superblock_1 *refsb =
  706. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  707. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  708. sb->level != refsb->level ||
  709. sb->layout != refsb->layout ||
  710. sb->chunksize != refsb->chunksize) {
  711. printk(KERN_WARNING "md: %s has strangely different"
  712. " superblock to %s\n",
  713. bdevname(rdev->bdev,b),
  714. bdevname(refdev->bdev,b2));
  715. return -EINVAL;
  716. }
  717. ev1 = le64_to_cpu(sb->events);
  718. ev2 = le64_to_cpu(refsb->events);
  719. if (ev1 > ev2)
  720. return 1;
  721. }
  722. if (minor_version)
  723. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  724. else
  725. rdev->size = rdev->sb_offset;
  726. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  727. return -EINVAL;
  728. rdev->size = le64_to_cpu(sb->data_size)/2;
  729. if (le32_to_cpu(sb->chunksize))
  730. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  731. return 0;
  732. }
  733. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  734. {
  735. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  736. if (mddev->raid_disks == 0) {
  737. mddev->major_version = 1;
  738. mddev->patch_version = 0;
  739. mddev->persistent = 1;
  740. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  741. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  742. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  743. mddev->level = le32_to_cpu(sb->level);
  744. mddev->layout = le32_to_cpu(sb->layout);
  745. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  746. mddev->size = le64_to_cpu(sb->size)/2;
  747. mddev->events = le64_to_cpu(sb->events);
  748. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  749. memcpy(mddev->uuid, sb->set_uuid, 16);
  750. mddev->max_disks = (4096-256)/2;
  751. } else {
  752. __u64 ev1;
  753. ev1 = le64_to_cpu(sb->events);
  754. ++ev1;
  755. if (ev1 < mddev->events)
  756. return -EINVAL;
  757. }
  758. if (mddev->level != LEVEL_MULTIPATH) {
  759. int role;
  760. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  761. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  762. switch(role) {
  763. case 0xffff: /* spare */
  764. rdev->in_sync = 0;
  765. rdev->faulty = 0;
  766. rdev->raid_disk = -1;
  767. break;
  768. case 0xfffe: /* faulty */
  769. rdev->in_sync = 0;
  770. rdev->faulty = 1;
  771. rdev->raid_disk = -1;
  772. break;
  773. default:
  774. rdev->in_sync = 1;
  775. rdev->faulty = 0;
  776. rdev->raid_disk = role;
  777. break;
  778. }
  779. }
  780. return 0;
  781. }
  782. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  783. {
  784. struct mdp_superblock_1 *sb;
  785. struct list_head *tmp;
  786. mdk_rdev_t *rdev2;
  787. int max_dev, i;
  788. /* make rdev->sb match mddev and rdev data. */
  789. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  790. sb->feature_map = 0;
  791. sb->pad0 = 0;
  792. memset(sb->pad1, 0, sizeof(sb->pad1));
  793. memset(sb->pad2, 0, sizeof(sb->pad2));
  794. memset(sb->pad3, 0, sizeof(sb->pad3));
  795. sb->utime = cpu_to_le64((__u64)mddev->utime);
  796. sb->events = cpu_to_le64(mddev->events);
  797. if (mddev->in_sync)
  798. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  799. else
  800. sb->resync_offset = cpu_to_le64(0);
  801. max_dev = 0;
  802. ITERATE_RDEV(mddev,rdev2,tmp)
  803. if (rdev2->desc_nr+1 > max_dev)
  804. max_dev = rdev2->desc_nr+1;
  805. sb->max_dev = cpu_to_le32(max_dev);
  806. for (i=0; i<max_dev;i++)
  807. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  808. ITERATE_RDEV(mddev,rdev2,tmp) {
  809. i = rdev2->desc_nr;
  810. if (rdev2->faulty)
  811. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  812. else if (rdev2->in_sync)
  813. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  814. else
  815. sb->dev_roles[i] = cpu_to_le16(0xffff);
  816. }
  817. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  818. sb->sb_csum = calc_sb_1_csum(sb);
  819. }
  820. static struct super_type super_types[] = {
  821. [0] = {
  822. .name = "0.90.0",
  823. .owner = THIS_MODULE,
  824. .load_super = super_90_load,
  825. .validate_super = super_90_validate,
  826. .sync_super = super_90_sync,
  827. },
  828. [1] = {
  829. .name = "md-1",
  830. .owner = THIS_MODULE,
  831. .load_super = super_1_load,
  832. .validate_super = super_1_validate,
  833. .sync_super = super_1_sync,
  834. },
  835. };
  836. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  837. {
  838. struct list_head *tmp;
  839. mdk_rdev_t *rdev;
  840. ITERATE_RDEV(mddev,rdev,tmp)
  841. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  842. return rdev;
  843. return NULL;
  844. }
  845. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  846. {
  847. struct list_head *tmp;
  848. mdk_rdev_t *rdev;
  849. ITERATE_RDEV(mddev1,rdev,tmp)
  850. if (match_dev_unit(mddev2, rdev))
  851. return 1;
  852. return 0;
  853. }
  854. static LIST_HEAD(pending_raid_disks);
  855. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  856. {
  857. mdk_rdev_t *same_pdev;
  858. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  859. if (rdev->mddev) {
  860. MD_BUG();
  861. return -EINVAL;
  862. }
  863. same_pdev = match_dev_unit(mddev, rdev);
  864. if (same_pdev)
  865. printk(KERN_WARNING
  866. "%s: WARNING: %s appears to be on the same physical"
  867. " disk as %s. True\n protection against single-disk"
  868. " failure might be compromised.\n",
  869. mdname(mddev), bdevname(rdev->bdev,b),
  870. bdevname(same_pdev->bdev,b2));
  871. /* Verify rdev->desc_nr is unique.
  872. * If it is -1, assign a free number, else
  873. * check number is not in use
  874. */
  875. if (rdev->desc_nr < 0) {
  876. int choice = 0;
  877. if (mddev->pers) choice = mddev->raid_disks;
  878. while (find_rdev_nr(mddev, choice))
  879. choice++;
  880. rdev->desc_nr = choice;
  881. } else {
  882. if (find_rdev_nr(mddev, rdev->desc_nr))
  883. return -EBUSY;
  884. }
  885. list_add(&rdev->same_set, &mddev->disks);
  886. rdev->mddev = mddev;
  887. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  888. return 0;
  889. }
  890. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  891. {
  892. char b[BDEVNAME_SIZE];
  893. if (!rdev->mddev) {
  894. MD_BUG();
  895. return;
  896. }
  897. list_del_init(&rdev->same_set);
  898. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  899. rdev->mddev = NULL;
  900. }
  901. /*
  902. * prevent the device from being mounted, repartitioned or
  903. * otherwise reused by a RAID array (or any other kernel
  904. * subsystem), by bd_claiming the device.
  905. */
  906. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  907. {
  908. int err = 0;
  909. struct block_device *bdev;
  910. char b[BDEVNAME_SIZE];
  911. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  912. if (IS_ERR(bdev)) {
  913. printk(KERN_ERR "md: could not open %s.\n",
  914. __bdevname(dev, b));
  915. return PTR_ERR(bdev);
  916. }
  917. err = bd_claim(bdev, rdev);
  918. if (err) {
  919. printk(KERN_ERR "md: could not bd_claim %s.\n",
  920. bdevname(bdev, b));
  921. blkdev_put(bdev);
  922. return err;
  923. }
  924. rdev->bdev = bdev;
  925. return err;
  926. }
  927. static void unlock_rdev(mdk_rdev_t *rdev)
  928. {
  929. struct block_device *bdev = rdev->bdev;
  930. rdev->bdev = NULL;
  931. if (!bdev)
  932. MD_BUG();
  933. bd_release(bdev);
  934. blkdev_put(bdev);
  935. }
  936. void md_autodetect_dev(dev_t dev);
  937. static void export_rdev(mdk_rdev_t * rdev)
  938. {
  939. char b[BDEVNAME_SIZE];
  940. printk(KERN_INFO "md: export_rdev(%s)\n",
  941. bdevname(rdev->bdev,b));
  942. if (rdev->mddev)
  943. MD_BUG();
  944. free_disk_sb(rdev);
  945. list_del_init(&rdev->same_set);
  946. #ifndef MODULE
  947. md_autodetect_dev(rdev->bdev->bd_dev);
  948. #endif
  949. unlock_rdev(rdev);
  950. kfree(rdev);
  951. }
  952. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  953. {
  954. unbind_rdev_from_array(rdev);
  955. export_rdev(rdev);
  956. }
  957. static void export_array(mddev_t *mddev)
  958. {
  959. struct list_head *tmp;
  960. mdk_rdev_t *rdev;
  961. ITERATE_RDEV(mddev,rdev,tmp) {
  962. if (!rdev->mddev) {
  963. MD_BUG();
  964. continue;
  965. }
  966. kick_rdev_from_array(rdev);
  967. }
  968. if (!list_empty(&mddev->disks))
  969. MD_BUG();
  970. mddev->raid_disks = 0;
  971. mddev->major_version = 0;
  972. }
  973. static void print_desc(mdp_disk_t *desc)
  974. {
  975. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  976. desc->major,desc->minor,desc->raid_disk,desc->state);
  977. }
  978. static void print_sb(mdp_super_t *sb)
  979. {
  980. int i;
  981. printk(KERN_INFO
  982. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  983. sb->major_version, sb->minor_version, sb->patch_version,
  984. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  985. sb->ctime);
  986. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  987. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  988. sb->md_minor, sb->layout, sb->chunk_size);
  989. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  990. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  991. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  992. sb->failed_disks, sb->spare_disks,
  993. sb->sb_csum, (unsigned long)sb->events_lo);
  994. printk(KERN_INFO);
  995. for (i = 0; i < MD_SB_DISKS; i++) {
  996. mdp_disk_t *desc;
  997. desc = sb->disks + i;
  998. if (desc->number || desc->major || desc->minor ||
  999. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1000. printk(" D %2d: ", i);
  1001. print_desc(desc);
  1002. }
  1003. }
  1004. printk(KERN_INFO "md: THIS: ");
  1005. print_desc(&sb->this_disk);
  1006. }
  1007. static void print_rdev(mdk_rdev_t *rdev)
  1008. {
  1009. char b[BDEVNAME_SIZE];
  1010. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1011. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1012. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1013. if (rdev->sb_loaded) {
  1014. printk(KERN_INFO "md: rdev superblock:\n");
  1015. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1016. } else
  1017. printk(KERN_INFO "md: no rdev superblock!\n");
  1018. }
  1019. void md_print_devices(void)
  1020. {
  1021. struct list_head *tmp, *tmp2;
  1022. mdk_rdev_t *rdev;
  1023. mddev_t *mddev;
  1024. char b[BDEVNAME_SIZE];
  1025. printk("\n");
  1026. printk("md: **********************************\n");
  1027. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1028. printk("md: **********************************\n");
  1029. ITERATE_MDDEV(mddev,tmp) {
  1030. if (mddev->bitmap)
  1031. bitmap_print_sb(mddev->bitmap);
  1032. else
  1033. printk("%s: ", mdname(mddev));
  1034. ITERATE_RDEV(mddev,rdev,tmp2)
  1035. printk("<%s>", bdevname(rdev->bdev,b));
  1036. printk("\n");
  1037. ITERATE_RDEV(mddev,rdev,tmp2)
  1038. print_rdev(rdev);
  1039. }
  1040. printk("md: **********************************\n");
  1041. printk("\n");
  1042. }
  1043. static int write_disk_sb(mdk_rdev_t * rdev)
  1044. {
  1045. char b[BDEVNAME_SIZE];
  1046. if (!rdev->sb_loaded) {
  1047. MD_BUG();
  1048. return 1;
  1049. }
  1050. if (rdev->faulty) {
  1051. MD_BUG();
  1052. return 1;
  1053. }
  1054. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1055. bdevname(rdev->bdev,b),
  1056. (unsigned long long)rdev->sb_offset);
  1057. if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
  1058. return 0;
  1059. printk("md: write_disk_sb failed for device %s\n",
  1060. bdevname(rdev->bdev,b));
  1061. return 1;
  1062. }
  1063. static void sync_sbs(mddev_t * mddev)
  1064. {
  1065. mdk_rdev_t *rdev;
  1066. struct list_head *tmp;
  1067. ITERATE_RDEV(mddev,rdev,tmp) {
  1068. super_types[mddev->major_version].
  1069. sync_super(mddev, rdev);
  1070. rdev->sb_loaded = 1;
  1071. }
  1072. }
  1073. static void md_update_sb(mddev_t * mddev)
  1074. {
  1075. int err, count = 100;
  1076. struct list_head *tmp;
  1077. mdk_rdev_t *rdev;
  1078. int sync_req;
  1079. repeat:
  1080. spin_lock(&mddev->write_lock);
  1081. sync_req = mddev->in_sync;
  1082. mddev->utime = get_seconds();
  1083. mddev->events ++;
  1084. if (!mddev->events) {
  1085. /*
  1086. * oops, this 64-bit counter should never wrap.
  1087. * Either we are in around ~1 trillion A.C., assuming
  1088. * 1 reboot per second, or we have a bug:
  1089. */
  1090. MD_BUG();
  1091. mddev->events --;
  1092. }
  1093. sync_sbs(mddev);
  1094. /*
  1095. * do not write anything to disk if using
  1096. * nonpersistent superblocks
  1097. */
  1098. if (!mddev->persistent) {
  1099. mddev->sb_dirty = 0;
  1100. spin_unlock(&mddev->write_lock);
  1101. return;
  1102. }
  1103. spin_unlock(&mddev->write_lock);
  1104. dprintk(KERN_INFO
  1105. "md: updating %s RAID superblock on device (in sync %d)\n",
  1106. mdname(mddev),mddev->in_sync);
  1107. err = bitmap_update_sb(mddev->bitmap);
  1108. ITERATE_RDEV(mddev,rdev,tmp) {
  1109. char b[BDEVNAME_SIZE];
  1110. dprintk(KERN_INFO "md: ");
  1111. if (rdev->faulty)
  1112. dprintk("(skipping faulty ");
  1113. dprintk("%s ", bdevname(rdev->bdev,b));
  1114. if (!rdev->faulty) {
  1115. err += write_disk_sb(rdev);
  1116. } else
  1117. dprintk(")\n");
  1118. if (!err && mddev->level == LEVEL_MULTIPATH)
  1119. /* only need to write one superblock... */
  1120. break;
  1121. }
  1122. if (err) {
  1123. if (--count) {
  1124. printk(KERN_ERR "md: errors occurred during superblock"
  1125. " update, repeating\n");
  1126. goto repeat;
  1127. }
  1128. printk(KERN_ERR \
  1129. "md: excessive errors occurred during superblock update, exiting\n");
  1130. }
  1131. spin_lock(&mddev->write_lock);
  1132. if (mddev->in_sync != sync_req) {
  1133. /* have to write it out again */
  1134. spin_unlock(&mddev->write_lock);
  1135. goto repeat;
  1136. }
  1137. mddev->sb_dirty = 0;
  1138. spin_unlock(&mddev->write_lock);
  1139. }
  1140. /*
  1141. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1142. *
  1143. * mark the device faulty if:
  1144. *
  1145. * - the device is nonexistent (zero size)
  1146. * - the device has no valid superblock
  1147. *
  1148. * a faulty rdev _never_ has rdev->sb set.
  1149. */
  1150. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1151. {
  1152. char b[BDEVNAME_SIZE];
  1153. int err;
  1154. mdk_rdev_t *rdev;
  1155. sector_t size;
  1156. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1157. if (!rdev) {
  1158. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1159. return ERR_PTR(-ENOMEM);
  1160. }
  1161. memset(rdev, 0, sizeof(*rdev));
  1162. if ((err = alloc_disk_sb(rdev)))
  1163. goto abort_free;
  1164. err = lock_rdev(rdev, newdev);
  1165. if (err)
  1166. goto abort_free;
  1167. rdev->desc_nr = -1;
  1168. rdev->faulty = 0;
  1169. rdev->in_sync = 0;
  1170. rdev->data_offset = 0;
  1171. atomic_set(&rdev->nr_pending, 0);
  1172. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1173. if (!size) {
  1174. printk(KERN_WARNING
  1175. "md: %s has zero or unknown size, marking faulty!\n",
  1176. bdevname(rdev->bdev,b));
  1177. err = -EINVAL;
  1178. goto abort_free;
  1179. }
  1180. if (super_format >= 0) {
  1181. err = super_types[super_format].
  1182. load_super(rdev, NULL, super_minor);
  1183. if (err == -EINVAL) {
  1184. printk(KERN_WARNING
  1185. "md: %s has invalid sb, not importing!\n",
  1186. bdevname(rdev->bdev,b));
  1187. goto abort_free;
  1188. }
  1189. if (err < 0) {
  1190. printk(KERN_WARNING
  1191. "md: could not read %s's sb, not importing!\n",
  1192. bdevname(rdev->bdev,b));
  1193. goto abort_free;
  1194. }
  1195. }
  1196. INIT_LIST_HEAD(&rdev->same_set);
  1197. return rdev;
  1198. abort_free:
  1199. if (rdev->sb_page) {
  1200. if (rdev->bdev)
  1201. unlock_rdev(rdev);
  1202. free_disk_sb(rdev);
  1203. }
  1204. kfree(rdev);
  1205. return ERR_PTR(err);
  1206. }
  1207. /*
  1208. * Check a full RAID array for plausibility
  1209. */
  1210. static void analyze_sbs(mddev_t * mddev)
  1211. {
  1212. int i;
  1213. struct list_head *tmp;
  1214. mdk_rdev_t *rdev, *freshest;
  1215. char b[BDEVNAME_SIZE];
  1216. freshest = NULL;
  1217. ITERATE_RDEV(mddev,rdev,tmp)
  1218. switch (super_types[mddev->major_version].
  1219. load_super(rdev, freshest, mddev->minor_version)) {
  1220. case 1:
  1221. freshest = rdev;
  1222. break;
  1223. case 0:
  1224. break;
  1225. default:
  1226. printk( KERN_ERR \
  1227. "md: fatal superblock inconsistency in %s"
  1228. " -- removing from array\n",
  1229. bdevname(rdev->bdev,b));
  1230. kick_rdev_from_array(rdev);
  1231. }
  1232. super_types[mddev->major_version].
  1233. validate_super(mddev, freshest);
  1234. i = 0;
  1235. ITERATE_RDEV(mddev,rdev,tmp) {
  1236. if (rdev != freshest)
  1237. if (super_types[mddev->major_version].
  1238. validate_super(mddev, rdev)) {
  1239. printk(KERN_WARNING "md: kicking non-fresh %s"
  1240. " from array!\n",
  1241. bdevname(rdev->bdev,b));
  1242. kick_rdev_from_array(rdev);
  1243. continue;
  1244. }
  1245. if (mddev->level == LEVEL_MULTIPATH) {
  1246. rdev->desc_nr = i++;
  1247. rdev->raid_disk = rdev->desc_nr;
  1248. rdev->in_sync = 1;
  1249. }
  1250. }
  1251. if (mddev->recovery_cp != MaxSector &&
  1252. mddev->level >= 1)
  1253. printk(KERN_ERR "md: %s: raid array is not clean"
  1254. " -- starting background reconstruction\n",
  1255. mdname(mddev));
  1256. }
  1257. int mdp_major = 0;
  1258. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1259. {
  1260. static DECLARE_MUTEX(disks_sem);
  1261. mddev_t *mddev = mddev_find(dev);
  1262. struct gendisk *disk;
  1263. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1264. int shift = partitioned ? MdpMinorShift : 0;
  1265. int unit = MINOR(dev) >> shift;
  1266. if (!mddev)
  1267. return NULL;
  1268. down(&disks_sem);
  1269. if (mddev->gendisk) {
  1270. up(&disks_sem);
  1271. mddev_put(mddev);
  1272. return NULL;
  1273. }
  1274. disk = alloc_disk(1 << shift);
  1275. if (!disk) {
  1276. up(&disks_sem);
  1277. mddev_put(mddev);
  1278. return NULL;
  1279. }
  1280. disk->major = MAJOR(dev);
  1281. disk->first_minor = unit << shift;
  1282. if (partitioned) {
  1283. sprintf(disk->disk_name, "md_d%d", unit);
  1284. sprintf(disk->devfs_name, "md/d%d", unit);
  1285. } else {
  1286. sprintf(disk->disk_name, "md%d", unit);
  1287. sprintf(disk->devfs_name, "md/%d", unit);
  1288. }
  1289. disk->fops = &md_fops;
  1290. disk->private_data = mddev;
  1291. disk->queue = mddev->queue;
  1292. add_disk(disk);
  1293. mddev->gendisk = disk;
  1294. up(&disks_sem);
  1295. return NULL;
  1296. }
  1297. void md_wakeup_thread(mdk_thread_t *thread);
  1298. static void md_safemode_timeout(unsigned long data)
  1299. {
  1300. mddev_t *mddev = (mddev_t *) data;
  1301. mddev->safemode = 1;
  1302. md_wakeup_thread(mddev->thread);
  1303. }
  1304. static int do_md_run(mddev_t * mddev)
  1305. {
  1306. int pnum, err;
  1307. int chunk_size;
  1308. struct list_head *tmp;
  1309. mdk_rdev_t *rdev;
  1310. struct gendisk *disk;
  1311. char b[BDEVNAME_SIZE];
  1312. if (list_empty(&mddev->disks))
  1313. /* cannot run an array with no devices.. */
  1314. return -EINVAL;
  1315. if (mddev->pers)
  1316. return -EBUSY;
  1317. /*
  1318. * Analyze all RAID superblock(s)
  1319. */
  1320. if (!mddev->raid_disks)
  1321. analyze_sbs(mddev);
  1322. chunk_size = mddev->chunk_size;
  1323. pnum = level_to_pers(mddev->level);
  1324. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1325. if (!chunk_size) {
  1326. /*
  1327. * 'default chunksize' in the old md code used to
  1328. * be PAGE_SIZE, baaad.
  1329. * we abort here to be on the safe side. We don't
  1330. * want to continue the bad practice.
  1331. */
  1332. printk(KERN_ERR
  1333. "no chunksize specified, see 'man raidtab'\n");
  1334. return -EINVAL;
  1335. }
  1336. if (chunk_size > MAX_CHUNK_SIZE) {
  1337. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1338. chunk_size, MAX_CHUNK_SIZE);
  1339. return -EINVAL;
  1340. }
  1341. /*
  1342. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1343. */
  1344. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1345. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1346. return -EINVAL;
  1347. }
  1348. if (chunk_size < PAGE_SIZE) {
  1349. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1350. chunk_size, PAGE_SIZE);
  1351. return -EINVAL;
  1352. }
  1353. /* devices must have minimum size of one chunk */
  1354. ITERATE_RDEV(mddev,rdev,tmp) {
  1355. if (rdev->faulty)
  1356. continue;
  1357. if (rdev->size < chunk_size / 1024) {
  1358. printk(KERN_WARNING
  1359. "md: Dev %s smaller than chunk_size:"
  1360. " %lluk < %dk\n",
  1361. bdevname(rdev->bdev,b),
  1362. (unsigned long long)rdev->size,
  1363. chunk_size / 1024);
  1364. return -EINVAL;
  1365. }
  1366. }
  1367. }
  1368. #ifdef CONFIG_KMOD
  1369. if (!pers[pnum])
  1370. {
  1371. request_module("md-personality-%d", pnum);
  1372. }
  1373. #endif
  1374. /*
  1375. * Drop all container device buffers, from now on
  1376. * the only valid external interface is through the md
  1377. * device.
  1378. * Also find largest hardsector size
  1379. */
  1380. ITERATE_RDEV(mddev,rdev,tmp) {
  1381. if (rdev->faulty)
  1382. continue;
  1383. sync_blockdev(rdev->bdev);
  1384. invalidate_bdev(rdev->bdev, 0);
  1385. }
  1386. md_probe(mddev->unit, NULL, NULL);
  1387. disk = mddev->gendisk;
  1388. if (!disk)
  1389. return -ENOMEM;
  1390. spin_lock(&pers_lock);
  1391. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1392. spin_unlock(&pers_lock);
  1393. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1394. pnum);
  1395. return -EINVAL;
  1396. }
  1397. mddev->pers = pers[pnum];
  1398. spin_unlock(&pers_lock);
  1399. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1400. /* before we start the array running, initialise the bitmap */
  1401. err = bitmap_create(mddev);
  1402. if (err)
  1403. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1404. mdname(mddev), err);
  1405. else
  1406. err = mddev->pers->run(mddev);
  1407. if (err) {
  1408. printk(KERN_ERR "md: pers->run() failed ...\n");
  1409. module_put(mddev->pers->owner);
  1410. mddev->pers = NULL;
  1411. bitmap_destroy(mddev);
  1412. return err;
  1413. }
  1414. atomic_set(&mddev->writes_pending,0);
  1415. mddev->safemode = 0;
  1416. mddev->safemode_timer.function = md_safemode_timeout;
  1417. mddev->safemode_timer.data = (unsigned long) mddev;
  1418. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1419. mddev->in_sync = 1;
  1420. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1421. if (mddev->sb_dirty)
  1422. md_update_sb(mddev);
  1423. set_capacity(disk, mddev->array_size<<1);
  1424. /* If we call blk_queue_make_request here, it will
  1425. * re-initialise max_sectors etc which may have been
  1426. * refined inside -> run. So just set the bits we need to set.
  1427. * Most initialisation happended when we called
  1428. * blk_queue_make_request(..., md_fail_request)
  1429. * earlier.
  1430. */
  1431. mddev->queue->queuedata = mddev;
  1432. mddev->queue->make_request_fn = mddev->pers->make_request;
  1433. mddev->changed = 1;
  1434. return 0;
  1435. }
  1436. static int restart_array(mddev_t *mddev)
  1437. {
  1438. struct gendisk *disk = mddev->gendisk;
  1439. int err;
  1440. /*
  1441. * Complain if it has no devices
  1442. */
  1443. err = -ENXIO;
  1444. if (list_empty(&mddev->disks))
  1445. goto out;
  1446. if (mddev->pers) {
  1447. err = -EBUSY;
  1448. if (!mddev->ro)
  1449. goto out;
  1450. mddev->safemode = 0;
  1451. mddev->ro = 0;
  1452. set_disk_ro(disk, 0);
  1453. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1454. mdname(mddev));
  1455. /*
  1456. * Kick recovery or resync if necessary
  1457. */
  1458. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1459. md_wakeup_thread(mddev->thread);
  1460. err = 0;
  1461. } else {
  1462. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1463. mdname(mddev));
  1464. err = -EINVAL;
  1465. }
  1466. out:
  1467. return err;
  1468. }
  1469. static int do_md_stop(mddev_t * mddev, int ro)
  1470. {
  1471. int err = 0;
  1472. struct gendisk *disk = mddev->gendisk;
  1473. if (mddev->pers) {
  1474. if (atomic_read(&mddev->active)>2) {
  1475. printk("md: %s still in use.\n",mdname(mddev));
  1476. return -EBUSY;
  1477. }
  1478. if (mddev->sync_thread) {
  1479. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1480. md_unregister_thread(mddev->sync_thread);
  1481. mddev->sync_thread = NULL;
  1482. }
  1483. del_timer_sync(&mddev->safemode_timer);
  1484. invalidate_partition(disk, 0);
  1485. if (ro) {
  1486. err = -ENXIO;
  1487. if (mddev->ro)
  1488. goto out;
  1489. mddev->ro = 1;
  1490. } else {
  1491. if (mddev->ro)
  1492. set_disk_ro(disk, 0);
  1493. blk_queue_make_request(mddev->queue, md_fail_request);
  1494. mddev->pers->stop(mddev);
  1495. module_put(mddev->pers->owner);
  1496. mddev->pers = NULL;
  1497. if (mddev->ro)
  1498. mddev->ro = 0;
  1499. }
  1500. if (!mddev->in_sync) {
  1501. /* mark array as shutdown cleanly */
  1502. mddev->in_sync = 1;
  1503. md_update_sb(mddev);
  1504. }
  1505. if (ro)
  1506. set_disk_ro(disk, 1);
  1507. }
  1508. bitmap_destroy(mddev);
  1509. if (mddev->bitmap_file) {
  1510. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1511. fput(mddev->bitmap_file);
  1512. mddev->bitmap_file = NULL;
  1513. }
  1514. /*
  1515. * Free resources if final stop
  1516. */
  1517. if (!ro) {
  1518. struct gendisk *disk;
  1519. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1520. export_array(mddev);
  1521. mddev->array_size = 0;
  1522. disk = mddev->gendisk;
  1523. if (disk)
  1524. set_capacity(disk, 0);
  1525. mddev->changed = 1;
  1526. } else
  1527. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1528. mdname(mddev));
  1529. err = 0;
  1530. out:
  1531. return err;
  1532. }
  1533. static void autorun_array(mddev_t *mddev)
  1534. {
  1535. mdk_rdev_t *rdev;
  1536. struct list_head *tmp;
  1537. int err;
  1538. if (list_empty(&mddev->disks))
  1539. return;
  1540. printk(KERN_INFO "md: running: ");
  1541. ITERATE_RDEV(mddev,rdev,tmp) {
  1542. char b[BDEVNAME_SIZE];
  1543. printk("<%s>", bdevname(rdev->bdev,b));
  1544. }
  1545. printk("\n");
  1546. err = do_md_run (mddev);
  1547. if (err) {
  1548. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1549. do_md_stop (mddev, 0);
  1550. }
  1551. }
  1552. /*
  1553. * lets try to run arrays based on all disks that have arrived
  1554. * until now. (those are in pending_raid_disks)
  1555. *
  1556. * the method: pick the first pending disk, collect all disks with
  1557. * the same UUID, remove all from the pending list and put them into
  1558. * the 'same_array' list. Then order this list based on superblock
  1559. * update time (freshest comes first), kick out 'old' disks and
  1560. * compare superblocks. If everything's fine then run it.
  1561. *
  1562. * If "unit" is allocated, then bump its reference count
  1563. */
  1564. static void autorun_devices(int part)
  1565. {
  1566. struct list_head candidates;
  1567. struct list_head *tmp;
  1568. mdk_rdev_t *rdev0, *rdev;
  1569. mddev_t *mddev;
  1570. char b[BDEVNAME_SIZE];
  1571. printk(KERN_INFO "md: autorun ...\n");
  1572. while (!list_empty(&pending_raid_disks)) {
  1573. dev_t dev;
  1574. rdev0 = list_entry(pending_raid_disks.next,
  1575. mdk_rdev_t, same_set);
  1576. printk(KERN_INFO "md: considering %s ...\n",
  1577. bdevname(rdev0->bdev,b));
  1578. INIT_LIST_HEAD(&candidates);
  1579. ITERATE_RDEV_PENDING(rdev,tmp)
  1580. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1581. printk(KERN_INFO "md: adding %s ...\n",
  1582. bdevname(rdev->bdev,b));
  1583. list_move(&rdev->same_set, &candidates);
  1584. }
  1585. /*
  1586. * now we have a set of devices, with all of them having
  1587. * mostly sane superblocks. It's time to allocate the
  1588. * mddev.
  1589. */
  1590. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1591. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1592. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1593. break;
  1594. }
  1595. if (part)
  1596. dev = MKDEV(mdp_major,
  1597. rdev0->preferred_minor << MdpMinorShift);
  1598. else
  1599. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1600. md_probe(dev, NULL, NULL);
  1601. mddev = mddev_find(dev);
  1602. if (!mddev) {
  1603. printk(KERN_ERR
  1604. "md: cannot allocate memory for md drive.\n");
  1605. break;
  1606. }
  1607. if (mddev_lock(mddev))
  1608. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1609. mdname(mddev));
  1610. else if (mddev->raid_disks || mddev->major_version
  1611. || !list_empty(&mddev->disks)) {
  1612. printk(KERN_WARNING
  1613. "md: %s already running, cannot run %s\n",
  1614. mdname(mddev), bdevname(rdev0->bdev,b));
  1615. mddev_unlock(mddev);
  1616. } else {
  1617. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1618. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1619. list_del_init(&rdev->same_set);
  1620. if (bind_rdev_to_array(rdev, mddev))
  1621. export_rdev(rdev);
  1622. }
  1623. autorun_array(mddev);
  1624. mddev_unlock(mddev);
  1625. }
  1626. /* on success, candidates will be empty, on error
  1627. * it won't...
  1628. */
  1629. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1630. export_rdev(rdev);
  1631. mddev_put(mddev);
  1632. }
  1633. printk(KERN_INFO "md: ... autorun DONE.\n");
  1634. }
  1635. /*
  1636. * import RAID devices based on one partition
  1637. * if possible, the array gets run as well.
  1638. */
  1639. static int autostart_array(dev_t startdev)
  1640. {
  1641. char b[BDEVNAME_SIZE];
  1642. int err = -EINVAL, i;
  1643. mdp_super_t *sb = NULL;
  1644. mdk_rdev_t *start_rdev = NULL, *rdev;
  1645. start_rdev = md_import_device(startdev, 0, 0);
  1646. if (IS_ERR(start_rdev))
  1647. return err;
  1648. /* NOTE: this can only work for 0.90.0 superblocks */
  1649. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1650. if (sb->major_version != 0 ||
  1651. sb->minor_version != 90 ) {
  1652. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1653. export_rdev(start_rdev);
  1654. return err;
  1655. }
  1656. if (start_rdev->faulty) {
  1657. printk(KERN_WARNING
  1658. "md: can not autostart based on faulty %s!\n",
  1659. bdevname(start_rdev->bdev,b));
  1660. export_rdev(start_rdev);
  1661. return err;
  1662. }
  1663. list_add(&start_rdev->same_set, &pending_raid_disks);
  1664. for (i = 0; i < MD_SB_DISKS; i++) {
  1665. mdp_disk_t *desc = sb->disks + i;
  1666. dev_t dev = MKDEV(desc->major, desc->minor);
  1667. if (!dev)
  1668. continue;
  1669. if (dev == startdev)
  1670. continue;
  1671. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1672. continue;
  1673. rdev = md_import_device(dev, 0, 0);
  1674. if (IS_ERR(rdev))
  1675. continue;
  1676. list_add(&rdev->same_set, &pending_raid_disks);
  1677. }
  1678. /*
  1679. * possibly return codes
  1680. */
  1681. autorun_devices(0);
  1682. return 0;
  1683. }
  1684. static int get_version(void __user * arg)
  1685. {
  1686. mdu_version_t ver;
  1687. ver.major = MD_MAJOR_VERSION;
  1688. ver.minor = MD_MINOR_VERSION;
  1689. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1690. if (copy_to_user(arg, &ver, sizeof(ver)))
  1691. return -EFAULT;
  1692. return 0;
  1693. }
  1694. static int get_array_info(mddev_t * mddev, void __user * arg)
  1695. {
  1696. mdu_array_info_t info;
  1697. int nr,working,active,failed,spare;
  1698. mdk_rdev_t *rdev;
  1699. struct list_head *tmp;
  1700. nr=working=active=failed=spare=0;
  1701. ITERATE_RDEV(mddev,rdev,tmp) {
  1702. nr++;
  1703. if (rdev->faulty)
  1704. failed++;
  1705. else {
  1706. working++;
  1707. if (rdev->in_sync)
  1708. active++;
  1709. else
  1710. spare++;
  1711. }
  1712. }
  1713. info.major_version = mddev->major_version;
  1714. info.minor_version = mddev->minor_version;
  1715. info.patch_version = MD_PATCHLEVEL_VERSION;
  1716. info.ctime = mddev->ctime;
  1717. info.level = mddev->level;
  1718. info.size = mddev->size;
  1719. info.nr_disks = nr;
  1720. info.raid_disks = mddev->raid_disks;
  1721. info.md_minor = mddev->md_minor;
  1722. info.not_persistent= !mddev->persistent;
  1723. info.utime = mddev->utime;
  1724. info.state = 0;
  1725. if (mddev->in_sync)
  1726. info.state = (1<<MD_SB_CLEAN);
  1727. info.active_disks = active;
  1728. info.working_disks = working;
  1729. info.failed_disks = failed;
  1730. info.spare_disks = spare;
  1731. info.layout = mddev->layout;
  1732. info.chunk_size = mddev->chunk_size;
  1733. if (copy_to_user(arg, &info, sizeof(info)))
  1734. return -EFAULT;
  1735. return 0;
  1736. }
  1737. static int get_bitmap_file(mddev_t * mddev, void * arg)
  1738. {
  1739. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1740. char *ptr, *buf = NULL;
  1741. int err = -ENOMEM;
  1742. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1743. if (!file)
  1744. goto out;
  1745. /* bitmap disabled, zero the first byte and copy out */
  1746. if (!mddev->bitmap || !mddev->bitmap->file) {
  1747. file->pathname[0] = '\0';
  1748. goto copy_out;
  1749. }
  1750. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1751. if (!buf)
  1752. goto out;
  1753. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1754. if (!ptr)
  1755. goto out;
  1756. strcpy(file->pathname, ptr);
  1757. copy_out:
  1758. err = 0;
  1759. if (copy_to_user(arg, file, sizeof(*file)))
  1760. err = -EFAULT;
  1761. out:
  1762. kfree(buf);
  1763. kfree(file);
  1764. return err;
  1765. }
  1766. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1767. {
  1768. mdu_disk_info_t info;
  1769. unsigned int nr;
  1770. mdk_rdev_t *rdev;
  1771. if (copy_from_user(&info, arg, sizeof(info)))
  1772. return -EFAULT;
  1773. nr = info.number;
  1774. rdev = find_rdev_nr(mddev, nr);
  1775. if (rdev) {
  1776. info.major = MAJOR(rdev->bdev->bd_dev);
  1777. info.minor = MINOR(rdev->bdev->bd_dev);
  1778. info.raid_disk = rdev->raid_disk;
  1779. info.state = 0;
  1780. if (rdev->faulty)
  1781. info.state |= (1<<MD_DISK_FAULTY);
  1782. else if (rdev->in_sync) {
  1783. info.state |= (1<<MD_DISK_ACTIVE);
  1784. info.state |= (1<<MD_DISK_SYNC);
  1785. }
  1786. } else {
  1787. info.major = info.minor = 0;
  1788. info.raid_disk = -1;
  1789. info.state = (1<<MD_DISK_REMOVED);
  1790. }
  1791. if (copy_to_user(arg, &info, sizeof(info)))
  1792. return -EFAULT;
  1793. return 0;
  1794. }
  1795. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1796. {
  1797. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1798. mdk_rdev_t *rdev;
  1799. dev_t dev = MKDEV(info->major,info->minor);
  1800. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1801. return -EOVERFLOW;
  1802. if (!mddev->raid_disks) {
  1803. int err;
  1804. /* expecting a device which has a superblock */
  1805. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1806. if (IS_ERR(rdev)) {
  1807. printk(KERN_WARNING
  1808. "md: md_import_device returned %ld\n",
  1809. PTR_ERR(rdev));
  1810. return PTR_ERR(rdev);
  1811. }
  1812. if (!list_empty(&mddev->disks)) {
  1813. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1814. mdk_rdev_t, same_set);
  1815. int err = super_types[mddev->major_version]
  1816. .load_super(rdev, rdev0, mddev->minor_version);
  1817. if (err < 0) {
  1818. printk(KERN_WARNING
  1819. "md: %s has different UUID to %s\n",
  1820. bdevname(rdev->bdev,b),
  1821. bdevname(rdev0->bdev,b2));
  1822. export_rdev(rdev);
  1823. return -EINVAL;
  1824. }
  1825. }
  1826. err = bind_rdev_to_array(rdev, mddev);
  1827. if (err)
  1828. export_rdev(rdev);
  1829. return err;
  1830. }
  1831. /*
  1832. * add_new_disk can be used once the array is assembled
  1833. * to add "hot spares". They must already have a superblock
  1834. * written
  1835. */
  1836. if (mddev->pers) {
  1837. int err;
  1838. if (!mddev->pers->hot_add_disk) {
  1839. printk(KERN_WARNING
  1840. "%s: personality does not support diskops!\n",
  1841. mdname(mddev));
  1842. return -EINVAL;
  1843. }
  1844. rdev = md_import_device(dev, mddev->major_version,
  1845. mddev->minor_version);
  1846. if (IS_ERR(rdev)) {
  1847. printk(KERN_WARNING
  1848. "md: md_import_device returned %ld\n",
  1849. PTR_ERR(rdev));
  1850. return PTR_ERR(rdev);
  1851. }
  1852. rdev->in_sync = 0; /* just to be sure */
  1853. rdev->raid_disk = -1;
  1854. err = bind_rdev_to_array(rdev, mddev);
  1855. if (err)
  1856. export_rdev(rdev);
  1857. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1858. if (mddev->thread)
  1859. md_wakeup_thread(mddev->thread);
  1860. return err;
  1861. }
  1862. /* otherwise, add_new_disk is only allowed
  1863. * for major_version==0 superblocks
  1864. */
  1865. if (mddev->major_version != 0) {
  1866. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1867. mdname(mddev));
  1868. return -EINVAL;
  1869. }
  1870. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1871. int err;
  1872. rdev = md_import_device (dev, -1, 0);
  1873. if (IS_ERR(rdev)) {
  1874. printk(KERN_WARNING
  1875. "md: error, md_import_device() returned %ld\n",
  1876. PTR_ERR(rdev));
  1877. return PTR_ERR(rdev);
  1878. }
  1879. rdev->desc_nr = info->number;
  1880. if (info->raid_disk < mddev->raid_disks)
  1881. rdev->raid_disk = info->raid_disk;
  1882. else
  1883. rdev->raid_disk = -1;
  1884. rdev->faulty = 0;
  1885. if (rdev->raid_disk < mddev->raid_disks)
  1886. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1887. else
  1888. rdev->in_sync = 0;
  1889. err = bind_rdev_to_array(rdev, mddev);
  1890. if (err) {
  1891. export_rdev(rdev);
  1892. return err;
  1893. }
  1894. if (!mddev->persistent) {
  1895. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1896. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1897. } else
  1898. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1899. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1900. if (!mddev->size || (mddev->size > rdev->size))
  1901. mddev->size = rdev->size;
  1902. }
  1903. return 0;
  1904. }
  1905. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1906. {
  1907. char b[BDEVNAME_SIZE];
  1908. mdk_rdev_t *rdev;
  1909. if (!mddev->pers)
  1910. return -ENODEV;
  1911. rdev = find_rdev(mddev, dev);
  1912. if (!rdev)
  1913. return -ENXIO;
  1914. if (rdev->raid_disk >= 0)
  1915. goto busy;
  1916. kick_rdev_from_array(rdev);
  1917. md_update_sb(mddev);
  1918. return 0;
  1919. busy:
  1920. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1921. bdevname(rdev->bdev,b), mdname(mddev));
  1922. return -EBUSY;
  1923. }
  1924. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1925. {
  1926. char b[BDEVNAME_SIZE];
  1927. int err;
  1928. unsigned int size;
  1929. mdk_rdev_t *rdev;
  1930. if (!mddev->pers)
  1931. return -ENODEV;
  1932. if (mddev->major_version != 0) {
  1933. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1934. " version-0 superblocks.\n",
  1935. mdname(mddev));
  1936. return -EINVAL;
  1937. }
  1938. if (!mddev->pers->hot_add_disk) {
  1939. printk(KERN_WARNING
  1940. "%s: personality does not support diskops!\n",
  1941. mdname(mddev));
  1942. return -EINVAL;
  1943. }
  1944. rdev = md_import_device (dev, -1, 0);
  1945. if (IS_ERR(rdev)) {
  1946. printk(KERN_WARNING
  1947. "md: error, md_import_device() returned %ld\n",
  1948. PTR_ERR(rdev));
  1949. return -EINVAL;
  1950. }
  1951. if (mddev->persistent)
  1952. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1953. else
  1954. rdev->sb_offset =
  1955. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1956. size = calc_dev_size(rdev, mddev->chunk_size);
  1957. rdev->size = size;
  1958. if (size < mddev->size) {
  1959. printk(KERN_WARNING
  1960. "%s: disk size %llu blocks < array size %llu\n",
  1961. mdname(mddev), (unsigned long long)size,
  1962. (unsigned long long)mddev->size);
  1963. err = -ENOSPC;
  1964. goto abort_export;
  1965. }
  1966. if (rdev->faulty) {
  1967. printk(KERN_WARNING
  1968. "md: can not hot-add faulty %s disk to %s!\n",
  1969. bdevname(rdev->bdev,b), mdname(mddev));
  1970. err = -EINVAL;
  1971. goto abort_export;
  1972. }
  1973. rdev->in_sync = 0;
  1974. rdev->desc_nr = -1;
  1975. bind_rdev_to_array(rdev, mddev);
  1976. /*
  1977. * The rest should better be atomic, we can have disk failures
  1978. * noticed in interrupt contexts ...
  1979. */
  1980. if (rdev->desc_nr == mddev->max_disks) {
  1981. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  1982. mdname(mddev));
  1983. err = -EBUSY;
  1984. goto abort_unbind_export;
  1985. }
  1986. rdev->raid_disk = -1;
  1987. md_update_sb(mddev);
  1988. /*
  1989. * Kick recovery, maybe this spare has to be added to the
  1990. * array immediately.
  1991. */
  1992. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1993. md_wakeup_thread(mddev->thread);
  1994. return 0;
  1995. abort_unbind_export:
  1996. unbind_rdev_from_array(rdev);
  1997. abort_export:
  1998. export_rdev(rdev);
  1999. return err;
  2000. }
  2001. /* similar to deny_write_access, but accounts for our holding a reference
  2002. * to the file ourselves */
  2003. static int deny_bitmap_write_access(struct file * file)
  2004. {
  2005. struct inode *inode = file->f_mapping->host;
  2006. spin_lock(&inode->i_lock);
  2007. if (atomic_read(&inode->i_writecount) > 1) {
  2008. spin_unlock(&inode->i_lock);
  2009. return -ETXTBSY;
  2010. }
  2011. atomic_set(&inode->i_writecount, -1);
  2012. spin_unlock(&inode->i_lock);
  2013. return 0;
  2014. }
  2015. static int set_bitmap_file(mddev_t *mddev, int fd)
  2016. {
  2017. int err;
  2018. if (mddev->pers)
  2019. return -EBUSY;
  2020. mddev->bitmap_file = fget(fd);
  2021. if (mddev->bitmap_file == NULL) {
  2022. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2023. mdname(mddev));
  2024. return -EBADF;
  2025. }
  2026. err = deny_bitmap_write_access(mddev->bitmap_file);
  2027. if (err) {
  2028. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2029. mdname(mddev));
  2030. fput(mddev->bitmap_file);
  2031. mddev->bitmap_file = NULL;
  2032. }
  2033. return err;
  2034. }
  2035. /*
  2036. * set_array_info is used two different ways
  2037. * The original usage is when creating a new array.
  2038. * In this usage, raid_disks is > 0 and it together with
  2039. * level, size, not_persistent,layout,chunksize determine the
  2040. * shape of the array.
  2041. * This will always create an array with a type-0.90.0 superblock.
  2042. * The newer usage is when assembling an array.
  2043. * In this case raid_disks will be 0, and the major_version field is
  2044. * use to determine which style super-blocks are to be found on the devices.
  2045. * The minor and patch _version numbers are also kept incase the
  2046. * super_block handler wishes to interpret them.
  2047. */
  2048. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2049. {
  2050. if (info->raid_disks == 0) {
  2051. /* just setting version number for superblock loading */
  2052. if (info->major_version < 0 ||
  2053. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2054. super_types[info->major_version].name == NULL) {
  2055. /* maybe try to auto-load a module? */
  2056. printk(KERN_INFO
  2057. "md: superblock version %d not known\n",
  2058. info->major_version);
  2059. return -EINVAL;
  2060. }
  2061. mddev->major_version = info->major_version;
  2062. mddev->minor_version = info->minor_version;
  2063. mddev->patch_version = info->patch_version;
  2064. return 0;
  2065. }
  2066. mddev->major_version = MD_MAJOR_VERSION;
  2067. mddev->minor_version = MD_MINOR_VERSION;
  2068. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2069. mddev->ctime = get_seconds();
  2070. mddev->level = info->level;
  2071. mddev->size = info->size;
  2072. mddev->raid_disks = info->raid_disks;
  2073. /* don't set md_minor, it is determined by which /dev/md* was
  2074. * openned
  2075. */
  2076. if (info->state & (1<<MD_SB_CLEAN))
  2077. mddev->recovery_cp = MaxSector;
  2078. else
  2079. mddev->recovery_cp = 0;
  2080. mddev->persistent = ! info->not_persistent;
  2081. mddev->layout = info->layout;
  2082. mddev->chunk_size = info->chunk_size;
  2083. mddev->max_disks = MD_SB_DISKS;
  2084. mddev->sb_dirty = 1;
  2085. /*
  2086. * Generate a 128 bit UUID
  2087. */
  2088. get_random_bytes(mddev->uuid, 16);
  2089. return 0;
  2090. }
  2091. /*
  2092. * update_array_info is used to change the configuration of an
  2093. * on-line array.
  2094. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2095. * fields in the info are checked against the array.
  2096. * Any differences that cannot be handled will cause an error.
  2097. * Normally, only one change can be managed at a time.
  2098. */
  2099. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2100. {
  2101. int rv = 0;
  2102. int cnt = 0;
  2103. if (mddev->major_version != info->major_version ||
  2104. mddev->minor_version != info->minor_version ||
  2105. /* mddev->patch_version != info->patch_version || */
  2106. mddev->ctime != info->ctime ||
  2107. mddev->level != info->level ||
  2108. /* mddev->layout != info->layout || */
  2109. !mddev->persistent != info->not_persistent||
  2110. mddev->chunk_size != info->chunk_size )
  2111. return -EINVAL;
  2112. /* Check there is only one change */
  2113. if (mddev->size != info->size) cnt++;
  2114. if (mddev->raid_disks != info->raid_disks) cnt++;
  2115. if (mddev->layout != info->layout) cnt++;
  2116. if (cnt == 0) return 0;
  2117. if (cnt > 1) return -EINVAL;
  2118. if (mddev->layout != info->layout) {
  2119. /* Change layout
  2120. * we don't need to do anything at the md level, the
  2121. * personality will take care of it all.
  2122. */
  2123. if (mddev->pers->reconfig == NULL)
  2124. return -EINVAL;
  2125. else
  2126. return mddev->pers->reconfig(mddev, info->layout, -1);
  2127. }
  2128. if (mddev->size != info->size) {
  2129. mdk_rdev_t * rdev;
  2130. struct list_head *tmp;
  2131. if (mddev->pers->resize == NULL)
  2132. return -EINVAL;
  2133. /* The "size" is the amount of each device that is used.
  2134. * This can only make sense for arrays with redundancy.
  2135. * linear and raid0 always use whatever space is available
  2136. * We can only consider changing the size if no resync
  2137. * or reconstruction is happening, and if the new size
  2138. * is acceptable. It must fit before the sb_offset or,
  2139. * if that is <data_offset, it must fit before the
  2140. * size of each device.
  2141. * If size is zero, we find the largest size that fits.
  2142. */
  2143. if (mddev->sync_thread)
  2144. return -EBUSY;
  2145. ITERATE_RDEV(mddev,rdev,tmp) {
  2146. sector_t avail;
  2147. int fit = (info->size == 0);
  2148. if (rdev->sb_offset > rdev->data_offset)
  2149. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2150. else
  2151. avail = get_capacity(rdev->bdev->bd_disk)
  2152. - rdev->data_offset;
  2153. if (fit && (info->size == 0 || info->size > avail/2))
  2154. info->size = avail/2;
  2155. if (avail < ((sector_t)info->size << 1))
  2156. return -ENOSPC;
  2157. }
  2158. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2159. if (!rv) {
  2160. struct block_device *bdev;
  2161. bdev = bdget_disk(mddev->gendisk, 0);
  2162. if (bdev) {
  2163. down(&bdev->bd_inode->i_sem);
  2164. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2165. up(&bdev->bd_inode->i_sem);
  2166. bdput(bdev);
  2167. }
  2168. }
  2169. }
  2170. if (mddev->raid_disks != info->raid_disks) {
  2171. /* change the number of raid disks */
  2172. if (mddev->pers->reshape == NULL)
  2173. return -EINVAL;
  2174. if (info->raid_disks <= 0 ||
  2175. info->raid_disks >= mddev->max_disks)
  2176. return -EINVAL;
  2177. if (mddev->sync_thread)
  2178. return -EBUSY;
  2179. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2180. if (!rv) {
  2181. struct block_device *bdev;
  2182. bdev = bdget_disk(mddev->gendisk, 0);
  2183. if (bdev) {
  2184. down(&bdev->bd_inode->i_sem);
  2185. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2186. up(&bdev->bd_inode->i_sem);
  2187. bdput(bdev);
  2188. }
  2189. }
  2190. }
  2191. md_update_sb(mddev);
  2192. return rv;
  2193. }
  2194. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2195. {
  2196. mdk_rdev_t *rdev;
  2197. if (mddev->pers == NULL)
  2198. return -ENODEV;
  2199. rdev = find_rdev(mddev, dev);
  2200. if (!rdev)
  2201. return -ENODEV;
  2202. md_error(mddev, rdev);
  2203. return 0;
  2204. }
  2205. static int md_ioctl(struct inode *inode, struct file *file,
  2206. unsigned int cmd, unsigned long arg)
  2207. {
  2208. int err = 0;
  2209. void __user *argp = (void __user *)arg;
  2210. struct hd_geometry __user *loc = argp;
  2211. mddev_t *mddev = NULL;
  2212. if (!capable(CAP_SYS_ADMIN))
  2213. return -EACCES;
  2214. /*
  2215. * Commands dealing with the RAID driver but not any
  2216. * particular array:
  2217. */
  2218. switch (cmd)
  2219. {
  2220. case RAID_VERSION:
  2221. err = get_version(argp);
  2222. goto done;
  2223. case PRINT_RAID_DEBUG:
  2224. err = 0;
  2225. md_print_devices();
  2226. goto done;
  2227. #ifndef MODULE
  2228. case RAID_AUTORUN:
  2229. err = 0;
  2230. autostart_arrays(arg);
  2231. goto done;
  2232. #endif
  2233. default:;
  2234. }
  2235. /*
  2236. * Commands creating/starting a new array:
  2237. */
  2238. mddev = inode->i_bdev->bd_disk->private_data;
  2239. if (!mddev) {
  2240. BUG();
  2241. goto abort;
  2242. }
  2243. if (cmd == START_ARRAY) {
  2244. /* START_ARRAY doesn't need to lock the array as autostart_array
  2245. * does the locking, and it could even be a different array
  2246. */
  2247. static int cnt = 3;
  2248. if (cnt > 0 ) {
  2249. printk(KERN_WARNING
  2250. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2251. "This will not be supported beyond 2.6\n",
  2252. current->comm, current->pid);
  2253. cnt--;
  2254. }
  2255. err = autostart_array(new_decode_dev(arg));
  2256. if (err) {
  2257. printk(KERN_WARNING "md: autostart failed!\n");
  2258. goto abort;
  2259. }
  2260. goto done;
  2261. }
  2262. err = mddev_lock(mddev);
  2263. if (err) {
  2264. printk(KERN_INFO
  2265. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2266. err, cmd);
  2267. goto abort;
  2268. }
  2269. switch (cmd)
  2270. {
  2271. case SET_ARRAY_INFO:
  2272. {
  2273. mdu_array_info_t info;
  2274. if (!arg)
  2275. memset(&info, 0, sizeof(info));
  2276. else if (copy_from_user(&info, argp, sizeof(info))) {
  2277. err = -EFAULT;
  2278. goto abort_unlock;
  2279. }
  2280. if (mddev->pers) {
  2281. err = update_array_info(mddev, &info);
  2282. if (err) {
  2283. printk(KERN_WARNING "md: couldn't update"
  2284. " array info. %d\n", err);
  2285. goto abort_unlock;
  2286. }
  2287. goto done_unlock;
  2288. }
  2289. if (!list_empty(&mddev->disks)) {
  2290. printk(KERN_WARNING
  2291. "md: array %s already has disks!\n",
  2292. mdname(mddev));
  2293. err = -EBUSY;
  2294. goto abort_unlock;
  2295. }
  2296. if (mddev->raid_disks) {
  2297. printk(KERN_WARNING
  2298. "md: array %s already initialised!\n",
  2299. mdname(mddev));
  2300. err = -EBUSY;
  2301. goto abort_unlock;
  2302. }
  2303. err = set_array_info(mddev, &info);
  2304. if (err) {
  2305. printk(KERN_WARNING "md: couldn't set"
  2306. " array info. %d\n", err);
  2307. goto abort_unlock;
  2308. }
  2309. }
  2310. goto done_unlock;
  2311. default:;
  2312. }
  2313. /*
  2314. * Commands querying/configuring an existing array:
  2315. */
  2316. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2317. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2318. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2319. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2320. err = -ENODEV;
  2321. goto abort_unlock;
  2322. }
  2323. /*
  2324. * Commands even a read-only array can execute:
  2325. */
  2326. switch (cmd)
  2327. {
  2328. case GET_ARRAY_INFO:
  2329. err = get_array_info(mddev, argp);
  2330. goto done_unlock;
  2331. case GET_BITMAP_FILE:
  2332. err = get_bitmap_file(mddev, (void *)arg);
  2333. goto done_unlock;
  2334. case GET_DISK_INFO:
  2335. err = get_disk_info(mddev, argp);
  2336. goto done_unlock;
  2337. case RESTART_ARRAY_RW:
  2338. err = restart_array(mddev);
  2339. goto done_unlock;
  2340. case STOP_ARRAY:
  2341. err = do_md_stop (mddev, 0);
  2342. goto done_unlock;
  2343. case STOP_ARRAY_RO:
  2344. err = do_md_stop (mddev, 1);
  2345. goto done_unlock;
  2346. /*
  2347. * We have a problem here : there is no easy way to give a CHS
  2348. * virtual geometry. We currently pretend that we have a 2 heads
  2349. * 4 sectors (with a BIG number of cylinders...). This drives
  2350. * dosfs just mad... ;-)
  2351. */
  2352. case HDIO_GETGEO:
  2353. if (!loc) {
  2354. err = -EINVAL;
  2355. goto abort_unlock;
  2356. }
  2357. err = put_user (2, (char __user *) &loc->heads);
  2358. if (err)
  2359. goto abort_unlock;
  2360. err = put_user (4, (char __user *) &loc->sectors);
  2361. if (err)
  2362. goto abort_unlock;
  2363. err = put_user(get_capacity(mddev->gendisk)/8,
  2364. (short __user *) &loc->cylinders);
  2365. if (err)
  2366. goto abort_unlock;
  2367. err = put_user (get_start_sect(inode->i_bdev),
  2368. (long __user *) &loc->start);
  2369. goto done_unlock;
  2370. }
  2371. /*
  2372. * The remaining ioctls are changing the state of the
  2373. * superblock, so we do not allow read-only arrays
  2374. * here:
  2375. */
  2376. if (mddev->ro) {
  2377. err = -EROFS;
  2378. goto abort_unlock;
  2379. }
  2380. switch (cmd)
  2381. {
  2382. case ADD_NEW_DISK:
  2383. {
  2384. mdu_disk_info_t info;
  2385. if (copy_from_user(&info, argp, sizeof(info)))
  2386. err = -EFAULT;
  2387. else
  2388. err = add_new_disk(mddev, &info);
  2389. goto done_unlock;
  2390. }
  2391. case HOT_REMOVE_DISK:
  2392. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2393. goto done_unlock;
  2394. case HOT_ADD_DISK:
  2395. err = hot_add_disk(mddev, new_decode_dev(arg));
  2396. goto done_unlock;
  2397. case SET_DISK_FAULTY:
  2398. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2399. goto done_unlock;
  2400. case RUN_ARRAY:
  2401. err = do_md_run (mddev);
  2402. goto done_unlock;
  2403. case SET_BITMAP_FILE:
  2404. err = set_bitmap_file(mddev, (int)arg);
  2405. goto done_unlock;
  2406. default:
  2407. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2408. printk(KERN_WARNING "md: %s(pid %d) used"
  2409. " obsolete MD ioctl, upgrade your"
  2410. " software to use new ictls.\n",
  2411. current->comm, current->pid);
  2412. err = -EINVAL;
  2413. goto abort_unlock;
  2414. }
  2415. done_unlock:
  2416. abort_unlock:
  2417. mddev_unlock(mddev);
  2418. return err;
  2419. done:
  2420. if (err)
  2421. MD_BUG();
  2422. abort:
  2423. return err;
  2424. }
  2425. static int md_open(struct inode *inode, struct file *file)
  2426. {
  2427. /*
  2428. * Succeed if we can lock the mddev, which confirms that
  2429. * it isn't being stopped right now.
  2430. */
  2431. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2432. int err;
  2433. if ((err = mddev_lock(mddev)))
  2434. goto out;
  2435. err = 0;
  2436. mddev_get(mddev);
  2437. mddev_unlock(mddev);
  2438. check_disk_change(inode->i_bdev);
  2439. out:
  2440. return err;
  2441. }
  2442. static int md_release(struct inode *inode, struct file * file)
  2443. {
  2444. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2445. if (!mddev)
  2446. BUG();
  2447. mddev_put(mddev);
  2448. return 0;
  2449. }
  2450. static int md_media_changed(struct gendisk *disk)
  2451. {
  2452. mddev_t *mddev = disk->private_data;
  2453. return mddev->changed;
  2454. }
  2455. static int md_revalidate(struct gendisk *disk)
  2456. {
  2457. mddev_t *mddev = disk->private_data;
  2458. mddev->changed = 0;
  2459. return 0;
  2460. }
  2461. static struct block_device_operations md_fops =
  2462. {
  2463. .owner = THIS_MODULE,
  2464. .open = md_open,
  2465. .release = md_release,
  2466. .ioctl = md_ioctl,
  2467. .media_changed = md_media_changed,
  2468. .revalidate_disk= md_revalidate,
  2469. };
  2470. static int md_thread(void * arg)
  2471. {
  2472. mdk_thread_t *thread = arg;
  2473. lock_kernel();
  2474. /*
  2475. * Detach thread
  2476. */
  2477. daemonize(thread->name, mdname(thread->mddev));
  2478. current->exit_signal = SIGCHLD;
  2479. allow_signal(SIGKILL);
  2480. thread->tsk = current;
  2481. /*
  2482. * md_thread is a 'system-thread', it's priority should be very
  2483. * high. We avoid resource deadlocks individually in each
  2484. * raid personality. (RAID5 does preallocation) We also use RR and
  2485. * the very same RT priority as kswapd, thus we will never get
  2486. * into a priority inversion deadlock.
  2487. *
  2488. * we definitely have to have equal or higher priority than
  2489. * bdflush, otherwise bdflush will deadlock if there are too
  2490. * many dirty RAID5 blocks.
  2491. */
  2492. unlock_kernel();
  2493. complete(thread->event);
  2494. while (thread->run) {
  2495. void (*run)(mddev_t *);
  2496. wait_event_interruptible_timeout(thread->wqueue,
  2497. test_bit(THREAD_WAKEUP, &thread->flags),
  2498. thread->timeout);
  2499. if (current->flags & PF_FREEZE)
  2500. refrigerator(PF_FREEZE);
  2501. clear_bit(THREAD_WAKEUP, &thread->flags);
  2502. run = thread->run;
  2503. if (run)
  2504. run(thread->mddev);
  2505. if (signal_pending(current))
  2506. flush_signals(current);
  2507. }
  2508. complete(thread->event);
  2509. return 0;
  2510. }
  2511. void md_wakeup_thread(mdk_thread_t *thread)
  2512. {
  2513. if (thread) {
  2514. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2515. set_bit(THREAD_WAKEUP, &thread->flags);
  2516. wake_up(&thread->wqueue);
  2517. }
  2518. }
  2519. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2520. const char *name)
  2521. {
  2522. mdk_thread_t *thread;
  2523. int ret;
  2524. struct completion event;
  2525. thread = (mdk_thread_t *) kmalloc
  2526. (sizeof(mdk_thread_t), GFP_KERNEL);
  2527. if (!thread)
  2528. return NULL;
  2529. memset(thread, 0, sizeof(mdk_thread_t));
  2530. init_waitqueue_head(&thread->wqueue);
  2531. init_completion(&event);
  2532. thread->event = &event;
  2533. thread->run = run;
  2534. thread->mddev = mddev;
  2535. thread->name = name;
  2536. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2537. ret = kernel_thread(md_thread, thread, 0);
  2538. if (ret < 0) {
  2539. kfree(thread);
  2540. return NULL;
  2541. }
  2542. wait_for_completion(&event);
  2543. return thread;
  2544. }
  2545. void md_unregister_thread(mdk_thread_t *thread)
  2546. {
  2547. struct completion event;
  2548. init_completion(&event);
  2549. thread->event = &event;
  2550. /* As soon as ->run is set to NULL, the task could disappear,
  2551. * so we need to hold tasklist_lock until we have sent the signal
  2552. */
  2553. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2554. read_lock(&tasklist_lock);
  2555. thread->run = NULL;
  2556. send_sig(SIGKILL, thread->tsk, 1);
  2557. read_unlock(&tasklist_lock);
  2558. wait_for_completion(&event);
  2559. kfree(thread);
  2560. }
  2561. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2562. {
  2563. if (!mddev) {
  2564. MD_BUG();
  2565. return;
  2566. }
  2567. if (!rdev || rdev->faulty)
  2568. return;
  2569. /*
  2570. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2571. mdname(mddev),
  2572. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2573. __builtin_return_address(0),__builtin_return_address(1),
  2574. __builtin_return_address(2),__builtin_return_address(3));
  2575. */
  2576. if (!mddev->pers->error_handler)
  2577. return;
  2578. mddev->pers->error_handler(mddev,rdev);
  2579. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2580. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2581. md_wakeup_thread(mddev->thread);
  2582. }
  2583. /* seq_file implementation /proc/mdstat */
  2584. static void status_unused(struct seq_file *seq)
  2585. {
  2586. int i = 0;
  2587. mdk_rdev_t *rdev;
  2588. struct list_head *tmp;
  2589. seq_printf(seq, "unused devices: ");
  2590. ITERATE_RDEV_PENDING(rdev,tmp) {
  2591. char b[BDEVNAME_SIZE];
  2592. i++;
  2593. seq_printf(seq, "%s ",
  2594. bdevname(rdev->bdev,b));
  2595. }
  2596. if (!i)
  2597. seq_printf(seq, "<none>");
  2598. seq_printf(seq, "\n");
  2599. }
  2600. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2601. {
  2602. unsigned long max_blocks, resync, res, dt, db, rt;
  2603. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2604. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2605. max_blocks = mddev->resync_max_sectors >> 1;
  2606. else
  2607. max_blocks = mddev->size;
  2608. /*
  2609. * Should not happen.
  2610. */
  2611. if (!max_blocks) {
  2612. MD_BUG();
  2613. return;
  2614. }
  2615. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2616. {
  2617. int i, x = res/50, y = 20-x;
  2618. seq_printf(seq, "[");
  2619. for (i = 0; i < x; i++)
  2620. seq_printf(seq, "=");
  2621. seq_printf(seq, ">");
  2622. for (i = 0; i < y; i++)
  2623. seq_printf(seq, ".");
  2624. seq_printf(seq, "] ");
  2625. }
  2626. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2627. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2628. "resync" : "recovery"),
  2629. res/10, res % 10, resync, max_blocks);
  2630. /*
  2631. * We do not want to overflow, so the order of operands and
  2632. * the * 100 / 100 trick are important. We do a +1 to be
  2633. * safe against division by zero. We only estimate anyway.
  2634. *
  2635. * dt: time from mark until now
  2636. * db: blocks written from mark until now
  2637. * rt: remaining time
  2638. */
  2639. dt = ((jiffies - mddev->resync_mark) / HZ);
  2640. if (!dt) dt++;
  2641. db = resync - (mddev->resync_mark_cnt/2);
  2642. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2643. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2644. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2645. }
  2646. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2647. {
  2648. struct list_head *tmp;
  2649. loff_t l = *pos;
  2650. mddev_t *mddev;
  2651. if (l >= 0x10000)
  2652. return NULL;
  2653. if (!l--)
  2654. /* header */
  2655. return (void*)1;
  2656. spin_lock(&all_mddevs_lock);
  2657. list_for_each(tmp,&all_mddevs)
  2658. if (!l--) {
  2659. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2660. mddev_get(mddev);
  2661. spin_unlock(&all_mddevs_lock);
  2662. return mddev;
  2663. }
  2664. spin_unlock(&all_mddevs_lock);
  2665. if (!l--)
  2666. return (void*)2;/* tail */
  2667. return NULL;
  2668. }
  2669. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2670. {
  2671. struct list_head *tmp;
  2672. mddev_t *next_mddev, *mddev = v;
  2673. ++*pos;
  2674. if (v == (void*)2)
  2675. return NULL;
  2676. spin_lock(&all_mddevs_lock);
  2677. if (v == (void*)1)
  2678. tmp = all_mddevs.next;
  2679. else
  2680. tmp = mddev->all_mddevs.next;
  2681. if (tmp != &all_mddevs)
  2682. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2683. else {
  2684. next_mddev = (void*)2;
  2685. *pos = 0x10000;
  2686. }
  2687. spin_unlock(&all_mddevs_lock);
  2688. if (v != (void*)1)
  2689. mddev_put(mddev);
  2690. return next_mddev;
  2691. }
  2692. static void md_seq_stop(struct seq_file *seq, void *v)
  2693. {
  2694. mddev_t *mddev = v;
  2695. if (mddev && v != (void*)1 && v != (void*)2)
  2696. mddev_put(mddev);
  2697. }
  2698. static int md_seq_show(struct seq_file *seq, void *v)
  2699. {
  2700. mddev_t *mddev = v;
  2701. sector_t size;
  2702. struct list_head *tmp2;
  2703. mdk_rdev_t *rdev;
  2704. int i;
  2705. struct bitmap *bitmap;
  2706. if (v == (void*)1) {
  2707. seq_printf(seq, "Personalities : ");
  2708. spin_lock(&pers_lock);
  2709. for (i = 0; i < MAX_PERSONALITY; i++)
  2710. if (pers[i])
  2711. seq_printf(seq, "[%s] ", pers[i]->name);
  2712. spin_unlock(&pers_lock);
  2713. seq_printf(seq, "\n");
  2714. return 0;
  2715. }
  2716. if (v == (void*)2) {
  2717. status_unused(seq);
  2718. return 0;
  2719. }
  2720. if (mddev_lock(mddev)!=0)
  2721. return -EINTR;
  2722. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2723. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2724. mddev->pers ? "" : "in");
  2725. if (mddev->pers) {
  2726. if (mddev->ro)
  2727. seq_printf(seq, " (read-only)");
  2728. seq_printf(seq, " %s", mddev->pers->name);
  2729. }
  2730. size = 0;
  2731. ITERATE_RDEV(mddev,rdev,tmp2) {
  2732. char b[BDEVNAME_SIZE];
  2733. seq_printf(seq, " %s[%d]",
  2734. bdevname(rdev->bdev,b), rdev->desc_nr);
  2735. if (rdev->faulty) {
  2736. seq_printf(seq, "(F)");
  2737. continue;
  2738. }
  2739. size += rdev->size;
  2740. }
  2741. if (!list_empty(&mddev->disks)) {
  2742. if (mddev->pers)
  2743. seq_printf(seq, "\n %llu blocks",
  2744. (unsigned long long)mddev->array_size);
  2745. else
  2746. seq_printf(seq, "\n %llu blocks",
  2747. (unsigned long long)size);
  2748. }
  2749. if (mddev->pers) {
  2750. mddev->pers->status (seq, mddev);
  2751. seq_printf(seq, "\n ");
  2752. if (mddev->curr_resync > 2) {
  2753. status_resync (seq, mddev);
  2754. seq_printf(seq, "\n ");
  2755. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2756. seq_printf(seq, " resync=DELAYED\n ");
  2757. } else
  2758. seq_printf(seq, "\n ");
  2759. if ((bitmap = mddev->bitmap)) {
  2760. char *buf, *path;
  2761. unsigned long chunk_kb;
  2762. unsigned long flags;
  2763. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2764. spin_lock_irqsave(&bitmap->lock, flags);
  2765. chunk_kb = bitmap->chunksize >> 10;
  2766. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2767. "%lu%s chunk",
  2768. bitmap->pages - bitmap->missing_pages,
  2769. bitmap->pages,
  2770. (bitmap->pages - bitmap->missing_pages)
  2771. << (PAGE_SHIFT - 10),
  2772. chunk_kb ? chunk_kb : bitmap->chunksize,
  2773. chunk_kb ? "KB" : "B");
  2774. if (bitmap->file && buf) {
  2775. path = file_path(bitmap->file, buf, PAGE_SIZE);
  2776. seq_printf(seq, ", file: %s", path ? path : "");
  2777. }
  2778. seq_printf(seq, "\n");
  2779. spin_unlock_irqrestore(&bitmap->lock, flags);
  2780. kfree(buf);
  2781. }
  2782. seq_printf(seq, "\n");
  2783. }
  2784. mddev_unlock(mddev);
  2785. return 0;
  2786. }
  2787. static struct seq_operations md_seq_ops = {
  2788. .start = md_seq_start,
  2789. .next = md_seq_next,
  2790. .stop = md_seq_stop,
  2791. .show = md_seq_show,
  2792. };
  2793. static int md_seq_open(struct inode *inode, struct file *file)
  2794. {
  2795. int error;
  2796. error = seq_open(file, &md_seq_ops);
  2797. return error;
  2798. }
  2799. static struct file_operations md_seq_fops = {
  2800. .open = md_seq_open,
  2801. .read = seq_read,
  2802. .llseek = seq_lseek,
  2803. .release = seq_release,
  2804. };
  2805. int register_md_personality(int pnum, mdk_personality_t *p)
  2806. {
  2807. if (pnum >= MAX_PERSONALITY) {
  2808. printk(KERN_ERR
  2809. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2810. p->name, pnum, MAX_PERSONALITY-1);
  2811. return -EINVAL;
  2812. }
  2813. spin_lock(&pers_lock);
  2814. if (pers[pnum]) {
  2815. spin_unlock(&pers_lock);
  2816. return -EBUSY;
  2817. }
  2818. pers[pnum] = p;
  2819. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2820. spin_unlock(&pers_lock);
  2821. return 0;
  2822. }
  2823. int unregister_md_personality(int pnum)
  2824. {
  2825. if (pnum >= MAX_PERSONALITY)
  2826. return -EINVAL;
  2827. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2828. spin_lock(&pers_lock);
  2829. pers[pnum] = NULL;
  2830. spin_unlock(&pers_lock);
  2831. return 0;
  2832. }
  2833. static int is_mddev_idle(mddev_t *mddev)
  2834. {
  2835. mdk_rdev_t * rdev;
  2836. struct list_head *tmp;
  2837. int idle;
  2838. unsigned long curr_events;
  2839. idle = 1;
  2840. ITERATE_RDEV(mddev,rdev,tmp) {
  2841. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2842. curr_events = disk_stat_read(disk, read_sectors) +
  2843. disk_stat_read(disk, write_sectors) -
  2844. atomic_read(&disk->sync_io);
  2845. /* Allow some slack between valud of curr_events and last_events,
  2846. * as there are some uninteresting races.
  2847. * Note: the following is an unsigned comparison.
  2848. */
  2849. if ((curr_events - rdev->last_events + 32) > 64) {
  2850. rdev->last_events = curr_events;
  2851. idle = 0;
  2852. }
  2853. }
  2854. return idle;
  2855. }
  2856. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2857. {
  2858. /* another "blocks" (512byte) blocks have been synced */
  2859. atomic_sub(blocks, &mddev->recovery_active);
  2860. wake_up(&mddev->recovery_wait);
  2861. if (!ok) {
  2862. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2863. md_wakeup_thread(mddev->thread);
  2864. // stop recovery, signal do_sync ....
  2865. }
  2866. }
  2867. /* md_write_start(mddev, bi)
  2868. * If we need to update some array metadata (e.g. 'active' flag
  2869. * in superblock) before writing, queue bi for later writing
  2870. * and return 0, else return 1 and it will be written now
  2871. */
  2872. int md_write_start(mddev_t *mddev, struct bio *bi)
  2873. {
  2874. if (bio_data_dir(bi) != WRITE)
  2875. return 1;
  2876. atomic_inc(&mddev->writes_pending);
  2877. spin_lock(&mddev->write_lock);
  2878. if (mddev->in_sync == 0 && mddev->sb_dirty == 0) {
  2879. spin_unlock(&mddev->write_lock);
  2880. return 1;
  2881. }
  2882. bio_list_add(&mddev->write_list, bi);
  2883. if (mddev->in_sync) {
  2884. mddev->in_sync = 0;
  2885. mddev->sb_dirty = 1;
  2886. }
  2887. spin_unlock(&mddev->write_lock);
  2888. md_wakeup_thread(mddev->thread);
  2889. return 0;
  2890. }
  2891. void md_write_end(mddev_t *mddev)
  2892. {
  2893. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2894. if (mddev->safemode == 2)
  2895. md_wakeup_thread(mddev->thread);
  2896. else
  2897. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2898. }
  2899. }
  2900. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2901. #define SYNC_MARKS 10
  2902. #define SYNC_MARK_STEP (3*HZ)
  2903. static void md_do_sync(mddev_t *mddev)
  2904. {
  2905. mddev_t *mddev2;
  2906. unsigned int currspeed = 0,
  2907. window;
  2908. sector_t max_sectors,j, io_sectors;
  2909. unsigned long mark[SYNC_MARKS];
  2910. sector_t mark_cnt[SYNC_MARKS];
  2911. int last_mark,m;
  2912. struct list_head *tmp;
  2913. sector_t last_check;
  2914. int skipped = 0;
  2915. /* just incase thread restarts... */
  2916. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2917. return;
  2918. /* we overload curr_resync somewhat here.
  2919. * 0 == not engaged in resync at all
  2920. * 2 == checking that there is no conflict with another sync
  2921. * 1 == like 2, but have yielded to allow conflicting resync to
  2922. * commense
  2923. * other == active in resync - this many blocks
  2924. *
  2925. * Before starting a resync we must have set curr_resync to
  2926. * 2, and then checked that every "conflicting" array has curr_resync
  2927. * less than ours. When we find one that is the same or higher
  2928. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2929. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2930. * This will mean we have to start checking from the beginning again.
  2931. *
  2932. */
  2933. do {
  2934. mddev->curr_resync = 2;
  2935. try_again:
  2936. if (signal_pending(current)) {
  2937. flush_signals(current);
  2938. goto skip;
  2939. }
  2940. ITERATE_MDDEV(mddev2,tmp) {
  2941. printk(".");
  2942. if (mddev2 == mddev)
  2943. continue;
  2944. if (mddev2->curr_resync &&
  2945. match_mddev_units(mddev,mddev2)) {
  2946. DEFINE_WAIT(wq);
  2947. if (mddev < mddev2 && mddev->curr_resync == 2) {
  2948. /* arbitrarily yield */
  2949. mddev->curr_resync = 1;
  2950. wake_up(&resync_wait);
  2951. }
  2952. if (mddev > mddev2 && mddev->curr_resync == 1)
  2953. /* no need to wait here, we can wait the next
  2954. * time 'round when curr_resync == 2
  2955. */
  2956. continue;
  2957. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  2958. if (!signal_pending(current)
  2959. && mddev2->curr_resync >= mddev->curr_resync) {
  2960. printk(KERN_INFO "md: delaying resync of %s"
  2961. " until %s has finished resync (they"
  2962. " share one or more physical units)\n",
  2963. mdname(mddev), mdname(mddev2));
  2964. mddev_put(mddev2);
  2965. schedule();
  2966. finish_wait(&resync_wait, &wq);
  2967. goto try_again;
  2968. }
  2969. finish_wait(&resync_wait, &wq);
  2970. }
  2971. }
  2972. } while (mddev->curr_resync < 2);
  2973. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2974. /* resync follows the size requested by the personality,
  2975. * which defaults to physical size, but can be virtual size
  2976. */
  2977. max_sectors = mddev->resync_max_sectors;
  2978. else
  2979. /* recovery follows the physical size of devices */
  2980. max_sectors = mddev->size << 1;
  2981. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  2982. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  2983. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  2984. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  2985. "(but not more than %d KB/sec) for reconstruction.\n",
  2986. sysctl_speed_limit_max);
  2987. is_mddev_idle(mddev); /* this also initializes IO event counters */
  2988. /* we don't use the checkpoint if there's a bitmap */
  2989. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  2990. j = mddev->recovery_cp;
  2991. else
  2992. j = 0;
  2993. io_sectors = 0;
  2994. for (m = 0; m < SYNC_MARKS; m++) {
  2995. mark[m] = jiffies;
  2996. mark_cnt[m] = io_sectors;
  2997. }
  2998. last_mark = 0;
  2999. mddev->resync_mark = mark[last_mark];
  3000. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3001. /*
  3002. * Tune reconstruction:
  3003. */
  3004. window = 32*(PAGE_SIZE/512);
  3005. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3006. window/2,(unsigned long long) max_sectors/2);
  3007. atomic_set(&mddev->recovery_active, 0);
  3008. init_waitqueue_head(&mddev->recovery_wait);
  3009. last_check = 0;
  3010. if (j>2) {
  3011. printk(KERN_INFO
  3012. "md: resuming recovery of %s from checkpoint.\n",
  3013. mdname(mddev));
  3014. mddev->curr_resync = j;
  3015. }
  3016. while (j < max_sectors) {
  3017. sector_t sectors;
  3018. skipped = 0;
  3019. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3020. currspeed < sysctl_speed_limit_min);
  3021. if (sectors == 0) {
  3022. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3023. goto out;
  3024. }
  3025. if (!skipped) { /* actual IO requested */
  3026. io_sectors += sectors;
  3027. atomic_add(sectors, &mddev->recovery_active);
  3028. }
  3029. j += sectors;
  3030. if (j>1) mddev->curr_resync = j;
  3031. if (last_check + window > io_sectors || j == max_sectors)
  3032. continue;
  3033. last_check = io_sectors;
  3034. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3035. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3036. break;
  3037. repeat:
  3038. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3039. /* step marks */
  3040. int next = (last_mark+1) % SYNC_MARKS;
  3041. mddev->resync_mark = mark[next];
  3042. mddev->resync_mark_cnt = mark_cnt[next];
  3043. mark[next] = jiffies;
  3044. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3045. last_mark = next;
  3046. }
  3047. if (signal_pending(current)) {
  3048. /*
  3049. * got a signal, exit.
  3050. */
  3051. printk(KERN_INFO
  3052. "md: md_do_sync() got signal ... exiting\n");
  3053. flush_signals(current);
  3054. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3055. goto out;
  3056. }
  3057. /*
  3058. * this loop exits only if either when we are slower than
  3059. * the 'hard' speed limit, or the system was IO-idle for
  3060. * a jiffy.
  3061. * the system might be non-idle CPU-wise, but we only care
  3062. * about not overloading the IO subsystem. (things like an
  3063. * e2fsck being done on the RAID array should execute fast)
  3064. */
  3065. mddev->queue->unplug_fn(mddev->queue);
  3066. cond_resched();
  3067. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3068. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3069. if (currspeed > sysctl_speed_limit_min) {
  3070. if ((currspeed > sysctl_speed_limit_max) ||
  3071. !is_mddev_idle(mddev)) {
  3072. msleep_interruptible(250);
  3073. goto repeat;
  3074. }
  3075. }
  3076. }
  3077. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3078. /*
  3079. * this also signals 'finished resyncing' to md_stop
  3080. */
  3081. out:
  3082. mddev->queue->unplug_fn(mddev->queue);
  3083. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3084. /* tell personality that we are finished */
  3085. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3086. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3087. mddev->curr_resync > 2 &&
  3088. mddev->curr_resync >= mddev->recovery_cp) {
  3089. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3090. printk(KERN_INFO
  3091. "md: checkpointing recovery of %s.\n",
  3092. mdname(mddev));
  3093. mddev->recovery_cp = mddev->curr_resync;
  3094. } else
  3095. mddev->recovery_cp = MaxSector;
  3096. }
  3097. skip:
  3098. mddev->curr_resync = 0;
  3099. wake_up(&resync_wait);
  3100. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3101. md_wakeup_thread(mddev->thread);
  3102. }
  3103. /*
  3104. * This routine is regularly called by all per-raid-array threads to
  3105. * deal with generic issues like resync and super-block update.
  3106. * Raid personalities that don't have a thread (linear/raid0) do not
  3107. * need this as they never do any recovery or update the superblock.
  3108. *
  3109. * It does not do any resync itself, but rather "forks" off other threads
  3110. * to do that as needed.
  3111. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3112. * "->recovery" and create a thread at ->sync_thread.
  3113. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3114. * and wakeups up this thread which will reap the thread and finish up.
  3115. * This thread also removes any faulty devices (with nr_pending == 0).
  3116. *
  3117. * The overall approach is:
  3118. * 1/ if the superblock needs updating, update it.
  3119. * 2/ If a recovery thread is running, don't do anything else.
  3120. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3121. * 4/ If there are any faulty devices, remove them.
  3122. * 5/ If array is degraded, try to add spares devices
  3123. * 6/ If array has spares or is not in-sync, start a resync thread.
  3124. */
  3125. void md_check_recovery(mddev_t *mddev)
  3126. {
  3127. mdk_rdev_t *rdev;
  3128. struct list_head *rtmp;
  3129. dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
  3130. if (mddev->ro)
  3131. return;
  3132. if (signal_pending(current)) {
  3133. if (mddev->pers->sync_request) {
  3134. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3135. mdname(mddev));
  3136. mddev->safemode = 2;
  3137. }
  3138. flush_signals(current);
  3139. }
  3140. if ( ! (
  3141. mddev->sb_dirty ||
  3142. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3143. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3144. mddev->write_list.head ||
  3145. (mddev->safemode == 1) ||
  3146. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3147. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3148. ))
  3149. return;
  3150. if (mddev_trylock(mddev)==0) {
  3151. int spares =0;
  3152. struct bio *blist;
  3153. spin_lock(&mddev->write_lock);
  3154. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3155. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3156. mddev->in_sync = 1;
  3157. mddev->sb_dirty = 1;
  3158. }
  3159. if (mddev->safemode == 1)
  3160. mddev->safemode = 0;
  3161. blist = bio_list_get(&mddev->write_list);
  3162. spin_unlock(&mddev->write_lock);
  3163. if (mddev->sb_dirty)
  3164. md_update_sb(mddev);
  3165. while (blist) {
  3166. struct bio *b = blist;
  3167. blist = blist->bi_next;
  3168. b->bi_next = NULL;
  3169. generic_make_request(b);
  3170. /* we already counted this, so need to un-count */
  3171. md_write_end(mddev);
  3172. }
  3173. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3174. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3175. /* resync/recovery still happening */
  3176. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3177. goto unlock;
  3178. }
  3179. if (mddev->sync_thread) {
  3180. /* resync has finished, collect result */
  3181. md_unregister_thread(mddev->sync_thread);
  3182. mddev->sync_thread = NULL;
  3183. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3184. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3185. /* success...*/
  3186. /* activate any spares */
  3187. mddev->pers->spare_active(mddev);
  3188. }
  3189. md_update_sb(mddev);
  3190. mddev->recovery = 0;
  3191. /* flag recovery needed just to double check */
  3192. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3193. goto unlock;
  3194. }
  3195. if (mddev->recovery)
  3196. /* probably just the RECOVERY_NEEDED flag */
  3197. mddev->recovery = 0;
  3198. /* no recovery is running.
  3199. * remove any failed drives, then
  3200. * add spares if possible.
  3201. * Spare are also removed and re-added, to allow
  3202. * the personality to fail the re-add.
  3203. */
  3204. ITERATE_RDEV(mddev,rdev,rtmp)
  3205. if (rdev->raid_disk >= 0 &&
  3206. (rdev->faulty || ! rdev->in_sync) &&
  3207. atomic_read(&rdev->nr_pending)==0) {
  3208. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3209. rdev->raid_disk = -1;
  3210. }
  3211. if (mddev->degraded) {
  3212. ITERATE_RDEV(mddev,rdev,rtmp)
  3213. if (rdev->raid_disk < 0
  3214. && !rdev->faulty) {
  3215. if (mddev->pers->hot_add_disk(mddev,rdev))
  3216. spares++;
  3217. else
  3218. break;
  3219. }
  3220. }
  3221. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3222. /* nothing we can do ... */
  3223. goto unlock;
  3224. }
  3225. if (mddev->pers->sync_request) {
  3226. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3227. if (!spares)
  3228. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3229. mddev->sync_thread = md_register_thread(md_do_sync,
  3230. mddev,
  3231. "%s_resync");
  3232. if (!mddev->sync_thread) {
  3233. printk(KERN_ERR "%s: could not start resync"
  3234. " thread...\n",
  3235. mdname(mddev));
  3236. /* leave the spares where they are, it shouldn't hurt */
  3237. mddev->recovery = 0;
  3238. } else {
  3239. md_wakeup_thread(mddev->sync_thread);
  3240. }
  3241. }
  3242. unlock:
  3243. mddev_unlock(mddev);
  3244. }
  3245. }
  3246. static int md_notify_reboot(struct notifier_block *this,
  3247. unsigned long code, void *x)
  3248. {
  3249. struct list_head *tmp;
  3250. mddev_t *mddev;
  3251. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3252. printk(KERN_INFO "md: stopping all md devices.\n");
  3253. ITERATE_MDDEV(mddev,tmp)
  3254. if (mddev_trylock(mddev)==0)
  3255. do_md_stop (mddev, 1);
  3256. /*
  3257. * certain more exotic SCSI devices are known to be
  3258. * volatile wrt too early system reboots. While the
  3259. * right place to handle this issue is the given
  3260. * driver, we do want to have a safe RAID driver ...
  3261. */
  3262. mdelay(1000*1);
  3263. }
  3264. return NOTIFY_DONE;
  3265. }
  3266. static struct notifier_block md_notifier = {
  3267. .notifier_call = md_notify_reboot,
  3268. .next = NULL,
  3269. .priority = INT_MAX, /* before any real devices */
  3270. };
  3271. static void md_geninit(void)
  3272. {
  3273. struct proc_dir_entry *p;
  3274. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3275. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3276. if (p)
  3277. p->proc_fops = &md_seq_fops;
  3278. }
  3279. static int __init md_init(void)
  3280. {
  3281. int minor;
  3282. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3283. " MD_SB_DISKS=%d\n",
  3284. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3285. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3286. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3287. BITMAP_MINOR);
  3288. if (register_blkdev(MAJOR_NR, "md"))
  3289. return -1;
  3290. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3291. unregister_blkdev(MAJOR_NR, "md");
  3292. return -1;
  3293. }
  3294. devfs_mk_dir("md");
  3295. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3296. md_probe, NULL, NULL);
  3297. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3298. md_probe, NULL, NULL);
  3299. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3300. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3301. S_IFBLK|S_IRUSR|S_IWUSR,
  3302. "md/%d", minor);
  3303. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3304. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3305. S_IFBLK|S_IRUSR|S_IWUSR,
  3306. "md/mdp%d", minor);
  3307. register_reboot_notifier(&md_notifier);
  3308. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3309. md_geninit();
  3310. return (0);
  3311. }
  3312. #ifndef MODULE
  3313. /*
  3314. * Searches all registered partitions for autorun RAID arrays
  3315. * at boot time.
  3316. */
  3317. static dev_t detected_devices[128];
  3318. static int dev_cnt;
  3319. void md_autodetect_dev(dev_t dev)
  3320. {
  3321. if (dev_cnt >= 0 && dev_cnt < 127)
  3322. detected_devices[dev_cnt++] = dev;
  3323. }
  3324. static void autostart_arrays(int part)
  3325. {
  3326. mdk_rdev_t *rdev;
  3327. int i;
  3328. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3329. for (i = 0; i < dev_cnt; i++) {
  3330. dev_t dev = detected_devices[i];
  3331. rdev = md_import_device(dev,0, 0);
  3332. if (IS_ERR(rdev))
  3333. continue;
  3334. if (rdev->faulty) {
  3335. MD_BUG();
  3336. continue;
  3337. }
  3338. list_add(&rdev->same_set, &pending_raid_disks);
  3339. }
  3340. dev_cnt = 0;
  3341. autorun_devices(part);
  3342. }
  3343. #endif
  3344. static __exit void md_exit(void)
  3345. {
  3346. mddev_t *mddev;
  3347. struct list_head *tmp;
  3348. int i;
  3349. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3350. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3351. for (i=0; i < MAX_MD_DEVS; i++)
  3352. devfs_remove("md/%d", i);
  3353. for (i=0; i < MAX_MD_DEVS; i++)
  3354. devfs_remove("md/d%d", i);
  3355. devfs_remove("md");
  3356. unregister_blkdev(MAJOR_NR,"md");
  3357. unregister_blkdev(mdp_major, "mdp");
  3358. unregister_reboot_notifier(&md_notifier);
  3359. unregister_sysctl_table(raid_table_header);
  3360. remove_proc_entry("mdstat", NULL);
  3361. ITERATE_MDDEV(mddev,tmp) {
  3362. struct gendisk *disk = mddev->gendisk;
  3363. if (!disk)
  3364. continue;
  3365. export_array(mddev);
  3366. del_gendisk(disk);
  3367. put_disk(disk);
  3368. mddev->gendisk = NULL;
  3369. mddev_put(mddev);
  3370. }
  3371. }
  3372. module_init(md_init)
  3373. module_exit(md_exit)
  3374. EXPORT_SYMBOL(register_md_personality);
  3375. EXPORT_SYMBOL(unregister_md_personality);
  3376. EXPORT_SYMBOL(md_error);
  3377. EXPORT_SYMBOL(md_done_sync);
  3378. EXPORT_SYMBOL(md_write_start);
  3379. EXPORT_SYMBOL(md_write_end);
  3380. EXPORT_SYMBOL(md_register_thread);
  3381. EXPORT_SYMBOL(md_unregister_thread);
  3382. EXPORT_SYMBOL(md_wakeup_thread);
  3383. EXPORT_SYMBOL(md_print_devices);
  3384. EXPORT_SYMBOL(md_check_recovery);
  3385. MODULE_LICENSE("GPL");